diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/ABI/testing/sysfs-devices-cache_disable | 18 | ||||
-rw-r--r-- | Documentation/futex-requeue-pi.txt | 131 | ||||
-rw-r--r-- | Documentation/kernel-parameters.txt | 3 | ||||
-rw-r--r-- | Documentation/memory-barriers.txt | 129 | ||||
-rw-r--r-- | Documentation/scheduler/sched-rt-group.txt | 20 | ||||
-rw-r--r-- | Documentation/trace/ftrace.txt | 15 | ||||
-rw-r--r-- | Documentation/x86/boot.txt | 122 | ||||
-rw-r--r-- | Documentation/x86/x86_64/boot-options.txt | 5 | ||||
-rw-r--r-- | Documentation/x86/x86_64/mm.txt | 9 |
9 files changed, 430 insertions, 22 deletions
diff --git a/Documentation/ABI/testing/sysfs-devices-cache_disable b/Documentation/ABI/testing/sysfs-devices-cache_disable new file mode 100644 index 000000000000..175bb4f70512 --- /dev/null +++ b/Documentation/ABI/testing/sysfs-devices-cache_disable @@ -0,0 +1,18 @@ +What: /sys/devices/system/cpu/cpu*/cache/index*/cache_disable_X +Date: August 2008 +KernelVersion: 2.6.27 +Contact: mark.langsdorf@amd.com +Description: These files exist in every cpu's cache index directories. + There are currently 2 cache_disable_# files in each + directory. Reading from these files on a supported + processor will return that cache disable index value + for that processor and node. Writing to one of these + files will cause the specificed cache index to be disabled. + + Currently, only AMD Family 10h Processors support cache index + disable, and only for their L3 caches. See the BIOS and + Kernel Developer's Guide at + http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/31116-Public-GH-BKDG_3.20_2-4-09.pdf + for formatting information and other details on the + cache index disable. +Users: joachim.deguara@amd.com diff --git a/Documentation/futex-requeue-pi.txt b/Documentation/futex-requeue-pi.txt new file mode 100644 index 000000000000..9dc1ff4fd536 --- /dev/null +++ b/Documentation/futex-requeue-pi.txt @@ -0,0 +1,131 @@ +Futex Requeue PI +---------------- + +Requeueing of tasks from a non-PI futex to a PI futex requires +special handling in order to ensure the underlying rt_mutex is never +left without an owner if it has waiters; doing so would break the PI +boosting logic [see rt-mutex-desgin.txt] For the purposes of +brevity, this action will be referred to as "requeue_pi" throughout +this document. Priority inheritance is abbreviated throughout as +"PI". + +Motivation +---------- + +Without requeue_pi, the glibc implementation of +pthread_cond_broadcast() must resort to waking all the tasks waiting +on a pthread_condvar and letting them try to sort out which task +gets to run first in classic thundering-herd formation. An ideal +implementation would wake the highest-priority waiter, and leave the +rest to the natural wakeup inherent in unlocking the mutex +associated with the condvar. + +Consider the simplified glibc calls: + +/* caller must lock mutex */ +pthread_cond_wait(cond, mutex) +{ + lock(cond->__data.__lock); + unlock(mutex); + do { + unlock(cond->__data.__lock); + futex_wait(cond->__data.__futex); + lock(cond->__data.__lock); + } while(...) + unlock(cond->__data.__lock); + lock(mutex); +} + +pthread_cond_broadcast(cond) +{ + lock(cond->__data.__lock); + unlock(cond->__data.__lock); + futex_requeue(cond->data.__futex, cond->mutex); +} + +Once pthread_cond_broadcast() requeues the tasks, the cond->mutex +has waiters. Note that pthread_cond_wait() attempts to lock the +mutex only after it has returned to user space. This will leave the +underlying rt_mutex with waiters, and no owner, breaking the +previously mentioned PI-boosting algorithms. + +In order to support PI-aware pthread_condvar's, the kernel needs to +be able to requeue tasks to PI futexes. This support implies that +upon a successful futex_wait system call, the caller would return to +user space already holding the PI futex. The glibc implementation +would be modified as follows: + + +/* caller must lock mutex */ +pthread_cond_wait_pi(cond, mutex) +{ + lock(cond->__data.