summaryrefslogtreecommitdiffstats
path: root/Documentation/power
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/power')
-rw-r--r--Documentation/power/interface.txt5
-rw-r--r--Documentation/power/pci.txt10
-rw-r--r--Documentation/power/runtime_pm.txt2
-rw-r--r--Documentation/power/suspend-and-cpuhotplug.txt9
4 files changed, 13 insertions, 13 deletions
diff --git a/Documentation/power/interface.txt b/Documentation/power/interface.txt
index 974916ff6608..27df7f98668a 100644
--- a/Documentation/power/interface.txt
+++ b/Documentation/power/interface.txt
@@ -24,7 +24,8 @@ platform.
If one of the strings listed in /sys/power/state is written to it, the system
will attempt to transition into the corresponding sleep state. Refer to
-Documentation/power/states.txt for a description of each of those states.
+Documentation/admin-guide/pm/sleep-states.rst for a description of each of
+those states.
/sys/power/disk controls the operating mode of hibernation (Suspend-to-Disk).
Specifically, it tells the kernel what to do after creating a hibernation image.
@@ -42,7 +43,7 @@ The currently selected option is printed in square brackets.
The 'platform' option is only available if the platform provides a special
mechanism to put the system to sleep after creating a hibernation image (ACPI
does that, for example). The 'suspend' option is available if Suspend-to-RAM
-is supported. Refer to Documentation/power/basic_pm_debugging.txt for the
+is supported. Refer to Documentation/power/basic-pm-debugging.txt for the
description of the 'test_resume' option.
To select an option, write the string representing it to /sys/power/disk.
diff --git a/Documentation/power/pci.txt b/Documentation/power/pci.txt
index 304162ea377e..704cd36079b8 100644
--- a/Documentation/power/pci.txt
+++ b/Documentation/power/pci.txt
@@ -8,7 +8,7 @@ management. Based on previous work by Patrick Mochel <mochel@transmeta.com>
This document only covers the aspects of power management specific to PCI
devices. For general description of the kernel's interfaces related to device
-power management refer to Documentation/power/admin-guide/devices.rst and
+power management refer to Documentation/driver-api/pm/devices.rst and
Documentation/power/runtime_pm.txt.
---------------------------------------------------------------------------
@@ -417,7 +417,7 @@ pm->runtime_idle() callback.
2.4. System-Wide Power Transitions
----------------------------------
There are a few different types of system-wide power transitions, described in
-Documentation/power/admin-guide/devices.rst. Each of them requires devices to be handled
+Documentation/driver-api/pm/devices.rst. Each of them requires devices to be handled
in a specific way and the PM core executes subsystem-level power management
callbacks for this purpose. They are executed in phases such that each phase
involves executing the same subsystem-level callback for every device belonging
@@ -623,7 +623,7 @@ System restore requires a hibernation image to be loaded into memory and the
pre-hibernation memory contents to be restored before the pre-hibernation system
activity can be resumed.
-As described in Documentation/power/admin-guide/devices.rst, the hibernation image is loaded
+As described in Documentation/driver-api/pm/devices.rst, the hibernation image is loaded
into memory by a fresh instance of the kernel, called the boot kernel, which in
turn is loaded and run by a boot loader in the usual way. After the boot kernel
has loaded the image, it needs to replace its own code and data with the code
@@ -677,7 +677,7 @@ controlling the runtime power management of their devices.
At the time of this writing there are two ways to define power management
callbacks for a PCI device driver, the recommended one, based on using a
-dev_pm_ops structure described in Documentation/power/admin-guide/devices.rst, and the
+dev_pm_ops structure described in Documentation/driver-api/pm/devices.rst, and the
"legacy" one, in which the .suspend(), .suspend_late(), .resume_early(), and
.resume() callbacks from struct pci_driver are used. The legacy approach,
however, doesn't allow one to define runtime power management callbacks and is
@@ -1079,5 +1079,5 @@ PCI Local Bus Specification, Rev. 3.0
PCI Bus Power Management Interface Specification, Rev. 1.2
Advanced Configuration and Power Interface (ACPI) Specification, Rev. 3.0b
PCI Express Base Specification, Rev. 2.0
-Documentation/power/admin-guide/devices.rst
+Documentation/driver-api/pm/devices.rst
Documentation/power/runtime_pm.txt
diff --git a/Documentation/power/runtime_pm.txt b/Documentation/power/runtime_pm.txt
index 625549d4c74a..57af2f7963ee 100644
--- a/Documentation/power/runtime_pm.txt
+++ b/Documentation/power/runtime_pm.txt
@@ -680,7 +680,7 @@ left in runtime suspend. If that happens, the PM core will not execute any
system suspend and resume callbacks for all of those devices, except for the
complete callback, which is then entirely responsible for handling the device
as appropriate. This only applies to system suspend transitions that are not
-related to hibernation (see Documentation/power/admin-guide/devices.rst for more
+related to hibernation (see Documentation/driver-api/pm/devices.rst for more
information).
The PM core does its best to reduce the probability of race conditions between
diff --git a/Documentation/power/suspend-and-cpuhotplug.txt b/Documentation/power/suspend-and-cpuhotplug.txt
index 2fc909502db5..31abd04b9572 100644
--- a/Documentation/power/suspend-and-cpuhotplug.txt
+++ b/Documentation/power/suspend-and-cpuhotplug.txt
@@ -232,7 +232,7 @@ d. Handling microcode update during suspend/hibernate:
hibernate/restore cycle.]
In the current design of the kernel however, during a CPU offline operation
- as part of the suspend/hibernate cycle (the CPU_DEAD_FROZEN notification),
+ as part of the suspend/hibernate cycle (cpuhp_tasks_frozen is set),
the existing copy of microcode image in the kernel is not freed up.
And during the CPU online operations (during resume/restore), since the
kernel finds that it already has copies of the microcode images for all the
@@ -252,10 +252,9 @@ Yes, they are listed below:
the _cpu_down() and _cpu_up() functions is *always* 0.
This might not reflect the true current state of the system, since the
tasks could have been frozen by an out-of-band event such as a suspend
- operation in progress. Hence, it will lead to wrong notifications being
- sent during the cpu online/offline events (eg, CPU_ONLINE notification
- instead of CPU_ONLINE_FROZEN) which in turn will lead to execution of
- inappropriate code by the callbacks registered for such CPU hotplug events.
+ operation in progress. Hence, the cpuhp_tasks_frozen variable will not
+ reflect the frozen state and the CPU hotplug callbacks which evaluate
+ that variable might execute the wrong code path.
2. If a regular CPU hotplug stress test happens to race with the freezer due
to a suspend operation in progress at the same time, then we could hit the