diff options
Diffstat (limited to 'Documentation/video4linux')
-rw-r--r-- | Documentation/video4linux/CARDLIST.bttv | 6 | ||||
-rw-r--r-- | Documentation/video4linux/CARDLIST.cx23885 | 4 | ||||
-rw-r--r-- | Documentation/video4linux/CARDLIST.cx88 | 1 | ||||
-rw-r--r-- | Documentation/video4linux/CARDLIST.em28xx | 9 | ||||
-rw-r--r-- | Documentation/video4linux/CARDLIST.saa7134 | 2 | ||||
-rw-r--r-- | Documentation/video4linux/Zoran | 3 | ||||
-rw-r--r-- | Documentation/video4linux/bttv/Insmod-options | 10 | ||||
-rw-r--r-- | Documentation/video4linux/bttv/README | 4 | ||||
-rw-r--r-- | Documentation/video4linux/cx2341x/README.hm12 | 4 | ||||
-rw-r--r-- | Documentation/video4linux/gspca.txt | 4 | ||||
-rw-r--r-- | Documentation/video4linux/pxa_camera.txt | 125 | ||||
-rw-r--r-- | Documentation/video4linux/si470x.txt | 11 | ||||
-rw-r--r-- | Documentation/video4linux/v4l2-framework.txt | 202 | ||||
-rw-r--r-- | Documentation/video4linux/v4lgrab.c | 4 | ||||
-rw-r--r-- | Documentation/video4linux/zr364xx.txt | 1 |
15 files changed, 334 insertions, 56 deletions
diff --git a/Documentation/video4linux/CARDLIST.bttv b/Documentation/video4linux/CARDLIST.bttv index 0d93fa1ac25e..f11c583295e9 100644 --- a/Documentation/video4linux/CARDLIST.bttv +++ b/Documentation/video4linux/CARDLIST.bttv @@ -135,7 +135,7 @@ 134 -> Adlink RTV24 135 -> DViCO FusionHDTV 5 Lite [18ac:d500] 136 -> Acorp Y878F [9511:1540] -137 -> Conceptronic CTVFMi v2 +137 -> Conceptronic CTVFMi v2 [036e:109e] 138 -> Prolink Pixelview PV-BT878P+ (Rev.2E) 139 -> Prolink PixelView PlayTV MPEG2 PV-M4900 140 -> Osprey 440 [0070:ff07] @@ -154,3 +154,7 @@ 153 -> PHYTEC VD-012 (bt878) 154 -> PHYTEC VD-012-X1 (bt878) 155 -> PHYTEC VD-012-X2 (bt878) +156 -> IVCE-8784 [0000:f050,0001:f050,0002:f050,0003:f050] +157 -> Geovision GV-800(S) (master) [800a:763d] +158 -> Geovision GV-800(S) (slave) [800b:763d,800c:763d,800d:763d] +159 -> ProVideo PV183 [1830:1540,1831:1540,1832:1540,1833:1540,1834:1540,1835:1540,1836:1540,1837:1540] diff --git a/Documentation/video4linux/CARDLIST.cx23885 b/Documentation/video4linux/CARDLIST.cx23885 index 35ea130e9898..91aa3c0f0dd2 100644 --- a/Documentation/video4linux/CARDLIST.cx23885 +++ b/Documentation/video4linux/CARDLIST.cx23885 @@ -12,3 +12,7 @@ 11 -> DViCO FusionHDTV DVB-T Dual Express [18ac:db78] 12 -> Leadtek Winfast PxDVR3200 H [107d:6681] 13 -> Compro VideoMate E650F [185b:e800] + 14 -> TurboSight TBS 6920 [6920:8888] + 15 -> TeVii S470 [d470:9022] + 16 -> DVBWorld DVB-S2 2005 [0001:2005] + 17 -> NetUP Dual DVB-S2 CI [1b55:2a2c] diff --git a/Documentation/video4linux/CARDLIST.cx88 b/Documentation/video4linux/CARDLIST.cx88 index 0d08f1edcf6d..71e9db0b26f7 100644 --- a/Documentation/video4linux/CARDLIST.cx88 +++ b/Documentation/video4linux/CARDLIST.cx88 @@ -77,3 +77,4 @@ 76 -> SATTRADE ST4200 DVB-S/S2 [b200:4200] 77 -> TBS 8910 DVB-S [8910:8888] 78 -> Prof 6200 DVB-S [b022:3022] + 79 -> Terratec Cinergy HT PCI MKII [153b:1177] diff --git a/Documentation/video4linux/CARDLIST.em28xx b/Documentation/video4linux/CARDLIST.em28xx index 75bded8a4aa2..78d0a6eed571 100644 --- a/Documentation/video4linux/CARDLIST.em28xx +++ b/Documentation/video4linux/CARDLIST.em28xx @@ -7,12 +7,12 @@ 6 -> Terratec Cinergy 200 USB (em2800) 7 -> Leadtek Winfast USB II (em2800) [0413:6023] 8 -> Kworld USB2800 (em2800) - 9 -> Pinnacle Dazzle DVC 90/DVC 100 (em2820/em2840) [2304:0207,2304:021a] + 9 -> Pinnacle Dazzle DVC 90/100/101/107 / Kaiser Baas Video to DVD maker (em2820/em2840) [1b80:e302,2304:0207,2304:021a] 10 -> Hauppauge WinTV HVR 900 (em2880) [2040:6500] 11 -> Terratec Hybrid XS (em2880) [0ccd:0042] 12 -> Kworld PVR TV 2800 RF (em2820/em2840) 13 -> Terratec Prodigy XS (em2880) [0ccd:0047] - 14 -> Pixelview Prolink PlayTV USB 2.0 (em2820/em2840) + 14 -> SIIG AVTuner-PVR / Pixelview Prolink PlayTV USB 2.0 (em2820/em2840) 15 -> V-Gear PocketTV (em2800) 16 -> Hauppauge WinTV HVR 950 (em2883) [2040:6513,2040:6517,2040:651b] 17 -> Pinnacle