diff options
Diffstat (limited to 'Documentation')
43 files changed, 1757 insertions, 1300 deletions
diff --git a/Documentation/ABI/testing/sysfs-firmware-acpi b/Documentation/ABI/testing/sysfs-firmware-acpi index 9470ed9afcc0..f27be7d1a49f 100644 --- a/Documentation/ABI/testing/sysfs-firmware-acpi +++ b/Documentation/ABI/testing/sysfs-firmware-acpi @@ -29,46 +29,46 @@ Description: $ cd /sys/firmware/acpi/interrupts $ grep . * - error:0 - ff_gbl_lock:0 - ff_pmtimer:0 - ff_pwr_btn:0 - ff_rt_clk:0 - ff_slp_btn:0 - gpe00:0 - gpe01:0 - gpe02:0 - gpe03:0 - gpe04:0 - gpe05:0 - gpe06:0 - gpe07:0 - gpe08:0 - gpe09:174 - gpe0A:0 - gpe0B:0 - gpe0C:0 - gpe0D:0 - gpe0E:0 - gpe0F:0 - gpe10:0 - gpe11:60 - gpe12:0 - gpe13:0 - gpe14:0 - gpe15:0 - gpe16:0 - gpe17:0 - gpe18:0 - gpe19:7 - gpe1A:0 - gpe1B:0 - gpe1C:0 - gpe1D:0 - gpe1E:0 - gpe1F:0 - gpe_all:241 - sci:241 + error: 0 + ff_gbl_lock: 0 enable + ff_pmtimer: 0 invalid + ff_pwr_btn: 0 enable + ff_rt_clk: 2 disable + ff_slp_btn: 0 invalid + gpe00: 0 invalid + gpe01: 0 enable + gpe02: 108 enable + gpe03: 0 invalid + gpe04: 0 invalid + gpe05: 0 invalid + gpe06: 0 enable + gpe07: 0 enable + gpe08: 0 invalid + gpe09: 0 invalid + gpe0A: 0 invalid + gpe0B: 0 invalid + gpe0C: 0 invalid + gpe0D: 0 invalid + gpe0E: 0 invalid + gpe0F: 0 invalid + gpe10: 0 invalid + gpe11: 0 invalid + gpe12: 0 invalid + gpe13: 0 invalid + gpe14: 0 invalid + gpe15: 0 invalid + gpe16: 0 invalid + gpe17: 1084 enable + gpe18: 0 enable + gpe19: 0 invalid + gpe1A: 0 invalid + gpe1B: 0 invalid + gpe1C: 0 invalid + gpe1D: 0 invalid + gpe1E: 0 invalid + gpe1F: 0 invalid + gpe_all: 1192 + sci: 1194 sci - The total number of times the ACPI SCI has claimed an interrupt. @@ -89,6 +89,13 @@ Description: error - an interrupt that can't be accounted for above. + invalid: it's either a wakeup GPE or a GPE/Fixed Event that + doesn't have an event handler. + + disable: the GPE/Fixed Event is valid but disabled. + + enable: the GPE/Fixed Event is valid and enabled. + Root has permission to clear any of these counters. Eg. # echo 0 > gpe11 @@ -97,3 +104,43 @@ Description: None of these counters has an effect on the function of the system, they are simply statistics. + + Besides this, user can also write specific strings to these files + to enable/disable/clear ACPI interrupts in user space, which can be + used to debug some ACPI interrupt storm issues. + + Note that only writting to VALID GPE/Fixed Event is allowed, + i.e. user can only change the status of runtime GPE and + Fixed Event with event handler installed. + + Let's take power button fixed event for example, please kill acpid + and other user space applications so that the machine won't shutdown + when pressing the power button. + # cat ff_pwr_btn + 0 + # press the power button for 3 times; + # cat ff_pwr_btn + 3 + # echo disable > ff_pwr_btn + # cat ff_pwr_btn + disable + # press the power button for 3 times; + # cat ff_pwr_btn + disable + # echo enable > ff_pwr_btn + # cat ff_pwr_btn + 4 + /* + * this is because the status bit is set even if the enable bit is cleared, + * and it triggers an ACPI fixed event when the enable bit is set again + */ + # press the power button for 3 times; + # cat ff_pwr_btn + 7 + # echo disable > ff_pwr_btn + # press the power button for 3 times; + # echo clear > ff_pwr_btn /* clear the status bit */ + # echo disable > ff_pwr_btn + # cat ff_pwr_btn + 7 + diff --git a/Documentation/filesystems/configfs/configfs.txt b/Documentation/filesystems/configfs/configfs.txt index 44c97e6accb2..15838d706ea2 100644 --- a/Documentation/filesystems/configfs/configfs.txt +++ b/Documentation/filesystems/configfs/configfs.txt @@ -233,10 +233,12 @@ accomplished via the group operations specified on the group's config_item_type. struct configfs_group_operations { - struct config_item *(*make_item)(struct config_group *group, - const char *name); - struct config_group *(*make_group)(struct config_group *group, - const char *name); + int (*make_item)(struct config_group *group, + const char *name, + struct config_item **new_item); + int (*make_group)(struct config_group *group, + const char *name, + struct config_group **new_group); int (*commit_item)(struct config_item *item); void (*disconnect_notify)(struct config_group *group, struct config_item *item); diff --git a/Documentation/filesystems/configfs/configfs_example.c b/Documentation/filesystems/configfs/configfs_example.c index 25151fd5c2c6..0b422acd470c 100644 --- a/Documentation/filesystems/configfs/configfs_example.c +++ b/Documentation/filesystems/configfs/configfs_example.c @@ -273,13 +273,13 @@ static inline struct simple_children *to_simple_children(struct config_item *ite return item ? container_of(to_config_group(item), struct simple_children, group) : NULL; } -static struct config_item *simple_children_make_item(struct config_group *group, const char *name) +static int simple_children_make_item(struct config_group *group, const char *name, struct config_item **new_item) { struct simple_child *simple_child; simple_child = kzalloc(sizeof(struct simple_child), GFP_KERNEL); if (!simple_child) - return NULL; + return -ENOMEM; config_item_init_type_name(&simple_child->item, name, @@ -287,7 +287,8 @@ static struct config_item *simple_children_make_item(struct config_group *group, simple_child->storeme = 0; - return &simple_child->item; + *new_item = &simple_child->item; + return 0; } static struct configfs_attribute simple_children_attr_description = { @@ -359,20 +360,21 @@ static struct configfs_subsystem simple_children_subsys = { * children of its own. */ -static struct config_group *group_children_make_group(struct config_group *group, const char *name) +static int group_children_make_group(struct config_group *group, const char *name, struct config_group **new_group) { struct simple_children *simple_children; simple_children = kzalloc(sizeof(struct simple_children), GFP_KERNEL); if (!simple_children) - return NULL; + return -ENOMEM; config_group_init_type_name(&simple_children->group, name, &simple_children_type); - return &simple_children->group; + *new_group = &simple_children->group; + return 0; } static struct configfs_attribute group_children_attr_description = { diff --git a/Documentation/filesystems/ubifs.txt b/Documentation/filesystems/ubifs.txt new file mode 100644 index 000000000000..540e9e7f59c5 --- /dev/null +++ b/Documentation/filesystems/ubifs.txt @@ -0,0 +1,164 @@ +Introduction +============= + +UBIFS file-system stands for UBI File System. UBI stands for "Unsorted +Block Images". UBIFS is a flash file system, which means it is designed +to work with flash devices. It is important to understand, that UBIFS +is completely different to any traditional file-system in Linux, like +Ext2, XFS, JFS, etc. UBIFS represents a separate class of file-systems +which work with MTD devices, not block devices. The other Linux +file-system of this class is JFFS2. + +To make it more clear, here is a small comparison of MTD devices and +block devices. + +1 MTD devices represent flash devices and they consist of eraseblocks of + rather large size, typically about 128KiB. Block devices consist of + small blocks, typically 512 bytes. +2 MTD devices support 3 main operations - read from some offset within an + eraseblock, write to some offset within an eraseblock, and erase a whole + eraseblock. Block devices support 2 main operations - read a whole + block and write a whole block. +3 The whole eraseblock has to be erased before it becomes possible to + re-write its contents. Blocks may be just re-written. +4 Eraseblocks become worn out after some number of erase cycles - + typically 100K-1G for SLC NAND and NOR flashes, and 1K-10K for MLC + NAND flashes. Blocks do not have the wear-out property. +5 Eraseblocks may become bad (only on NAND flashes) and software should + deal with this. Blocks on hard drives typically do not become bad, + because hardware has mechanisms to substitute bad blocks, at least in + modern LBA disks. + +It should be quite obvious why UBIFS is very different to traditional +file-systems. + +UBIFS works on top of UBI. UBI is a separate software layer which may be +found in drivers/mtd/ubi. UBI is basically a volume management and +wear-leveling layer. It provides so called UBI volumes which is a higher +level abstraction than a MTD device. The programming model of UBI devices +is very similar to MTD devices - they still consist of large eraseblocks, +they have read/write/erase operations, but UBI devices are devoid of +limitations like wear and bad blocks (items 4 and 5 in the above list). + +In a sense, UBIFS is a next generation of JFFS2 file-system, but it is +very different and incompatible to JFFS2. The following are the main +differences. + +* JFFS2 works on top of MTD devices, UBIFS depends on UBI and works on + top of UBI volumes. +* JFFS2 does not have on-media index and has to build it while mounting, + which requires full media scan. UBIFS maintains the FS indexing + information on the flash media and does not require full media scan, + so it mounts many times faster than JFFS2. +* JFFS2 is a write-through file-system, while UBIFS supports write-back, + which makes UBIFS much faster on writes. + +Similarly to JFFS2, UBIFS supports on-the-flight compression which makes +it possible to fit quite a lot of data to the flash. + +Similarly to JFFS2, UBIFS is tolerant of unclean reboots and power-cuts. +It does not need stuff like ckfs.ext2. UBIFS automatically replays its +journal and recovers from crashes, ensuring that the on-flash data +structures are consistent. + +UBIFS scales logarithmically (most of the data structures it uses are +trees), so the mount time and memory consumption do not linearly depend +on the flash size, like in case of JFFS2. This is because UBIFS +maintains the FS index on the flash media. However, UBIFS depends on +UBI, which scales linearly. So overall UBI/UBIFS stack scales linearly. +Nevertheless, UBI/UBIFS scales considerably better than JFFS2. + +The authors of UBIFS believe, that it is possible to develop UBI2 which +would scale logarithmically as well. UBI2 would support the same API as UBI, +but it would be binary incompatible to UBI. So UBIFS would not need to be +changed to use UBI2 + + +Mount options +============= + +(*) == default. + +norm_unmount (*) commit on unmount; the journal is committed + when the file-system is unmounted so that the + next mount does not have to replay the journal + and it becomes very fast; +fast_unmount do not commit on unmount; this option makes + unmount faster, but the next mount slower + because of the need to replay the journal. + + +Quick usage instructions +======================== + +The UBI volume to mount is specified using "ubiX_Y" or "ubiX:NAME" syntax, +where "X" is UBI device number, "Y" is UBI volume number, and "NAME" is +UBI volume name. + +Mount volume 0 on UBI device 0 to /mnt/ubifs: +$ mount -t ubifs ubi0_0 /mnt/ubifs + +Mount "rootfs" volume of UBI device 0 to /mnt/ubifs ("rootfs" is volume +name): +$ mount -t ubifs ubi0:rootfs /mnt/ubifs + +The following is an example of the kernel boot arguments to attach mtd0 +to UBI and mount volume "rootfs": +ubi.mtd=0 root=ubi0:rootfs rootfstype=ubifs + + +Module Parameters for Debugging +=============================== + +When UBIFS has been compiled with debugging enabled, there are 3 module +parameters that are available to control aspects of testing and debugging. +The parameters are unsigned integers where each bit controls an option. +The parameters are: + +debug_msgs Selects which debug messages to display, as follows: + + Message Type Flag value + + General messages 1 + Journal messages 2 + Mount messages 4 + Commit messages 8 + LEB search messages 16 + Budgeting messages 32 + Garbage collection messages 64 + Tree Node Cache (TNC) messages 128 + LEB properties (lprops) messages 256 + Input/output messages 512 + Log messages 1024 + Scan messages 2048 + Recovery messages 4096 + +debug_chks Selects extra checks that UBIFS can do while running: + + Check Flag value + + General checks 1 + Check Tree Node Cache (TNC) 2 + Check indexing tree size 4 + Check orphan area 8 + Check old indexing tree 16 + Check LEB properties (lprops) 32 + Check leaf nodes and inodes 64 + +debug_tsts Selects a mode of testing, as follows: + + Test mode Flag value + + Force in-the-gaps method 2 + Failure mode for recovery testing 4 + +For example, set debug_msgs to 5 to display General messages and Mount +messages. + + +References +========== + +UBIFS documentation and FAQ/HOWTO at the MTD web site: +http://www.linux-mtd.infradead.org/doc/ubifs.html +http://www.linux-mtd.infradead.org/faq/ubifs.html diff --git a/Documentation/ftrace.txt b/Documentation/ftrace.txt index 77d3faa1a611..f218f616ff6b 100644 --- a/Documentation/ftrace.txt +++ b/Documentation/ftrace.txt @@ -4,9 +4,10 @@ Copyright 2008 Red Hat Inc. Author: Steven Rostedt <srostedt@redhat.com> License: The GNU Free Documentation License, Version 1.2 -Reviewers: Elias Oltmanns and Randy Dunlap +Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton, + John Kacur, and David Teigland. -Writen for: 2.6.26-rc8 linux-2.6-tip.git tip/tracing/ftrace branch +Written for: 2.6.27-rc1 Introduction ------------ @@ -18,10 +19,11 @@ issues that take place outside of user-space. Although ftrace is the function tracer, it also includes an infrastructure that allows for other types of tracing. Some of the -tracers that are currently in ftrace is a tracer to trace +tracers that are currently in ftrace include a tracer to trace context switches, the time it takes for a high priority task to run after it was woken up, the time interrupts are disabled, and -more. +more (ftrace allows for tracer plugins, which means that the list of +tracers can always grow). The File System @@ -35,6 +37,8 @@ To mount the debugfs system: # mkdir /debug # mount -t debugfs nodev /debug +(Note: it is more common to mount at /sys/kernel/debug, but for simplicity + this document will use /debug) That's it! (assuming that you have ftrace configured into your kernel) @@ -50,20 +54,19 @@ of ftrace. Here is a list of some of the key files: available_tracers : This holds the different types of tracers that have been compiled into the kernel. The tracers - listed here can be configured by echoing in their - name into current_tracer. + listed here can be configured by echoing their name + into current_tracer. tracing_enabled : This sets or displays whether the current_tracer is activated and tracing or not. Echo 0 into this - file to disable the tracer or 1 (or non-zero) to - enable it. + file to disable the tracer or 1 to enable it. trace : This file holds the output of the trace in a human readable - format. + format (described below). latency_trace : This file shows the same trace but the information is organized more to display possible latencies - in the system. + in the system (described below). trace_pipe : The output is the same as the "trace" file but this file is meant to be streamed with live tracing. @@ -75,7 +78,7 @@ of ftrace. Here is a list of some of the key files: file, it is consumed, and will not be read again with a sequential read. The "trace" and "latency_trace" files are static, and if the - tracer isn't adding more data, they will display + tracer is not adding more data, they will display the same information every time they are read. iter_ctrl : This file lets the user control the amount of data @@ -92,10 +95,10 @@ of ftrace. Here is a list of some of the key files: trace_entries : This sets or displays the number of trace entries each CPU buffer can hold. The tracer buffers - are the same size for each CPU, so care must be - taken when modifying the trace_entries. The trace - buffers are allocated in pages (blocks of memory that - the kernel uses for allocation, usually 4 KB in size). + are the same size for each CPU. The displayed number + is the size of the CPU buffer and not total size. The + trace buffers are allocated in pages (blocks of memory + that the kernel uses for allocation, usually 4 KB in size). Since each entry is smaller than a page, if the last allocated page has room for more entries than were requested, the rest of the page is used to allocate @@ -112,20 +115,19 @@ of ftrace. Here is a list of some of the key files: on specified CPUS. The format is a hex string representing the CPUS. - set_ftrace_filter : When dynamic ftrace is configured in, the - code is dynamically modified to disable calling - of the function profiler (mcount). This lets - tracing be configured in with practically no overhead - in performance. This also has a side effect of - enabling or disabling specific functions to be - traced. Echoing in names of functions into this - file will limit the trace to only these functions. - - set_ftrace_notrace: This has the opposite effect that - set_ftrace_filter has. Any function that is added - here will not be traced. If a function exists - in both set_ftrace_filter and set_ftrace_notrace, - the function will _not_ be traced. + set_ftrace_filter : When dynamic ftrace is configured in (see the + section below "dynamic ftrace"), the code is dynamically + modified (code text rewrite) to disable calling of the + function profiler (mcount). This lets tracing be configured + in with practically no overhead in performance. This also + has a side effect of enabling or disabling specific