summaryrefslogtreecommitdiffstats
path: root/Documentation/powerpc/booting-without-of.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/powerpc/booting-without-of.txt')
-rw-r--r--Documentation/powerpc/booting-without-of.txt1447
1 files changed, 0 insertions, 1447 deletions
diff --git a/Documentation/powerpc/booting-without-of.txt b/Documentation/powerpc/booting-without-of.txt
deleted file mode 100644
index 7400d7555dc3..000000000000
--- a/Documentation/powerpc/booting-without-of.txt
+++ /dev/null
@@ -1,1447 +0,0 @@
- Booting the Linux/ppc kernel without Open Firmware
- --------------------------------------------------
-
-(c) 2005 Benjamin Herrenschmidt <benh at kernel.crashing.org>,
- IBM Corp.
-(c) 2005 Becky Bruce <becky.bruce at freescale.com>,
- Freescale Semiconductor, FSL SOC and 32-bit additions
-(c) 2006 MontaVista Software, Inc.
- Flash chip node definition
-
-Table of Contents
-=================
-
- I - Introduction
- 1) Entry point for arch/powerpc
- 2) Board support
-
- II - The DT block format
- 1) Header
- 2) Device tree generalities
- 3) Device tree "structure" block
- 4) Device tree "strings" block
-
- III - Required content of the device tree
- 1) Note about cells and address representation
- 2) Note about "compatible" properties
- 3) Note about "name" properties
- 4) Note about node and property names and character set
- 5) Required nodes and properties
- a) The root node
- b) The /cpus node
- c) The /cpus/* nodes
- d) the /memory node(s)
- e) The /chosen node
- f) the /soc<SOCname> node
-
- IV - "dtc", the device tree compiler
-
- V - Recommendations for a bootloader
-
- VI - System-on-a-chip devices and nodes
- 1) Defining child nodes of an SOC
- 2) Representing devices without a current OF specification
- a) PHY nodes
- b) Interrupt controllers
- c) 4xx/Axon EMAC ethernet nodes
- d) Xilinx IP cores
- e) USB EHCI controllers
- f) MDIO on GPIOs
- g) SPI busses
-
- VII - Specifying interrupt information for devices
- 1) interrupts property
- 2) interrupt-parent property
- 3) OpenPIC Interrupt Controllers
- 4) ISA Interrupt Controllers
-
- VIII - Specifying device power management information (sleep property)
-
- Appendix A - Sample SOC node for MPC8540
-
-
-Revision Information
-====================
-
- May 18, 2005: Rev 0.1 - Initial draft, no chapter III yet.
-
- May 19, 2005: Rev 0.2 - Add chapter III and bits & pieces here or
- clarifies the fact that a lot of things are
- optional, the kernel only requires a very
- small device tree, though it is encouraged
- to provide an as complete one as possible.
-
- May 24, 2005: Rev 0.3 - Precise that DT block has to be in RAM
- - Misc fixes
- - Define version 3 and new format version 16
- for the DT block (version 16 needs kernel
- patches, will be fwd separately).
- String block now has a size, and full path
- is replaced by unit name for more
- compactness.
- linux,phandle is made optional, only nodes
- that are referenced by other nodes need it.
- "name" property is now automatically
- deduced from the unit name
-
- June 1, 2005: Rev 0.4 - Correct confusion between OF_DT_END and
- OF_DT_END_NODE in structure definition.
- - Change version 16 format to always align
- property data to 4 bytes. Since tokens are
- already aligned, that means no specific
- required alignment between property size
- and property data. The old style variable
- alignment would make it impossible to do
- "simple" insertion of properties using
- memmove (thanks Milton for
- noticing). Updated kernel patch as well
- - Correct a few more alignment constraints
- - Add a chapter about the device-tree
- compiler and the textural representation of
- the tree that can be "compiled" by dtc.
-
- November 21, 2005: Rev 0.5
- - Additions/generalizations for 32-bit
- - Changed to reflect the new arch/powerpc
- structure
- - Added chapter VI
-
-
- ToDo:
- - Add some definitions of interrupt tree (simple/complex)
- - Add some definitions for PCI host bridges
- - Add some common address format examples
- - Add definitions for standard properties and "compatible"
- names for cells that are not already defined by the existing
- OF spec.
- - Compare FSL SOC use of PCI to standard and make sure no new
- node definition required.
- - Add more information about node definitions for SOC devices
- that currently have no standard, like the FSL CPM.
-
-
-I - Introduction
-================
-
-During the recent development of the Linux/ppc64 kernel, and more
-specifically, the addition of new platform types outside of the old
-IBM pSeries/iSeries pair, it was decided to enforce some strict rules
-regarding the kernel entry and bootloader <-> kernel interfaces, in
-order to avoid the degeneration that had become the ppc32 kernel entry
-point and the way a new platform should be added to the kernel. The
-legacy iSeries platform breaks those rules as it predates this scheme,
-but no new board support will be accepted in the main tree that
-doesn't follow them properly. In addition, since the advent of the
-arch/powerpc merged architecture for ppc32 and ppc64, new 32-bit
-platforms and 32-bit platforms which move into arch/powerpc will be
-required to use these rules as well.
-
-The main requirement that will be defined in more detail below is
-the presence of a device-tree whose format is defined after Open
-Firmware specification. However, in order to make life easier
-to embedded board vendors, the kernel doesn't require the device-tree
-to represent every device in the system and only requires some nodes
-and properties to be present. This will be described in detail in
-section III, but, for example, the kernel does not require you to
-create a node for every PCI device in the system. It is a requirement
-to have a node for PCI host bridges in order to provide interrupt
-routing informations and memory/IO ranges, among others. It is also
-recommended to define nodes for on chip devices and other busses that
-don't specifically fit in an existing OF specification. This creates a
-great flexibility in the way the kernel can then probe those and match
-drivers to device, without having to hard code all sorts of tables. It
-also makes it more flexible for board vendors to do minor hardware
-upgrades without significantly impacting the kernel code or cluttering
-it with special cases.
-
-
-1) Entry point for arch/powerpc
--------------------------------
-
- There is one and one single entry point to the kernel, at the start
- of the kernel image. That entry point supports two calling
- conventions:
-
- a) Boot from Open Firmware. If your firmware is compatible
- with Open Firmware (IEEE 1275) or provides an OF compatible
- client interface API (support for "interpret" callback of
- forth words isn't required), you can enter the kernel with:
-
- r5 : OF callback pointer as defined by IEEE 1275
- bindings to powerpc. Only the 32-bit client interface
- is currently supported
-
- r3, r4 : address & length of an initrd if any or 0
-
- The MMU is either on or off; the kernel will run the
- trampoline located in arch/powerpc/kernel/prom_init.c to
- extract the device-tree and other information from open
- firmware and build a flattened device-tree as described
- in b). prom_init() will then re-enter the kernel using
- the second method. This trampoline code runs in the
- context of the firmware, which is supposed to handle all
- exceptions during that time.