PCTV HD Pro Stick (em2880) [2304:0227] @@ -30,7 +30,6 @@ 30 -> Videology 20K14XUSB USB2.0 (em2820/em2840) 31 -> Usbgear VD204v9 (em2821) 32 -> Supercomp USB 2.0 TV (em2821) - 33 -> SIIG AVTuner-PVR/Prolink PlayTV USB 2.0 (em2821) 34 -> Terratec Cinergy A Hybrid XS (em2860) [0ccd:004f] 35 -> Typhoon DVD Maker (em2860) 36 -> NetGMBH Cam (em2860) @@ -58,3 +57,7 @@ 58 -> Compro VideoMate ForYou/Stereo (em2820/em2840) [185b:2041] 60 -> Hauppauge WinTV HVR 850 (em2883) [2040:651f] 61 -> Pixelview PlayTV Box 4 USB 2.0 (em2820/em2840) + 62 -> Gadmei TVR200 (em2820/em2840) + 63 -> Kaiomy TVnPC U2 (em2860) [eb1a:e303] + 64 -> Easy Cap Capture DC-60 (em2860) + 65 -> IO-DATA GV-MVP/SZ (em2820/em2840) [04bb:0515] diff --git a/Documentation/video4linux/CARDLIST.saa7134 b/Documentation/video4linux/CARDLIST.saa7134 index b8d470596b0c..6dacf2825259 100644 --- a/Documentation/video4linux/CARDLIST.saa7134 +++ b/Documentation/video4linux/CARDLIST.saa7134 @@ -153,3 +153,5 @@ 152 -> Asus Tiger Rev:1.00 [1043:4857] 153 -> Kworld Plus TV Analog Lite PCI [17de:7128] 154 -> Avermedia AVerTV GO 007 FM Plus [1461:f31d] +155 -> Hauppauge WinTV-HVR1120 ATSC/QAM-Hybrid [0070:6706,0070:6708] +156 -> Hauppauge WinTV-HVR1110r3 [0070:6707,0070:6709,0070:670a] diff --git a/Documentation/video4linux/Zoran b/Documentation/video4linux/Zoran index 295462b2317a..0e89e7676298 100644 --- a/Documentation/video4linux/Zoran +++ b/Documentation/video4linux/Zoran @@ -401,8 +401,7 @@ Additional notes for software developers: first set the correct norm. Well, it seems logically correct: TV standard is "more constant" for current country than geometry settings of a variety of TV capture cards which may work in ITU or - square pixel format. Remember that users now can lock the norm to - avoid any ambiguity. + square pixel format. -- Please note that lavplay/lavrec are also included in the MJPEG-tools (http://mjpeg.sf.net/). diff --git a/Documentation/video4linux/bttv/Insmod-options b/Documentation/video4linux/bttv/Insmod-options index 5ef75787f83a..bbe3ed667d91 100644 --- a/Documentation/video4linux/bttv/Insmod-options +++ b/Documentation/video4linux/bttv/Insmod-options @@ -81,16 +81,6 @@ tuner.o pal=[bdgil] select PAL variant (used for some tuners only, important for the audio carrier). -tvmixer.o - registers a mixer device for the TV card's volume/bass/treble - controls (requires a i2c audio control chip like the msp3400). - - insmod args: - debug=1 print some debug info to the syslog. - devnr=n allocate device #n (0 == /dev/mixer, - 1 = /dev/mixer1, ...), default is to - use the first free one. - tvaudio.o new, experimental module which is supported to provide a single driver for all simple i2c audio control chips (tda/tea*). diff --git a/Documentation/video4linux/bttv/README b/Documentation/video4linux/bttv/README index 7ca2154c2bf5..3a367cdb664e 100644 --- a/Documentation/video4linux/bttv/README +++ b/Documentation/video4linux/bttv/README @@ -63,8 +63,8 @@ If you have some knowledge and spare time, please try to fix this yourself (patches very welcome of course...) You know: The linux slogan is "Do it yourself". -There is a mailing list: video4linux-list@redhat.com. -https://listman.redhat.com/mailman/listinfo/video4linux-list +There is a mailing list: linux-media@vger.kernel.org +http://vger.kernel.org/vger-lists.html#linux-media If you have trouble with some specific TV card, try to ask there instead of mailing me directly. The chance that someone with the diff --git a/Documentation/video4linux/cx2341x/README.hm12 b/Documentation/video4linux/cx2341x/README.hm12 index 0e213ed095e6..b36148ea0750 100644 --- a/Documentation/video4linux/cx2341x/README.hm12 +++ b/Documentation/video4linux/cx2341x/README.hm12 @@ -32,6 +32,10 @@ Y, U and V planes. This code assumes frames of 720x576 (PAL) pixels. The width of a frame is always 720 pixels, regardless of the actual specified width. +If the height is not a multiple of 32 lines, then the captured video