functions + to be traced. Echoing names of functions into this file + will limit the trace to only those functions. + + set_ftrace_notrace: This has an effect opposite to that of + set_ftrace_filter. Any function that is added here will not + be traced. If a function exists in both set_ftrace_filter + and set_ftrace_notrace, the function will _not_ be traced. available_filter_functions : When a function is encountered the first time by the dynamic tracer, it is recorded and @@ -133,32 +135,31 @@ of ftrace. Here is a list of some of the key files: lists the functions that have been recorded by the dynamic tracer and these functions can be used to set the ftrace filter by the above - "set_ftrace_filter" file. + "set_ftrace_filter" file. (See the section "dynamic ftrace" + below for more details). The Tracers ----------- -Here are the list of current tracers that can be configured. +Here is the list of current tracers that may be configured. ftrace - function tracer that uses mcount to trace all functions. - It is possible to filter out which functions that are - to be traced when dynamic ftrace is configured in. sched_switch - traces the context switches between tasks. - irqsoff - traces the areas that disable interrupts and saves off + irqsoff - traces the areas that disable interrupts and saves the trace with the longest max latency. See tracing_max_latency. When a new max is recorded, it replaces the old trace. It is best to view this - trace with the latency_trace file. + trace via the latency_trace file. - preemptoff - Similar to irqsoff but traces and records the time - preemption is disabled. + preemptoff - Similar to irqsoff but traces and records the amount of + time for which preemption is disabled. preemptirqsoff - Similar to irqsoff and preemptoff, but traces and - records the largest time irqs and/or preemption is - disabled. + records the largest time for which irqs and/or preemption + is disabled. wakeup - Traces and records the max latency that it takes for the highest priority task to get scheduled after @@ -171,13 +172,13 @@ Here are the list of current tracers that can be configured. Examples of using the tracer ---------------------------- -Here are typical examples of using the tracers with only controlling -them with the debugfs interface (without using any user-land utilities). +Here are typical examples of using the tracers when controlling them only +with the debugfs interface (without using any user-land utilities). Output format: -------------- -Here's an example of the output format of the file "trace" +Here is an example of the output format of the file "trace" -------- # tracer: ftrace @@ -189,14 +190,15 @@ Here's an example of the output format of the file "trace" bash-4251 [01] 10152.583855: _atomic_dec_and_lock <-dput -------- -A header is printed with the trace that is represented. In this case -the tracer is "ftrace". Then a header showing the format. Task name -"bash", the task PID "4251", the CPU that it was running on +A header is printed with the tracer name that is represented by the trace. +In this case the tracer is "ftrace". Then a header showing the format. Task +name "bash", the task PID "4251", the CPU that it was running on "01", the timestamp in <secs>.<usecs> format, the function name that was traced "path_put" and the parent function that called this function -"path_walk". +"path_walk". The timestamp is the time at which the function was +entered. -The sched_switch tracer also includes tracing of task wake ups and +The sched_switch tracer also includes tracing of task wakeups and context switches. ksoftirqd/1-7 [01] 1453.070013: 7:115:R + 2916:115:S @@ -206,7 +208,7 @@ context switches. kondemand/1-2916 [01] 1453.070013: 2916:115:S ==> 7:115:R ksoftirqd/1-7 [01] 1453.070013: 7:115:S ==> 0:140:R -Wake ups are represented by a "+" and the context switches show +Wake ups are represented by a "+" and the context switches are shown as "==>". The format is: Context switches: @@ -221,7 +223,7 @@ Wake ups are represented by a "+" and the context switches show <pid>:<prio>:<state> + <pid>:<prio>:<state> -The prio is the internal kernel priority, which is inverse to the +The prio is the internal kernel priority, which is the inverse of the priority that is usually displayed by user-space tools. Zero represents the highest priority (99). Prio 100 starts the "nice" priorities with 100 being equal to nice -20 and 139 being nice 19. The prio "140" is @@ -232,7 +234,7 @@ Latency trace format -------------------- For traces that display latency times, the latency_trace file gives -a bit more information to see why a latency happened. Here's a typical +somewhat more information to see why a latency happened. Here is a typical trace. # tracer: irqsoff @@ -260,21 +262,20 @@ irqsoff latency trace v1.1.5 on 2.6.26-rc8 <idle>-0 0d.s1 98us : trace_hardirqs_on (do_softirq) -vim:ft=help - -This shows that the current tracer is "irqsoff" tracing the time -interrupts are disabled. It gives the trace version and the kernel -this was executed on (2.6.26-rc8). Then it displays the max latency -in microsecs (97 us). The number of trace entries displayed -by the total number recorded (both are three: #3/3). The type of +This shows that the current tracer is "irqsoff" tracing the time for which +interrupts were disabled. It gives the trace version and the version +of the kernel upon which this was executed on (2.6.26-rc8). Then it displays +the max latency in microsecs (97 us). The number of trace entries displayed +and the total number recorded (both are three: #3/3). The type of preemption that was used (PREEMPT). VP, KP, SP, and HP are always zero -and reserved for later use. #P is the number of online CPUS (#P:2). +and are reserved for later use. #P is the number of online CPUS (#P:2). -The task is the process that was running when the latency happened. +The task is the process that was running when the latency occurred. (swapper pid: 0). -The start and stop that caused the latencies: +The start and stop (the functions in which the interrupts were disabled and +enabled respectively) that caused the latencies: apic_timer_interrupt is where the interrupts were disabled. do_softirq is where they were enabled again. @@ -286,14 +287,14 @@ explains which is which. pid: The PID of that process. - CPU#: The CPU that the process was running on. + CPU#: The CPU which the process was running on. irqs-off: 'd' interrupts are disabled. '.' otherwise. need-resched: 'N' task need_resched is set, '.' otherwise. hardirq/softirq: - 'H' - hard irq happened inside a softirq. + 'H' - hard irq occurred inside a softirq. 'h' - hard irq is running 's' - soft irq is running '.' - normal context. @@ -303,7 +304,7 @@ explains which is which. The above is mostly meaningful for kernel developers. time: This differs from the trace file output. The trace file output - included an absolute timestamp. The timestamp used by the + includes an absolute timestamp. The timestamp used by the latency_trace file is relative to the start of the trace. delay: This is just to help catch your eye a bit better. And @@ -385,7 +386,7 @@ Here are the available options: sched_switch ------------ -This tracer simply records schedule switches. Here's an example +This tracer simply records schedule switches. Here is an example of how to use it. # echo sched_switch > /debug/tracing/current_tracer @@ -421,8 +422,8 @@ the name of the trace and points to the options. The "FUNCTION" is a misnomer since here it represents the wake ups and context switches. -The sched_switch only lists the wake ups (represented with '+') -and context switches ('==>') with the previous task or current +The sched_switch file only lists the wake ups (represented with '+') +and context switches ('==>') with the previous task or current task first followed by the next task or task waking up. The format for both of these is PID:KERNEL-PRIO:TASK-STATE. Remember that the KERNEL-PRIO is the inverse of the actual priority with zero (0) being the highest @@ -437,7 +438,8 @@ The task states are: R - running : wants to run, may not actually be running S - sleep : process is waiting to be woken up (handles signals) - D - deep sleep : process must be woken up (ignores signals) + D - disk sleep (uninterruptible sleep) : process must be woken up + (ignores signals) T - stopped : process suspended t - traced : process is being traced (with something like gdb) Z - zombie : process waiting to be cleaned up @@ -447,8 +449,8 @@ The task states are: ftrace_enabled -------------- -The following tracers give different output depending on whether -or not the sysctl ftrace_enabled is set. To set ftrace_enabled, +The following tracers (listed below) give different output depending +on whether or not the sysctl ftrace_enabled is set. To set ftrace_enabled, one can either use the sysctl function or set it via the proc file system interface. @@ -475,13 +477,12 @@ interrupt from triggering or the mouse interrupt from letting the kernel know of a new mouse event. The result is a latency with the reaction time. -The irqsoff tracer tracks the time interrupts are disabled to the time -they are re-enabled. When a new maximum latency is hit, it saves off -the trace so that it may be retrieved at a later time. Every time a -new maximum in reached, the old saved trace is discarded and the new -trace is saved. +The irqsoff tracer tracks the time for which interrupts are disabled. +When a new maximum latency is hit, the tracer saves the trace leading up +to that latency point so that every time a new maximum is reached, the old +saved trace is discarded and the new trace is saved. -To reset the maximum, echo 0 into tracing_max_latency. Here's an +To reset the maximum, echo 0 into tracing_max_latency. Here is an example: # echo irqsoff > /debug/tracing/current_tracer @@ -493,14 +494,14 @@ example: # cat /debug/tracing/latency_trace # tracer: irqsoff # -irqsoff latency trace v1.1.5 on 2.6.26-rc8 +irqsoff latency trace v1.1.5 on 2.6.26 -------------------------------------------------------------------- - latency: 6 us, #3/3, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) + latency: 12 us, #3/3, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2) ----------------- - | task: bash-4269 (uid:0 nice:0 policy:0 rt_prio:0) + | task: bash-3730 (uid:0 nice:0 policy:0 rt_prio:0) ----------------- - => started at: copy_page_range - => ended at: copy_page_range + => started at: sys_setpgid + => ended at: sys_setpgid # _------=> CPU# # / _-----=> irqs-off @@ -511,21 +512,19 @@ irqsoff latency trace v1.1.5 on 2.6.26-rc8 # ||||| delay # cmd pid ||||| time | caller # \ / ||||| \ | / - bash-4269 1...1 0us+: _spin_lock (copy_page_range) - bash-4269 1...1 7us : _spin_unlock (copy_page_range) - bash-4269 1...2 7us : trace_preempt_on (copy_page_range) - + bash-3730 1d... 0us : _write_lock_irq (sys_setpgid) + bash-3730 1d..1 1us+: _write_unlock_irq (sys_setpgid) + bash-3730 1d..2 14us : trace_hardirqs_on (sys_setpgid) -vim:ft=help -Here we see that that we had a latency of 6 microsecs (which is -very good). The spin_lock in copy_page_range disabled interrupts. -The difference between the 6 and the displayed timestamp 7us is -because the clock must have incremented between the time of recording -the max latency and recording the function that had that latency. +Here we see that that we had a latency of 12 microsecs (which is +very good). The _write_lock_irq in sys_setpgid disabled interrupts. +The difference between the 12 and the displayed timestamp 14us occurred +because the clock was incremented between the time of recording the max +latency and the time of recording the function that had that latency. -Note the above had ftrace_enabled not set. If we set the ftrace_enabled, -we get a much larger output: +Note the above example had ftrace_enabled not set. If we set the +ftrace_enabled, we get a much larger output: # tracer: irqsoff # @@ -571,12 +570,10 @@ irqsoff latency trace v1.1.5 on 2.6.26-rc8 ls-4339 0d..2 51us : trace_hardirqs_on (__alloc_pages_internal) -vim:ft=help - Here we traced a 50 microsecond latency. But we also see all the functions that were called during that time. Note that by enabling -function tracing, we endure an added overhead. This overhead may +function tracing, we incur an added overhead. This overhead may extend the latency times. But nevertheless, this trace has provided some very helpful debugging information. @@ -590,8 +587,9 @@ for preemption to be enabled again before it can preempt a lower priority task. The preemptoff tracer traces the places that disable preemption. -Like the irqsoff, it records the maximum latency that preemption -was disabled. The control of preemptoff is much like the irqsoff. +Like the irqsoff tracer, it records the maximum latency for which preemption +was disabled. The control of preemptoff tracer is much like the irqsoff +tracer. # echo preemptoff > /debug/tracing/current_tracer # echo 0 > /debug/tracing/tracing_max_latency @@ -625,8 +623,6 @@ preemptoff latency trace v1.1.5 on 2.6.26-rc8 sshd-4261 0d.s1 30us : trace_preempt_on (__do_softirq) -vim:ft=help - This has some more changes. Preemption was disabled when an interrupt came in (notice the 'h'), and was enabled while doing a softirq. (notice the 's'). But we also see that interrupts have been disabled @@ -694,16 +690,16 @@ The above is an example of the preemptoff trace with ftrace_enabled set. Here we see that interrupts were disabled the entire time. The irq_enter code lets us know that we entered an interrupt 'h'. Before that, the functions being traced still show that it is not -in an interrupt, but we can see by the functions themselves that +in an interrupt, but we can see from the functions themselves that this is not the case. -Notice that the __do_softirq when called doesn't have a preempt_count. -It may seem that we missed a preempt enabled. What really happened -is that the preempt count is held on the threads stack and we +Notice that __do_softirq when called does not have a preempt_count. +It may seem that we missed a preempt enabling. What really happened +is that the preempt count is held on the thread's stack and we switched to the softirq stack (4K stacks in effect). The code does not copy the preempt count, but because interrupts are disabled, -we don't need to worry about it. Having a tracer like this is good -to let people know what really happens inside the kernel. +we do not need to worry about it. Having a tracer like this is good +for letting people know what really happens inside the kernel. preemptirqsoff @@ -713,7 +709,7 @@ Knowing the locations that have interrupts disabled or preemption disabled for the longest times is helpful. But sometimes we would like to know when either preemption and/or interrupts are disabled. -The following code: +Consider the following code: local_irq_disable(); call_function_with_irqs_off(); @@ -769,12 +765,10 @@ preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8 ls-4860 0d.s1 294us : trace_preempt_on (__do_softirq) -vim:ft=help - The trace_hardirqs_off_thunk is called from assembly on x86 when interrupts are disabled in the assembly code. Without the function -tracing, we don't know if interrupts were enabled within the preemption +tracing, we do not know if interrupts were enabled within the preemption points. We do see that it started with preemption enabled. Here is a trace with ftrace_enabled set: @@ -865,19 +859,19 @@ preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8 This is a very interesting trace. It started with the preemption of the ls task. We see that the task had the "need_resched" bit set -with the 'N' in the trace. Interrupts are disabled in the spin_lock -and the trace started. We see that a schedule took place to run +via the 'N' in the trace. Interrupts were disabled before the spin_lock +at the beginning of the trace. We see that a schedule took place to run sshd. When the interrupts were enabled, we took an interrupt. On return from the interrupt handler, the softirq ran. We took another -interrupt while running the softirq as we see with the capital 'H'. +interrupt while running the softirq as we see from the capital 'H'. wakeup ------ -In Real-Time environment it is very important to know the wakeup -time it takes for the highest priority task that wakes up to the -time it executes. This is also known as "schedule latency". +In a Real-Time environment it is very important to know the wakeup +time it takes for the highest priority task that is woken up to the +time that it executes. This is also known as "schedule latency". I stress the point that this is about RT tasks. It is also important to know the scheduling latency of non-RT tasks, but the average schedule latency is better for non-RT tasks. Tools like @@ -926,8 +920,6 @@ wakeup latency trace v1.1.5 on 2.6.26-rc8 <idle>-0 1d..4 4us : schedule (cpu_idle) -vim:ft=help - Running this on an idle system, we see that it only took 4 microseconds to perform the task switch. Note, since the trace marker in the @@ -996,15 +988,15 @@ ksoftirq-7 1d..6 49us : sub_preempt_count (_spin_unlock) ksoftirq-7 1d..4 50us : schedule (__cond_resched) The interrupt went off while running ksoftirqd. This task runs at -SCHED_OTHER. Why didn't we see the 'N' set early? This may be +SCHED_OTHER. Why did not we see the 'N' set early? This may be a harmless bug with