-
- b) Direct entry with a flattened device-tree block. This entry
- point is called by a) after the OF trampoline and can also be
- called directly by a bootloader that does not support the Open
- Firmware client interface. It is also used by "kexec" to
- implement "hot" booting of a new kernel from a previous
- running one. This method is what I will describe in more
- details in this document, as method a) is simply standard Open
- Firmware, and thus should be implemented according to the
- various standard documents defining it and its binding to the
- PowerPC platform. The entry point definition then becomes:
-
- r3 : physical pointer to the device-tree block
- (defined in chapter II) in RAM
-
- r4 : physical pointer to the kernel itself. This is
- used by the assembly code to properly disable the MMU
- in case you are entering the kernel with MMU enabled
- and a non-1:1 mapping.
-
- r5 : NULL (as to differentiate with method a)
-
- Note about SMP entry: Either your firmware puts your other
- CPUs in some sleep loop or spin loop in ROM where you can get
- them out via a soft reset or some other means, in which case
- you don't need to care, or you'll have to enter the kernel
- with all CPUs. The way to do that with method b) will be
- described in a later revision of this document.
-
-
-2) Board support
-----------------
-
-64-bit kernels:
-
- Board supports (platforms) are not exclusive config options. An
- arbitrary set of board supports can be built in a single kernel
- image. The kernel will "know" what set of functions to use for a
- given platform based on the content of the device-tree. Thus, you
- should:
-
- a) add your platform support as a _boolean_ option in
- arch/powerpc/Kconfig, following the example of PPC_PSERIES,
- PPC_PMAC and PPC_MAPLE. The later is probably a good
- example of a board support to start from.
-
- b) create your main platform file as
- "arch/powerpc/platforms/myplatform/myboard_setup.c" and add it
- to the Makefile under the condition of your CONFIG_
- option. This file will define a structure of type "ppc_md"
- containing the various callbacks that the generic code will
- use to get to your platform specific code
-
- c) Add a reference to your "ppc_md" structure in the
- "machines" table in arch/powerpc/kernel/setup_64.c if you are
- a 64-bit platform.
-
- d) request and get assigned a platform number (see PLATFORM_*
- constants in arch/powerpc/include/asm/processor.h
-
-32-bit embedded kernels:
-
- Currently, board support is essentially an exclusive config option.
- The kernel is configured for a single platform. Part of the reason
- for this is to keep kernels on embedded systems small and efficient;
- part of this is due to the fact the code is already that way. In the
- future, a kernel may support multiple platforms, but only if the
- platforms feature the same core architecture. A single kernel build
- cannot support both configurations with Book E and configurations
- with classic Powerpc architectures.
-
- 32-bit embedded platforms that are moved into arch/powerpc using a
- flattened device tree should adopt the merged tree practice of
- setting ppc_md up dynamically, even though the kernel is currently
- built with support for only a single platform at a time. This allows
- unification of the setup code, and will make it easier to go to a
- multiple-platform-support model in the future.
-
-NOTE: I believe the above will be true once Ben's done with the merge
-of the boot sequences.... someone speak up if this is wrong!
-
- To add a 32-bit embedded platform support, follow the instructions
- for 64-bit platforms above, with the exception that the Kconfig
- option should be set up such that the kernel builds exclusively for
- the platform selected. The processor type for the platform should
- enable another config option to select the specific board
- supported.
-
-NOTE: If Ben doesn't merge the setup files, may need to change this to
-point to setup_32.c
-
-
- I will describe later the boot process and various callbacks that
- your platform should implement.
-
-
-II - The DT block format
-========================
-
-
-This chapter defines the actual format of the flattened device-tree
-passed to the kernel. The actual content of it and kernel requirements
-are described later. You can find example of code manipulating that
-format in various places, including arch/powerpc/kernel/prom_init.c
-which will generate a flattened device-tree from the Open Firmware
-representation, or the fs2dt utility which is part of the kexec tools
-which will generate one from a filesystem representation. It is
-expected that a bootloader like uboot provides a bit more support,
-that will be discussed later as well.
-
-Note: The block has to be in main memory. It has to be accessible in
-both real mode and virtual mode with no mapping other than main
-memory. If you are writing a simple flash bootloader, it should copy
-the block to RAM before passing it to the kernel.
-
-
-1) Header
----------
-
- The kernel is entered with r3 pointing to an area of memory that is
- roughly described in arch/powerpc/include/asm/prom.h by the structure
- boot_param_header:
-
-struct boot_param_header {
- u32 magic; /* magic word OF_DT_HEADER */
- u32 totalsize; /* total size of DT block */
- u32 off_dt_struct; /* offset to structure */
- u32 off_dt_strings; /* offset to strings */
- u32 off_mem_rsvmap; /* offset to memory reserve map
- */
- u32 version; /* format version */
- u32 last_comp_version; /* last compatible version */
-
- /* version 2 fields below */
- u32 boot_cpuid_phys; /* Which physical CPU id we're
- booting on */
- /* version 3 fields below */
- u32 size_dt_strings; /* size of the strings block */
-
- /* version 17 fields below */
- u32 size_dt_struct; /* size of the DT structure block */
-};
-
- Along with the constants:
-
-/* Definitions used by the flattened device tree */
-#define OF_DT_HEADER 0xd00dfeed /* 4: version,
- 4: total size */
-#define OF_DT_BEGIN_NODE 0x1 /* Start node: full name
- */
-#define OF_DT_END_NODE 0x2 /* End node */
-#define OF_DT_PROP 0x3 /* Property: name off,
- size, content */
-#define OF_DT_END 0x9
-
- All values in this header are in big endian format, the various
- fields in this header are defined more precisely below. All
- "offset" values are in bytes from the start of the header; that is
- from the value of r3.
-
- - magic
-
- This is a magic value that "marks" the beginning of the
- device-tree block header. It contains the value 0xd00dfeed and is
- defined by the constant OF_DT_HEADER
-
- - totalsize
-
- This is the total size of the DT block including the header. The
- "DT" block should enclose all data structures defined in this
- chapter (who are pointed to by offsets in this header). That is,
- the device-tree structure, strings, and the memory reserve map.