__lock); + unlock(mutex); + do { + unlock(cond->__data.__lock); + futex_wait_requeue_pi(cond->__data.__futex); + lock(cond->__data.__lock); + } while(...) + unlock(cond->__data.__lock); + /* the kernel acquired the the mutex for us */ +} + +pthread_cond_broadcast_pi(cond) +{ + lock(cond->__data.__lock); + unlock(cond->__data.__lock); + futex_requeue_pi(cond->data.__futex, cond->mutex); +} + +The actual glibc implementation will likely test for PI and make the +necessary changes inside the existing calls rather than creating new +calls for the PI cases. Similar changes are needed for +pthread_cond_timedwait() and pthread_cond_signal(). + +Implementation +-------------- + +In order to ensure the rt_mutex has an owner if it has waiters, it +is necessary for both the requeue code, as well as the waiting code, +to be able to acquire the rt_mutex before returning to user space. +The requeue code cannot simply wake the waiter and leave it to +acquire the rt_mutex as it would open a race window between the +requeue call returning to user space and the waiter waking and +starting to run. This is especially true in the uncontended case. + +The solution involves two new rt_mutex helper routines, +rt_mutex_start_proxy_lock() and rt_mutex_finish_proxy_lock(), which +allow the requeue code to acquire an uncontended rt_mutex on behalf +of the waiter and to enqueue the waiter on a contended rt_mutex. +Two new system calls provide the kernel<->user interface to +requeue_pi: FUTEX_WAIT_REQUEUE_PI and FUTEX_REQUEUE_CMP_PI. + +FUTEX_WAIT_REQUEUE_PI is called by the waiter (pthread_cond_wait() +and pthread_cond_timedwait()) to block on the initial futex and wait +to be requeued to a PI-aware futex. The implementation is the +result of a high-speed collision between futex_wait() and +futex_lock_pi(), with some extra logic to check for the additional +wake-up scenarios. + +FUTEX_REQUEUE_CMP_PI is called by the waker +(pthread_cond_broadcast() and pthread_cond_signal()) to requeue and +possibly wake the waiting tasks. Internally, this system call is +still handled by futex_requeue (by passing requeue_pi=1). Before +requeueing, futex_requeue() attempts to acquire the requeue target +PI futex on behalf of the top waiter. If it can, this waiter is +woken. futex_requeue() then proceeds to requeue the remaining +nr_wake+nr_requeue tasks to the PI futex, calling +rt_mutex_start_proxy_lock() prior to each requeue to prepare the +task as a waiter on the underlying rt_mutex. It is possible that +the lock can be acquired at this stage as well, if so, the next +waiter is woken to finish the acquisition of the lock. + +FUTEX_REQUEUE_PI accepts nr_wake and nr_requeue as arguments, but +their sum is all that really matters. futex_requeue() will wake or +requeue up to nr_wake + nr_requeue tasks. It will wake only as many +tasks as it can acquire the lock for, which in the majority of cases +should be 0 as good programming practice dictates that the caller of +either pthread_cond_broadcast() or pthread_cond_signal() acquire the +mutex prior to making the call. FUTEX_REQUEUE_PI requires that +nr_wake=1. nr_requeue should be INT_MAX for broadcast and 0 for +signal. diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index 8f9e17c855a0..af43f45e8358 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -1577,6 +1577,9 @@ and is between 256 and 4096 characters. It is defined in the file noinitrd [RAM] Tells the kernel not to load any configured initial RAM disk. + nointremap [X86-64, Intel-IOMMU] Do not enable interrupt + remapping. + nointroute [IA-64] nojitter [IA64] Disables jitter checking for ITC timers. diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt index f5b7127f54ac..7f5809eddee6 100644 --- a/Documentation/memory-barriers.txt +++ b/Documentation/memory-barriers.txt @@ -31,6 +31,7 @@ Contents: - Locking functions. - Interrupt disabling functions. + - Sleep