x86_32 and 4K stacks. On x86_32 with 4K stacks -configured, the interrupt and softirq runs with their own stack. +configured, the interrupt and softirq run with their own stack. Some information is held on the top of the task's stack (need_resched and preempt_count are both stored there). The setting of the NEED_RESCHED bit is done directly to the task's stack, but the reading of the NEED_RESCHED is done by looking at the current stack, which in this case is the stack for the hard interrupt. This hides the fact that NEED_RESCHED -has been set. We don't see the 'N' until we switch back to the task's +has been set. We do not see the 'N' until we switch back to the task's assigned stack. ftrace @@ -1044,14 +1036,14 @@ this tracer is a nop. [...] -Note: It is sometimes better to enable or disable tracing directly from -a program, because the buffer may be overflowed by the echo commands -before you get to the point you want to trace. It is also easier to -stop the tracing at the point that you hit the part that you are -interested in. Since the ftrace buffer is a ring buffer with the -oldest data being overwritten, usually it is sufficient to start the -tracer with an echo command but have you code stop it. Something -like the following is usually appropriate for this. +Note: ftrace uses ring buffers to store the above entries. The newest data +may overwrite the oldest data. Sometimes using echo to stop the trace +is not sufficient because the tracing could have overwritten the data +that you wanted to record. For this reason, it is sometimes better to +disable tracing directly from a program. This allows you to stop the +tracing at the point that you hit the part that you are interested in. +To disable the tracing directly from a C program, something like following +code snippet can be used: int trace_fd; [...] @@ -1060,20 +1052,26 @@ int main(int argc, char *argv[]) { trace_fd = open("/debug/tracing/tracing_enabled", O_WRONLY); [...] if (condition_hit()) { - write(trace_fd, "0", 1); + write(trace_fd, "0", 1); } [...] } +Note: Here we hard coded the path name. The debugfs mount is not +guaranteed to be at /debug (and is more commonly at /sys/kernel/debug). +For simple one time traces, the above is sufficent. For anything else, +a search through /proc/mounts may be needed to find where the debugfs +file-system is mounted. dynamic ftrace -------------- -If CONFIG_DYNAMIC_FTRACE is set, then the system will run with +If CONFIG_DYNAMIC_FTRACE is set, the system will run with virtually no overhead when function tracing is disabled. The way this works is the mcount function call (placed at the start of every kernel function, produced by the -pg switch in gcc), starts -of pointing to a simple return. +of pointing to a simple return. (Enabling FTRACE will include the +-pg switch in the compiling of the kernel.) When dynamic ftrace is initialized, it calls kstop_machine to make the machine act like a uniprocessor so that it can freely modify code @@ -1086,15 +1084,15 @@ Later on the ftraced kernel thread is awoken and will again call kstop_machine if new functions have been recorded. The ftraced thread will change all calls to mcount to "nop". Just calling mcount and having mcount return has shown a 10% overhead. By converting -it to a nop, there is no recordable overhead to the system. +it to a nop, there is no measurable overhead to the system. One special side-effect to the recording of the functions being -traced, is that we can now selectively choose which functions we -want to trace and which ones we want the mcount calls to remain as +traced is that we can now selectively choose which functions we +wish to trace and which ones we want the mcount calls to remain as nops. Two files are used, one for enabling and one for disabling the tracing -of recorded functions. They are: +of specified functions. They are: set_ftrace_filter @@ -1116,7 +1114,7 @@ pick_next_task_fair mutex_lock [...] -If I'm only interested in sys_nanosleep and hrtimer_interrupt: +If I am only interested in sys_nanosleep and hrtimer_interrupt: # echo sys_nanosleep hrtimer_interrupt \ > /debug/tracing/set_ftrace_filter @@ -1133,21 +1131,21 @@ If I'm only interested in sys_nanosleep and hrtimer_interrupt: usleep-4134 [00] 1317.070111: sys_nanosleep <-syscall_call <idle>-0 [00] 1317.070115: hrtimer_interrupt <-smp_apic_timer_interrupt -To see what functions are being traced, you can cat the file: +To see which functions are being traced, you can cat the file: # cat /debug/tracing/set_ftrace_filter hrtimer_interrupt sys_nanosleep -Perhaps this isn't enough. The filters also allow simple wild cards. +Perhaps this is not enough. The filters also allow simple wild cards. Only the following are currently available <match>* - will match functions that begin with <match> *<match> - will match functions that end with <match> *<match>* - will match functions that have <match> in it -Thats all the wild cards that are allowed. +These are the only wild cards which are supported. <match>*<match> will not work. @@ -1258,15 +1256,15 @@ calls that need to be converted into nops. If there are not any, then it simply goes back to sleep. But if there are some, it will call kstop_machine to convert the calls to nops. -There may be a case that you do not want this added latency. +There may be a case in which you do not want this added latency. Perhaps you are doing some audio recording and this activity might cause skips in the playback. There is an interface to disable -and enable the ftraced kernel thread. +and enable the "ftraced" kernel thread. # echo 0 > /debug/tracing/ftraced_enabled -This will disable the calling of the kstop_machine to update the -mcount calls to nops. Remember that there's a large overhead +This will disable the calling of kstop_machine to update the +mcount calls to nops. Remember that there is a large overhead to calling mcount. Without this kernel thread, that overhead will exist. @@ -1282,8 +1280,8 @@ that uses ftrace function recording. trace_pipe ---------- -The trace_pipe outputs the same as trace, but the effect on the -tracing is different. Every read from trace_pipe is consumed. +The trace_pipe outputs the same content as the trace file, but the effect +on the tracing is different. Every read from trace_pipe is consumed. This means that subsequent reads will be different. The trace is live. @@ -1313,7 +1311,7 @@ is live. bash-4043 [00] 41.267111: select_task_rq_rt <-try_to_wake_up -Note, reading the trace_pipe will block until more input is added. +Note, reading the trace_pipe file will block until more input is added. By changing the tracer, trace_pipe will issue an EOF. We needed to set the ftrace tracer _before_ cating the trace_pipe file. @@ -1322,7 +1320,7 @@ trace entries ------------- Having too much or not enough data can be troublesome in diagnosing -some issue in the kernel. The file trace_entries is used to modify +an issue in the kernel. The file trace_entries is used to modify the size of the internal trace buffers. The number listed is the number of entries that can be recorded per CPU. To know the full size, multiply the number of possible CPUS with the @@ -1332,7 +1330,8 @@ number of entries. 65620 Note, to modify this, you must have tracing completely disabled. To do that, -echo "none" into the current_tracer. +echo "none" into the current_tracer. If the current_tracer is not set +to "none", an EINVAL error will be returned. # echo none > /debug/tracing/current_tracer # echo 100000 > /debug/tracing/trace_entries @@ -1341,18 +1340,18 @@ echo "none" into the current_tracer. Notice that we echoed in 100,000 but the size is 100,045. The entries -are held by individual pages. It allocates the number of pages it takes +are held in individual pages. It allocates the number of pages it takes to fulfill the request. If more entries may fit on the last page -it will add them. +then they will be added. # echo 1 > /debug/tracing/trace_entries # cat /debug/tracing/trace_entries 85 -This shows us that 85 entries can fit on a single page. +This shows us that 85 entries can fit in a single page. -The number of pages that will be allocated is a percentage of available -memory. Allocating too much will produce an error. +The number of pages which will be allocated is limited to a percentage +of available memory. Allocating too much will produce an error. # echo 1000000000000 > /debug/tracing/trace_entries -bash: echo: write error: Cannot allocate memory diff --git a/Documentation/i2c/chips/max6875 b/Documentation/i2c/chips/max6875 index a0cd8af2f408..10ca43cd1a72 100644 --- a/Documentation/i2c/chips/max6875 +++ b/Documentation/i2c/chips/max6875 @@ -49,7 +49,7 @@ $ modprobe max6875 force=0,0x50 The MAX6874/MAX6875 ignores address bit 0, so this driver attaches to multiple addresses. For example, for address 0x50, it also reserves 0x51. -The even-address instance is called 'max6875', the odd one is 'max6875 subclient'. +The even-address instance is called 'max6875', the odd one is 'dummy'. Programming the chip using i2c-dev diff --git a/Documentation/i2c/chips/pca9539 b/Documentation/i2c/chips/pca9539 index 1d81c530c4a5..6aff890088b1 100644 --- a/Documentation/i2c/chips/pca9539 +++ b/Documentation/i2c/chips/pca9539 @@ -7,7 +7,7 @@ drivers/gpio/pca9539.c instead. Supported chips: * Philips PCA9539 Prefix: 'pca9539' - Addresses scanned: 0x74 - 0x77 + Addresses scanned: none Datasheet: http://www.semiconductors.philips.com/acrobat/datasheets/PCA9539_2.pdf @@ -23,6 +23,14 @@ The input sense can also be inverted. The 16 lines are split between two bytes. +Detection +--------- + +The PCA9539 is difficult to detect and not commonly found in PC machines, +so you have to pass the I2C bus and address of the installed PCA9539 +devices explicitly to the driver at load time via the force=... parameter. + + Sysfs entries ------------- diff --git a/Documentation/i2c/chips/pcf8574 b/Documentation/i2c/chips/pcf8574 index 5c1ad1376b62..235815c075ff 100644 --- a/Documentation/i2c/chips/pcf8574 +++ b/Documentation/i2c/chips/pcf8574 @@ -4,13 +4,13 @@ Kernel driver pcf8574 Supported chips: * Philips PCF8574 Prefix: 'pcf8574' - Addresses scanned: I2C 0x20 - 0x27 + Addresses scanned: none Datasheet: Publicly available at the Philips Semiconductors website http://www.semiconductors.philips.com/pip/PCF8574P.html * Philips PCF8574A Prefix: 'pcf8574a' - Addresses scanned: I2C 0x38 - 0x3f + Addresses scanned: none Datasheet: Publicly available at the Philips Semiconductors website http://www.semiconductors.philips.com/pip/PCF8574P.html @@ -38,12 +38,10 @@ For more informations see the datasheet. Accessing PCF8574(A) via /sys interface ------------------------------------- -! Be careful ! The PCF8574(A) is plainly impossible to detect ! Stupid chip. -So every chip with address in the interval [20..27] and [38..3f] are -detected as PCF8574(A). If you have other chips in this address -range, the workaround is to load this module after the one -for your others chips. +So, you have to pass the I2C bus and address of the installed PCF857A +and PCF8574A devices explicitly to the driver at load time via the +force=... parameter. On detection (i.e. insmod, modprobe et al.), directories are being created for each detected PCF8574(A): diff --git a/Documentation/i2c/chips/pcf8575 b/Documentation/i2c/chips/pcf8575 index 25f5698a61cf..40b268eb276f 100644 --- a/Documentation/i2c/chips/pcf8575 +++ b/Documentation/i2c/chips/pcf8575 @@ -40,12 +40,9 @@ Detection --------- There is no method known to detect whether a chip on a given I2C address is -a PCF8575 or whether it is any other I2C device. So there are two alternatives -to let the driver find the installed PCF8575 devices: -- Load this driver after any other I2C driver for I2C devices with addresses - in the range 0x20 .. 0x27. -- Pass the I2C bus and address of the installed PCF8575 devices explicitly to - the driver at load time via the probe=... or force=... parameters. +a PCF8575 or whether it is any other I2C device, so you have to pass the I2C +bus and address of the installed PCF8575 devices explicitly to the driver at +load time via the force=... parameter. /sys interface -------------- diff --git a/Documentation/ioctl/hdio.txt b/Documentation/ioctl/hdio.txt index c19efdeace2c..91a6ecbae0bb 100644 --- a/Documentation/ioctl/hdio.txt +++ b/Documentation/ioctl/hdio.txt @@ -508,12 +508,13 @@ HDIO_DRIVE_RESET execute a device reset error returns: EACCES Access denied: requires CAP_SYS_ADMIN + ENXIO No such device: phy dead or ctl_addr == 0 + EIO I/O error: reset timed out or hardware error notes: - Abort any current command, prevent anything else from being - queued, execute a reset on the device, and issue BLKRRPART - ioctl on the block device. + Execute a reset on the device as soon as the current IO + operation has completed. Executes an ATAPI soft reset if applicable, otherwise executes an ATA soft reset on the controller. diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index 312fe77764a4..09ad7450647b 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -147,10 +147,14 @@ and is between 256 and 4096 characters. It is defined in the file default: 0 acpi_sleep= [HW,ACPI] Sleep options - Format: { s3_bios, s3_mode, s3_beep } + Format: { s3_bios, s3_mode, s3_beep, old_ordering } See Documentation/power/video.txt for s3_bios and s3_mode. s3_beep is for debugging; it makes the PC's speaker beep as soon as the kernel's real-mode entry point is called. + old_ordering causes the ACPI 1.0 ordering of the _PTS + control method, wrt putting devices into low power + states, to be enforced (the ACPI 2.0 ordering of _PTS is + used by default). acpi_sci= [HW,ACPI] ACPI System Control Interrupt trigger mode Format: { level | edge | high | low } @@ -818,7 +822,7 @@ and is between 256 and 4096 characters. It is defined in the file See Documentation/ide/ide.txt. idle= [X86] - Format: idle=poll or idle=mwait + Format: idle=poll or idle=mwait, idle=halt, idle=nomwait Poll forces a polling idle loop that can slightly improves the performance of waking up a idle CPU, but will use a lot of power and make the system run hot. Not recommended. @@ -826,6 +830,9 @@ and is between 256 and 4096 characters. It is defined in the file to not use it because it doesn't save as much power as a normal idle loop use the MONITOR/MWAIT idle loop anyways. Performance should be the same as idle=poll. + idle=halt. Halt is forced to be used for CPU idle. + In such case C2/C3 won't be used again. + idle=nomwait. Disable mwait for CPU C-states ide-pci-generic.all-generic-ide [HW] (E)IDE subsystem Claim all unknown PCI IDE storage controllers. @@ -1534,6 +1541,9 @@ and is between 256 and 4096 characters. It is defined in the file Use with caution as certain devices share address decoders between ROMs and other resources. + norom [X86-32,X86_64] Do not assign address space to + expansion ROMs that do not already have + BIOS assigned address ranges. irqmask=0xMMMM [X86-32] Set a bit mask of IRQs allowed to be assigned automatically to PCI devices. You can make the kernel exclude IRQs of your ISA cards diff --git a/Documentation/kprobes.txt b/Documentation/kprobes.txt index 6877e7187113..a79633d702bf 100644 --- a/Documentation/kprobes.txt +++ b/Documentation/kprobes.txt @@ -172,6 +172,7 @@ architectures: - ia64 (Does not support probes on instruction slot1.) - sparc64 (Return probes not yet implemented.) - arm +- ppc 3. Configuring Kprobes diff --git a/Documentation/laptops/acer-wmi.txt b/Documentation/laptops/acer-wmi.txt index 79b7dbd22141..69b5dd4e5a59 100644 --- a/Documentation/laptops/acer-wmi.txt +++ b/Documentation/laptops/acer-wmi.txt @@ -174,8 +174,6 @@ The LED is exposed through the LED subsystem, and can be found in: The mail LED is autodetected, so if you don't have one, the LED device won't be registered. -If you have a mail LED that is not green, please report this to me. - Backlight ********* diff --git a/Documentation/powerpc/booting-without-of.txt b/Documentation/powerpc/booting-without-of.txt index 1d2a772506cf..de2e5c05d6e7 100644 --- a/Documentation/powerpc/booting-without-of.txt +++ b/Documentation/powerpc/booting-without-of.txt @@ -41,23 +41,12 @@ Table of Contents VI - System-on-a-chip devices and nodes 1) Defining child nodes of an SOC 2) Representing devices without a current OF specification - a) MDIO IO device - b) Gianfar-compatible ethernet nodes - c) PHY nodes - d) Interrupt controllers - e) I2C - f) Freescale SOC USB controllers - g) Freescale SOC SEC Security Engines - h) Board Control and Status (BCSR) - i) Freescale QUICC Engine module (QE) - j) CFI or JEDEC memory-mapped NOR flash - k) Global Utilities Block - l) Freescale Communications Processor Module - m) Chipselect/Local Bus - n) 4xx/Axon EMAC ethernet nodes - o) Xilinx IP cores - p) Freescale Synchronous Serial Interface - q) USB EHCI controllers + a) PHY nodes + b) Interrupt controllers + c) CFI or JEDEC memory-mapped NOR flash + d) 4xx/Axon EMAC ethernet nodes + e) Xilinx IP cores + f) USB EHCI controllers VII - Marvell Discovery mv64[345]6x System Controller chips 1) The /system-controller node @@ -1246,80 +1235,7 @@ descriptions for the SOC devices for which new nodes have been defined; this list will expand as more and more SOC-containing platforms are moved over to use the flattened-device-tree model. - a) MDIO IO device - - The MDIO is a bus to which