diff options
Diffstat (limited to 'arch/arm64/kvm/nested.c')
-rw-r--r-- | arch/arm64/kvm/nested.c | 1002 |
1 files changed, 882 insertions, 120 deletions
diff --git a/arch/arm64/kvm/nested.c b/arch/arm64/kvm/nested.c index bae8536cbf00..de789e0f1ae9 100644 --- a/arch/arm64/kvm/nested.c +++ b/arch/arm64/kvm/nested.c @@ -4,10 +4,13 @@ * Author: Jintack Lim <jintack.lim@linaro.org> */ +#include <linux/bitfield.h> #include <linux/kvm.h> #include <linux/kvm_host.h> +#include <asm/kvm_arm.h> #include <asm/kvm_emulate.h> +#include <asm/kvm_mmu.h> #include <asm/kvm_nested.h> #include <asm/sysreg.h> @@ -17,149 +20,910 @@ #define NV_FTR(r, f) ID_AA64##r##_EL1_##f /* - * Our emulated CPU doesn't support all the possible features. For the - * sake of simplicity (and probably mental sanity), wipe out a number - * of feature bits we don't intend to support for the time being. - * This list should get updated as new features get added to the NV - * support, and new extension to the architecture. + * Ratio of live shadow S2 MMU per vcpu. This is a trade-off between + * memory usage and potential number of different sets of S2 PTs in + * the guests. Running out of S2 MMUs only affects performance (we + * will invalidate them more often). */ -static u64 limit_nv_id_reg(u32 id, u64 val) +#define S2_MMU_PER_VCPU 2 + +void kvm_init_nested(struct kvm *kvm) { - u64 tmp; + kvm->arch.nested_mmus = NULL; + kvm->arch.nested_mmus_size = 0; +} - switch (id) { - case SYS_ID_AA64ISAR0_EL1: - /* Support everything but TME, O.S. and Range TLBIs */ - val &= ~(NV_FTR(ISAR0, TLB) | - NV_FTR(ISAR0, TME)); - break; +static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) +{ + /* + * We only initialise the IPA range on the canonical MMU, which + * defines the contract between KVM and userspace on where the + * "hardware" is in the IPA space. This affects the validity of MMIO + * exits forwarded to userspace, for example. + * + * For nested S2s, we use the PARange as exposed to the guest, as it + * is allowed to use it at will to expose whatever memory map it + * wants to its own guests as it would be on real HW. + */ + return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm)); +} - case SYS_ID_AA64ISAR1_EL1: - /* Support everything but Spec Invalidation */ - val &= ~(GENMASK_ULL(63, 56) | - NV_FTR(ISAR1, SPECRES)); - break; +int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu) +{ + struct kvm *kvm = vcpu->kvm; + struct kvm_s2_mmu *tmp; + int num_mmus, ret = 0; + + /* + * Let's treat memory allocation failures as benign: If we fail to + * allocate anything, return an error and keep the allocated array + * alive. Userspace may try to recover by intializing the vcpu + * again, and there is no reason to affect the whole VM for this. + */ + num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU; + tmp = kvrealloc(kvm->arch.nested_mmus, + size_mul(sizeof(*kvm->arch.nested_mmus), kvm->arch.nested_mmus_size), + size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus), + GFP_KERNEL_ACCOUNT | __GFP_ZERO); + if (!tmp) + return -ENOMEM; + + /* + * If we went through a realocation, adjust the MMU back-pointers in + * the previously initialised kvm_pgtable structures. + */ + if (kvm->arch.nested_mmus != tmp) + for (int i = 0; i < kvm->arch.nested_mmus_size; i++) + tmp[i].pgt->mmu = &tmp[i]; + + for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++) + ret = init_nested_s2_mmu(kvm, &tmp[i]); + + if (ret) { + for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++) + kvm_free_stage2_pgd(&tmp[i]); + + return ret; + } - case SYS_ID_AA64PFR0_EL1: - /* No AMU, MPAM, S-EL2, RAS or SVE */ - val &= ~(GENMASK_ULL(55, 52) | - NV_FTR(PFR0, AMU) | - NV_FTR(PFR0, MPAM) | - NV_FTR(PFR0, SEL2) | - NV_FTR(PFR0, RAS) | - NV_FTR(PFR0, SVE) | - NV_FTR(PFR0, EL3) | - NV_FTR(PFR0, EL2) | - NV_FTR(PFR0, EL1)); - /* 