and wake-up functions. - Miscellaneous functions. (*) Inter-CPU locking barrier effects. @@ -1217,6 +1218,132 @@ barriers are required in such a situation, they must be provided from some other means. +SLEEP AND WAKE-UP FUNCTIONS +--------------------------- + +Sleeping and waking on an event flagged in global data can be viewed as an +interaction between two pieces of data: the task state of the task waiting for +the event and the global data used to indicate the event. To make sure that +these appear to happen in the right order, the primitives to begin the process +of going to sleep, and the primitives to initiate a wake up imply certain +barriers. + +Firstly, the sleeper normally follows something like this sequence of events: + + for (;;) { + set_current_state(TASK_UNINTERRUPTIBLE); + if (event_indicated) + break; + schedule(); + } + +A general memory barrier is interpolated automatically by set_current_state() +after it has altered the task state: + + CPU 1 + =============================== + set_current_state(); + set_mb(); + STORE current->state + <general barrier> + LOAD event_indicated + +set_current_state() may be wrapped by: + + prepare_to_wait(); + prepare_to_wait_exclusive(); + +which therefore also imply a general memory barrier after setting the state. +The whole sequence above is available in various canned forms, all of which +interpolate the memory barrier in the right place: + + wait_event(); + wait_event_interruptible(); + wait_event_interruptible_exclusive(); + wait_event_interruptible_timeout(); + wait_event_killable(); + wait_event_timeout(); + wait_on_bit(); + wait_on_bit_lock(); + + +Secondly, code that performs a wake up normally follows something like this: + + event_indicated = 1; + wake_up(&event_wait_queue); + +or: + + event_indicated = 1; + wake_up_process(event_daemon); + +A write memory barrier is implied by wake_up() and co. if and only if they wake +something up. The barrier occurs before the task state is cleared, and so sits +between the STORE to indicate the event and the STORE to set TASK_RUNNING: + + CPU 1 CPU 2 + =============================== =============================== + set_current_state(); STORE event_indicated + set_mb(); wake_up(); + STORE current->state <write barrier> + <general barrier> STORE current->state + LOAD event_indicated + +The available waker functions include: + + complete(); + wake_up(); + wake_up_all(); + wake_up_bit(); + wake_up_interruptible(); + wake_up_interruptible_all(); + wake_up_interruptible_nr(); + wake_up_interruptible_poll(); + wake_up_interruptible_sync(); + wake_up_interruptible_sync_poll(); + wake_up_locked(); + wake_up_locked_poll(); + wake_up_nr(); + wake_up_poll(); + wake_up_process(); + + +[!] Note that the memory barriers implied by the sleeper and the waker do _not_ +order multiple stores before the wake-up with respect to loads of those stored +values after the sleeper has called set_current_state(). For instance, if the +sleeper does: + + set_current_state(TASK_INTERRUPTIBLE); + if (event_indicated) + break; + __set_current_state(TASK_RUNNING); + do_something(my_data); + +and the waker does: + + my_data = value; + event_indicated = 1; + wake_up(&event_wait_queue); + +there's no guarantee that the change to event_indicated will be perceived by +the sleeper as coming after the change to my_data. In such a circumstance, the +code on both sides must interpolate its own memory barriers between the +separate data accesses. Thus the above sleeper ought to do: + + set_current_state(TASK_INTERRUPTIBLE); + if (event_indicated) { + smp_rmb(); + do_something(my_data); + } + +and the waker should do: + + my_data = value; + smp_wmb(); + event_indicated = 1; + wake_up(&event_wait_queue); + + MISCELLANEOUS FUNCTIONS ----------------------- @@ -1366,7 +1493,7 @@ WHERE ARE MEMORY BARRIERS NEEDED? Under normal operation, memory operation reordering is generally not going to be a problem as a single-threaded linear piece