-
- - off_dt_struct
-
- This is an offset from the beginning of the header to the start
- of the "structure" part the device tree. (see 2) device tree)
-
- - off_dt_strings
-
- This is an offset from the beginning of the header to the start
- of the "strings" part of the device-tree
-
- - off_mem_rsvmap
-
- This is an offset from the beginning of the header to the start
- of the reserved memory map. This map is a list of pairs of 64-
- bit integers. Each pair is a physical address and a size. The
- list is terminated by an entry of size 0. This map provides the
- kernel with a list of physical memory areas that are "reserved"
- and thus not to be used for memory allocations, especially during
- early initialization. The kernel needs to allocate memory during
- boot for things like un-flattening the device-tree, allocating an
- MMU hash table, etc... Those allocations must be done in such a
- way to avoid overriding critical things like, on Open Firmware
- capable machines, the RTAS instance, or on some pSeries, the TCE
- tables used for the iommu. Typically, the reserve map should
- contain _at least_ this DT block itself (header,total_size). If
- you are passing an initrd to the kernel, you should reserve it as
- well. You do not need to reserve the kernel image itself. The map
- should be 64-bit aligned.
-
- - version
-
- This is the version of this structure. Version 1 stops
- here. Version 2 adds an additional field boot_cpuid_phys.
- Version 3 adds the size of the strings block, allowing the kernel
- to reallocate it easily at boot and free up the unused flattened
- structure after expansion. Version 16 introduces a new more
- "compact" format for the tree itself that is however not backward
- compatible. Version 17 adds an additional field, size_dt_struct,
- allowing it to be reallocated or moved more easily (this is
- particularly useful for bootloaders which need to make
- adjustments to a device tree based on probed information). You
- should always generate a structure of the highest version defined
- at the time of your implementation. Currently that is version 17,
- unless you explicitly aim at being backward compatible.
-
- - last_comp_version
-
- Last compatible version. This indicates down to what version of
- the DT block you are backward compatible. For example, version 2
- is backward compatible with version 1 (that is, a kernel build
- for version 1 will be able to boot with a version 2 format). You
- should put a 1 in this field if you generate a device tree of
- version 1 to 3, or 16 if you generate a tree of version 16 or 17
- using the new unit name format.
-
- - boot_cpuid_phys
-
- This field only exist on version 2 headers. It indicate which
- physical CPU ID is calling the kernel entry point. This is used,
- among others, by kexec. If you are on an SMP system, this value
- should match the content of the "reg" property of the CPU node in
- the device-tree corresponding to the CPU calling the kernel entry
- point (see further chapters for more informations on the required
- device-tree contents)
-
- - size_dt_strings
-
- This field only exists on version 3 and later headers. It
- gives the size of the "strings" section of the device tree (which
- starts at the offset given by off_dt_strings).
-
- - size_dt_struct
-
- This field only exists on version 17 and later headers. It gives
- the size of the "structure" section of the device tree (which
- starts at the offset given by off_dt_struct).
-
- So the typical layout of a DT block (though the various parts don't
- need to be in that order) looks like this (addresses go from top to
- bottom):
-
-
- ------------------------------
- r3 -> | struct boot_param_header |
- ------------------------------
- | (alignment gap) (*) |
- ------------------------------
- | memory reserve map |
- ------------------------------
- | (alignment gap) |
- ------------------------------
- | |
- | device-tree structure |
- | |
- ------------------------------
- | (alignment gap) |
- ------------------------------
- | |
- | device-tree strings |
- | |
- -----> ------------------------------
- |
- |
- --- (r3 + totalsize)
-
- (*) The alignment gaps are not necessarily present; their presence
- and size are dependent on the various alignment requirements of
- the individual data blocks.
-
-
-2) Device tree generalities
----------------------------
-
-This device-tree itself is separated in two different blocks, a
-structure block and a strings block. Both need to be aligned to a 4
-byte boundary.
-
-First, let's quickly describe the device-tree concept before detailing
-the storage format. This chapter does _not_ describe the detail of the
-required types of nodes & properties for the kernel, this is done
-later in chapter III.
-
-The device-tree layout is strongly inherited from the definition of
-the Open Firmware IEEE 1275 device-tree. It's basically a tree of
-nodes, each node having two or more named properties. A property can
-have a value or not.
-
-It is a tree, so each node has one and only one parent except for the
-root node who has no parent.
-
-A node has 2 names. The actual node name is generally contained in a
-property of type "name" in the node property list whose value is a
-zero terminated string and is mandatory for version 1 to 3 of the
-format definition (as it is in Open Firmware). Version 16 makes it
-optional as it can generate it from the unit name defined below.
-
-There is also a "unit name" that is used to differentiate nodes with
-the same name at the same level, it is usually made of the node
-names, the "@" sign, and a "unit address", which definition is
-specific to the bus type the node sits on.
-
-The unit name doesn't exist as a property per-se but is included in
-the device-tree structure. It is typically used to represent "path" in
-the device-tree. More details about the actual format of these will be
-below.
-
-The kernel powerpc generic code does not make any formal use of the
-unit address (though some board support code may do) so the only real
-requirement here for the unit address is to ensure uniqueness of
-the node unit name at a given level of the tree. Nodes with no notion
-of address and no possible sibling of the same name (like /memory or
-/cpus) may omit the unit address in the context of this specification,
-or use the "@0" default unit address. The unit name is used to define
-a node "full path", which is the concatenation of all parent node
-unit names separated with "/".
-
-The root node doesn't have a defined name, and isn't required to have
-a name property either if you are using version 3 or earlier of the
-format. It also has no unit address (no @ symbol followed by a unit
-address). The root node unit name is thus an empty string. The full
-path to the root node is "/".
-
-Every node which actually represents an actual device (that is, a node
-which isn't only a virtual "container" for more nodes, like "/cpus"
-is) is also required to have a "device_type" property indicating the
-type of node .
-
-Finally, every node that can be referenced from a property in another
-node is required to have a "linux,phandle" property. Real open
-firmware implementations provide a unique "phandle" value for every
-node that the "prom_init()" trampoline code turns into
-"linux,phandle" properties. However, this is made optional if the
-flattened device tree is used directly. An example of a node
-referencing another node via "phandle" is when laying out the
-interrupt tree which will be described in a further version of this
-document.
-
-This "linux, phandle" property is a 32-bit value that uniquely
-identifies a node. You are free to use whatever values or system of
-values, internal pointers, or whatever to generate these, the only
-requirement is that every node for which you provide that property has
-a unique value for it.