is +missing macroblocks at the end and is unusable. So the height must be a +multiple of 32. + -------------------------------------------------------------------------- #include <stdio.h> diff --git a/Documentation/video4linux/gspca.txt b/Documentation/video4linux/gspca.txt index 1c58a7630146..98529e03a46e 100644 --- a/Documentation/video4linux/gspca.txt +++ b/Documentation/video4linux/gspca.txt @@ -32,6 +32,7 @@ spca561 041e:403b Creative Webcam Vista (VF0010) zc3xx 041e:4051 Creative Live!Cam Notebook Pro (VF0250) ov519 041e:4052 Creative Live! VISTA IM zc3xx 041e:4053 Creative Live!Cam Video IM +vc032x 041e:405b Creative Live! Cam Notebook Ultra (VC0130) ov519 041e:405f Creative Live! VISTA VF0330 ov519 041e:4060 Creative Live! VISTA VF0350 ov519 041e:4061 Creative Live! VISTA VF0400 @@ -193,6 +194,7 @@ spca500 084d:0003 D-Link DSC-350 spca500 08ca:0103 Aiptek PocketDV sunplus 08ca:0104 Aiptek PocketDVII 1.3 sunplus 08ca:0106 Aiptek Pocket DV3100+ +mr97310a 08ca:0111 Aiptek PenCam VGA+ sunplus 08ca:2008 Aiptek Mini PenCam 2 M sunplus 08ca:2010 Aiptek PocketCam 3M sunplus 08ca:2016 Aiptek PocketCam 2 Mega @@ -215,6 +217,7 @@ pac207 093a:2468 PAC207 pac207 093a:2470 Genius GF112 pac207 093a:2471 Genius VideoCam ge111 pac207 093a:2472 Genius VideoCam ge110 +pac207 093a:2474 Genius iLook 111 pac207 093a:2476 Genius e-Messenger 112 pac7311 093a:2600 PAC7311 Typhoon pac7311 093a:2601 Philips SPC 610 NC @@ -279,6 +282,7 @@ spca561 10fd:7e50 FlyCam Usb 100 zc3xx 10fd:8050 Typhoon Webshot II USB 300k ov534 1415:2000 Sony HD Eye for PS3 (SLEH 00201) pac207 145f:013a Trust WB-1300N +vc032x 15b8:6001 HP 2.0 Megapixel vc032x 15b8:6002 HP 2.0 Megapixel rz406aa spca501 1776:501c Arowana 300K CMOS Camera t613 17a1:0128 TASCORP JPEG Webcam, NGS Cyclops diff --git a/Documentation/video4linux/pxa_camera.txt b/Documentation/video4linux/pxa_camera.txt new file mode 100644 index 000000000000..b1137f9a53eb --- /dev/null +++ b/Documentation/video4linux/pxa_camera.txt @@ -0,0 +1,125 @@ + PXA-Camera Host Driver + ====================== + +Constraints +----------- + a) Image size for YUV422P format + All YUV422P images are enforced to have width x height % 16 = 0. + This is due to DMA constraints, which transfers only planes of 8 byte + multiples. + + +Global video workflow +--------------------- + a) QCI stopped + Initialy, the QCI interface is stopped. + When a buffer is queued (pxa_videobuf_ops->buf_queue), the QCI starts. + + b) QCI started + More buffers can be queued while the QCI is started without halting the + capture. The new buffers are "appended" at the tail of the DMA chain, and + smoothly captured one frame after the other. + + Once a buffer is filled in the QCI interface, it is marked as "DONE" and + removed from the active buffers list. It can be then requeud or dequeued by + userland application. + + Once the last buffer is filled in, the QCI interface stops. + + +DMA usage +--------- + a) DMA flow + - first buffer queued for capture + Once a first buffer is queued for capture, the QCI is started, but data + transfer is not started. On "End Of Frame" interrupt, the irq handler + starts the DMA chain. + - capture of one videobuffer + The DMA chain starts transfering data into videobuffer RAM pages. + When all pages are transfered, the DMA irq is raised on "ENDINTR" status + - finishing one videobuffer + The DMA irq handler marks the videobuffer as "done", and removes it from + the active running queue + Meanwhile, the next videobuffer (if there is one), is transfered by DMA + - finishing the last videobuffer + On the DMA irq of the last videobuffer, the QCI is stopped. + + b) DMA prepared buffer will have this structure + + +------------+-----+---------------+-----------------+ + | desc-sg[0] | ... | desc-sg[last] | finisher/linker | + +------------+-----+---------------+-----------------+ + + This structure is pointed by dma->sg_cpu. + The descriptors are used as follows : + - desc-sg[i]: i-th