diff options
Diffstat (limited to 'arch/alpha')
-rw-r--r-- | arch/alpha/include/asm/barrier.h | 59 | ||||
-rw-r--r-- | arch/alpha/include/asm/rwonce.h | 35 |
2 files changed, 40 insertions, 54 deletions
diff --git a/arch/alpha/include/asm/barrier.h b/arch/alpha/include/asm/barrier.h index 92ec486a4f9e..c56bfffc9918 100644 --- a/arch/alpha/include/asm/barrier.h +++ b/arch/alpha/include/asm/barrier.h @@ -2,64 +2,15 @@ #ifndef __BARRIER_H #define __BARRIER_H -#include <asm/compiler.h> - #define mb() __asm__ __volatile__("mb": : :"memory") #define rmb() __asm__ __volatile__("mb": : :"memory") #define wmb() __asm__ __volatile__("wmb": : :"memory") -/** - * read_barrier_depends - Flush all pending reads that subsequents reads - * depend on. - * - * No data-dependent reads from memory-like regions are ever reordered - * over this barrier. All reads preceding this primitive are guaranteed - * to access memory (but not necessarily other CPUs' caches) before any - * reads following this primitive that depend on the data return by - * any of the preceding reads. This primitive is much lighter weight than - * rmb() on most CPUs, and is never heavier weight than is - * rmb(). - * - * These ordering constraints are respected by both the local CPU - * and the compiler. - * - * Ordering is not guaranteed by anything other than these primitives, - * not even by data dependencies. See the documentation for - * memory_barrier() for examples and URLs to more information. - * - * For example, the following code would force ordering (the initial - * value of "a" is zero, "b" is one, and "p" is "&a"): - * - * <programlisting> - * CPU 0 CPU 1 - * - * b = 2; - * memory_barrier(); - * p = &b; q = p; - * read_barrier_depends(); - * d = *q; - * </programlisting> - * - * because the read of "*q" depends on the read of "p" and these - * two reads are separated by a read_barrier_depends(). However, - * the following code, with the same initial values for "a" and "b": - * - * <programlisting> - * CPU 0 CPU 1 - * - * a = 2; - * memory_barrier(); - * b = 3; y = b; - * read_barrier_depends(); - * x = a; - * </programlisting> - * - * does not enforce ordering, since there is no data dependency between - * the read of "a" and the read of "b". Therefore, on some CPUs, such - * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb() - * in cases like this where there are no data dependencies. - */ -#define read_barrier_depends() __asm__ __volatile__("mb": : :"memory") +#define __smp_load_acquire(p) \ +({ \ + compiletime_assert_atomic_type(*p); \ + __READ_ONCE(*p); \ +}) #ifdef CONFIG_SMP #define __ASM_SMP_MB "\tmb\n" diff --git a/arch/alpha/include/asm/rwonce.h b/arch/alpha/include/asm/rwonce.h new file mode 100644 index 000000000000..35542bcf92b3 --- /dev/null +++ b/arch/alpha/include/asm/rwonce.h @@ -0,0 +1,35 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (C) 2019 Google LLC. + */ +#ifndef __ASM_RWONCE_H +#define __ASM_RWONCE_H + +#ifdef CONFIG_SMP + +#include <asm/barrier.h> + +/* + * Alpha is apparently daft enough to reorder address-dependent loads + * on some CPU implementations. Knock some common sense into it with + * a memory barrier in READ_ONCE(). + * + * For the curious, more information about this unusual reordering is + * available in chapter 15 of the "perfbook": + * + * https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html + * + */ +#define __READ_ONCE(x) \ +({ \ + __unqual_scalar_typeof(x) __x = \ + (*(volatile typeof(__x) *)(&(x))); \ + mb(); \ + (typeof(x))__x; \ +}) + +#endif /* CONFIG_SMP */ + +#include <asm-generic/rwonce.h> + +#endif /* __ASM_RWONCE_H */ |