-
-Here is an example of a simple device-tree. In this example, an "o"
-designates a node followed by the node unit name. Properties are
-presented with their name followed by their content. "content"
-represents an ASCII string (zero terminated) value, while <content>
-represents a 32-bit hexadecimal value. The various nodes in this
-example will be discussed in a later chapter. At this point, it is
-only meant to give you a idea of what a device-tree looks like. I have
-purposefully kept the "name" and "linux,phandle" properties which
-aren't necessary in order to give you a better idea of what the tree
-looks like in practice.
-
- / o device-tree
- |- name = "device-tree"
- |- model = "MyBoardName"
- |- compatible = "MyBoardFamilyName"
- |- #address-cells = <2>
- |- #size-cells = <2>
- |- linux,phandle = <0>
- |
- o cpus
- | | - name = "cpus"
- | | - linux,phandle = <1>
- | | - #address-cells = <1>
- | | - #size-cells = <0>
- | |
- | o PowerPC,970@0
- | |- name = "PowerPC,970"
- | |- device_type = "cpu"
- | |- reg = <0>
- | |- clock-frequency = <5f5e1000>
- | |- 64-bit
- | |- linux,phandle = <2>
- |
- o memory@0
- | |- name = "memory"
- | |- device_type = "memory"
- | |- reg = <00000000 00000000 00000000 20000000>
- | |- linux,phandle = <3>
- |
- o chosen
- |- name = "chosen"
- |- bootargs = "root=/dev/sda2"
- |- linux,phandle = <4>
-
-This tree is almost a minimal tree. It pretty much contains the
-minimal set of required nodes and properties to boot a linux kernel;
-that is, some basic model informations at the root, the CPUs, and the
-physical memory layout. It also includes misc information passed
-through /chosen, like in this example, the platform type (mandatory)
-and the kernel command line arguments (optional).
-
-The /cpus/PowerPC,970@0/64-bit property is an example of a
-property without a value. All other properties have a value. The
-significance of the #address-cells and #size-cells properties will be
-explained in chapter IV which defines precisely the required nodes and
-properties and their content.
-
-
-3) Device tree "structure" block
-
-The structure of the device tree is a linearized tree structure. The
-"OF_DT_BEGIN_NODE" token starts a new node, and the "OF_DT_END_NODE"
-ends that node definition. Child nodes are simply defined before
-"OF_DT_END_NODE" (that is nodes within the node). A 'token' is a 32
-bit value. The tree has to be "finished" with a OF_DT_END token
-
-Here's the basic structure of a single node:
-
- * token OF_DT_BEGIN_NODE (that is 0x00000001)
- * for version 1 to 3, this is the node full path as a zero
- terminated string, starting with "/". For version 16 and later,
- this is the node unit name only (or an empty string for the
- root node)
- * [align gap to next 4 bytes boundary]
- * for each property:
- * token OF_DT_PROP (that is 0x00000003)
- * 32-bit value of property value size in bytes (or 0 if no
- value)
- * 32-bit value of offset in string block of property name
- * property value data if any
- * [align gap to next 4 bytes boundary]
- * [child nodes if any]
- * token OF_DT_END_NODE (that is 0x00000002)
-
-So the node content can be summarized as a start token, a full path,
-a list of properties, a list of child nodes, and an end token. Every
-child node is a full node structure itself as defined above.
-
-NOTE: The above definition requires that all property definitions for
-a particular node MUST precede any subnode definitions for that node.
-Although the structure would not be ambiguous if properties and
-subnodes were intermingled, the kernel parser requires that the
-properties come first (up until at least 2.6.22). Any tools
-manipulating a flattened tree must take care to preserve this
-constraint.
-
-4) Device tree "strings" block
-
-In order to save space, property names, which are generally redundant,
-are stored separately in the "strings" block. This block is simply the
-whole bunch of zero terminated strings for all property names
-concatenated together. The device-tree property definitions in the
-structure block will contain offset values from the beginning of the
-strings block.
-
-
-III - Required content of the device tree
-=========================================
-
-WARNING: All "linux,*" properties defined in this document apply only
-to a flattened device-tree. If your platform uses a real
-implementation of Open Firmware or an implementation compatible with
-the Open Firmware client interface, those properties will be created
-by the trampoline code in the kernel's prom_init() file. For example,
-that's where you'll have to add code to detect your board model and
-set the platform number. However, when using the flattened device-tree
-entry point, there is no prom_init() pass, and thus you have to
-provide those properties yourself.
-
-
-1) Note about cells and address representation
-----------------------------------------------
-
-The general rule is documented in the various Open Firmware
-documentations. If you choose to describe a bus with the device-tree
-and there exist an OF bus binding, then you should follow the
-specification. However, the kernel does not require every single
-device or bus to be described by the device tree.
-
-In general, the format of an address for a device is defined by the
-parent bus type, based on the #address-cells and #size-cells
-properties. Note that the parent's parent definitions of #address-cells
-and #size-cells are not inherited so every node with children must specify
-them. The kernel requires the root node to have those properties defining
-addresses format for devices directly mapped on the processor bus.
-
-Those 2 properties define 'cells' for representing an address and a
-size. A "cell" is a 32-bit number. For example, if both contain 2
-like the example tree given above, then an address and a size are both
-composed of 2 cells, and each is a 64-bit number (cells are
-concatenated and expected to be in big endian format). Another example
-is the way Apple firmware defines them, with 2 cells for an address
-and one cell for a size. Most 32-bit implementations should define
-#address-cells and #size-cells to 1, which represents a 32-bit value.
-Some 32-bit processors allow for physical addresses greater than 32
-bits; these processors should define #address-cells as 2.
-
-"reg" properties are always a tuple of the type "address size" where
-the number of cells of address and size is specified by the bus
-#address-cells and #size-cells. When a bus supports various address
-spaces and other flags relative to a given address allocation (like
-prefetchable, etc...) those flags are usually added to the top level
-bits of the physical address. For example, a PCI physical address is
-made of 3 cells, the bottom two containing the actual address itself
-while the top cell contains address space indication, flags, and pci
-bus & device numbers.
-
-For busses that support dynamic allocation, it's the accepted practice
-to then not provide the address in "reg" (keep it 0) though while
-providing a flag indicating the address is dynamically allocated, and
-then, to provide a separate "assigned-addresses" property that
-contains the fully allocated addresses. See the PCI OF bindings for
-details.
-
-In general, a simple bus with no address space bits and no dynamic
-allocation is preferred if it reflects your hardware, as the existing
-kernel address parsing functions will work out of the box. If you
-define a bus type with a more complex address format, including things
-like address space bits, you'll have to add a bus translator to the
-prom_parse.c file of the recent kernels for your bus type.