of code will still appear to -work correctly, even if it's in an SMP kernel. There are, however, three +work correctly, even if it's in an SMP kernel. There are, however, four circumstances in which reordering definitely _could_ be a problem: (*) Interprocessor interaction. diff --git a/Documentation/scheduler/sched-rt-group.txt b/Documentation/scheduler/sched-rt-group.txt index 5ba4d3fc625a..1df7f9cdab05 100644 --- a/Documentation/scheduler/sched-rt-group.txt +++ b/Documentation/scheduler/sched-rt-group.txt @@ -4,6 +4,7 @@ CONTENTS ======== +0. WARNING 1. Overview 1.1 The problem 1.2 The solution @@ -14,6 +15,23 @@ CONTENTS 3. Future plans +0. WARNING +========== + + Fiddling with these settings can result in an unstable system, the knobs are + root only and assumes root knows what he is doing. + +Most notable: + + * very small values in sched_rt_period_us can result in an unstable + system when the period is smaller than either the available hrtimer + resolution, or the time it takes to handle the budget refresh itself. + + * very small values in sched_rt_runtime_us can result in an unstable + system when the runtime is so small the system has difficulty making + forward progress (NOTE: the migration thread and kstopmachine both + are real-time processes). + 1. Overview =========== @@ -169,7 +187,7 @@ get their allocated time. Implementing SCHED_EDF might take a while to complete. Priority Inheritance is the biggest challenge as the current linux PI infrastructure is geared towards -the limited static priority levels 0-139. With deadline scheduling you need to +the limited static priority levels 0-99. With deadline scheduling you need to do deadline inheritance (since priority is inversely proportional to the deadline delta (deadline - now). diff --git a/Documentation/trace/ftrace.txt b/Documentation/trace/ftrace.txt index fd9a3e693813..e362f50c496f 100644 --- a/Documentation/trace/ftrace.txt +++ b/Documentation/trace/ftrace.txt @@ -518,9 +518,18 @@ priority with zero (0) being the highest priority and the nice values starting at 100 (nice -20). Below is a quick chart to map the kernel priority to user land priorities. - Kernel priority: 0 to 99 ==> user RT priority 99 to 0 - Kernel priority: 100 to 139 ==> user nice -20 to 19 - Kernel priority: 140 ==> idle task priority + Kernel Space User Space + =============================================================== + 0(high) to 98(low) user RT priority 99(high) to 1(low) + with SCHED_RR or SCHED_FIFO + --------------------------------------------------------------- + 99 sched_priority is not used in scheduling + decisions(it must be specified as 0) + --------------------------------------------------------------- + 100(high) to 139(low) user nice -20(high) to 19(low) + --------------------------------------------------------------- + 140 idle task priority + --------------------------------------------------------------- The task states are: diff --git a/Documentation/x86/boot.txt b/Documentation/x86/boot.txt index e0203662f9e9..8da3a795083f 100644 --- a/Documentation/x86/boot.txt +++ b/Documentation/x86/boot.txt @@ -50,6 +50,10 @@ Protocol 2.08: (Kernel 2.6.26) Added crc32 checksum and ELF format Protocol 2.09: (Kernel 2.6.26) Added a field of 64-bit physical pointer to single linked list of struct setup_data. +Protocol 2.10: (Kernel 2.6.31) Added a protocol for relaxed alignment + beyond the kernel_alignment added, new init_size and + pref_address fields. Added extended boot loader IDs. + **** MEMORY LAYOUT The traditional memory map for the kernel loader, used for Image or @@ -168,12 +172,13 @@ Offset Proto Name Meaning 021C/4 2.00+ ramdisk_size initrd size (set by boot loader) 0220/4 2.00+ bootsect_kludge DO NOT USE - for bootsect.S use only 0224/2 2.01+ heap_end_ptr Free memory after setup end -0226/2 N/A pad1 Unused +0226/1 2.02+(3 ext_loader_ver Extended boot loader version +0227/1 2.02+(3 ext_loader_type Extended boot loader ID 