the PHY devices are connected. For each - device that exists on this bus, a child node should be created. See - the definition of the PHY node below for an example of how to define - a PHY. - - Required properties: - - reg : Offset and length of the register set for the device - - compatible : Should define the compatible device type for the - mdio. Currently, this is most likely to be "fsl,gianfar-mdio" - - Example: - - mdio@24520 { - reg = <24520 20>; - compatible = "fsl,gianfar-mdio"; - - ethernet-phy@0 { - ...... - }; - }; - - - b) Gianfar-compatible ethernet nodes - - Required properties: - - - device_type : Should be "network" - - model : Model of the device. Can be "TSEC", "eTSEC", or "FEC" - - compatible : Should be "gianfar" - - reg : Offset and length of the register set for the device - - mac-address : List of bytes representing the ethernet address of - this controller - - interrupts : <a b> where a is the interrupt number and b is a - field that represents an encoding of the sense and level - information for the interrupt. This should be encoded based on - the information in section 2) depending on the type of interrupt - controller you have. - - interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. - - phy-handle : The phandle for the PHY connected to this ethernet - controller. - - fixed-link : <a b c d e> where a is emulated phy id - choose any, - but unique to the all specified fixed-links, b is duplex - 0 half, - 1 full, c is link speed - d#10/d#100/d#1000, d is pause - 0 no - pause, 1 pause, e is asym_pause - 0 no asym_pause, 1 asym_pause. - - Recommended properties: - - - phy-connection-type : a string naming the controller/PHY interface type, - i.e., "mii" (default), "rmii", "gmii", "rgmii", "rgmii-id", "sgmii", - "tbi", or "rtbi". This property is only really needed if the connection - is of type "rgmii-id", as all other connection types are detected by - hardware. - - - Example: - - ethernet@24000 { - #size-cells = <0>; - device_type = "network"; - model = "TSEC"; - compatible = "gianfar"; - reg = <24000 1000>; - mac-address = [ 00 E0 0C 00 73 00 ]; - interrupts = <d 3 e 3 12 3>; - interrupt-parent = <40000>; - phy-handle = <2452000> - }; - - - - c) PHY nodes + a) PHY nodes Required properties: @@ -1347,7 +1263,7 @@ platforms are moved over to use the flattened-device-tree model. }; - d) Interrupt controllers + b) Interrupt controllers Some SOC devices contain interrupt controllers that are different from the standard Open PIC specification. The SOC device nodes for @@ -1360,491 +1276,14 @@ platforms are moved over to use the flattened-device-tree model. pic@40000 { linux,phandle = <40000>; - clock-frequency = <0>; interrupt-controller; #address-cells = <0>; reg = <40000 40000>; - built-in; compatible = "chrp,open-pic"; device_type = "open-pic"; - big-endian; - }; - - - e) I2C - - Required properties : - - - device_type : Should be "i2c" - - reg : Offset and length of the register set for the device - - Recommended properties : - - - compatible : Should be "fsl-i2c" for parts compatible with - Freescale I2C specifications. - - interrupts : <a b> where a is the interrupt number and b is a - field that represents an encoding of the sense and level - information for the interrupt. This should be encoded based on - the information in section 2) depending on the type of interrupt - controller you have. - - interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. - - dfsrr : boolean; if defined, indicates that this I2C device has - a digital filter sampling rate register - - fsl5200-clocking : boolean; if defined, indicated that this device - uses the FSL 5200 clocking mechanism. - - Example : - - i2c@3000 { - interrupt-parent = <40000>; - interrupts = <1b 3>; - reg = <3000 18>; - device_type = "i2c"; - compatible = "fsl-i2c"; - dfsrr; - }; - - - f) Freescale SOC USB controllers - - The device node for a USB controller that is part of a Freescale - SOC is as described in the document "Open Firmware Recommended - Practice : Universal Serial Bus" with the following modifications - and additions : - - Required properties : - - compatible : Should be "fsl-usb2-mph" for multi port host USB - controllers, or "fsl-usb2-dr" for dual role USB controllers - - phy_type : For multi port host USB controllers, should be one of - "ulpi", or "serial". For dual role USB controllers, should be - one of "ulpi", "utmi", "utmi_wide", or "serial". - - reg : Offset and length of the register set for the device - - port0 : boolean; if defined, indicates port0 is connected for - fsl-usb2-mph compatible controllers. Either this property or - "port1" (or both) must be defined for "fsl-usb2-mph" compatible - controllers. - - port1 : boolean; if defined, indicates port1 is connected for - fsl-usb2-mph compatible controllers. Either this property or - "port0" (or both) must be defined for "fsl-usb2-mph" compatible - controllers. - - dr_mode : indicates the working mode for "fsl-usb2-dr" compatible - controllers. Can be "host", "peripheral", or "otg". Default to - "host" if not defined for backward compatibility. - - Recommended properties : - - interrupts : <a b> where a is the interrupt number and b is a - field that represents an encoding of the sense and level - information for the interrupt. This should be encoded based on - the information in section 2) depending on the type of interrupt - controller you have. - - interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. - - Example multi port host USB controller device node : - usb@22000 { - compatible = "fsl-usb2-mph"; - reg = <22000 1000>; - #address-cells = <1>; - #size-cells = <0>; - interrupt-parent = <700>; - interrupts = <27 1>; - phy_type = "ulpi"; - port0; - port1; - }; - - Example dual role USB controller device node : - usb@23000 { - compatible = "fsl-usb2-dr"; - reg = <23000 1000>; - #address-cells = <1>; - #size-cells = <0>; - interrupt-parent = <700>; - interrupts = <26 1>; - dr_mode = "otg"; - phy = "ulpi"; - }; - - - g) Freescale SOC SEC Security Engines - - Required properties: - - - device_type : Should be "crypto" - - model : Model of the device. Should be "SEC1" or "SEC2" - - compatible : Should be "talitos" - - reg : Offset and length of the register set for the device - - interrupts : <a b> where a is the interrupt number and b is a - field that represents an encoding of the sense and level - information for the interrupt. This should be encoded based on - the information in section 2) depending on the type of interrupt - controller you have. - - interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. - - num-channels : An integer representing the number of channels - available. - - channel-fifo-len : An integer representing the number of - descriptor pointers each channel fetch fifo can hold. - - exec-units-mask : The bitmask representing what execution units - (EUs) are available. It's a single 32-bit cell. EU information - should be encoded following the SEC's Descriptor Header Dword - EU_SEL0 field documentation, i.e. as follows: - - bit 0 = reserved - should be 0 - bit 1 = set if SEC has the ARC4 EU (AFEU) - bit 2 = set if SEC has the DES/3DES EU (DEU) - bit 3 = set if SEC has the message digest EU (MDEU) - bit 4 = set if SEC has the random number generator EU (RNG) - bit 5 = set if SEC has the public key EU (PKEU) - bit 6 = set if SEC has the AES EU (AESU) - bit 7 = set if SEC has the Kasumi EU (KEU) - - bits 8 through 31 are reserved for future SEC EUs. - - - descriptor-types-mask : The bitmask representing what descriptors - are available. It's a single 32-bit cell. Descriptor type - information should be encoded following the SEC's Descriptor - Header Dword DESC_TYPE field documentation, i.e. as follows: - - bit 0 = set if SEC supports the aesu_ctr_nonsnoop desc. type - bit 1 = set if SEC supports the ipsec_esp descriptor type - bit 2 = set if SEC supports the common_nonsnoop desc. type - bit 3 = set if SEC supports the 802.11i AES ccmp desc. type - bit 4 = set if SEC supports the hmac_snoop_no_afeu desc. type - bit 5 = set if SEC supports the srtp descriptor type - bit 6 = set if SEC supports the non_hmac_snoop_no_afeu desc.type - bit 7 = set if SEC supports the pkeu_assemble descriptor type - bit 8 = set if SEC supports the aesu_key_expand_output desc.type - bit 9 = set if SEC supports the pkeu_ptmul descriptor type - bit 10 = set if SEC supports the common_nonsnoop_afeu desc. type - bit 11 = set if SEC supports the pkeu_ptadd_dbl descriptor type - - ..and so on and so forth. - - Example: - - /* MPC8548E */ - crypto@30000 { - device_type = "crypto"; - model = "SEC2"; - compatible = "talitos"; - reg = <30000 10000>; - interrupts = <1d 3>; - interrupt-parent = <40000>; - num-channels = <4>; - channel-fifo-len = <18>; - exec-units-mask = <000000fe>; - descriptor-types-mask = <012b0ebf>; - }; - - h) Board Control and Status (BCSR) - - Required properties: - - - device_type : Should be "board-control" - - reg : Offset and length of the register set for the device - - Example: - - bcsr@f8000000 { - device_type = "board-control"; - reg = <f8000000 8000>; - }; - - i) Freescale QUICC Engine module (QE) - This represents qe module that is installed on PowerQUICC II Pro. - - NOTE: This is an interim binding; it should be updated to fit - in with the CPM binding later in this document. - - Basically, it is a bus of devices, that could act more or less - as a complete entity (UCC, USB etc ). All of them should be siblings on - the "root" qe node, using the common properties from there. - The description below applies to the qe of MPC8360 and - more nodes and properties would be extended in the future. - - i) Root QE device - - Required properties: - - compatible : should be "fsl,qe"; - - model : precise model of the QE, Can be "QE", "CPM", or "CPM2" - - reg : offset and length of the device registers. - - bus-frequency : the clock frequency for QUICC Engine. - - Recommended properties - - brg-frequency : the internal clock source frequency for baud-rate - generators in Hz. - - Example: - qe@e0100000 { - #address-cells = <1>; - #size-cells = <1>; - #interrupt-cells = <2>; - compatible = "fsl,qe"; - ranges = <0 e0100000 00100000>; - reg = <e0100000 480>; - brg-frequency = <0>; - bus-frequency = <179A7B00>; - } - - - ii) SPI (Serial Peripheral Interface) - - Required properties: - - cell-index : SPI controller index. - - compatible : should be "fsl,spi". - - mode : the SPI operation mode, it can be "cpu" or "cpu-qe". - - reg : Offset and length of the register set for the device - - interrupts : <a b> where a is the interrupt number and b is a - field that represents an encoding of the sense and level - information for the interrupt. This should be encoded based on - the information in section 2) depending on the type of interrupt - controller you have. - - interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. - - Example: - spi@4c0 { - cell-index = <0>; - compatible = "fsl,spi"; - reg = <4c0 40>; - interrupts = <82 0>; - interrupt-parent = <700>; - mode = "cpu"; - }; - - - iii) USB (Universal Serial Bus Controller) - - Required properties: - - compatible : could be "qe_udc" or "fhci-hcd". - - mode : the could be "host" or "slave". - - reg : Offset and length of the register set for the device - - interrupts : <a b> where a is the interrupt number and b is a - field that represents an encoding of the sense and level - information for the interrupt. This should be encoded based on - the information in section 2) depending on the type of interrupt - controller you have. - - interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. - - Example(slave): - usb@6c0 { - compatible = "qe_udc"; - reg = <6c0 40>; - interrupts = <8b 0>; - interrupt-parent = <700>; - mode = "slave"; }; - - iv) UCC (Unified Communications Controllers) - - Required properties: - - device_type : should be "network", "hldc", "uart", "transparent" - "bisync", "atm", or "serial". - - compatible : could be "ucc_geth" or "fsl_atm" and so on. - - cell-index : the ucc number(1-8), corresponding to UCCx in UM. - - reg : Offset and length of the register set for the device - - interrupts : <a b> where a is the interrupt number and b is a - field that represents an encoding of the sense and level - information for the interrupt. This should be encoded based on - the information in section 2) depending on the type of interrupt - controller you have. - - interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. - - pio-handle : The phandle for the Parallel I/O port configuration. - - port-number : for UART drivers, the port number to use, between 0 and 3. - This usually corresponds to the /dev/ttyQE device, e.g. <0> = /dev/ttyQE0. - The port number is added to the minor number of the device. Unlike the - CPM UART driver, the port-number is required for the QE UART driver. - - soft-uart : for UART drivers, if specified this means the QE UART device - driver should use "Soft-UART" mode, which is needed on some SOCs that have - broken UART hardware. Soft-UART is provided via a microcode upload. - - rx-clock-name: the UCC receive clock source - "none": clock source is disabled - "brg1" through "brg16": clock source is BRG1-BRG16, respectively - "clk1" through "clk24": clock source is CLK1-CLK24, respectively - - tx-clock-name: the UCC transmit clock source - "none": clock source is disabled - "brg1" through "brg16": clock source is BRG1-BRG16, respectively - "clk1" through "clk24": clock source is CLK1-CLK24, respectively - The following two properties are deprecated. rx-clock has been replaced - with rx-clock-name, and tx-clock has been replaced with tx-clock-name. - Drivers that currently use the deprecated properties should continue to - do so, in order to support older device trees, but they should be updated - to check for the new properties first. - - rx-clock : represents the UCC receive clock source. - 0x00 : clock source is disabled; - 0x1~0x10 : clock source is BRG1~BRG16 respectively; - 0x11~0x28: clock source is QE_CLK1~QE_CLK24 respectively. - - tx-clock: represents the UCC transmit clock source; - 0x00 : clock source is disabled; - 0x1~0x10 : clock source is BRG1~BRG16 respectively; - 0x11~0x28: clock source is QE_CLK1~QE_CLK24 respectively. - - Required properties for network device_type: - - mac-address : list of bytes representing the ethernet address. - - phy-handle : The phandle for the PHY connected to this controller. - - Recommended properties: - - phy-connection-type : a string naming the controller/PHY interface type, - i.e., "mii" (default), "rmii", "gmii", "rgmii", "rgmii-id" (Internal - Delay), "rgmii-txid" (delay on TX only), "rgmii-rxid" (delay on RX only), - "tbi", or "rtbi". - - Example: - ucc@2000 { - device_type = "network"; - compatible = "ucc_geth"; - cell-index = <1>; - reg = <2000 200>; - interrupts = <a0 0>; - interrupt-parent = <700>; - mac-address = [ 00 04 9f 00 23 23 ]; - rx-clock = "none"; - tx-clock = "clk9"; - phy-handle = <212000>; - phy-connection-type = "gmii"; - pio-handle = <140001>; - }; - - - v) Parallel I/O Ports - - This node configures Parallel I/O ports for CPUs with QE support. - The node should reside in the "soc" node of the tree. For each - device that using parallel I/O ports, a child node should be created. - See the definition of the Pin configuration nodes below for more - information. - - Required properties: - - device_type : should be "par_io". - - reg : offset to the register set and its length. - - num-ports : number of Parallel I/O ports - - Example: - par_io@1400 { - reg = <1400 100>; - #address-cells = <1>; - #size-cells = <0>; - device_type = "par_io"; - num-ports = <7>; - ucc_pin@01 { - ...... - }; - - - vi) Pin configuration nodes - - Required properties: - - linux,phandle : phandle of this node; likely referenced by a QE - device. - - pio-map : array of pin configurations. Each pin is defined by 6 - integers. The six numbers are respectively: port, pin, dir, - open_drain, assignment, has_irq. - - port : port number of the pin; 0-6 represent port A-G in UM. - - pin : pin number in the port. - - dir : direction of the pin, should encode as follows: - - 0 = The pin is disabled - 1 = The pin is an output - 2 = The pin is an input - 3 = The pin is I/O - - - open_drain : indicates the pin is normal or wired-OR: - - 0 = The pin is actively driven as an output - 1 = The pin is an open-drain driver. As an output, the pin is - driven active-low, otherwise it is three-stated. - - - assignment : function number of the pin according to the Pin Assignment - tables in User Manual. Each pin can have up to 4 possible functions in - QE and two options for CPM. - - has_irq : indicates if the pin is used as source of external - interrupts. - - Example: - ucc_pin@01 { - linux,phandle = <140001>; - pio-map = < - /* port pin dir open_drain assignment has_irq */ - 0 3 1 0 1 0 /* TxD0 */ - 0 4 1 0 1 0 /* TxD1 */ - 0 5 1 0 1 0 /* TxD2 */ - 0 6 1 0 1 0 /* TxD3 */ - 1 6 1 0 3 0 /* TxD4 */ - 1 7 1 0 1 0 /* TxD5 */ - 1 9 1 0 2 0 /* TxD6 */ - 1 a 1 0 2 0 /* TxD7 */ - 0 9 2 0 1 0 /* RxD0 */ - 0 a 2 0 1 0 /* RxD1 */ - 0 b 2 0 1 0 /* RxD2 */ - 0 c 2 0 1 0 /* RxD3 */ - 0 d 2 0 1 0 /* RxD4 */ - 1 1 2 0 2 0 /* RxD5 */ - 1 0 2 0 2 0 /* RxD6 */ - 1 4 2 0 2 0 /* RxD7 */ - 0 7 1 0 1 0 /* TX_EN */ - 0 8 1 0 1 0 /* TX_ER */ - 0 f 2 0 1 0 /* RX_DV */ - 0 10 2 0 1 0 /* RX_ER */ - 0 0 2 0 1 0 /* RX_CLK */ - 2 9 1 0 3 0 /* GTX_CLK - CLK10 */ - 2 8 2 0 1 0>; /* GTX125 - CLK9 */ - }; - - vii) Multi-User RAM (MURAM) - - Required properties: - - compatible : should be "fsl,qe-muram", "fsl,cpm-muram". - - mode : the could be "host" or "slave". - - ranges : Should be defined as specified in 1) to describe the - translation of MURAM addresses. - - data-only : sub-node which defines the address area under MURAM - bus that can be allocated as data/parameter - - Example: - - muram@10000 { - compatible = "fsl,qe-muram", "fsl,cpm-muram"; - ranges = <0 00010000 0000c000>; - - data-only@0{ - compatible = "fsl,qe-muram-data", - "fsl,cpm-muram-data"; - reg = <0 c000>; - }; - }; - - viii) Uploaded QE firmware - - If a new firwmare has been uploaded to the QE (usually by the - boot loader), then a 'firmware' child node should be added to the QE - node. This node provides information on the uploaded firmware that - device drivers may need. - - Required properties: - - id: The string name of the firmware. This is taken from the 'id' - member of the qe_firmware structure of the uploaded firmware. - Device drivers can search this string to determine if the - firmware they want is already present. - - extended-modes: The Extended Modes bitfield, taken from the - firmware binary. It is a 64-bit number represented - as an array of two 32-bit numbers. - - virtual-traps: The virtual traps, taken from the firmware binary. - It is an array of 8 32-bit numbers. - - Example: - - firmware { - id = "Soft-UART"; - extended-modes = <0 0>; - virtual-traps = <0 0 0 0 0 0 0 0>; - } - - j) CFI or JEDEC memory-mapped NOR flash + c) CFI or JEDEC memory-mapped NOR flash Flash chips (Memory Technology Devices) are often used for solid state file systems on embedded devices. @@ -1908,268 +1347,7 @@ platforms are moved over to use the flattened-device-tree model. }; }; - k) Global Utilities Block - - The global utilities block controls power management, I/O device - enabling, power-on-reset configuration monitoring, general-purpose - I/O signal configuration, alternate function selection for multiplexed - signals, and clock control. - - Required properties: - - - compatible : Should define the compatible device type for - global-utilities. - - reg : Offset and length of the register set for the device. - - Recommended properties: - - - fsl,has-rstcr : Indicates that the global utilities register set - contains a functioning "reset control register" (i.e. the board - is wired to reset upon setting the HRESET_REQ bit in this register). - - Example: - - global-utilities@e0000 { /* global utilities block */ - compatible = "fsl,mpc8548-guts"; - reg = <e0000 1000>; - fsl,has-rstcr; - }; - - l) Freescale Communications Processor Module - - NOTE: This is an interim binding, and will likely change slightly, - as more devices are supported. The QE bindings especially are - incomplete. - - i) Root CPM node - - Properties: - - compatible : "fsl,cpm1", "fsl,cpm2", or "fsl,qe". - - reg : A 48-byte region beginning with CPCR. - - Example: - cpm@119c0 { - #address-cells = <1>; - #size-cells = <1>; - #interrupt-cells = <2>; - compatible = "fsl,mpc8272-cpm", "fsl,cpm2"; - reg = <119c0 30>; - } - - ii) Properties common to mulitple CPM/QE devices - - - fsl,cpm-command : This value is ORed with the opcode and command flag - to specify the device on which a CPM command operates. - - - fsl,cpm-brg : Indicates which baud rate generator the device - is associated with. If absent, an unused BRG - should be dynamically allocated. If zero, the - device uses an external clock rather than a BRG. - - - reg : Unless otherwise specified, the first resource represents the - scc/fcc/ucc registers, and the second represents the device's - parameter RAM region (if it has one). - - iii) Serial - - Currently defined compatibles: - - fsl,cpm1-smc-uart - - fsl,cpm2-smc-uart - - fsl,cpm1-scc-uart - - fsl,cpm2-scc-uart - - fsl,qe-uart - - Example: - - serial@11a00 { - device_type = "serial"; - compatible = "fsl,mpc8272-scc-uart", - "fsl,cpm2-scc-uart"; - reg = <11a00 20 8000 100>; - interrupts = <28 8>; - interrupt-parent = <&PIC>; - fsl,cpm-brg = <1>; - fsl,cpm-command = <00800000>; - }; - - iii) Network - - Currently defined compatibles: - - fsl,cpm1-scc-enet - - fsl,cpm2-scc-enet - - fsl,cpm1-fec-enet - - fsl,cpm2-fcc-enet (third resource is GFEMR) - - fsl,qe-enet - - Example: - - ethernet@11300 { - device_type = "network"; - compatible = "fsl,mpc8272-fcc-enet", - "fsl,cpm2-fcc-enet"; - reg = <11300 20 8400 100 11390 1>; - local-mac-address = [ 00 00 00 00 00 00 ]; - interrupts = <20 8>; - interrupt-parent = <&PIC>; - phy-handle = <&PHY0>; - fsl,cpm-command = <12000300>; - }; - - iv) MDIO - - Currently defined compatibles: - fsl,pq1-fec-mdio (reg is same as first resource of FEC device) - fsl,cpm2-mdio-bitbang (reg is port C registers) - - Properties for fsl,cpm2-mdio-bitbang: - fsl,mdio-pin : pin of port C controlling mdio data - fsl,mdc-pin : pin of port C controlling mdio clock - - Example: - - mdio@10d40 { - device_type = "mdio"; - compatible = "fsl,mpc8272ads-mdio-bitbang", - "fsl,mpc8272-mdio-bitbang", - "fsl,cpm2-mdio-bitbang"; - reg = <10d40 14>; - #address-cells = <1>; - #size-cells = <0>; - fsl,mdio-pin = <12>; - fsl,mdc-pin = <13>; - }; - - v) Baud Rate Generators - - Currently defined compatibles: - fsl,cpm-brg - fsl,cpm1-brg - fsl,cpm2-brg - - Properties: - - reg : There may be an arbitrary number of reg resources; BRG - numbers are assigned to these in order. - - clock-frequency : Specifies the base frequency driving - the BRG. - - Example: - - brg@119f0 { - compatible = "fsl,mpc8272-brg", - "fsl,cpm2-brg", - "fsl,cpm-brg"; - reg = <119f0 10 115f0 10>; - clock-frequency = <d#25000000>; - }; - - vi) Interrupt Controllers - - Currently defined compatibles: - - fsl,cpm1-pic - - only one interrupt cell - - fsl,pq1-pic - - fsl,cpm2-pic - - second interrupt cell is level/sense: - - 2 is falling edge - - 8 is active low - - Example: - - interrupt-controller@10c00 { - #interrupt-cells = <2>; - interrupt-controller; - reg = <10c00 80>; - compatible = "mpc8272-pic", "fsl,cpm2-pic"; - }; - - vii) USB (Universal Serial Bus Controller) - - Properties: - - compatible : "fsl,cpm1-usb", "fsl,cpm2-usb", "fsl,qe-usb" - - Example: - usb@11bc0 { - #address-cells = <1>; - #size-cells = <0>; - compatible = "fsl,cpm2-usb"; - reg = <11b60 18 8b00 100>; - interrupts = <b 8>; - interrupt-parent = <&PIC>; - fsl,cpm-command = <2e600000>; - }; - - viii) Multi-User RAM (MURAM) - - The multi-user/dual-ported RAM is expressed as a bus under the CPM node. - - Ranges must be set up subject to the following restrictions: - - - Children's reg nodes must be offsets from the start of all muram, even - if the user-data area does not begin at zero. - - If multiple range entries are used, the difference between the parent - address and the child address must be the same in all, so that a single - mapping can cover them all while maintaining the ability to determine - CPM-side offsets with pointer subtraction. It is recommended that - multiple range entries not be used. - - A child address of zero must be translatable, even if no reg resources - contain it. - - A child "data" node must exist, compatible with "fsl,cpm-muram-data", to - indicate the portion of muram that is usable by the OS for arbitrary - purposes. The data node may have an arbitrary number of reg resources, - all of which contribute to the allocatable muram pool. - - Example, based on mpc8272: - - muram@0 { - #address-cells = <1>; - #size-cells = <1>; - ranges = <0 0 10000>; - - data@0 { - compatible = "fsl,cpm-muram-data"; - reg = <0 2000 9800 800>; - }; - }; - - m) Chipselect/Local Bus - - Properties: - - name : Should be localbus - - #address-cells : Should be either two or three. The first cell is the - chipselect number, and the remaining cells are the - offset into the chipselect. - - #size-cells : Either one or two, depending on how large each chipselect - can be. - - ranges : Each range corresponds to a single chipselect, and cover - the entire access window as configured. - - Example: - localbus@f0010100 { - compatible = "fsl,mpc8272-localbus", - "fsl,pq2-localbus"; - #address-cells = <2>; - #size-cells = <1>; - reg = <f0010100 40>; - - ranges = <0 0 fe000000 02000000 - 1 0 f4500000 00008000>; - - flash@0,0 { - compatible = "jedec-flash"; - reg = <0 0 2000000>; - bank-width = <4>; - device-width = <1>; - }; - - board-control@1,0 { - reg = <1 0 20>; - compatible = "fsl,mpc8272ads-bcsr"; - }; - }; - - - n) 4xx/Axon EMAC ethernet nodes + d) 4xx/Axon EMAC ethernet nodes The EMAC ethernet controller in IBM and AMCC 4xx chips, and also the Axon bridge. To operate this needs to interact with a ths @@ -2317,7 +1495,7 @@ platforms are moved over to use the flattened-device-tree model. available. For Axon: 0x0000012a - o) Xilinx IP cores + e) Xilinx IP cores The Xilinx EDK toolchain ships with a set of IP cores (devices) for use in Xilinx Spartan and Virtex FPGAs. The devices cover the whole range @@ -2611,206 +1789,7 @@ platforms are moved over to use the flattened-device-tree model. - reg-offset : A value of 3 is required - reg-shift : A value of 2 is required - - p) Freescale Synchronous Serial Interface - - The SSI is a serial device that communicates with audio codecs. It can - be programmed in AC97, I2S, left-justified, or right-justified modes. - - Required properties: - - compatible : compatible list, containing "fsl,ssi" - - cell-index : the SSI, <0> = SSI1, <1> = SSI2, and so on - - reg : offset and length of the register set for the device - - interrupts : <a b> where a is the interrupt number and b is a - field that represents an encoding of the sense and - level information for the interrupt. This should be - encoded based on the information in section 2) - depending on the type of interrupt controller you - have. - - interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. - - fsl,mode : the operating mode for the SSI interface - "i2s-slave" - I2S mode, SSI is clock slave - "i2s-master" - I2S mode, SSI is clock master - "lj-slave" - left-justified mode, SSI is clock slave - "lj-master" - l.j. mode, SSI is clock master - "rj-slave" - right-justified mode, SSI is clock slave - "rj-master" - r.j., SSI is clock master - "ac97-slave" - AC97 mode, SSI is clock slave - "ac97-master" - AC97 mode, SSI is clock master - - Optional properties: - - codec-handle : phandle to a 'codec' node that defines an audio - codec connected to this SSI. This node is typically - a child of an I2C or other control node. - - Child 'codec' node required properties: - - compatible : compatible list, contains the name of the codec - - Child 'codec' node optional properties: - - clock-frequency : The frequency of the input clock, which typically - comes from an on-board dedicated oscillator. - - * Freescale 83xx DMA Controller - - Freescale PowerPC 83xx have on chip general purpose DMA controllers. - - Required properties: - - - compatible : compatible list, contains 2 entries, first is - "fsl,CHIP-dma", where CHIP is the processor - (mpc8349, mpc8360, etc.) and the second is - "fsl,elo-dma" - - reg : <registers mapping for DMA general status reg> - - ranges : Should be defined as specified in 1) to describe the - DMA controller channels. - - cell-index : controller index. 0 for controller @ 0x8100 - - interrupts : <interrupt mapping for DMA IRQ> - - interrupt-parent : optional, if needed for interrupt mapping - - - - DMA channel nodes: - - compatible : compatible list, contains 2 entries, first is - "fsl,CHIP-dma-channel", where CHIP is the processor - (mpc8349, mpc8350, etc.) and the second is - "fsl,elo-dma-channel" - - reg : <registers mapping for channel> - - cell-index : dma channel index starts at 0. - - Optional properties: - - interrupts : <interrupt mapping for DMA channel IRQ> - (on 83xx this is expected to be identical to - the interrupts property of the parent node) - - interrupt-parent : optional, if needed for interrupt mapping - - Example: - dma@82a8 { - #address-cells = <1>; - #size-cells = <1>; - compatible = "fsl,mpc8349-dma", "fsl,elo-dma"; - reg = <82a8 4>; - ranges = <0 8100 1a4>; - interrupt-parent = <&ipic>; - interrupts = <47 8>; - cell-index = <0>; - dma-channel@0 { - compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; - cell-index = <0>; - reg = <0 80>; - }; - dma-channel@80 { - compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; - cell-index = <1>; - reg = <80 80>; - }; - dma-channel@100 { - compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; - cell-index = <2>; - reg = <100 80>; - }; - dma-channel@180 { - compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; - cell-index = <3>; - reg = <180 80>; - }; - }; - - * Freescale 85xx/86xx DMA Controller - - Freescale PowerPC 85xx/86xx have on chip general purpose DMA controllers. - - Required properties: - - - compatible : compatible list, contains 2 entries, first is - "fsl,CHIP-dma", where CHIP is the processor - (mpc8540, mpc8540, etc.) and the second is - "fsl,eloplus-dma" - - reg : <registers mapping for DMA general status reg> - - cell-index : controller index. 0 for controller @ 0x21000, - 1 for controller @ 0xc000 - - ranges : Should be defined as specified in 1) to describe the - DMA controller channels. - - - DMA channel nodes: - - compatible : compatible list, contains 2 entries, first is - "fsl,CHIP-dma-channel", where CHIP is the processor - (mpc8540, mpc8560, etc.) and the second is - "fsl,eloplus-dma-channel" - - cell-index : dma channel index starts at 0. - - reg : <registers mapping for channel> - - interrupts : <interrupt mapping for DMA channel IRQ> - - interrupt-parent : optional, if needed for interrupt mapping - - Example: - dma@21300 { - #address-cells = <1>; - #size-cells = <1>; - compatible = "fsl,mpc8540-dma", "fsl,eloplus-dma"; - reg = <21300 4>; - ranges = <0 21100 200>; - cell-index = <0>; - dma-channel@0 { - compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; - reg = <0 80>; - cell-index = <0>; - interrupt-parent = <&mpic>; - interrupts = <14 2>; - }; - dma-channel@80 { - compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; - reg = <80 80>; - cell-index = <1>; - interrupt-parent = <&mpic>; - interrupts = <15 2>; - }; - dma-channel@100 { - compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; - reg = <100 80>; - cell-index = <2>; - interrupt-parent = <&mpic>; - interrupts = <16 2>; - }; - dma-channel@180 { - compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; - reg = <180 80>; - cell-index = <3>; - interrupt-parent = <&mpic>; - interrupts = <17 2>; - }; - }; - - * Freescale 8xxx/3.0 Gb/s SATA nodes - - SATA nodes are defined to describe on-chip Serial ATA controllers. - Each SATA port should have its own node. - - Required properties: - - compatible : compatible list, contains 2 entries, first is - "fsl,CHIP-sata", where CHIP is the processor - (mpc8315, mpc8379, etc.) and the second is - "fsl,pq-sata" - - interrupts : <interrupt mapping for SATA IRQ> - - cell-index : controller index. - 1 for controller @ 0x18000 - 2 for controller @ 0x19000 - 3 for controller @ 0x1a000 - 4 for controller @ 0x1b000 - - Optional properties: - - interrupt-parent : optional, if needed for interrupt mapping - - reg : <registers mapping> - - Example: - - sata@18000 { - compatible = "fsl,mpc8379-sata", "fsl,pq-sata"; - reg = <0x18000 0x1000>; - cell-index = <1>; - interrupts = <2c 8>; - interrupt-parent = < &ipic >; - }; - - q) USB EHCI controllers + f) USB EHCI controllers Required properties: - compatible : should be "usb-ehci". @@ -2836,40 +1815,6 @@ platforms are moved over to use the flattened-device-tree model. big-endian; }; - r) Freescale Display Interface Unit - - The Freescale DIU is a LCD controller, with proper hardware, it can also - drive DVI monitors. - - Required properties: - - compatible : should be "fsl-diu". - - reg : should contain at least address and length of the DIU register - set. - - Interrupts : one DIU interrupt should be describe here. - - Example (MPC8610HPCD) - display@2c000 { - compatible = "fsl,diu"; - reg = <0x2c000 100>; - interrupts = <72 2>; - interrupt-parent = <&mpic>; - }; - - s) Freescale on board FPGA - - This is the memory-mapped registers for on board FPGA. - - Required properities: - - compatible : should be "fsl,fpga-pixis". - - reg : should contain the address and the lenght of the FPPGA register - set. - - Example (MPC8610HPCD) - board-control@e8000000 { - compatible = "fsl,fpga-pixis"; - reg = <0xe8000000 32>; - }; - VII - Marvell Discovery mv64[345]6x System Controller chips =========================================================== @@ -3622,14 +2567,11 @@ not necessary as they are usually the same as the root node. pic@40000 { linux,phandle = <40000>; - clock-frequency = <0>; interrupt-controller; #address-cells = <0>; reg = <40000 40000>; - built-in; compatible = "chrp,open-pic"; device_type = "open-pic"; - big-endian; }; i2c@3000 { diff --git a/Documentation/powerpc/bootwrapper.txt b/Documentation/powerpc/bootwrapper.txt new file mode 100644 index 000000000000..d60fced5e1cc --- /dev/null +++ b/Documentation/powerpc/bootwrapper.txt @@ -0,0 +1,141 @@ +The PowerPC boot wrapper +------------------------ +Copyright (C) Secret Lab Technologies Ltd. + +PowerPC image targets compresses and wraps the kernel image (vmlinux) with +a boot wrapper to make it usable by the system firmware. There is no +standard PowerPC firmware interface, so the boot wrapper is designed to +be adaptable for each kind of image that needs to be built. + +The boot wrapper can be found in the arch/powerpc/boot/ directory. The +Makefile in that directory has targets for all the available image types. +The different image types are used to support all of the various firmware +interfaces found on PowerPC platforms. OpenFirmware is the most commonly +used firmware type on general purpose PowerPC systems from Apple, IBM and +others. U-Boot is typically found on embedded PowerPC hardware, but there +are a handful of other firmware implementations which are also popular. Each +firmware interface requires a different image format. + +The boot wrapper is built from the makefile in arch/powerpc/boot/Makefile and +it uses the wrapper script (arch/powerpc/boot/wrapper) to generate target +image. The details of the build system is discussed in the next section. +Currently, the following image format targets exist: + + cuImage.