-
-The "reg" property only defines addresses and sizes (if #size-cells is
-non-0) within a given bus. In order to translate addresses upward
-(that is into parent bus addresses, and possibly into CPU physical
-addresses), all busses must contain a "ranges" property. If the
-"ranges" property is missing at a given level, it's assumed that
-translation isn't possible, i.e., the registers are not visible on the
-parent bus. The format of the "ranges" property for a bus is a list
-of:
-
- bus address, parent bus address, size
-
-"bus address" is in the format of the bus this bus node is defining,
-that is, for a PCI bridge, it would be a PCI address. Thus, (bus
-address, size) defines a range of addresses for child devices. "parent
-bus address" is in the format of the parent bus of this bus. For
-example, for a PCI host controller, that would be a CPU address. For a
-PCI<->ISA bridge, that would be a PCI address. It defines the base
-address in the parent bus where the beginning of that range is mapped.
-
-For a new 64-bit powerpc board, I recommend either the 2/2 format or
-Apple's 2/1 format which is slightly more compact since sizes usually
-fit in a single 32-bit word. New 32-bit powerpc boards should use a
-1/1 format, unless the processor supports physical addresses greater
-than 32-bits, in which case a 2/1 format is recommended.
-
-Alternatively, the "ranges" property may be empty, indicating that the
-registers are visible on the parent bus using an identity mapping
-translation. In other words, the parent bus address space is the same
-as the child bus address space.
-
-2) Note about "compatible" properties
--------------------------------------
-
-These properties are optional, but recommended in devices and the root
-node. The format of a "compatible" property is a list of concatenated
-zero terminated strings. They allow a device to express its
-compatibility with a family of similar devices, in some cases,
-allowing a single driver to match against several devices regardless
-of their actual names.
-
-3) Note about "name" properties
--------------------------------
-
-While earlier users of Open Firmware like OldWorld macintoshes tended
-to use the actual device name for the "name" property, it's nowadays
-considered a good practice to use a name that is closer to the device
-class (often equal to device_type). For example, nowadays, ethernet
-controllers are named "ethernet", an additional "model" property
-defining precisely the chip type/model, and "compatible" property
-defining the family in case a single driver can driver more than one
-of these chips. However, the kernel doesn't generally put any
-restriction on the "name" property; it is simply considered good
-practice to follow the standard and its evolutions as closely as
-possible.
-
-Note also that the new format version 16 makes the "name" property
-optional. If it's absent for a node, then the node's unit name is then
-used to reconstruct the name. That is, the part of the unit name
-before the "@" sign is used (or the entire unit name if no "@" sign
-is present).
-
-4) Note about node and property names and character set
--------------------------------------------------------
-
-While open firmware provides more flexible usage of 8859-1, this
-specification enforces more strict rules. Nodes and properties should
-be comprised only of ASCII characters 'a' to 'z', '0' to
-'9', ',', '.', '_', '+', '#', '?', and '-'. Node names additionally
-allow uppercase characters 'A' to 'Z' (property names should be
-lowercase. The fact that vendors like Apple don't respect this rule is
-irrelevant here). Additionally, node and property names should always
-begin with a character in the range 'a' to 'z' (or 'A' to 'Z' for node
-names).
-
-The maximum number of characters for both nodes and property names
-is 31. In the case of node names, this is only the leftmost part of
-a unit name (the pure "name" property), it doesn't include the unit
-address which can extend beyond that limit.
-
-
-5) Required nodes and properties
---------------------------------
- These are all that are currently required. However, it is strongly
- recommended that you expose PCI host bridges as documented in the
- PCI binding to open firmware, and your interrupt tree as documented
- in OF interrupt tree specification.
-
- a) The root node
-
- The root node requires some properties to be present:
-
- - model : this is your board name/model
- - #address-cells : address representation for "root" devices
- - #size-cells: the size representation for "root" devices
- - device_type : This property shouldn't be necessary. However, if
- you decide to create a device_type for your root node, make sure it
- is _not_ "chrp" unless your platform is a pSeries or PAPR compliant
- one for 64-bit, or a CHRP-type machine for 32-bit as this will
- matched by the kernel this way.
-
- Additionally, some recommended properties are:
-
- - compatible : the board "family" generally finds its way here,
- for example, if you have 2 board models with a similar layout,
- that typically get driven by the same platform code in the
- kernel, you would use a different "model" property but put a
- value in "compatible". The kernel doesn't directly use that
- value but it is generally useful.
-
- The root node is also generally where you add additional properties
- specific to your board like the serial number if any, that sort of
- thing. It is recommended that if you add any "custom" property whose
- name may clash with standard defined ones, you prefix them with your
- vendor name and a comma.
-
- b) The /cpus node
-
- This node is the parent of all individual CPU nodes. It doesn't
- have any specific requirements, though it's generally good practice
- to have at least:
-
- #address-cells = <00000001>
- #size-cells = <00000000>
-
- This defines that the "address" for a CPU is a single cell, and has
- no meaningful size. This is not necessary but the kernel will assume
- that format when reading the "reg" properties of a CPU node, see
- below
-
- c) The /cpus/* nodes
-
- So under /cpus, you are supposed to create a node for every CPU on
- the machine. There is no specific restriction on the name of the
- CPU, though It's common practice to call it PowerPC,<name>. For
- example, Apple uses PowerPC,G5 while IBM uses PowerPC,970FX.
-
- Required properties:
-
- - device_type : has to be "cpu"
- - reg : This is the physical CPU number, it's a single 32-bit cell
- and is also used as-is as the unit number for constructing the
- unit name in the full path. For example, with 2 CPUs, you would
- have the full path:
- /cpus/PowerPC,970FX@0
- /cpus/PowerPC,970FX@1
- (unit addresses do not require leading zeroes)
- - d-cache-block-size : one cell, L1 data cache block size in bytes (*)
- - i-cache-block-size : one cell, L1 instruction cache block size in
- bytes
- - d-cache-size : one cell, size of L1 data cache in bytes
- - i-cache-size : one cell, size of L1 instruction cache in bytes
-
-(*) The cache "block" size is the size on which the cache management
-instructions operate. Historically, this document used the cache
-"line" size here which is incorrect. The kernel will prefer the cache
-block size and will fallback to cache line size for backward
-compatibility.
-
- Recommended properties:
-
- - timebase-frequency : a cell indicating the frequency of the
- timebase in Hz. This is not directly used by the generic code,
- but you are welcome to copy/paste the pSeries code for setting
- the kernel timebase/decrementer calibration based on this
- value.