0228/4 2.02+ cmd_line_ptr 32-bit pointer to the kernel command line 022C/4 2.03+ ramdisk_max Highest legal initrd address 0230/4 2.05+ kernel_alignment Physical addr alignment required for kernel 0234/1 2.05+ relocatable_kernel Whether kernel is relocatable or not -0235/1 N/A pad2 Unused +0235/1 2.10+ min_alignment Minimum alignment, as a power of two 0236/2 N/A pad3 Unused 0238/4 2.06+ cmdline_size Maximum size of the kernel command line 023C/4 2.07+ hardware_subarch Hardware subarchitecture @@ -182,6 +187,8 @@ Offset Proto Name Meaning 024C/4 2.08+ payload_length Length of kernel payload 0250/8 2.09+ setup_data 64-bit physical pointer to linked list of struct setup_data +0258/8 2.10+ pref_address Preferred loading address +0260/4 2.10+ init_size Linear memory required during initialization (1) For backwards compatibility, if the setup_sects field contains 0, the real value is 4. @@ -190,6 +197,8 @@ Offset Proto Name Meaning field are unusable, which means the size of a bzImage kernel cannot be determined. +(3) Ignored, but safe to set, for boot protocols 2.02-2.09. + If the "HdrS" (0x53726448) magic number is not found at offset 0x202, the boot protocol version is "old". Loading an old kernel, the following parameters should be assumed: @@ -343,18 +352,32 @@ Protocol: 2.00+ 0xTV here, where T is an identifier for the boot loader and V is a version number. Otherwise, enter 0xFF here. + For boot loader IDs above T = 0xD, write T = 0xE to this field and + write the extended ID minus 0x10 to the ext_loader_type field. + Similarly, the ext_loader_ver field can be used to provide more than + four bits for the bootloader version. + + For example, for T = 0x15, V = 0x234, write: + + type_of_loader <- 0xE4 + ext_loader_type <- 0x05 + ext_loader_ver <- 0x23 + Assigned boot loader ids: 0 LILO (0x00 reserved for pre-2.00 bootloader) 1 Loadlin 2 bootsect-loader (0x20, all other values reserved) - 3 SYSLINUX - 4 EtherBoot + 3 Syslinux + 4 Etherboot/gPXE 5 ELILO 7 GRUB - 8 U-BOOT + 8 U-Boot 9 Xen A Gujin B Qemu + C Arcturus Networks uCbootloader + E Extended (see ext_loader_type) + F Special (0xFF = undefined) Please contact <hpa@zytor.com> if you need a bootloader ID value assigned. @@ -453,6 +476,35 @@ Protocol: 2.01+ Set this field to the offset (from the beginning of the real-mode code) of the end of the setup stack/heap, minus 0x0200. +Field name: ext_loader_ver +Type: write (optional) +Offset/size: 0x226/1 +Protocol: 2.02+ + + This field is used as an extension of the version number in the + type_of_loader field. The total version number is considered to be + (type_of_loader & 0x0f) + (ext_loader_ver << 4). + + The use of this field is boot loader specific. If not written, it + is zero. + + Kernels prior to 2.6.31 did not recognize this field, but it is safe + to write for protocol version 2.02 or higher. + +Field name: ext_loader_type +Type: write (obligatory if (type_of_loader & 0xf0) == 0xe0) +Offset/size: 0x227/1 +Protocol: 2.02+ + + This field is used as an extension of the type number in + type_of_loader field. If the type in type_of_loader is 0xE, then + the actual type is (ext_loader_type + 0x10). + + This field is ignored if the type in type_of_loader is not 0xE. + + Kernels prior to 2.6.31 did not recognize this field, but it is safe + to write for protocol version 2.02 or higher. + Field name: cmd_line_ptr Type: write (obligatory) Offset/size: 0x228/4 @@ -482,11 +534,19 @@ Protocol: 2.03+ 0x37FFFFFF, you can start your ramdisk at 0x37FE0000.) Field name: kernel_alignment -Type: read (reloc) +Type: read/modify (reloc) Offset/size: 0x230/4 -Protocol: 2.05+ +Protocol: 2.05+ (read), 2.10+ (modify) + + Alignment unit required by the kernel (if relocatable_kernel is + true.) A relocatable kernel that is loaded at an alignment + incompatible with the value in this field will be realigned during + kernel initialization. - Alignment unit required by the kernel (if relocatable_kernel is true.) + Starting