%: Backwards compatible uImage for older version of + U-Boot (for versions that don't understand the device + tree). This image embeds a device tree blob inside + the image. The boot wrapper, kernel and device tree + are all embedded inside the U-Boot uImage file format + with boot wrapper code that extracts data from the old + bd_info structure and loads the data into the device + tree before jumping into the kernel. + Because of the series of #ifdefs found in the + bd_info structure used in the old U-Boot interfaces, + cuImages are platform specific. Each specific + U-Boot platform has a different platform init file + which populates the embedded device tree with data + from the platform specific bd_info file. The platform + specific cuImage platform init code can be found in + arch/powerpc/boot/cuboot.*.c. Selection of the correct + cuImage init code for a specific board can be found in + the wrapper structure. + dtbImage.%: Similar to zImage, except device tree blob is embedded + inside the image instead of provided by firmware. The + output image file can be either an elf file or a flat + binary depending on the platform. + dtbImages are used on systems which do not have an + interface for passing a device tree directly. + dtbImages are similar to simpleImages except that + dtbImages have platform specific code for extracting + data from the board firmware, but simpleImages do not + talk to the firmware at all. + PlayStation 3 support uses dtbImage. So do Embedded + Planet boards using the PlanetCore firmware. Board + specific initialization code is typically found in a + file named arch/powerpc/boot/<platform>.c; but this + can be overridden by the wrapper script. + simpleImage.%: Firmware independent compressed image that does not + depend on any particular firmware interface and embeds + a device tree blob. This image is a flat binary that + can be loaded to any location in RAM and jumped to. + Firmware cannot pass any configuration data to the + kernel with this image type and it depends entirely on + the embedded device tree for all information. + The simpleImage is useful for booting systems with + an unknown firmware interface or for booting from + a debugger when no firmware is present (such as on + the Xilinx Virtex platform). The only assumption that + simpleImage makes is that RAM is correctly initialized + and that the MMU is either off or has RAM mapped to + base address 0. + simpleImage also supports inserting special platform + specific initialization code to the start of the bootup + sequence. The virtex405 platform uses this feature to + ensure that the cache is invalidated before caching + is enabled. Platform specific initialization code is + added as part of the wrapper script and is keyed on + the image target name. For example, all + simpleImage.virtex405-* targets will add the + virtex405-head.S initialization code (This also means + that the dts file for virtex405 targets should be + named (virtex405-<board>.dts). Search the wrapper + script for 'virtex405' and see the file + arch/powerpc/boot/virtex405-head.S for details. + treeImage.%; Image format for used with OpenBIOS firmware found + on some ppc4xx hardware. This image embeds a device + tree blob inside the image. + uImage: Native image format used by U-Boot. The uImage target + does not add any boot code. It just wraps a compressed + vmlinux in the uImage data structure. This image + requires a version of U-Boot that is able to pass + a device tree to the kernel at boot. If using an older + version of U-Boot, then you need to use a cuImage + instead. + zImage.%: Image format which does not embed a device tree. + Used by OpenFirmware and other firmware interfaces + which are able to supply a device tree. This image + expects firmware to provide the device tree at boot. + Typically, if you have general purpose PowerPC + hardware then you want this image format. + +Image types which embed a device tree blob (simpleImage, dtbImage, treeImage, +and cuImage) all generate the device tree blob from a file in the +arch/powerpc/boot/dts/ directory. The Makefile selects the correct device +tree source based on the name of the target. Therefore, if the kernel is +built with 'make treeImage.walnut simpleImage.virtex405-ml403', then the +build system will use arch/powerpc/boot/dts/walnut.dts to build +treeImage.walnut and arch/powerpc/boot/dts/virtex405-ml403.dts to build +the simpleImage.virtex405-ml403. + +Two special targets called 'zImage' and 'zImage.initrd' also exist. These +targets build all the default images as selected by the kernel configuration. +Default images are selected by the boot wrapper Makefile +(arch/powerpc/boot/Makefile) by adding targets to the $image-y variable. Look +at the Makefile to see which default image targets are available. + +How it is built +--------------- +arch/powerpc is designed to support multiplatform kernels, which means +that a single vmlinux image can be booted on many different target boards. +It also means that the boot wrapper must be able to wrap for many kinds of +images on a single build. The design decision was made to not use any +conditional compilation code (#ifdef, etc) in the boot wrapper source code. +All of the boot wrapper pieces are buildable at any time regardless of the +kernel configuration. Building all the wrapper bits on every kernel build +also ensures that obscure parts of the wrapper are at the very least compile +tested in a large variety of environments. + +The wrapper is adapted for different image types at link time by linking in +just the wrapper bits that are appropriate for the image type. The 'wrapper +script' (found in arch/powerpc/boot/wrapper) is called by the Makefile and +is responsible for selecting the correct wrapper bits for the image type. +The arguments are well documented in the script's comment block, so they +are not repeated here. However, it is worth mentioning that the script +uses the -p (platform) argument as the main method of deciding which wrapper +bits to compile in. Look for the large 'case "$platform" in' block in the +middle of the script. This is also the place where platform specific fixups +can be selected by changing the link order. + +In particular, care should be taken when working with cuImages. cuImage +wrapper bits are very board specific and care should be taken to make sure +the target you are trying to build is supported by the wrapper bits. diff --git a/Documentation/powerpc/dts-bindings/fsl/board.txt b/Documentation/powerpc/dts-bindings/fsl/board.txt new file mode 100644 index 000000000000..74ae6f1cd2d6 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/board.txt @@ -0,0 +1,29 @@ +* Board Control and Status (BCSR) + +Required properties: + + - device_type : Should be "board-control" + - reg : Offset and length of the register set for the device + +Example: + + bcsr@f8000000 { + device_type = "board-control"; + reg = <f8000000 8000>; + }; + +* Freescale on board FPGA + +This is the memory-mapped registers for on board FPGA. + +Required properities: +- compatible : should be "fsl,fpga-pixis". +- reg : should contain the address and the lenght of the FPPGA register + set. + +Example (MPC8610HPCD): + + board-control@e8000000 { + compatible = "fsl,fpga-pixis"; + reg = <0xe8000000 32>; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm.txt new file mode 100644 index 000000000000..088fc471e03a --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm.txt @@ -0,0 +1,67 @@ +* Freescale Communications Processor Module + +NOTE: This is an interim binding, and will likely change slightly, +as more devices are supported. The QE bindings especially are +incomplete. + +* Root CPM node + +Properties: +- compatible : "fsl,cpm1", "fsl,cpm2", or "fsl,qe". +- reg : A 48-byte region beginning with CPCR. + +Example: + cpm@119c0 { + #address-cells = <1>; + #size-cells = <1>; + #interrupt-cells = <2>; + compatible = "fsl,mpc8272-cpm", "fsl,cpm2"; + reg = <119c0 30>; + } + +* Properties common to mulitple CPM/QE devices + +- fsl,cpm-command : This value is ORed with the opcode and command flag + to specify the device on which a CPM command operates. + +- fsl,cpm-brg : Indicates which baud rate generator the device + is associated with. If absent, an unused BRG + should be dynamically allocated. If zero, the + device uses an external clock rather than a BRG. + +- reg : Unless otherwise specified, the first resource represents the + scc/fcc/ucc registers, and the second represents the device's + parameter RAM region (if it has one). + +* Multi-User RAM (MURAM) + +The multi-user/dual-ported RAM is expressed as a bus under the CPM node. + +Ranges must be set up subject to the following restrictions: + +- Children's reg nodes must be offsets from the start of all muram, even + if the user-data area does not begin at zero. +- If multiple range entries are used, the difference between the parent + address and the child address must be the same in all, so that a single + mapping can cover them all while maintaining the ability to determine + CPM-side offsets with pointer subtraction. It is recommended that + multiple range entries not be used. +- A child address of zero must be translatable, even if no reg resources + contain it. + +A child "data" node must exist, compatible with "fsl,cpm-muram-data", to +indicate the portion of muram that is usable by the OS for arbitrary +purposes. The data node may have an arbitrary number of reg resources, +all of which contribute to the allocatable muram pool. + +Example, based on mpc8272: + muram@0 { + #address-cells = <1>; + #size-cells = <1>; + ranges = <0 0 10000>; + + data@0 { + compatible = "fsl,cpm-muram-data"; + reg = <0 2000 9800 800>; + }; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/brg.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/brg.txt new file mode 100644 index 000000000000..4c7d45eaf025 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/brg.txt @@ -0,0 +1,21 @@ +* Baud Rate Generators + +Currently defined compatibles: +fsl,cpm-brg +fsl,cpm1-brg +fsl,cpm2-brg + +Properties: +- reg : There may be an arbitrary number of reg resources; BRG + numbers are assigned to these in order. +- clock-frequency : Specifies the base frequency driving + the BRG. + +Example: + brg@119f0 { + compatible = "fsl,mpc8272-brg", + "fsl,cpm2-brg", + "fsl,cpm-brg"; + reg = <119f0 10 115f0 10>; + clock-frequency = <d#25000000>; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/i2c.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/i2c.txt new file mode 100644 index 000000000000..87bc6048667e --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/i2c.txt @@ -0,0 +1,41 @@ +* I2C + +The I2C controller is expressed as a bus under the CPM node. + +Properties: +- compatible : "fsl,cpm1-i2c", "fsl,cpm2-i2c" +- reg : On CPM2 devices, the second resource doesn't specify the I2C + Parameter RAM itself, but the I2C_BASE field of the CPM2 Parameter RAM + (typically 0x8afc 0x2). +- #address-cells : Should be one. The cell is the i2c device address with + the r/w bit set to zero. +- #size-cells : Should be zero. +- clock-frequency : Can be used to set the i2c clock frequency. If + unspecified, a default frequency of 60kHz is being used. +The following two properties are deprecated. They are only used by legacy +i2c drivers to find the bus to probe: +- linux,i2c-index : Can be used to hard code an i2c bus number. By default, + the bus number is dynamically assigned by the i2c core. +- linux,i2c-class : Can be used to override the i2c class. The class is used + by legacy i2c device drivers to find a bus in a specific context like + system management, video or sound. By default, I2C_CLASS_HWMON (1) is + being used. The definition of the classes can be found in + include/i2c/i2c.h + +Example, based on mpc823: + + i2c@860 { + compatible = "fsl,mpc823-i2c", + "fsl,cpm1-i2c"; + reg = <0x860 0x20 0x3c80 0x30>; + interrupts = <16>; + interrupt-parent = <&CPM_PIC>; + fsl,cpm-command = <0x10>; + #address-cells = <1>; + #size-cells = <0>; + + rtc@68 { + compatible = "dallas,ds1307"; + reg = <0x68>; + }; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/pic.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/pic.txt new file mode 100644 index 000000000000..8e3ee1681618 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/pic.txt @@ -0,0 +1,18 @@ +* Interrupt Controllers + +Currently defined compatibles: +- fsl,cpm1-pic + - only one interrupt cell +- fsl,pq1-pic +- fsl,cpm2-pic + - second interrupt cell is level/sense: + - 2 is falling edge + - 8 is active low + +Example: + interrupt-controller@10c00 { + #interrupt-cells = <2>; + interrupt-controller; + reg = <10c00 80>; + compatible = "mpc8272-pic", "fsl,cpm2-pic"; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/usb.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/usb.txt new file mode 100644 index 000000000000..74bfda4bb824 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/usb.txt @@ -0,0 +1,15 @@ +* USB (Universal Serial Bus Controller) + +Properties: +- compatible : "fsl,cpm1-usb", "fsl,cpm2-usb", "fsl,qe-usb" + +Example: + usb@11bc0 { + #address-cells = <1>; + #size-cells = <0>; + compatible = "fsl,cpm2-usb"; + reg = <11b60 18 8b00 100>; + interrupts = <b 8>; + interrupt-parent = <&PIC>; + fsl,cpm-command = <2e600000>; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/network.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/network.txt new file mode 100644 index 000000000000..0e4269446580 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/network.txt @@ -0,0 +1,45 @@ +* Network + +Currently defined compatibles: +- fsl,cpm1-scc-enet +- fsl,cpm2-scc-enet +- fsl,cpm1-fec-enet +- fsl,cpm2-fcc-enet (third resource is GFEMR) +- fsl,qe-enet + +Example: + + ethernet@11300 { + device_type = "network"; + compatible = "fsl,mpc8272-fcc-enet", + "fsl,cpm2-fcc-enet"; + reg = <11300 20 8400 100 11390 1>; + local-mac-address = [ 00 00 00 00 00 00 ]; + interrupts = <20 8>; + interrupt-parent = <&PIC>; + phy-handle = <&PHY0>; + fsl,cpm-command = <12000300>; + }; + +* MDIO + +Currently defined compatibles: +fsl,pq1-fec-mdio (reg is same as first resource of FEC device) +fsl,cpm2-mdio-bitbang (reg is port C registers) + +Properties for fsl,cpm2-mdio-bitbang: +fsl,mdio-pin : pin of port C controlling mdio data +fsl,mdc-pin : pin of port C controlling mdio clock + +Example: + mdio@10d40 { + device_type = "mdio"; + compatible = "fsl,mpc8272ads-mdio-bitbang", + "fsl,mpc8272-mdio-bitbang", + "fsl,cpm2-mdio-bitbang"; + reg = <10d40 14>; + #address-cells = <1>; + #size-cells = <0>; + fsl,mdio-pin = <12>; + fsl,mdc-pin = <13>; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe.txt new file mode 100644 index 000000000000..78790d58dc2c --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe.txt @@ -0,0 +1,58 @@ +* Freescale QUICC Engine module (QE) +This represents qe module that is installed on PowerQUICC II Pro. + +NOTE: This is an interim binding; it should be updated to fit +in with the CPM binding later in this document. + +Basically, it is a bus of devices, that could act more or less +as a complete entity (UCC, USB etc ). All of them should be siblings on +the "root" qe node, using the common properties from there. +The description below applies to the qe of MPC8360 and +more nodes and properties would be extended in the future. + +i) Root QE device + +Required properties: +- compatible : should be "fsl,qe"; +- model : precise model of the QE, Can be "QE", "CPM", or "CPM2" +- reg : offset and length of the device registers. +- bus-frequency : the clock frequency for QUICC Engine. + +Recommended properties +- brg-frequency : the internal clock source frequency for baud-rate + generators in Hz. + +Example: + qe@e0100000 { + #address-cells = <1>; + #size-cells = <1>; + #interrupt-cells = <2>; + compatible = "fsl,qe"; + ranges = <0 e0100000 00100000>; + reg = <e0100000 480>; + brg-frequency = <0>; + bus-frequency = <179A7B00>; + } + +* Multi-User RAM (MURAM) + +Required properties: +- compatible : should be "fsl,qe-muram", "fsl,cpm-muram". +- mode : the could be "host" or "slave". +- ranges : Should be defined as specified in 1) to describe the + translation of MURAM addresses. +- data-only : sub-node which defines the address area under MURAM + bus that can be allocated as data/parameter + +Example: + + muram@10000 { + compatible = "fsl,qe-muram", "fsl,cpm-muram"; + ranges = <0 00010000 0000c000>; + + data-only@0{ + compatible = "fsl,qe-muram-data", + "fsl,cpm-muram-data"; + reg = <0 c000>; + }; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/firmware.