- - clock-frequency : a cell indicating the CPU core clock frequency
- in Hz. A new property will be defined for 64-bit values, but if
- your frequency is < 4Ghz, one cell is enough. Here as well as
- for the above, the common code doesn't use that property, but
- you are welcome to re-use the pSeries or Maple one. A future
- kernel version might provide a common function for this.
- - d-cache-line-size : one cell, L1 data cache line size in bytes
- if different from the block size
- - i-cache-line-size : one cell, L1 instruction cache line size in
- bytes if different from the block size
-
- You are welcome to add any property you find relevant to your board,
- like some information about the mechanism used to soft-reset the
- CPUs. For example, Apple puts the GPIO number for CPU soft reset
- lines in there as a "soft-reset" property since they start secondary
- CPUs by soft-resetting them.
-
-
- d) the /memory node(s)
-
- To define the physical memory layout of your board, you should
- create one or more memory node(s). You can either create a single
- node with all memory ranges in its reg property, or you can create
- several nodes, as you wish. The unit address (@ part) used for the
- full path is the address of the first range of memory defined by a
- given node. If you use a single memory node, this will typically be
- @0.
-
- Required properties:
-
- - device_type : has to be "memory"
- - reg : This property contains all the physical memory ranges of
- your board. It's a list of addresses/sizes concatenated
- together, with the number of cells of each defined by the
- #address-cells and #size-cells of the root node. For example,
- with both of these properties being 2 like in the example given
- earlier, a 970 based machine with 6Gb of RAM could typically
- have a "reg" property here that looks like:
-
- 00000000 00000000 00000000 80000000
- 00000001 00000000 00000001 00000000
-
- That is a range starting at 0 of 0x80000000 bytes and a range
- starting at 0x100000000 and of 0x100000000 bytes. You can see
- that there is no memory covering the IO hole between 2Gb and
- 4Gb. Some vendors prefer splitting those ranges into smaller
- segments, but the kernel doesn't care.
-
- e) The /chosen node
-
- This node is a bit "special". Normally, that's where open firmware
- puts some variable environment information, like the arguments, or
- the default input/output devices.
-
- This specification makes a few of these mandatory, but also defines
- some linux-specific properties that would be normally constructed by
- the prom_init() trampoline when booting with an OF client interface,
- but that you have to provide yourself when using the flattened format.
-
- Recommended properties:
-
- - bootargs : This zero-terminated string is passed as the kernel
- command line
- - linux,stdout-path : This is the full path to your standard
- console device if any. Typically, if you have serial devices on
- your board, you may want to put the full path to the one set as
- the default console in the firmware here, for the kernel to pick
- it up as its own default console. If you look at the function
- set_preferred_console() in arch/ppc64/kernel/setup.c, you'll see
- that the kernel tries to find out the default console and has
- knowledge of various types like 8250 serial ports. You may want
- to extend this function to add your own.
-
- Note that u-boot creates and fills in the chosen node for platforms
- that use it.
-
- (Note: a practice that is now obsolete was to include a property
- under /chosen called interrupt-controller which had a phandle value
- that pointed to the main interrupt controller)
-
- f) the /soc<SOCname> node
-
- This node is used to represent a system-on-a-chip (SOC) and must be
- present if the processor is a SOC. The top-level soc node contains
- information that is global to all devices on the SOC. The node name
- should contain a unit address for the SOC, which is the base address
- of the memory-mapped register set for the SOC. The name of an soc
- node should start with "soc", and the remainder of the name should
- represent the part number for the soc. For example, the MPC8540's
- soc node would be called "soc8540".
-
- Required properties:
-
- - device_type : Should be "soc"
- - ranges : Should be defined as specified in 1) to describe the
- translation of SOC addresses for memory mapped SOC registers.
- - bus-frequency: Contains the bus frequency for the SOC node.
- Typically, the value of this field is filled in by the boot
- loader.
-
-
- Recommended properties:
-
- - reg : This property defines the address and size of the
- memory-mapped registers that are used for the SOC node itself.
- It does not include the child device registers - these will be
- defined inside each child node. The address specified in the
- "reg" property should match the unit address of the SOC node.
- - #address-cells : Address representation for "soc" devices. The
- format of this field may vary depending on whether or not the
- device registers are memory mapped. For memory mapped
- registers, this field represents the number of cells needed to
- represent the address of the registers. For SOCs that do not
- use MMIO, a special address format should be defined that
- contains enough cells to represent the required information.
- See 1) above for more details on defining #address-cells.
- - #size-cells : Size representation for "soc" devices
- - #interrupt-cells : Defines the width of cells used to represent
- interrupts. Typically this value is <2>, which includes a
- 32-bit number that represents the interrupt number, and a
- 32-bit number that represents the interrupt sense and level.
- This field is only needed if the SOC contains an interrupt
- controller.
-
- The SOC node may contain child nodes for each SOC device that the
- platform uses. Nodes should not be created for devices which exist
- on the SOC but are not used by a particular platform. See chapter VI
- for more information on how to specify devices that are part of a SOC.
-
- Example SOC node for the MPC8540:
-
- soc8540@e0000000 {
- #address-cells = <1>;
- #size-cells = <1>;
- #interrupt-cells = <2>;
- device_type = "soc";
- ranges = <00000000 e0000000 00100000>
- reg = <e0000000 00003000>;
- bus-frequency = <0>;
- }
-
-
-
-IV - "dtc", the device tree compiler
-====================================
-
-
-dtc source code can be found at
-<http://git.jdl.com/gitweb/?p=dtc.git>
-
-WARNING: This version is still in early development stage; the
-resulting device-tree "blobs" have not yet been validated with the
-kernel. The current generated block lacks a useful reserve map (it will
-be fixed to generate an empty one, it's up to the bootloader to fill
-it up) among others. The error handling needs work, bugs are lurking,
-etc...
-
-dtc basically takes a device-tree in a given format and outputs a
-device-tree in another format. The currently supported formats are:
-
- Input formats:
- -------------
-
- - "dtb": "blob" format, that is a flattened device-tree block
- with
- header all in a binary blob.
- - "dts": "source" format. This is a text file containing a
- "source" for a device-tree. The format is defined later in this
- chapter.
- - "fs" format. This is a representation equivalent to the
- output of /proc/device-tree, that is nodes are directories and
- properties are files
-
- Output formats:
- ---------------
-
- - "dtb": "blob" format
- - "dts": "source" format
- - "asm": assembly language file. This is a file that can be
- sourced by gas to generate a device-tree "blob". That file can
- then simply be added to your Makefile. Additionally, the
- assembly file exports some symbols that can be used.
