summaryrefslogtreecommitdiffstats
path: root/Documentation/x86
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/x86')
-rw-r--r--Documentation/x86/intel_rdt_ui.txt75
-rw-r--r--Documentation/x86/x86_64/boot-options.txt13
2 files changed, 70 insertions, 18 deletions
diff --git a/Documentation/x86/intel_rdt_ui.txt b/Documentation/x86/intel_rdt_ui.txt
index 71c30984e94d..a16aa2113840 100644
--- a/Documentation/x86/intel_rdt_ui.txt
+++ b/Documentation/x86/intel_rdt_ui.txt
@@ -17,12 +17,14 @@ MBA (Memory Bandwidth Allocation) - "mba"
To use the feature mount the file system:
- # mount -t resctrl resctrl [-o cdp[,cdpl2]] /sys/fs/resctrl
+ # mount -t resctrl resctrl [-o cdp[,cdpl2][,mba_MBps]] /sys/fs/resctrl
mount options are:
"cdp": Enable code/data prioritization in L3 cache allocations.
"cdpl2": Enable code/data prioritization in L2 cache allocations.
+"mba_MBps": Enable the MBA Software Controller(mba_sc) to specify MBA
+ bandwidth in MBps
L2 and L3 CDP are controlled seperately.
@@ -270,10 +272,11 @@ and 0xA are not. On a system with a 20-bit mask each bit represents 5%
of the capacity of the cache. You could partition the cache into four
equal parts with masks: 0x1f, 0x3e0, 0x7c00, 0xf8000.
-Memory bandwidth(b/w) percentage
---------------------------------
-For Memory b/w resource, user controls the resource by indicating the
-percentage of total memory b/w.
+Memory bandwidth Allocation and monitoring
+------------------------------------------
+
+For Memory bandwidth resource, by default the user controls the resource
+by indicating the percentage of total memory bandwidth.
The minimum bandwidth percentage value for each cpu model is predefined
and can be looked up through "info/MB/min_bandwidth". The bandwidth
@@ -285,7 +288,47 @@ to the next control step available on the hardware.
The bandwidth throttling is a core specific mechanism on some of Intel
SKUs. Using a high bandwidth and a low bandwidth setting on two threads
sharing a core will result in both threads being throttled to use the
-low bandwidth.
+low bandwidth. The fact that Memory bandwidth allocation(MBA) is a core
+specific mechanism where as memory bandwidth monitoring(MBM) is done at
+the package level may lead to confusion when users try to apply control
+via the MBA and then monitor the bandwidth to see if the controls are
+effective. Below are such scenarios:
+
+1. User may *not* see increase in actual bandwidth when percentage
+ values are increased:
+
+This can occur when aggregate L2 external bandwidth is more than L3
+external bandwidth. Consider an SKL SKU with 24 cores on a package and
+where L2 external is 10GBps (hence aggregate L2 external bandwidth is
+240GBps) and L3 external bandwidth is 100GBps. Now a workload with '20
+threads, having 50% bandwidth, each consuming 5GBps' consumes the max L3
+bandwidth of 100GBps although the percentage value specified is only 50%
+<< 100%. Hence increasing the bandwidth percentage will not yeild any
+more bandwidth. This is because although the L2 external bandwidth still
+has capacity, the L3 external bandwidth is fully used. Also note that
+this would be dependent on number of cores the benchmark is run on.
+
+2. Same bandwidth percentage may mean different actual bandwidth
+ depending on # of threads:
+
+For the same SKU in #1, a 'single thread, with 10% bandwidth' and '4
+thread, with 10% bandwidth' can consume upto 10GBps and 40GBps although
+they have same percentage bandwidth of 10%. This is simply because as
+threads start using more cores in an rdtgroup, the actual bandwidth may
+increase or vary although user specified bandwidth percentage is same.