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/firmware.txt new file mode 100644 index 000000000000..6c238f59b2a9 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/firmware.txt @@ -0,0 +1,24 @@ +* Uploaded QE firmware + + If a new firwmare has been uploaded to the QE (usually by the + boot loader), then a 'firmware' child node should be added to the QE + node. This node provides information on the uploaded firmware that + device drivers may need. + + Required properties: + - id: The string name of the firmware. This is taken from the 'id' + member of the qe_firmware structure of the uploaded firmware. + Device drivers can search this string to determine if the + firmware they want is already present. + - extended-modes: The Extended Modes bitfield, taken from the + firmware binary. It is a 64-bit number represented + as an array of two 32-bit numbers. + - virtual-traps: The virtual traps, taken from the firmware binary. + It is an array of 8 32-bit numbers. + +Example: + firmware { + id = "Soft-UART"; + extended-modes = <0 0>; + virtual-traps = <0 0 0 0 0 0 0 0>; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/par_io.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/par_io.txt new file mode 100644 index 000000000000..60984260207b --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/par_io.txt @@ -0,0 +1,51 @@ +* Parallel I/O Ports + +This node configures Parallel I/O ports for CPUs with QE support. +The node should reside in the "soc" node of the tree. For each +device that using parallel I/O ports, a child node should be created. +See the definition of the Pin configuration nodes below for more +information. + +Required properties: +- device_type : should be "par_io". +- reg : offset to the register set and its length. +- num-ports : number of Parallel I/O ports + +Example: +par_io@1400 { + reg = <1400 100>; + #address-cells = <1>; + #size-cells = <0>; + device_type = "par_io"; + num-ports = <7>; + ucc_pin@01 { + ...... + }; + +Note that "par_io" nodes are obsolete, and should not be used for +the new device trees. Instead, each Par I/O bank should be represented +via its own gpio-controller node: + +Required properties: +- #gpio-cells : should be "2". +- compatible : should be "fsl,<chip>-qe-pario-bank", + "fsl,mpc8323-qe-pario-bank". +- reg : offset to the register set and its length. +- gpio-controller : node to identify gpio controllers. + +Example: + qe_pio_a: gpio-controller@1400 { + #gpio-cells = <2>; + compatible = "fsl,mpc8360-qe-pario-bank", + "fsl,mpc8323-qe-pario-bank"; + reg = <0x1400 0x18>; + gpio-controller; + }; + + qe_pio_e: gpio-controller@1460 { + #gpio-cells = <2>; + compatible = "fsl,mpc8360-qe-pario-bank", + "fsl,mpc8323-qe-pario-bank"; + reg = <0x1460 0x18>; + gpio-controller; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/pincfg.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/pincfg.txt new file mode 100644 index 000000000000..c5b43061db3a --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/pincfg.txt @@ -0,0 +1,60 @@ +* Pin configuration nodes + +Required properties: +- linux,phandle : phandle of this node; likely referenced by a QE + device. +- pio-map : array of pin configurations. Each pin is defined by 6 + integers. The six numbers are respectively: port, pin, dir, + open_drain, assignment, has_irq. + - port : port number of the pin; 0-6 represent port A-G in UM. + - pin : pin number in the port. + - dir : direction of the pin, should encode as follows: + + 0 = The pin is disabled + 1 = The pin is an output + 2 = The pin is an input + 3 = The pin is I/O + + - open_drain : indicates the pin is normal or wired-OR: + + 0 = The pin is actively driven as an output + 1 = The pin is an open-drain driver. As an output, the pin is + driven active-low, otherwise it is three-stated. + + - assignment : function number of the pin according to the Pin Assignment + tables in User Manual. Each pin can have up to 4 possible functions in + QE and two options for CPM. + - has_irq : indicates if the pin is used as source of external + interrupts. + +Example: + ucc_pin@01 { + linux,phandle = <140001>; + pio-map = < + /* port pin dir open_drain assignment has_irq */ + 0 3 1 0 1 0 /* TxD0 */ + 0 4 1 0 1 0 /* TxD1 */ + 0 5 1 0 1 0 /* TxD2 */ + 0 6 1 0 1 0 /* TxD3 */ + 1 6 1 0 3 0 /* TxD4 */ + 1 7 1 0 1 0 /* TxD5 */ + 1 9 1 0 2 0 /* TxD6 */ + 1 a 1 0 2 0 /* TxD7 */ + 0 9 2 0 1 0 /* RxD0 */ + 0 a 2 0 1 0 /* RxD1 */ + 0 b 2 0 1 0 /* RxD2 */ + 0 c 2 0 1 0 /* RxD3 */ + 0 d 2 0 1 0 /* RxD4 */ + 1 1 2 0 2 0 /* RxD5 */ + 1 0 2 0 2 0 /* RxD6 */ + 1 4 2 0 2 0 /* RxD7 */ + 0 7 1 0 1 0 /* TX_EN */ + 0 8 1 0 1 0 /* TX_ER */ + 0 f 2 0 1 0 /* RX_DV */ + 0 10 2 0 1 0 /* RX_ER */ + 0 0 2 0 1 0 /* RX_CLK */ + 2 9 1 0 3 0 /* GTX_CLK - CLK10 */ + 2 8 2 0 1 0>; /* GTX125 - CLK9 */ + }; + + diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/ucc.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/ucc.txt new file mode 100644 index 000000000000..e47734bee3f0 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/ucc.txt @@ -0,0 +1,70 @@ +* UCC (Unified Communications Controllers) + +Required properties: +- device_type : should be "network", "hldc", "uart", "transparent" + "bisync", "atm", or "serial". +- compatible : could be "ucc_geth" or "fsl_atm" and so on. +- cell-index : the ucc number(1-8), corresponding to UCCx in UM. +- reg : Offset and length of the register set for the device +- interrupts : <a b> where a is the interrupt number and b is a + field that represents an encoding of the sense and level + information for the interrupt. This should be encoded based on + the information in section 2) depending on the type of interrupt + controller you have. +- interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. +- pio-handle : The phandle for the Parallel I/O port configuration. +- port-number : for UART drivers, the port number to use, between 0 and 3. + This usually corresponds to the /dev/ttyQE device, e.g. <0> = /dev/ttyQE0. + The port number is added to the minor number of the device. Unlike the + CPM UART driver, the port-number is required for the QE UART driver. +- soft-uart : for UART drivers, if specified this means the QE UART device + driver should use "Soft-UART" mode, which is needed on some SOCs that have + broken UART hardware. Soft-UART is provided via a microcode upload. +- rx-clock-name: the UCC receive clock source + "none": clock source is disabled + "brg1" through "brg16": clock source is BRG1-BRG16, respectively + "clk1" through "clk24": clock source is CLK1-CLK24, respectively +- tx-clock-name: the UCC transmit clock source + "none": clock source is disabled + "brg1" through "brg16": clock source is BRG1-BRG16, respectively + "clk1" through "clk24": clock source is CLK1-CLK24, respectively +The following two properties are deprecated. rx-clock has been replaced +with rx-clock-name, and tx-clock has been replaced with tx-clock-name. +Drivers that currently use the deprecated properties should continue to +do so, in order to support older device trees, but they should be updated +to check for the new properties first. +- rx-clock : represents the UCC receive clock source. + 0x00 : clock source is disabled; + 0x1~0x10 : clock source is BRG1~BRG16 respectively; + 0x11~0x28: clock source is QE_CLK1~QE_CLK24 respectively. +- tx-clock: represents the UCC transmit clock source; + 0x00 : clock source is disabled; + 0x1~0x10 : clock source is BRG1~BRG16 respectively; + 0x11~0x28: clock source is QE_CLK1~QE_CLK24 respectively. + +Required properties for network device_type: +- mac-address : list of bytes representing the ethernet address. +- phy-handle : The phandle for the PHY connected to this controller. + +Recommended properties: +- phy-connection-type : a string naming the controller/PHY interface type, + i.e., "mii" (default), "rmii", "gmii", "rgmii", "rgmii-id" (Internal + Delay), "rgmii-txid" (delay on TX only), "rgmii-rxid" (delay on RX only), + "tbi", or "rtbi". + +Example: + ucc@2000 { + device_type = "network"; + compatible = "ucc_geth"; + cell-index = <1>; + reg = <2000 200>; + interrupts = <a0 0>; + interrupt-parent = <700>; + mac-address = [ 00 04 9f 00 23 23 ]; + rx-clock = "none"; + tx-clock = "clk9"; + phy-handle = <212000>; + phy-connection-type = "gmii"; + pio-handle = <140001>; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/usb.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/usb.txt new file mode 100644 index 000000000000..c8f44d6bcbcf --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/usb.txt @@ -0,0 +1,22 @@ +* USB (Universal Serial Bus Controller) + +Required properties: +- compatible : could be "qe_udc" or "fhci-hcd". +- mode : the could be "host" or "slave". +- reg : Offset and length of the register set for the device +- interrupts : <a b> where a is the interrupt number and b is a + field that represents an encoding of the sense and level + information for the interrupt. This should be encoded based on + the information in section 2) depending on the type of interrupt + controller you have. +- interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. + +Example(slave): + usb@6c0 { + compatible = "qe_udc"; + reg = <6c0 40>; + interrupts = <8b 0>; + interrupt-parent = <700>; + mode = "slave"; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/cpm_qe/serial.txt b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/serial.txt new file mode 100644 index 000000000000..b35f3482e3e4 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/cpm_qe/serial.txt @@ -0,0 +1,21 @@ +* Serial + +Currently defined compatibles: +- fsl,cpm1-smc-uart +- fsl,cpm2-smc-uart +- fsl,cpm1-scc-uart +- fsl,cpm2-scc-uart +- fsl,qe-uart + +Example: + + serial@11a00 { + device_type = "serial"; + compatible = "fsl,mpc8272-scc-uart", + "fsl,cpm2-scc-uart"; + reg = <11a00 20 8000 100>; + interrupts = <28 8>; + interrupt-parent = <&PIC>; + fsl,cpm-brg = <1>; + fsl,cpm-command = <00800000>; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/diu.txt b/Documentation/powerpc/dts-bindings/fsl/diu.txt new file mode 100644 index 000000000000..deb35de70988 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/diu.txt @@ -0,0 +1,18 @@ +* Freescale Display Interface Unit + +The Freescale DIU is a LCD controller, with proper hardware, it can also +drive DVI monitors. + +Required properties: +- compatible : should be "fsl-diu". +- reg : should contain at least address and length of the DIU register + set. +- Interrupts : one DIU interrupt should be describe here. + +Example (MPC8610HPCD): + display@2c000 { + compatible = "fsl,diu"; + reg = <0x2c000 100>; + interrupts = <72 2>; + interrupt-parent = <&mpic>; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/dma.txt b/Documentation/powerpc/dts-bindings/fsl/dma.txt new file mode 100644 index 000000000000..86826df00e64 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/dma.txt @@ -0,0 +1,127 @@ +* Freescale 83xx DMA Controller + +Freescale PowerPC 83xx have on chip general purpose DMA controllers. + +Required properties: + +- compatible : compatible list, contains 2 entries, first is + "fsl,CHIP-dma", where CHIP is the processor + (mpc8349, mpc8360, etc.) and the second is + "fsl,elo-dma" +- reg : <registers mapping for DMA general status reg> +- ranges : Should be defined as specified in 1) to describe the + DMA controller channels. +- cell-index : controller index. 0 for controller @ 0x8100 +- interrupts : <interrupt mapping for DMA IRQ> +- interrupt-parent : optional, if needed for interrupt mapping + + +- DMA channel nodes: + - compatible : compatible list, contains 2 entries, first is + "fsl,CHIP-dma-channel", where CHIP is the processor + (mpc8349, mpc8350, etc.) and the second is + "fsl,elo-dma-channel" + - reg : <registers mapping for channel> + - cell-index : dma channel index starts at 0. + +Optional properties: + - interrupts : <interrupt mapping for DMA channel IRQ> + (on 83xx this is expected to be identical to + the interrupts property of the parent node) + - interrupt-parent : optional, if needed for interrupt mapping + +Example: + dma@82a8 { + #address-cells = <1>; + #size-cells = <1>; + compatible = "fsl,mpc8349-dma", "fsl,elo-dma"; + reg = <82a8 4>; + ranges = <0 8100 1a4>; + interrupt-parent = <&ipic>; + interrupts = <47 8>; + cell-index = <0>; + dma-channel@0 { + compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; + cell-index = <0>; + reg = <0 80>; + }; + dma-channel@80 { + compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; + cell-index = <1>; + reg = <80 80>; + }; + dma-channel@100 { + compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; + cell-index = <2>; + reg = <100 80>; + }; + dma-channel@180 { + compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel"; + cell-index = <3>; + reg = <180 80>; + }; + }; + +* Freescale 85xx/86xx DMA Controller + +Freescale PowerPC 85xx/86xx have on chip general purpose DMA controllers. + +Required properties: + +- compatible : compatible list, contains 2 entries, first is + "fsl,CHIP-dma", where CHIP is the processor + (mpc8540, mpc8540, etc.) and the second is + "fsl,eloplus-dma" +- reg : <registers mapping for DMA general status reg> +- cell-index : controller index. 0 for controller @ 0x21000, + 1 for controller @ 0xc000 +- ranges : Should be defined as specified in 1) to describe the + DMA controller channels. + +- DMA channel nodes: + - compatible : compatible list, contains 2 entries, first is + "fsl,CHIP-dma-channel", where CHIP is the processor + (mpc8540, mpc8560, etc.) and the second is + "fsl,eloplus-dma-channel" + - cell-index : dma channel index starts at 0. + - reg : <registers mapping for channel> + - interrupts : <interrupt mapping for DMA channel IRQ> + - interrupt-parent : optional, if needed for interrupt mapping + +Example: + dma@21300 { + #address-cells = <1>; + #size-cells = <1>; + compatible = "fsl,mpc8540-dma", "fsl,eloplus-dma"; + reg = <21300 4>; + ranges = <0 21100 200>; + cell-index = <0>; + dma-channel@0 { + compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; + reg = <0 80>; + cell-index = <0>; + interrupt-parent = <&mpic>; + interrupts = <14 2>; + }; + dma-channel@80 { + compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; + reg = <80 80>; + cell-index = <1>; + interrupt-parent = <&mpic>; + interrupts = <15 2>; + }; + dma-channel@100 { + compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; + reg = <100 80>; + cell-index = <2>; + interrupt-parent = <&mpic>; + interrupts = <16 2>; + }; + dma-channel@180 { + compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel"; + reg = <180 80>; + cell-index = <3>; + interrupt-parent = <&mpic>; + interrupts = <17 2>; + }; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/gtm.txt b/Documentation/powerpc/dts-bindings/fsl/gtm.txt new file mode 100644 index 000000000000..9a33efded4bc --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/gtm.txt @@ -0,0 +1,31 @@ +* Freescale General-purpose Timers Module + +Required properties: + - compatible : should be + "fsl,<chip>-gtm", "fsl,gtm" for SOC GTMs + "fsl,<chip>-qe-gtm", "fsl,qe-gtm", "fsl,gtm" for QE GTMs + "fsl,<chip>-cpm2-gtm", "fsl,cpm2-gtm", "fsl,gtm" for CPM2 GTMs + - reg : should contain gtm registers location and length (0x40). + - interrupts : should contain four interrupts. + - interrupt-parent : interrupt source phandle. + - clock-frequency : specifies the frequency driving the timer. + +Example: + +timer@500 { + compatible = "fsl,mpc8360-gtm", "fsl,gtm"; + reg = <0x500 0x40>; + interrupts = <90 8 78 8 84 8 72 8>; + interrupt-parent = <&ipic>; + /* filled by u-boot */ + clock-frequency = <0>; +}; + +timer@440 { + compatible = "fsl,mpc8360-qe-gtm", "fsl,qe-gtm", "fsl,gtm"; + reg = <0x440 0x40>; + interrupts = <12 13 14 15>; + interrupt-parent = <&qeic>; + /* filled by u-boot */ + clock-frequency = <0>; +}; diff --git a/Documentation/powerpc/dts-bindings/fsl/guts.txt b/Documentation/powerpc/dts-bindings/fsl/guts.txt new file mode 100644 index 000000000000..9e7a2417dac5 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/guts.txt @@ -0,0 +1,25 @@ +* Global Utilities Block + +The global utilities block controls power management, I/O device +enabling, power-on-reset configuration monitoring, general-purpose +I/O signal configuration, alternate function selection for multiplexed +signals, and clock control. + +Required properties: + + - compatible : Should define the compatible device type for + global-utilities. + - reg : Offset and length of the register set for the device. + +Recommended properties: + + - fsl,has-rstcr : Indicates that the global utilities register set + contains a functioning "reset control register" (i.e. the board + is wired to reset upon setting the HRESET_REQ bit in this register). + +Example: + global-utilities@e0000 { /* global utilities block */ + compatible = "fsl,mpc8548-guts"; + reg = <e0000 1000>; + fsl,has-rstcr; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/i2c.txt b/Documentation/powerpc/dts-bindings/fsl/i2c.txt new file mode 100644 index 000000000000..d0ab33e21fe6 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/i2c.txt @@ -0,0 +1,32 @@ +* I2C + +Required properties : + + - device_type : Should be "i2c" + - reg : Offset