64bit EL1/EL2/EL3 only */ - val |= FIELD_PREP(NV_FTR(PFR0, EL1), 0b0001); - val |= FIELD_PREP(NV_FTR(PFR0, EL2), 0b0001); - val |= FIELD_PREP(NV_FTR(PFR0, EL3), 0b0001); + kvm->arch.nested_mmus_size = num_mmus; + kvm->arch.nested_mmus = tmp; + + return 0; +} + +struct s2_walk_info { + int (*read_desc)(phys_addr_t pa, u64 *desc, void *data); + void *data; + u64 baddr; + unsigned int max_oa_bits; + unsigned int pgshift; + unsigned int sl; + unsigned int t0sz; + bool be; +}; + +static unsigned int ps_to_output_size(unsigned int ps) +{ + switch (ps) { + case 0: return 32; + case 1: return 36; + case 2: return 40; + case 3: return 42; + case 4: return 44; + case 5: + default: + return 48; + } +} + +static u32 compute_fsc(int level, u32 fsc) +{ + return fsc | (level & 0x3); +} + +static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc) +{ + u32 esr; + + esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC; + esr |= compute_fsc(level, fsc); + return esr; +} + +static int get_ia_size(struct s2_walk_info *wi) +{ + return 64 - wi->t0sz; +} + +static int check_base_s2_limits(struct s2_walk_info *wi, + int level, int input_size, int stride) +{ + int start_size, ia_size; + + ia_size = get_ia_size(wi); + + /* Check translation limits */ + switch (BIT(wi->pgshift)) { + case SZ_64K: + if (level == 0 || (level == 1 && ia_size <= 42)) + return -EFAULT; break; + case SZ_16K: + if (level == 0 || (level == 1 && ia_size <= 40)) + return -EFAULT; + break; + case SZ_4K: + if (level < 0 || (level == 0 && ia_size <= 42)) + return -EFAULT; + break; + } + + /* Check input size limits */ + if (input_size > ia_size) + return -EFAULT; + + /* Check number of entries in starting level table */ + start_size = input_size - ((3 - level) * stride + wi->pgshift); + if (start_size < 1 || start_size > stride + 4) + return -EFAULT; + + return 0; +} + +/* Check if output is within boundaries */ +static int check_output_size(struct s2_walk_info *wi, phys_addr_t output) +{ + unsigned int output_size = wi->max_oa_bits; + + if (output_size != 48 && (output & GENMASK_ULL(47, output_size))) + return -1; + + return 0; +} - case SYS_ID_AA64PFR1_EL1: - /* Only support BTI, SSBS, CSV2_frac */ - val &= (NV_FTR(PFR1, BT) | - NV_FTR(PFR1, SSBS) | - NV_FTR(PFR1, CSV2_frac)); +/* + * This is essentially a C-version of the pseudo code from the ARM ARM + * AArch64.TranslationTableWalk function. I strongly recommend looking at + * that pseudocode in trying to understand this. + * + * Must be called with the kvm->srcu read lock held + */ +static int walk_nested_s2_pgd(phys_addr_t ipa, + struct s2_walk_info *wi, struct kvm_s2_trans *out) +{ + int first_block_level, level, stride, input_size, base_lower_bound; + phys_addr_t base_addr; + unsigned int addr_top, addr_bottom; + u64 desc; /* page table entry */ + int ret; + phys_addr_t paddr; + + switch (BIT(wi->pgshift)) { + default: + case SZ_64K: + case SZ_16K: + level = 3 - wi->sl; + first_block_level = 2; break; + case SZ_4K: + level = 2 - wi->sl; + first_block_level = 1; + break; + } + + stride = wi->pgshift - 3; + input_size = get_ia_size(wi); + if (input_size > 48 || input_size < 25) + return -EFAULT; + + ret = check_base_s2_limits(wi, level, input_size, stride); + if (WARN_ON(ret)) + return ret; + + base_lower_bound = 3 + input_size - ((3 - level) * stride + + wi->pgshift); + base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound); + + if (check_output_size(wi, base_addr)) { + out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); + return 1; + } + + addr_top = input_size - 1; + + while (1) { + phys_addr_t index; + + addr_bottom = (3 - level) * stride + wi->pgshift; + index = (ipa & GENMASK_ULL(addr_top, addr_bottom)) + >> (addr_bottom - 3); + + paddr = base_addr | index; + ret = wi->read_desc(paddr, &desc, wi->data); + if (ret < 0) + return ret; - case SYS_ID_AA64MMFR0_EL1: - /* Hide ECV, ExS, Secure Memory */ - val &= ~(NV_FTR(MMFR0, ECV) | - NV_FTR(MMFR0, EXS) | - NV_FTR(MMFR0, TGRAN4_2) | - NV_FTR(MMFR0, TGRAN16_2) | - NV_FTR(MMFR0, TGRAN64_2) | - NV_FTR(MMFR0, SNSMEM)); - - /* Disallow unsupported S2 page sizes */ - switch (PAGE_SIZE) { - case SZ_64K: - val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0001); - fallthrough; - case SZ_16K: - val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0001); - fallthrough; - case SZ_4K: - /* Support everything */ - break; - } /* - * Since we can't support a guest S2 page size smaller than - * the host's own page size (due to KVM only populating its - * own S2 using the kernel's page size), advertise the - * limitation using FEAT_GTG. + * Handle reversedescriptors if endianness differs between the + * host and the guest hypervisor. */ - switch (PAGE_SIZE) { - case SZ_4K: - val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0010); - fallthrough; - case SZ_16K: - val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0010); - fallthrough; - case SZ_64K: - val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN64_2), 0b0010); + if (wi->be) + desc = be64_to_cpu((__force __be64)desc); + else + desc = le64_to_cpu((__force __le64)desc); + + /* Check for valid descriptor at this point */ + if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) { + out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT); + out->upper_attr = desc; + return 1; + } + + /* We're at the final level or block translation level */ + if ((desc & 3) == 1 || level == 3) + break; + + if (check_output_size(wi, desc)) { + out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); + out->upper_attr = desc; + return 1; + } + + base_addr = desc & GENMASK_ULL(47, wi->pgshift); + + level += 1; + addr_top = addr_bottom - 1; + } + + if (level < first_block_level) { + out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT); + out->upper_attr = desc; + return 1; + } + + /* + * We don't use the contiguous bit in the stage-2 ptes, so skip check + * for misprogramming of the contiguous bit. + */ + + if (check_output_size(wi, desc)) { + out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); + out->upper_attr = desc; + return 1; + } + + if (!(desc & BIT(10))) { + out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS); + out->upper_attr = desc; + return 1; + } + + /* Calculate and return the result */ + paddr = (desc & GENMASK_ULL(47, addr_bottom)) | + (ipa & GENMASK_ULL(addr_bottom - 1, 0)); + out->output = paddr; + out->block_size = 1UL << ((3 - level) * stride + wi->pgshift); + out->readable = desc & (0b01 << 6); + out->writable = desc & (0b10 << 6); + out->level = level; + out->upper_attr = desc & GENMASK_ULL(63, 52); + return 0; +} + +static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data) +{ + struct kvm_vcpu *vcpu = data; + + return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc)); +} + +static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi) +{ + wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK; + + switch (vtcr & VTCR_EL2_TG0_MASK) { + case VTCR_EL2_TG0_4K: + wi->pgshift = 12; break; + case VTCR_EL2_TG0_16K: + wi->pgshift = 14; break; + case VTCR_EL2_TG0_64K: + default: /* IMPDEF: treat any other value as 64k */ + wi->pgshift = 16; break; + } + + wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); + /* Global limit for now, should eventually be per-VM */ + wi->max_oa_bits = min(get_kvm_ipa_limit(), + ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr))); +} + +int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa, + struct kvm_s2_trans *result) +{ + u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2); + struct s2_walk_info wi; + int ret; + + result->esr = 0; + + if (!vcpu_has_nv(vcpu)) + return 0; + + wi.read_desc = read_guest_s2_desc; + wi.data = vcpu; + wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); + + vtcr_to_walk_info(vtcr, &wi); + + wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE; + + ret = walk_nested_s2_pgd(gipa, &wi, result); + if (ret) + result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC); + + return ret; +} + +static unsigned int ttl_to_size(u8 ttl) +{ + int level = ttl & 3; + int gran = (ttl >> 2) & 3; + unsigned int max_size = 0; + + switch (gran) { + case TLBI_TTL_TG_4K: + switch (level) { + case 0: + break; + case 1: + max_size = SZ_1G; + break; + case 2: + max_size = SZ_2M; + break; + case 3: + max_size = SZ_4K; break; } - /* Cap PARange to 48bits */ - tmp = FIELD_GET(NV_FTR(MMFR0, PARANGE), val); - if (tmp > 0b0101) { - val &= ~NV_FTR(MMFR0, PARANGE); - val |= FIELD_PREP(NV_FTR(MMFR0, PARANGE), 0b0101); + break; + case TLBI_TTL_TG_16K: + switch (level) { + case 0: + case 1: + break; + case 2: + max_size = SZ_32M; + break; + case 3: + max_size = SZ_16K; + break; } break; - - case SYS_ID_AA64MMFR1_EL1: - val &= (NV_FTR(MMFR1, HCX) | - NV_FTR(MMFR1, PAN) | - NV_FTR(MMFR1, LO) | - NV_FTR(MMFR1, HPDS) | - NV_FTR(MMFR1, VH) | - NV_FTR(MMFR1, VMIDBits)); + case TLBI_TTL_TG_64K: + switch (level) { + case 0: + case 1: + /* No 52bit IPA support */ + break; + case 2: + max_size = SZ_512M; + break; + case 3: + max_size = SZ_64K; + break; + } + break; + default: /* No size information */ break; + } - case SYS_ID_AA64MMFR2_EL1: - val &= ~(NV_FTR(MMFR2, BBM) | - NV_FTR(MMFR2, TTL) | - GENMASK_ULL(47, 44) | - NV_FTR(MMFR2, ST) | - NV_FTR(MMFR2, CCIDX) | - NV_FTR(MMFR2, VARange)); + return max_size; +} - /* Force TTL support */ - val |= FIELD_PREP(NV_FTR(MMFR2, TTL), 0b0001); +/* + * Compute the equivalent of the TTL field by parsing the shadow PT. The + * granule size is extracted from the cached VTCR_EL2.TG0 while the level is + * retrieved from first entry carrying the level as a tag. + */ +static u8 get_guest_mapping_ttl(struct kvm_s2_mmu *mmu, u64 addr) +{ + u64 tmp, sz = 0, vtcr = mmu->tlb_vtcr; + kvm_pte_t pte; + u8 ttl, level; + + lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(mmu)->mmu_lock); + + switch (vtcr & VTCR_EL2_TG0_MASK) { + case VTCR_EL2_TG0_4K: + ttl = (TLBI_TTL_TG_4K << 2); + break; + case VTCR_EL2_TG0_16K: + ttl = (TLBI_TTL_TG_16K << 2); break; + case VTCR_EL2_TG0_64K: + default: /* IMPDEF: treat any other value as 64k */ + ttl = (TLBI_TTL_TG_64K << 2); + break; + } - case SYS_ID_AA64MMFR4_EL1: - val = 0; - if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1)) - val |= FIELD_PREP(NV_FTR(MMFR4, E2H0), - ID_AA64MMFR4_EL1_E2H0_NI_NV1); + tmp = addr; + +again: + /* Iteratively compute the block sizes for a particular granule size */ + switch (vtcr & VTCR_EL2_TG0_MASK) { + case VTCR_EL2_TG0_4K: + if (sz < SZ_4K) sz = SZ_4K; + else if (sz < SZ_2M) sz = SZ_2M; + else if (sz < SZ_1G) sz = SZ_1G; + else sz = 0; + break; + case VTCR_EL2_TG0_16K: + if (sz < SZ_16K) sz = SZ_16K; + else if (sz < SZ_32M) sz = SZ_32M; + else sz = 0; break; + case VTCR_EL2_TG0_64K: + default: /* IMPDEF: treat any other value as 64k */ + if (sz < SZ_64K) sz = SZ_64K; + else if (sz < SZ_512M) sz = SZ_512M; + else sz = 0; + break; + } + + if (sz == 0) + return 0; + + tmp &= ~(sz - 1); + if (kvm_pgtable_get_leaf(mmu->pgt, tmp, &pte, NULL)) + goto again; + if (!