+
+In order to mitigate this and make the interface more user friendly,
+resctrl added support for specifying the bandwidth in MBps as well. The
+kernel underneath would use a software feedback mechanism or a "Software
+Controller(mba_sc)" which reads the actual bandwidth using MBM counters
+and adjust the memowy bandwidth percentages to ensure
+
+ "actual bandwidth < user specified bandwidth".
+
+By default, the schemata would take the bandwidth percentage values
+where as user can switch to the "MBA software controller" mode using
+a mount option 'mba_MBps'. The schemata format is specified in the below
+sections.
L3 schemata file details (code and data prioritization disabled)
----------------------------------------------------------------
@@ -308,13 +351,20 @@ schemata format is always:
L2:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
-Memory b/w Allocation details
------------------------------
+Memory bandwidth Allocation (default mode)
+------------------------------------------
Memory b/w domain is L3 cache.
MB:<cache_id0>=bandwidth0;<cache_id1>=bandwidth1;...
+Memory bandwidth Allocation specified in MBps
+---------------------------------------------
+
+Memory bandwidth domain is L3 cache.
+
+ MB:<cache_id0>=bw_MBps0;<cache_id1>=bw_MBps1;...
+
Reading/writing the schemata file
---------------------------------
Reading the schemata file will show the state of all resources
@@ -358,6 +408,15 @@ allocations can overlap or not. The allocations specifies the maximum
b/w that the group may be able to use and the system admin can configure
the b/w accordingly.
+If the MBA is specified in MB(megabytes) then user can enter the max b/w in MB
+rather than the percentage values.
+
+# echo "L3:0=3;1=c\nMB:0=1024;1=500" > /sys/fs/resctrl/p0/schemata
+# echo "L3:0=3;1=3\nMB:0=1024;1=500" > /sys/fs/resctrl/p1/schemata
+
+In the above example the tasks in "p1" and "p0" on socket 0 would use a max b/w
+of 1024MB where as on socket 1 they would use 500MB.
+
Example 2
---------
Again two sockets, but this time with a more realistic 20-bit mask.
diff --git a/Documentation/x86/x86_64/boot-options.txt b/Documentation/x86/x86_64/boot-options.txt
index b297c48389b9..8d109ef67ab6 100644
--- a/Documentation/x86/x86_64/boot-options.txt
+++ b/Documentation/x86/x86_64/boot-options.txt
@@ -187,9 +187,9 @@ PCI
IOMMU (input/output memory management unit)
- Currently four x86-64 PCI-DMA mapping implementations exist:
+ Multiple x86-64 PCI-DMA mapping implementations exist, for example:
- 1. <arch/x86_64/kernel/pci-nommu.c>: use no hardware/software IOMMU at all
+ 1. <lib/dma-direct.c>: use no hardware/software IOMMU at all
(e.g. because you have < 3 GB memory).
Kernel boot message: "PCI-DMA: Disabling IOMMU"
@@ -208,7 +208,7 @@ IOMMU (input/output memory management unit)
Kernel boot message: "PCI-DMA: Using Calgary IOMMU"
iommu=[<size>][,noagp][,off][,force][,noforce][,leak[=<nr_of_leak_pages>]
- [,memaper[=<order>]][,merge][,forcesac][,fullflush][,nomerge]
+ [,memaper[=<order>]][,merge][,fullflush][,nomerge]
[,noaperture][,calgary]
General iommu options:
@@ -235,14 +235,7 @@ IOMMU (input/output memory management unit)
(experimental).
nomerge Don't do scatter-gather (SG) merging.
noaperture Ask the IOMMU not to touch the aperture for AGP.
- forcesac Force single-address cycle (SAC) mode for masks <40bits
- (experimental).
noagp Don't initialize the AGP driver and use full aperture.
- allowdac Allow double-address cycle (DAC) mode, i.e. DMA >4GB.
- DAC is used with 32-bit PCI to push a 64-bit address in
- two cycles. When off all DMA over >4GB is forced through
- an IOMMU or software bounce buffering.
- nodac Forbid DAC mode, i.e. DMA >4GB.
panic Always panic when IOMMU overflows.
calgary Use the Calgary IOMMU if it is available