descriptor, transfering the i-th sg + element to the video buffer scatter gather + - finisher: has ddadr=DADDR_STOP, dcmd=ENDIRQEN + - linker: has ddadr= desc-sg[0] of next video buffer, dcmd=0 + + For the next schema, let's assume d0=desc-sg[0] .. dN=desc-sg[N], + "f" stands for finisher and "l" for linker. + A typical running chain is : + + Videobuffer 1 Videobuffer 2 + +---------+----+---+ +----+----+----+---+ + | d0 | .. | dN | l | | d0 | .. | dN | f | + +---------+----+-|-+ ^----+----+----+---+ + | | + +----+ + + After the chaining is finished, the chain looks like : + + Videobuffer 1 Videobuffer 2 Videobuffer 3 + +---------+----+---+ +----+----+----+---+ +----+----+----+---+ + | d0 | .. | dN | l | | d0 | .. | dN | l | | d0 | .. | dN | f | + +---------+----+-|-+ ^----+----+----+-|-+ ^----+----+----+---+ + | | | | + +----+ +----+ + new_link + + c) DMA hot chaining timeslice issue + + As DMA chaining is done while DMA _is_ running, the linking may be done + while the DMA jumps from one Videobuffer to another. On the schema, that + would be a problem if the following sequence is encountered : + + - DMA chain is Videobuffer1 + Videobuffer2 + - pxa_videobuf_queue() is called to queue Videobuffer3 + - DMA controller finishes Videobuffer2, and DMA stops + => + Videobuffer 1 Videobuffer 2 + +---------+----+---+ +----+----+----+---+ + | d0 | .. | dN | l | | d0 | .. | dN | f | + +---------+----+-|-+ ^----+----+----+-^-+ + | | | + +----+ +-- DMA DDADR loads DDADR_STOP + + - pxa_dma_add_tail_buf() is called, the Videobuffer2 "finisher" is + replaced by a "linker" to Videobuffer3 (creation of new_link) + - pxa_videobuf_queue() finishes + - the DMA irq handler is called, which terminates Videobuffer2 + - Videobuffer3 capture is not scheduled on DMA chain (as it stopped !!!) + + Videobuffer 1 Videobuffer 2 Videobuffer 3 + +---------+----+---+ +----+----+----+---+ +----+----+----+---+ + | d0 | .. | dN | l | | d0 | .. | dN | l | | d0 | .. | dN | f | + +---------+----+-|-+ ^----+----+----+-|-+ ^----+----+----+---+ + | | | | + +----+ +----+ + new_link + DMA DDADR still is DDADR_STOP + + - pxa_camera_check_link_miss() is called + This checks if the DMA is finished and a buffer is still on the + pcdev->capture list. If that's the case, the capture will be restarted, + and Videobuffer3 is scheduled on DMA chain. + - the DMA irq handler finishes + + Note: if DMA stops just after pxa_camera_check_link_miss() reads DDADR() + value, we have the guarantee that the DMA irq handler will be called back + when the DMA will finish the buffer, and pxa_camera_check_link_miss() will + be called again, to reschedule Videobuffer3. + +-- +Author: Robert Jarzmik <robert.jarzmik@free.fr> diff --git a/Documentation/video4linux/si470x.txt b/Documentation/video4linux/si470x.txt index 49679e6aaa76..3a7823e01b4d 100644 --- a/Documentation/video4linux/si470x.txt +++ b/Documentation/video4linux/si470x.txt @@ -1,6 +1,6 @@ Driver for USB radios for the Silicon Labs Si470x FM Radio Receivers -Copyright (c) 2008 Tobias Lorenz <tobias.lorenz@gmx.net> +Copyright (c) 2009 Tobias Lorenz <tobias.lorenz@gmx.net> Information from Silicon Labs @@ -41,7 +41,7 @@ chips are known to work: - 10c4:818a: Silicon Labs USB FM Radio Reference Design - 06e1:a155: ADS/Tech FM Radio Receiver (formerly Instant FM Music) (RDX-155-EF) - 1b80:d700: KWorld USB FM Radio SnapMusic Mobile 700 (FM700) -- 10c5:819a: DealExtreme USB Radio +- 10c5:819a: Sanei Electric, Inc. FM USB Radio (sold as DealExtreme.com PCear) Software @@ -52,6 +52,7 @@ Testing is usually done with most application under Debian/testing: - gradio - GTK FM radio tuner - kradio - Comfortable Radio Application for KDE - radio - ncurses-based radio application +- mplayer - The Ultimate Movie Player For Linux There is also a library libv4l, which can be used. It's going to have a function for frequency seeking, either by using hardware functionality as in radio-si470x @@ -69,7 +70,7 @@ Audio Listing USB Audio is