-
-
-The syntax of the dtc tool is
-
- dtc [-I <input-format>] [-O <output-format>]
- [-o output-filename] [-V output_version] input_filename
-
-
-The "output_version" defines what version of the "blob" format will be
-generated. Supported versions are 1,2,3 and 16. The default is
-currently version 3 but that may change in the future to version 16.
-
-Additionally, dtc performs various sanity checks on the tree, like the
-uniqueness of linux, phandle properties, validity of strings, etc...
-
-The format of the .dts "source" file is "C" like, supports C and C++
-style comments.
-
-/ {
-}
-
-The above is the "device-tree" definition. It's the only statement
-supported currently at the toplevel.
-
-/ {
- property1 = "string_value"; /* define a property containing a 0
- * terminated string
- */
-
- property2 = <1234abcd>; /* define a property containing a
- * numerical 32-bit value (hexadecimal)
- */
-
- property3 = <12345678 12345678 deadbeef>;
- /* define a property containing 3
- * numerical 32-bit values (cells) in
- * hexadecimal
- */
- property4 = [0a 0b 0c 0d de ea ad be ef];
- /* define a property whose content is
- * an arbitrary array of bytes
- */
-
- childnode@address { /* define a child node named "childnode"
- * whose unit name is "childnode at
- * address"
- */
-
- childprop = "hello\n"; /* define a property "childprop" of
- * childnode (in this case, a string)
- */
- };
-};
-
-Nodes can contain other nodes etc... thus defining the hierarchical
-structure of the tree.
-
-Strings support common escape sequences from C: "\n", "\t", "\r",
-"\(octal value)", "\x(hex value)".
-
-It is also suggested that you pipe your source file through cpp (gcc
-preprocessor) so you can use #include's, #define for constants, etc...
-
-Finally, various options are planned but not yet implemented, like
-automatic generation of phandles, labels (exported to the asm file so
-you can point to a property content and change it easily from whatever
-you link the device-tree with), label or path instead of numeric value
-in some cells to "point" to a node (replaced by a phandle at compile
-time), export of reserve map address to the asm file, ability to
-specify reserve map content at compile time, etc...
-
-We may provide a .h include file with common definitions of that
-proves useful for some properties (like building PCI properties or
-interrupt maps) though it may be better to add a notion of struct
-definitions to the compiler...
-
-
-V - Recommendations for a bootloader
-====================================
-
-
-Here are some various ideas/recommendations that have been proposed
-while all this has been defined and implemented.
-
- - The bootloader may want to be able to use the device-tree itself
- and may want to manipulate it (to add/edit some properties,
- like physical memory size or kernel arguments). At this point, 2
- choices can be made. Either the bootloader works directly on the
- flattened format, or the bootloader has its own internal tree
- representation with pointers (similar to the kernel one) and
- re-flattens the tree when booting the kernel. The former is a bit
- more difficult to edit/modify, the later requires probably a bit
- more code to handle the tree structure. Note that the structure
- format has been designed so it's relatively easy to "insert"
- properties or nodes or delete them by just memmoving things
- around. It contains no internal offsets or pointers for this
- purpose.
-
- - An example of code for iterating nodes & retrieving properties
- directly from the flattened tree format can be found in the kernel
- file arch/ppc64/kernel/prom.c, look at scan_flat_dt() function,
- its usage in early_init_devtree(), and the corresponding various
- early_init_dt_scan_*() callbacks. That code can be re-used in a
- GPL bootloader, and as the author of that code, I would be happy
- to discuss possible free licensing to any vendor who wishes to
- integrate all or part of this code into a non-GPL bootloader.
-
-
-
-VI - System-on-a-chip devices and nodes
-=======================================
-
-Many companies are now starting to develop system-on-a-chip
-processors, where the processor core (CPU) and many peripheral devices
-exist on a single piece of silicon. For these SOCs, an SOC node
-should be used that defines child nodes for the devices that make
-up the SOC. While platforms are not required to use this model in
-order to boot the kernel, it is highly encouraged that all SOC
-implementations define as complete a flat-device-tree as possible to
-describe the devices on the SOC. This will allow for the
-genericization of much of the kernel code.
-
-
-1) Defining child nodes of an SOC
----------------------------------
-
-Each device that is part of an SOC may have its own node entry inside
-the SOC node. For each device that is included in the SOC, the unit
-address property represents the address offset for this device's
-memory-mapped registers in the parent's address space. The parent's
-address space is defined by the "ranges" property in the top-level soc
-node. The "reg" property for each node that exists directly under the
-SOC node should contain the address mapping from the child address space
-to the parent SOC address space and the size of the device's
-memory-mapped register file.
-
-For many devices that may exist inside an SOC, there are predefined
-specifications for the format of the device tree node. All SOC child
-nodes should follow these specifications, except where noted in this
-document.
-
-See appendix A for an example partial SOC node definition for the
-MPC8540.
-
-
-2) Representing devices without a current OF specification
-----------------------------------------------------------
-
-Currently, there are many devices on SOCs that do not have a standard
-representation pre-defined as part of the open firmware
-specifications, mainly because the boards that contain these SOCs are
-not currently booted using open firmware. This section contains
-descriptions for the SOC devices for which new nodes have been
-defined; this list will expand as more and more SOC-containing
-platforms are moved over to use the flattened-device-tree model.
-
-VII - Specifying interrupt information for devices
-===================================================
-
-The device tree represents the busses and devices of a hardware
-system in a form similar to the physical bus topology of the
-hardware.
-
-In addition, a logical 'interrupt tree' exists which represents the
-hierarchy and routing of interrupts in the hardware.
-
-The interrupt tree model is fully described in the
-document "Open Firmware Recommended Practice: Interrupt
-Mapping Version 0.9". The document is available at:
-<http://playground.sun.com/1275/practice>.
-
-1) interrupts property
-----------------------
-
-Devices that generate interrupts to a single interrupt controller
-should use the conventional OF representation described in the
-OF interrupt mapping documentation.
-
-Each device which generates interrupts must have an 'interrupt'
-property. The interrupt property value is an arbitrary number of
-of 'interrupt specifier' values which describe the interrupt or
-interrupts for the device.
-
-The encoding of an interrupt specifier is determined by the
-interrupt domain in which the device is located in the
-interrupt tree. The root of an interrupt domain specifies in
-its #interrupt-cells property the number of 32-bit cells
-required to encode an interrupt specifier. See the OF interrupt
-mapping documentation for a detailed description of domains.