with protocol version 2.10, this reflects the kernel + alignment preferred for optimal performance; it is possible for the + loader to modify this field to permit a lesser alignment. See the + min_alignment and pref_address field below. Field name: relocatable_kernel Type: read (reloc) @@ -498,6 +558,22 @@ Protocol: 2.05+ After loading, the boot loader must set the code32_start field to point to the loaded code, or to a boot loader hook. +Field name: min_alignment +Type: read (reloc) +Offset/size: 0x235/1 +Protocol: 2.10+ + + This field, if nonzero, indicates as a power of two the minimum + alignment required, as opposed to preferred, by the kernel to boot. + If a boot loader makes use of this field, it should update the + kernel_alignment field with the alignment unit desired; typically: + + kernel_alignment = 1 << min_alignment + + There may be a considerable performance cost with an excessively + misaligned kernel. Therefore, a loader should typically try each + power-of-two alignment from kernel_alignment down to this alignment. + Field name: cmdline_size Type: read Offset/size: 0x238/4 @@ -582,6 +658,36 @@ Protocol: 2.09+ sure to consider the case where the linked list already contains entries. +Field name: pref_address +Type: read (reloc) +Offset/size: 0x258/8 +Protocol: 2.10+ + + This field, if nonzero, represents a preferred load address for the + kernel. A relocating bootloader should attempt to load at this + address if possible. + + A non-relocatable kernel will unconditionally move itself and to run + at this address. + +Field name: init_size +Type: read +Offset/size: 0x25c/4 + + This field indicates the amount of linear contiguous memory starting + at the kernel runtime start address that the kernel needs before it + is capable of examining its memory map. This is not the same thing + as the total amount of memory the kernel needs to boot, but it can + be used by a relocating boot loader to help select a safe load + address for the kernel. + + The kernel runtime start address is determined by the following algorithm: + + if (relocatable_kernel) + runtime_start = align_up(load_address, kernel_alignment) + else + runtime_start = pref_address + **** THE IMAGE CHECKSUM diff --git a/Documentation/x86/x86_64/boot-options.txt b/Documentation/x86/x86_64/boot-options.txt index 34c13040a718..2db5893d6c97 100644 --- a/Documentation/x86/x86_64/boot-options.txt +++ b/Documentation/x86/x86_64/boot-options.txt @@ -150,11 +150,6 @@ NUMA Otherwise, the remaining system RAM is allocated to an additional node. - numa=hotadd=percent - Only allow hotadd memory to preallocate page structures upto - percent of already available memory. - numa=hotadd=0 will disable hotadd memory. - ACPI acpi=off Don't enable ACPI diff --git a/Documentation/x86/x86_64/mm.txt b/Documentation/x86/x86_64/mm.txt index 29b52b14d0b4..d6498e3cd713 100644 --- a/Documentation/x86/x86_64/mm.txt +++ b/Documentation/x86/x86_64/mm.txt @@ -6,10 +6,11 @@ Virtual memory map with 4 level page tables: 0000000000000000 - 00007fffffffffff (=47 bits) user space, different per mm hole caused by [48:63] sign extension ffff800000000000 - ffff80ffffffffff (=40 bits) guard hole -ffff880000000000 - ffffc0ffffffffff (=57 TB) direct mapping of all phys. memory -ffffc10000000000 - ffffc1ffffffffff (=40 bits) hole -ffffc20000000000 - ffffe1ffffffffff (=45 bits) vmalloc/ioremap space -ffffe20000000000 - ffffe2ffffffffff (=40 bits) virtual memory map (1TB) +ffff880000000000 - ffffc7ffffffffff (=64 TB) direct mapping of all phys. memory +ffffc80000000000 - ffffc8ffffffffff (=40 bits) hole +ffffc90000000000 - ffffe8ffffffffff (=45 bits) vmalloc/ioremap space +ffffe90000000000 - ffffe9ffffffffff (=40 bits) hole +ffffea0000000000 - ffffeaffffffffff (=40 bits) virtual memory map (1TB) ... unused hole ... ffffffff80000000 - ffffffffa0000000 (=512 MB) kernel text mapping, from phys 0 ffffffffa0000000 - fffffffffff00000 (=1536 MB) module mapping space |