provided by the ALSA snd_usb_audio module. It is recommended to also select SND_USB_AUDIO, as this is required to get sound from the radio. For listing you have to redirect the sound, for example using one of the following -commands. +commands. Please adjust the audio devices to your needs (/dev/dsp* and hw:x,x). If you just want to test audio (very poor quality): cat /dev/dsp1 > /dev/dsp @@ -80,6 +81,10 @@ sox -2 --endian little -r 96000 -t oss /dev/dsp1 -t oss /dev/dsp If you use arts try: arecord -D hw:1,0 -r96000 -c2 -f S16_LE | artsdsp aplay -B - +If you use mplayer try: +mplayer -radio adevice=hw=1.0:arate=96000 \ + -rawaudio rate=96000 \ + radio://<frequency>/capture Module Parameters ================= diff --git a/Documentation/video4linux/v4l2-framework.txt b/Documentation/video4linux/v4l2-framework.txt index ff124374e9ba..854808b67fae 100644 --- a/Documentation/video4linux/v4l2-framework.txt +++ b/Documentation/video4linux/v4l2-framework.txt @@ -47,7 +47,9 @@ All drivers have the following structure: 3) Creating V4L2 device nodes (/dev/videoX, /dev/vbiX, /dev/radioX and /dev/vtxX) and keeping track of device-node specific data. -4) Filehandle-specific structs containing per-filehandle data. +4) Filehandle-specific structs containing per-filehandle data; + +5) video buffer handling. This is a rough schematic of how it all relates: @@ -82,12 +84,20 @@ You must register the device instance: v4l2_device_register(struct device *dev, struct v4l2_device *v4l2_dev); Registration will initialize the v4l2_device struct and link dev->driver_data -to v4l2_dev. Registration will also set v4l2_dev->name to a value derived from -dev (driver name followed by the bus_id, to be precise). You may change the -name after registration if you want. +to v4l2_dev. If v4l2_dev->name is empty then it will be set to a value derived +from dev (driver name followed by the bus_id, to be precise). If you set it +up before calling v4l2_device_register then it will be untouched. If dev is +NULL, then you *must* setup v4l2_dev->name before calling v4l2_device_register. The first 'dev' argument is normally the struct device pointer of a pci_dev, -usb_device or platform_device. +usb_interface or platform_device. It is rare for dev to be NULL, but it happens +with ISA devices or when one device creates multiple PCI devices, thus making +it impossible to associate v4l2_dev with a particular parent. + +You can also supply a notify() callback that can be called by sub-devices to +notify you of events. Whether you need to set this depends on the sub-device. +Any notifications a sub-device supports must be defined in a header in +include/media/<subdevice>.h. You unregister with: @@ -95,6 +105,17 @@ You unregister with: Unregistering will also automatically unregister all subdevs from the device. +If you have a hotpluggable device (e.g. a USB device), then when a disconnect +happens the parent device becomes invalid. Since v4l2_device has a pointer to +that parent device it has to be cleared as well to mark that the parent is +gone. To do this call: + + v4l2_device_disconnect(struct v4l2_device *v4l2_dev); + +This does *not* unregister the subdevs, so you still need to call the +v4l2_device_unregister() function for that. If your driver is not hotpluggable, +then there is no need to call v4l2_device_disconnect(). + Sometimes you need to iterate over all devices registered by a specific driver. This is usually the case if multiple device drivers use the same hardware. E.g. the ivtvfb driver is a framebuffer driver that uses the ivtv @@ -134,7 +155,7 @@ The recommended approach is as follows: static atomic_t drv_instance = ATOMIC_INIT(0); -static int __devinit drv_probe(struct pci_dev *dev, +static int __devinit drv_probe(struct pci_dev *pdev, const struct pci_device_id *pci_id) { ... @@ -218,7 +239,7 @@ to add new ops and categories. A sub-device driver initializes the v4l2_subdev struct using: - v4l2_subdev_init(subdev, &ops); + v4l2_subdev_init(sd, &ops); Afterwards you need to initialize subdev->name with a unique name and set the module owner. This is done for you if you use the i2c helper functions. @@ -226,7 +247,7 @@ module owner. This is done for you if you use the i2c helper functions. A device (bridge) driver needs to register the v4l2_subdev with the v4l2_device: - int err = v4l2_device_register_subdev(device, subdev); + int err = v4l2_device_register_subdev(v4l2_dev, sd); This can fail if the subdev module disappeared before it could be registered. After this function was called successfully the subdev->dev field points to @@ -234,17 +255,17 @@ the v4l2_device. You can unregister a sub-device using: - v4l2_device_unregister_subdev(subdev); + v4l2_device_unregister_subdev(sd); -Afterwards the subdev module can be unloaded and subdev->dev == NULL. +Afterwards the subdev module can be unloaded and sd->dev == NULL. You can call an ops function either directly: - err = subdev->ops->core->g_chip_ident(subdev, &chip); + err = sd->ops->core->g_chip_ident(sd, &chip); but it is better and easier to use this macro: - err = v4l2_subdev_call(subdev, core, g_chip_ident, &chip); + err = v4l2_subdev_call(sd, core, g_chip_ident, &chip); The macro will to the right NULL pointer checks and returns -ENODEV if subdev is NULL, -ENOIOCTLCMD if either subdev->core or subdev->core->g_chip_ident is @@ -252,19 +273,19 @@ NULL, or the actual result of the subdev->ops->core->g_chip_ident ops. It is also possible to call all or a subset of the sub-devices: - v4l2_device_call_all(dev, 0, core, g_chip_ident, &chip); + v4l2_device_call_all(v4l2_dev, 0, core, g_chip_ident, &chip); Any subdev that does not support this ops is skipped and error results are ignored. If you want to check for errors use this: - err = v4l2_device_call_until_err(dev, 0, core, g_chip_ident, &chip); + err = v4l2_device_call_until_err(v4l2_dev, 0, core, g_chip_ident, &chip); Any error except -ENOIOCTLCMD will exit the loop with that error. If no errors (except -ENOIOCTLCMD) occured, then 0 is returned. The second argument to both calls is a group ID. If 0, then all subdevs are called. If non-zero, then only those whose group ID match that value will -be called. Before a bridge driver registers a subdev it can set subdev->grp_id +be called. Before a bridge driver registers a subdev it can set sd->grp_id to whatever value it wants (it's 0 by default). This value is owned by the bridge driver and the sub-device driver will never modify or use it. @@ -276,6 +297,11 @@ e.g. AUDIO_CONTROLLER and specify that as the group ID value when calling v4l2_device_call_all(). That ensures that it will only go to the subdev that needs it. +If the sub-device needs to notify its v4l2_device parent of an event, then +it can call v4l2_subdev_notify(sd, notification, arg). This macro checks +whether there is a notify() callback defined and returns -ENODEV if not. +Otherwise the result of the notify() call is returned. + The advantage of using v4l2_subdev is that it is a generic struct and does not contain any knowledge about the underlying hardware. So a driver might contain several subdevs that use an I2C bus, but also a subdev that is @@ -325,32 +351,25 @@ And this to go from an i2c_client to a v4l2_subdev struct: struct v4l2_subdev *sd = i2c_get_clientdata(client); -Finally you need to make a command function to make driver->command() -call the right subdev_ops functions: - -static int subdev_command(struct i2c_client *client, unsigned cmd, void *arg) -{ - return v4l2_subdev_command(i2c_get_clientdata(client), cmd, arg); -} - -If driver->command is never used then you can leave this out. Eventually the -driver->command usage should be removed from v4l. - Make sure to call v4l2_device_unregister_subdev(sd) when the remove() callback is called. This will unregister the sub-device from the bridge driver. It is safe to call this even if the sub-device was never registered. +You need to do