-
-For example, the binding for the OpenPIC interrupt controller
-specifies an #interrupt-cells value of 2 to encode the interrupt
-number and level/sense information. All interrupt children in an
-OpenPIC interrupt domain use 2 cells per interrupt in their interrupts
-property.
-
-The PCI bus binding specifies a #interrupt-cell value of 1 to encode
-which interrupt pin (INTA,INTB,INTC,INTD) is used.
-
-2) interrupt-parent property
-----------------------------
-
-The interrupt-parent property is specified to define an explicit
-link between a device node and its interrupt parent in
-the interrupt tree. The value of interrupt-parent is the
-phandle of the parent node.
-
-If the interrupt-parent property is not defined for a node, its
-interrupt parent is assumed to be an ancestor in the node's
-_device tree_ hierarchy.
-
-3) OpenPIC Interrupt Controllers
---------------------------------
-
-OpenPIC interrupt controllers require 2 cells to encode
-interrupt information. The first cell defines the interrupt
-number. The second cell defines the sense and level
-information.
-
-Sense and level information should be encoded as follows:
-
- 0 = low to high edge sensitive type enabled
- 1 = active low level sensitive type enabled
- 2 = active high level sensitive type enabled
- 3 = high to low edge sensitive type enabled
-
-4) ISA Interrupt Controllers
-----------------------------
-
-ISA PIC interrupt controllers require 2 cells to encode
-interrupt information. The first cell defines the interrupt
-number. The second cell defines the sense and level
-information.
-
-ISA PIC interrupt controllers should adhere to the ISA PIC
-encodings listed below:
-
- 0 = active low level sensitive type enabled
- 1 = active high level sensitive type enabled
- 2 = high to low edge sensitive type enabled
- 3 = low to high edge sensitive type enabled
-
-VIII - Specifying Device Power Management Information (sleep property)
-===================================================================
-
-Devices on SOCs often have mechanisms for placing devices into low-power
-states that are decoupled from the devices' own register blocks. Sometimes,
-this information is more complicated than a cell-index property can
-reasonably describe. Thus, each device controlled in such a manner
-may contain a "sleep" property which describes these connections.
-
-The sleep property consists of one or more sleep resources, each of
-which consists of a phandle to a sleep controller, followed by a
-controller-specific sleep specifier of zero or more cells.
-
-The semantics of what type of low power modes are possible are defined
-by the sleep controller. Some examples of the types of low power modes
-that may be supported are:
-
- - Dynamic: The device may be disabled or enabled at any time.
- - System Suspend: The device may request to be disabled or remain
- awake during system suspend, but will not be disabled until then.
- - Permanent: The device is disabled permanently (until the next hard
- reset).
-
-Some devices may share a clock domain with each other, such that they should
-only be suspended when none of the devices are in use. Where reasonable,
-such nodes should be placed on a virtual bus, where the bus has the sleep
-property. If the clock domain is shared among devices that cannot be
-reasonably grouped in this manner, then create a virtual sleep controller
-(similar to an interrupt nexus, except that defining a standardized
-sleep-map should wait until its necessity is demonstrated).
-
-Appendix A - Sample SOC node for MPC8540
-========================================
-
- soc@e0000000 {
- #address-cells = <1>;
- #size-cells = <1>;
- compatible = "fsl,mpc8540-ccsr", "simple-bus";
- device_type = "soc";
- ranges = <0x00000000 0xe0000000 0x00100000>
- bus-frequency = <0>;
- interrupt-parent = <&pic>;
-
- ethernet@24000 {
- #address-cells = <1>;
- #size-cells = <1>;
- device_type = "network";
- model = "TSEC";
- compatible = "gianfar", "simple-bus";
- reg = <0x24000 0x1000>;
- local-mac-address = [ 00 E0 0C 00 73 00 ];
- interrupts = <29 2 30 2 34 2>;
- phy-handle = <&phy0>;
- sleep = <&pmc 00000080>;
- ranges;
-
- mdio@24520 {
- reg = <0x24520 0x20>;
- compatible = "fsl,gianfar-mdio";
-
- phy0: ethernet-phy@0 {
- interrupts = <5 1>;
- reg = <0>;
- device_type = "ethernet-phy";
- };
-
- phy1: ethernet-phy@1 {
- interrupts = <5 1>;
- reg = <1>;
- device_type = "ethernet-phy";
- };
-
- phy3: ethernet-phy@3 {
- interrupts = <7 1>;
- reg = <3>;
- device_type = "ethernet-phy";
- };
- };
- };
-
- ethernet@25000 {
- device_type = "network";
- model = "TSEC";
- compatible = "gianfar";
- reg = <0x25000 0x1000>;
- local-mac-address = [ 00 E0 0C 00 73 01 ];
- interrupts = <13 2 14 2 18 2>;
- phy-handle = <&phy1>;
- sleep = <&pmc 00000040>;
- };
-
- ethernet@26000 {
- device_type = "network";
- model = "FEC";
- compatible = "gianfar";
- reg = <0x26000 0x1000>;
- local-mac-address = [ 00 E0 0C 00 73 02 ];
- interrupts = <41 2>;
- phy-handle = <&phy3>;
- sleep = <&pmc 00000020>;
- };
-
- serial@4500 {
- #address-cells = <1>;
- #size-cells = <1>;
- compatible = "fsl,mpc8540-duart", "simple-bus";
- sleep = <&pmc 00000002>;
- ranges;
-
- serial@4500 {
- device_type = "serial";
- compatible = "ns16550";
- reg = <0x4500 0x100>;
- clock-frequency = <0>;
- interrupts = <42 2>;
- };
-
- serial@4600 {
- device_type = "serial";
- compatible = "ns16550";
- reg = <0x4600 0x100>;
- clock-frequency = <0>;
- interrupts = <42 2>;
- };
- };
-
- pic: pic@40000 {
- interrupt-controller;
- #address-cells = <0>;
- #interrupt-cells = <2>;
- reg = <0x40000 0x40000>;
- compatible = "chrp,open-pic";
- device_type = "open-pic";
- };
-
- i2c@3000 {
- interrupts = <43 2>;
- reg = <0x3000 0x100>;
- compatible = "fsl-i2c";
- dfsrr;
- sleep = <&pmc 00000004>;
- };
-
- pmc: power@e0070 {
- compatible = "fsl,mpc8540-pmc", "fsl,mpc8548-pmc";
- reg = <0xe0070 0x20>;
- };
- };