and length of the register set for the device + +Recommended properties : + + - compatible : Should be "fsl-i2c" for parts compatible with + Freescale I2C specifications. + - interrupts : <a b> where a is the interrupt number and b is a + field that represents an encoding of the sense and level + information for the interrupt. This should be encoded based on + the information in section 2) depending on the type of interrupt + controller you have. + - interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. + - dfsrr : boolean; if defined, indicates that this I2C device has + a digital filter sampling rate register + - fsl5200-clocking : boolean; if defined, indicated that this device + uses the FSL 5200 clocking mechanism. + +Example : + i2c@3000 { + interrupt-parent = <40000>; + interrupts = <1b 3>; + reg = <3000 18>; + device_type = "i2c"; + compatible = "fsl-i2c"; + dfsrr; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/lbc.txt b/Documentation/powerpc/dts-bindings/fsl/lbc.txt new file mode 100644 index 000000000000..3300fec501c5 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/lbc.txt @@ -0,0 +1,35 @@ +* Chipselect/Local Bus + +Properties: +- name : Should be localbus +- #address-cells : Should be either two or three. The first cell is the + chipselect number, and the remaining cells are the + offset into the chipselect. +- #size-cells : Either one or two, depending on how large each chipselect + can be. +- ranges : Each range corresponds to a single chipselect, and cover + the entire access window as configured. + +Example: + localbus@f0010100 { + compatible = "fsl,mpc8272-localbus", + "fsl,pq2-localbus"; + #address-cells = <2>; + #size-cells = <1>; + reg = <f0010100 40>; + + ranges = <0 0 fe000000 02000000 + 1 0 f4500000 00008000>; + + flash@0,0 { + compatible = "jedec-flash"; + reg = <0 0 2000000>; + bank-width = <4>; + device-width = <1>; + }; + + board-control@1,0 { + reg = <1 0 20>; + compatible = "fsl,mpc8272ads-bcsr"; + }; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/msi-pic.txt b/Documentation/powerpc/dts-bindings/fsl/msi-pic.txt new file mode 100644 index 000000000000..b26b91992c55 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/msi-pic.txt @@ -0,0 +1,36 @@ +* Freescale MSI interrupt controller + +Reguired properities: +- compatible : compatible list, contains 2 entries, + first is "fsl,CHIP-msi", where CHIP is the processor(mpc8610, mpc8572, + etc.) and the second is "fsl,mpic-msi" or "fsl,ipic-msi" depending on + the parent type. +- reg : should contain the address and the length of the shared message + interrupt register set. +- msi-available-ranges: use <start count> style section to define which + msi interrupt can be used in the 256 msi interrupts. This property is + optional, without this, all the 256 MSI interrupts can be used. +- interrupts : each one of the interrupts here is one entry per 32 MSIs, + and routed to the host interrupt controller. the interrupts should + be set as edge sensitive. +- interrupt-parent: the phandle for the interrupt controller + that services interrupts for this device. for 83xx cpu, the interrupts + are routed to IPIC, and for 85xx/86xx cpu the interrupts are routed + to MPIC. + +Example: + msi@41600 { + compatible = "fsl,mpc8610-msi", "fsl,mpic-msi"; + reg = <0x41600 0x80>; + msi-available-ranges = <0 0x100>; + interrupts = < + 0xe0 0 + 0xe1 0 + 0xe2 0 + 0xe3 0 + 0xe4 0 + 0xe5 0 + 0xe6 0 + 0xe7 0>; + interrupt-parent = <&mpic>; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/sata.txt b/Documentation/powerpc/dts-bindings/fsl/sata.txt new file mode 100644 index 000000000000..b46bcf46c3d8 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/sata.txt @@ -0,0 +1,29 @@ +* Freescale 8xxx/3.0 Gb/s SATA nodes + +SATA nodes are defined to describe on-chip Serial ATA controllers. +Each SATA port should have its own node. + +Required properties: +- compatible : compatible list, contains 2 entries, first is + "fsl,CHIP-sata", where CHIP is the processor + (mpc8315, mpc8379, etc.) and the second is + "fsl,pq-sata" +- interrupts : <interrupt mapping for SATA IRQ> +- cell-index : controller index. + 1 for controller @ 0x18000 + 2 for controller @ 0x19000 + 3 for controller @ 0x1a000 + 4 for controller @ 0x1b000 + +Optional properties: +- interrupt-parent : optional, if needed for interrupt mapping +- reg : <registers mapping> + +Example: + sata@18000 { + compatible = "fsl,mpc8379-sata", "fsl,pq-sata"; + reg = <0x18000 0x1000>; + cell-index = <1>; + interrupts = <2c 8>; + interrupt-parent = < &ipic >; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/sec.txt b/Documentation/powerpc/dts-bindings/fsl/sec.txt new file mode 100644 index 000000000000..2b6f2d45c45a --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/sec.txt @@ -0,0 +1,68 @@ +Freescale SoC SEC Security Engines + +Required properties: + +- compatible : Should contain entries for this and backward compatible + SEC versions, high to low, e.g., "fsl,sec2.1", "fsl,sec2.0" +- reg : Offset and length of the register set for the device +- interrupts : the SEC's interrupt number +- fsl,num-channels : An integer representing the number of channels + available. +- fsl,channel-fifo-len : An integer representing the number of + descriptor pointers each channel fetch fifo can hold. +- fsl,exec-units-mask : The bitmask representing what execution units + (EUs) are available. It's a single 32-bit cell. EU information + should be encoded following the SEC's Descriptor Header Dword + EU_SEL0 field documentation, i.e. as follows: + + bit 0 = reserved - should be 0 + bit 1 = set if SEC has the ARC4 EU (AFEU) + bit 2 = set if SEC has the DES/3DES EU (DEU) + bit 3 = set if SEC has the message digest EU (MDEU/MDEU-A) + bit 4 = set if SEC has the random number generator EU (RNG) + bit 5 = set if SEC has the public key EU (PKEU) + bit 6 = set if SEC has the AES EU (AESU) + bit 7 = set if SEC has the Kasumi EU (KEU) + bit 8 = set if SEC has the CRC EU (CRCU) + bit 11 = set if SEC has the message digest EU extended alg set (MDEU-B) + +remaining bits are reserved for future SEC EUs. + +- fsl,descriptor-types-mask : The bitmask representing what descriptors + are available. It's a single 32-bit cell. Descriptor type information + should be encoded following the SEC's Descriptor Header Dword DESC_TYPE + field documentation, i.e. as follows: + + bit 0 = set if SEC supports the aesu_ctr_nonsnoop desc. type + bit 1 = set if SEC supports the ipsec_esp descriptor type + bit 2 = set if SEC supports the common_nonsnoop desc. type + bit 3 = set if SEC supports the 802.11i AES ccmp desc. type + bit 4 = set if SEC supports the hmac_snoop_no_afeu desc. type + bit 5 = set if SEC supports the srtp descriptor type + bit 6 = set if SEC supports the non_hmac_snoop_no_afeu desc.type + bit 7 = set if SEC supports the pkeu_assemble descriptor type + bit 8 = set if SEC supports the aesu_key_expand_output desc.type + bit 9 = set if SEC supports the pkeu_ptmul descriptor type + bit 10 = set if SEC supports the common_nonsnoop_afeu desc. type + bit 11 = set if SEC supports the pkeu_ptadd_dbl descriptor type + + ..and so on and so forth. + +Optional properties: + +- interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. + +Example: + + /* MPC8548E */ + crypto@30000 { + compatible = "fsl,sec2.1", "fsl,sec2.0"; + reg = <0x30000 0x10000>; + interrupts = <29 2>; + interrupt-parent = <&mpic>; + fsl,num-channels = <4>; + fsl,channel-fifo-len = <24>; + fsl,exec-units-mask = <0xfe>; + fsl,descriptor-types-mask = <0x12b0ebf>; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/spi.txt b/Documentation/powerpc/dts-bindings/fsl/spi.txt new file mode 100644 index 000000000000..e7d9a344c4f4 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/spi.txt @@ -0,0 +1,24 @@ +* SPI (Serial Peripheral Interface) + +Required properties: +- cell-index : SPI controller index. +- compatible : should be "fsl,spi". +- mode : the SPI operation mode, it can be "cpu" or "cpu-qe". +- reg : Offset and length of the register set for the device +- interrupts : <a b> where a is the interrupt number and b is a + field that represents an encoding of the sense and level + information for the interrupt. This should be encoded based on + the information in section 2) depending on the type of interrupt + controller you have. +- interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. + +Example: + spi@4c0 { + cell-index = <0>; + compatible = "fsl,spi"; + reg = <4c0 40>; + interrupts = <82 0>; + interrupt-parent = <700>; + mode = "cpu"; + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/ssi.txt b/Documentation/powerpc/dts-bindings/fsl/ssi.txt new file mode 100644 index 000000000000..d100555d488a --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/ssi.txt @@ -0,0 +1,38 @@ +Freescale Synchronous Serial Interface + +The SSI is a serial device that communicates with audio codecs. It can +be programmed in AC97, I2S, left-justified, or right-justified modes. + +Required properties: +- compatible : compatible list, containing "fsl,ssi" +- cell-index : the SSI, <0> = SSI1, <1> = SSI2, and so on +- reg : offset and length of the register set for the device +- interrupts : <a b> where a is the interrupt number and b is a + field that represents an encoding of the sense and + level information for the interrupt. This should be + encoded based on the information in section 2) + depending on the type of interrupt controller you + have. +- interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. +- fsl,mode : the operating mode for the SSI interface + "i2s-slave" - I2S mode, SSI is clock slave + "i2s-master" - I2S mode, SSI is clock master + "lj-slave" - left-justified mode, SSI is clock slave + "lj-master" - l.j. mode, SSI is clock master + "rj-slave" - right-justified mode, SSI is clock slave + "rj-master" - r.j., SSI is clock master + "ac97-slave" - AC97 mode, SSI is clock slave + "ac97-master" - AC97 mode, SSI is clock master + +Optional properties: +- codec-handle : phandle to a 'codec' node that defines an audio + codec connected to this SSI. This node is typically + a child of an I2C or other control node. + +Child 'codec' node required properties: +- compatible : compatible list, contains the name of the codec + +Child 'codec' node optional properties: +- clock-frequency : The frequency of the input clock, which typically + comes from an on-board dedicated oscillator. diff --git a/Documentation/powerpc/dts-bindings/fsl/tsec.txt b/Documentation/powerpc/dts-bindings/fsl/tsec.txt new file mode 100644 index 000000000000..583ef6b56c43 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/tsec.txt @@ -0,0 +1,69 @@ +* MDIO IO device + +The MDIO is a bus to which the PHY devices are connected. For each +device that exists on this bus, a child node should be created. See +the definition of the PHY node below for an example of how to define +a PHY. + +Required properties: + - reg : Offset and length of the register set for the device + - compatible : Should define the compatible device type for the + mdio. Currently, this is most likely to be "fsl,gianfar-mdio" + +Example: + + mdio@24520 { + reg = <24520 20>; + compatible = "fsl,gianfar-mdio"; + + ethernet-phy@0 { + ...... + }; + }; + + +* Gianfar-compatible ethernet nodes + +Required properties: + + - device_type : Should be "network" + - model : Model of the device. Can be "TSEC", "eTSEC", or "FEC" + - compatible : Should be "gianfar" + - reg : Offset and length of the register set for the device + - mac-address : List of bytes representing the ethernet address of + this controller + - interrupts : <a b> where a is the interrupt number and b is a + field that represents an encoding of the sense and level + information for the interrupt. This should be encoded based on + the information in section 2) depending on the type of interrupt + controller you have. + - interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. + - phy-handle : The phandle for the PHY connected to this ethernet + controller. + - fixed-link : <a b c d e> where a is emulated phy id - choose any, + but unique to the all specified fixed-links, b is duplex - 0 half, + 1 full, c is link speed - d#10/d#100/d#1000, d is pause - 0 no + pause, 1 pause, e is asym_pause - 0 no asym_pause, 1 asym_pause. + +Recommended properties: + + - phy-connection-type : a string naming the controller/PHY interface type, + i.e., "mii" (default), "rmii", "gmii", "rgmii", "rgmii-id", "sgmii", + "tbi", or "rtbi". This property is only really needed if the connection + is of type "rgmii-id", as all other connection types are detected by + hardware. + + +Example: + ethernet@24000 { + #size-cells = <0>; + device_type = "network"; + model = "TSEC"; + compatible = "gianfar"; + reg = <24000 1000>; + mac-address = [ 00 E0 0C 00 73 00 ]; + interrupts = <d 3 e 3 12 3>; + interrupt-parent = <40000>; + phy-handle = <2452000> + }; diff --git a/Documentation/powerpc/dts-bindings/fsl/usb.txt b/Documentation/powerpc/dts-bindings/fsl/usb.txt new file mode 100644 index 000000000000..b00152402694 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/usb.txt @@ -0,0 +1,59 @@ +Freescale SOC USB controllers + +The device node for a USB controller that is part of a Freescale +SOC is as described in the document "Open Firmware Recommended +Practice : Universal Serial Bus" with the following modifications +and additions : + +Required properties : + - compatible : Should be "fsl-usb2-mph" for multi port host USB + controllers, or "fsl-usb2-dr" for dual role USB controllers + - phy_type : For multi port host USB controllers, should be one of + "ulpi", or "serial". For dual role USB controllers, should be + one of "ulpi", "utmi", "utmi_wide", or "serial". + - reg : Offset and length of the register set for the device + - port0 : boolean; if defined, indicates port0 is connected for + fsl-usb2-mph compatible controllers. Either this property or + "port1" (or both) must be defined for "fsl-usb2-mph" compatible + controllers. + - port1 : boolean; if defined, indicates port1 is connected for + fsl-usb2-mph compatible controllers. Either this property or + "port0" (or both) must be defined for "fsl-usb2-mph" compatible + controllers. + - dr_mode : indicates the working mode for "fsl-usb2-dr" compatible + controllers. Can be "host", "peripheral", or "otg". Default to + "host" if not defined for backward compatibility. + +Recommended properties : + - interrupts : <a b> where a is the interrupt number and b is a + field that represents an encoding of the sense and level + information for the interrupt. This should be encoded based on + the information in section 2) depending on the type of interrupt + controller you have. + - interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. + +Example multi port host USB controller device node : + usb@22000 { + compatible = "fsl-usb2-mph"; + reg = <22000 1000>; + #address-cells = <1>; + #size-cells = <0>; + interrupt-parent = <700>; + interrupts = <27 1>; + phy_type = "ulpi"; + port0; + port1; + }; + +Example dual role USB controller device node : + usb@23000 { + compatible = "fsl-usb2-dr"; + reg = <23000 1000>; + #address-cells = <1>; + #size-cells = <0>; + interrupt-parent = <700>; + interrupts = <26 1>; + dr_mode = "otg"; + phy = "ulpi"; + }; diff --git a/Documentation/scsi/aacraid.txt b/Documentation/scsi/aacraid.txt index d16011a8618e..709ca991a451 100644 --- a/Documentation/scsi/aacraid.txt +++ b/Documentation/scsi/aacraid.txt @@ -56,19 +56,33 @@ Supported Cards/Chipsets 9005:0285:9005:02d1 Adaptec 5405 (Voodoo40) 9005:0285:15d9:02d2 SMC AOC-USAS-S8i-LP 9005:0285:15d9:02d3 SMC AOC-USAS-S8iR-LP - 9005:0285:9005:02d4 Adaptec 2045 (Voodoo04 Lite) - 9005:0285:9005:02d5 Adaptec 2405 (Voodoo40 Lite) - 9005:0285:9005:02d6 Adaptec 2445 (Voodoo44 Lite) - 9005:0285:9005:02d7 Adaptec 2805 (Voodoo80 Lite) + 9005:0285:9005:02d4 Adaptec ASR-2045 (Voodoo04 Lite) + 9005:0285:9005:02d5 Adaptec ASR-2405 (Voodoo40 Lite) + 9005:0285:9005:02d6 Adaptec ASR-2445 (Voodoo44 Lite) + 9005:0285:9005:02d7 Adaptec ASR-2805 (Voodoo80 Lite) + 9005:0285:9005:02d8 Adaptec 5405G (Voodoo40 PM) + 9005:0285:9005:02d9 Adaptec 5445G (Voodoo44 PM) + 9005:0285:9005:02da Adaptec 5805G (Voodoo80 PM) + 9005:0285:9005:02db Adaptec 5085G (Voodoo08 PM) + 9005:0285:9005:02dc Adaptec 51245G (Voodoo124 PM) + 9005:0285:9005:02dd Adaptec 51645G (Voodoo164 PM) + 9005:0285:9005:02de Adaptec 52445G (Voodoo244 PM) + 9005:0285:9005:02df Adaptec ASR-2045G (Voodoo04 Lite PM) + 9005:0285:9005:02e0 Adaptec ASR-2405G (Voodoo40 Lite PM) + 9005:0285:9005:02e1 Adaptec ASR-2445G (Voodoo44 Lite PM) + 9005:0285:9005:02e2 Adaptec ASR-2805G (Voodoo80 Lite PM) 1011:0046:9005:0364 Adaptec 5400S (Mustang) + 1011:0046:9005:0365 Adaptec 5400S (Mustang) 9005:0287:9005:0800 Adaptec Themisto (Jupiter) 9005:0200:9005:0200 Adaptec Themisto (Jupiter) 9005:0286:9005:0800 Adaptec Callisto (Jupiter) 1011:0046:9005:1364 Dell PERC 2/QC (Quad Channel, Mustang) + 1011:0046:9005:1365 Dell PERC 2/QC (Quad Channel, Mustang) 1028:0001:1028:0001 Dell PERC 2/Si (Iguana) 1028:0003:1028:0003 Dell PERC 3/Si (SlimFast) 1028:0002:1028:0002 Dell PERC 3/Di (Opal) - 1028:0004:1028:0004 Dell PERC 3/DiF (Iguana) + 1028:0004:1028:0004 Dell PERC 3/SiF (Iguana) + 1028:0004:1028:00d0 Dell PERC 3/DiF (Iguana) 1028:0002:1028:00d1 Dell PERC 3/DiV (Viper) 1028:0002:1028:00d9 Dell PERC 3/DiL (Lexus) 1028:000a:1028:0106 Dell PERC 3/DiJ (Jaguar) |