this because when the bridge driver destroys the i2c adapter +the remove() callbacks are called of the i2c devices on that adapter. +After that the corresponding v4l2_subdev structures are invalid, so they +have to be unregistered first. Calling v4l2_device_unregister_subdev(sd) +from the remove() callback ensures that this is always done correctly. + The bridge driver also has some helper functions it can use: -struct v4l2_subdev *sd = v4l2_i2c_new_subdev(adapter, "module_foo", "chipid", 0x36); +struct v4l2_subdev *sd = v4l2_i2c_new_subdev(v4l2_dev, adapter, + "module_foo", "chipid", 0x36); This loads the given module (can be NULL if no module needs to be loaded) and calls i2c_new_device() with the given i2c_adapter and chip/address arguments. -If all goes well, then it registers the subdev with the v4l2_device. It gets -the v4l2_device by calling i2c_get_adapdata(adapter), so you should make sure -that adapdata is set to v4l2_device when you setup the i2c_adapter in your -driver. +If all goes well, then it registers the subdev with the v4l2_device. You can also use v4l2_i2c_new_probed_subdev() which is very similar to v4l2_i2c_new_subdev(), except that it has an array of possible I2C addresses @@ -358,6 +377,14 @@ that it should probe. Internally it calls i2c_new_probed_device(). Both functions return NULL if something went wrong. +Note that the chipid you pass to v4l2_i2c_new_(probed_)subdev() is usually +the same as the module name. It allows you to specify a chip variant, e.g. +"saa7114" or "saa7115". In general though the i2c driver autodetects this. +The use of chipid is something that needs to be looked at more closely at a +later date. It differs between i2c drivers and as such can be confusing. +To see which chip variants are supported you can look in the i2c driver code +for the i2c_device_id table. This lists all the possibilities. + struct video_device ------------------- @@ -396,6 +423,15 @@ You should also set these fields: - ioctl_ops: if you use the v4l2_ioctl_ops to simplify ioctl maintenance (highly recommended to use this and it might become compulsory in the future!), then set this to your v4l2_ioctl_ops struct. +- parent: you only set this if v4l2_device was registered with NULL as + the parent device struct. This only happens in cases where one hardware + device has multiple PCI devices that all share the same v4l2_device core. + + The cx88 driver is an example of this: one core v4l2_device struct, but + it is used by both an raw video PCI device (cx8800) and a MPEG PCI device + (cx8802). Since the v4l2_device cannot be associated with a particular + PCI device it is setup without a parent device. But when the struct + video_device is setup you do know which parent PCI device to use. If you use v4l2_ioctl_ops, then you should set either .unlocked_ioctl or .ioctl to video_ioctl2 in your v4l2_file_operations struct. @@ -499,8 +535,8 @@ There are a few useful helper functions: You can set/get driver private data in the video_device struct using: -void *video_get_drvdata(struct video_device *dev); -void video_set_drvdata(struct video_device *dev, void *data); +void *video_get_drvdata(struct video_device *vdev); +void video_set_drvdata(struct video_device *vdev, void *data); Note that you can safely call video_set_drvdata() before calling video_register_device(). @@ -519,3 +555,103 @@ void *video_drvdata(struct file *file); You can go from a video_device struct to the v4l2_device struct using: struct v4l2_device *v4l2_dev = vdev->v4l2_dev; + +video buffer helper functions +----------------------------- + +The v4l2 core API provides a standard method for dealing with video +buffers. Those methods allow a driver to implement read(), mmap() and +overlay() on a consistent way. + +There are currently methods for using video buffers on devices that +supports DMA with scatter/gather method (videobuf-dma-sg), DMA with +linear access (videobuf-dma-contig), and vmalloced buffers, mostly +used on USB drivers (videobuf-vmalloc). + +Any driver using videobuf should provide operations (callbacks) for +four handlers: + +ops->buf_setup - calculates the size of the video buffers and avoid they + to waste more than some maximum limit of RAM; +ops->buf_prepare - fills the video buffer structs and calls + videobuf_iolock() to alloc and prepare mmaped memory; +ops->buf_queue - advices the driver that another buffer were + requested (by read() or by QBUF); +ops->buf_release - frees any buffer that were allocated. + +In order to use it, the driver need to have a code (generally called at +interrupt context) that will properly handle the buffer request lists, +announcing that a new buffer were filled. + +The irq handling code should handle the videobuf task lists, in order +to advice videobuf that a new frame were filled, in order to honor to a +request. The code is generally like this one: + if (list_empty(&dma_q->active)) + return; + + buf = list_entry(dma_q->active.next, struct vbuffer, vb.queue); + + if (!waitqueue_active(&buf->vb.done)) + return; + + /* Some logic to handle the buf may be needed here */ + + list_del(&buf->vb.queue); + do_gettimeofday(&buf->vb.ts); + wake_up(&buf->vb.done); + +Those are the videobuffer functions used on drivers, implemented on +videobuf-core: + +- Videobuf init functions + videobuf_queue_sg_init() + Initializes the videobuf infrastructure. This function should be + called before any other videobuf function on drivers that uses DMA + Scatter/Gather buffers. + + videobuf_queue_dma_contig_init + Initializes the videobuf infrastructure. This function should be + called before any other videobuf function on drivers that need DMA + contiguous buffers. + + videobuf_queue_vmalloc_init() + Initializes the videobuf infrastructure. This function should be + called before any other videobuf function on USB (and other drivers) + that need a vmalloced type of videobuf. + +- videobuf_iolock() + Prepares the videobuf memory for the proper method (read, mmap, overlay). + +- videobuf_queue_is_busy() + Checks if a videobuf is streaming. + +- videobuf_queue_cancel() + Stops video handling. + +- videobuf_mmap_free() + frees mmap buffers. + +- videobuf_stop() + Stops video handling, ends mmap and frees mmap and other buffers. + +- V4L2 api functions. Those functions correspond to VIDIOC_foo ioctls: + videobuf_reqbufs(), videobuf_querybuf(), videobuf_qbuf(), + videobuf_dqbuf(), videobuf_streamon(), videobuf_streamoff(). + +- V4L1 api function (corresponds to VIDIOCMBUF ioctl): + videobuf_cgmbuf() + This function is used to provide backward compatibility with V4L1 + API. + +- Some help functions for read()/poll() operations: + videobuf_read_stream() + For continuous stream read() + videobuf_read_one() + For snapshot read() + videobuf_poll_stream() + polling help function + +The better way to understand it is to take a look at vivi driver. One +of the main reasons for vivi is to be a videobuf usage example. the +vivi_thread_tick() does the task that the IRQ callback would do on PCI +drivers (or the irq callback on USB). diff --git a/Documentation/video4linux/v4lgrab.c b/Documentation/video4linux/v4lgrab.c index d6e70bef8ad0..05769cff1009 100644 --- a/Documentation/video4linux/v4lgrab.c +++ b/Documentation/video4linux/v4lgrab.c @@ -105,8 +105,8 @@ int main(int argc, char ** argv) struct video_picture vpic; unsigned char *buffer, *src; - int bpp = 24, r, g, b; - unsigned int i, src_depth; + int bpp = 24, r = 0, g = 0, b = 0; + unsigned int i, src_depth = 16; if (fd < 0) { perror(VIDEO_DEV); diff --git a/Documentation/video4linux/zr364xx.txt b/Documentation/video4linux/zr364xx.txt index 5c81e3ae6458..7f3d1955d214 100644 --- a/Documentation/video4linux/zr364xx.txt +++ b/Documentation/video4linux/zr364xx.txt @@ -65,3 +65,4 @@ Vendor Product Distributor Model 0x06d6 0x003b Trust Powerc@m 970Z 0x0a17 0x004e Pentax Optio 50 0x041e 0x405d Creative DiVi CAM 516 +0x08ca 0x2102 Aiptek DV T300 |