(pte & PTE_VALID)) + goto again; + level = FIELD_GET(KVM_NV_GUEST_MAP_SZ, pte); + if (!level) + goto again; + + ttl |= level; - case SYS_ID_AA64DFR0_EL1: - /* Only limited support for PMU, Debug, BPs and WPs */ - val &= (NV_FTR(DFR0, PMUVer) | - NV_FTR(DFR0, WRPs) | - NV_FTR(DFR0, BRPs) | - NV_FTR(DFR0, DebugVer)); - - /* Cap Debug to ARMv8.1 */ - tmp = FIELD_GET(NV_FTR(DFR0, DebugVer), val); - if (tmp > 0b0111) { - val &= ~NV_FTR(DFR0, DebugVer); - val |= FIELD_PREP(NV_FTR(DFR0, DebugVer), 0b0111); + /* + * We now have found some level information in the shadow S2. Check + * that the resulting range is actually including the original IPA. + */ + sz = ttl_to_size(ttl); + if (addr < (tmp + sz)) + return ttl; + + return 0; +} + +unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val) +{ + struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); + unsigned long max_size; + u8 ttl; + + ttl = FIELD_GET(TLBI_TTL_MASK, val); + + if (!ttl || !kvm_has_feat(kvm, ID_AA64MMFR2_EL1, TTL, IMP)) { + /* No TTL, check the shadow S2 for a hint */ + u64 addr = (val & GENMASK_ULL(35, 0)) << 12; + ttl = get_guest_mapping_ttl(mmu, addr); + } + + max_size = ttl_to_size(ttl); + + if (!max_size) { + /* Compute the maximum extent of the invalidation */ + switch (mmu->tlb_vtcr & VTCR_EL2_TG0_MASK) { + case VTCR_EL2_TG0_4K: + max_size = SZ_1G; + break; + case VTCR_EL2_TG0_16K: + max_size = SZ_32M; + break; + case VTCR_EL2_TG0_64K: + default: /* IMPDEF: treat any other value as 64k */ + /* + * No, we do not support 52bit IPA in nested yet. Once + * we do, this should be 4TB. + */ + max_size = SZ_512M; + break; } - break; + } - default: - /* Unknown register, just wipe it clean */ - val = 0; + WARN_ON(!max_size); + return max_size; +} + +/* + * We can have multiple *different* MMU contexts with the same VMID: + * + * - S2 being enabled or not, hence differing by the HCR_EL2.VM bit + * + * - Multiple vcpus using private S2s (huh huh...), hence differing by the + * VBBTR_EL2.BADDR address + * + * - A combination of the above... + * + * We can always identify which MMU context to pick at run-time. However, + * TLB invalidation involving a VMID must take action on all the TLBs using + * this particular VMID. This translates into applying the same invalidation + * operation to all the contexts that are using this VMID. Moar phun! + */ +void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid, + const union tlbi_info *info, + void (*tlbi_callback)(struct kvm_s2_mmu *, + const union tlbi_info *)) +{ + write_lock(&kvm->mmu_lock); + + for (int i = 0; i < kvm->arch.nested_mmus_size; i++) { + struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; + + if (!kvm_s2_mmu_valid(mmu)) + continue; + + if (vmid == get_vmid(mmu->tlb_vttbr)) + tlbi_callback(mmu, info); + } + + write_unlock(&kvm->mmu_lock); +} + +struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu) +{ + struct kvm *kvm = vcpu->kvm; + bool nested_stage2_enabled; + u64 vttbr, vtcr, hcr; + + lockdep_assert_held_write(&kvm->mmu_lock); + + vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); + vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2); + hcr = vcpu_read_sys_reg(vcpu, HCR_EL2); + + nested_stage2_enabled = hcr & HCR_VM; + + /* Don't consider the CnP bit for the vttbr match */ + vttbr &= ~VTTBR_CNP_BIT; + + /* + * Two possibilities when looking up a S2 MMU context: + * + * - either S2 is enabled in the guest, and we need a context that is + * S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR, + * which makes it safe from a TLB conflict perspective (a broken + * guest won't be able to generate them), + * + * - or S2 is disabled, and we need a context that is S2-disabled + * and matches the VMID only, as all TLBs are tagged by VMID even + * if S2 translation is disabled. + */ + for (int i = 0; i < kvm->arch.nested_mmus_size; i++) { + struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; + + if (!kvm_s2_mmu_valid(mmu)) + continue; + + if (nested_stage2_enabled && + mmu->nested_stage2_enabled && + vttbr == mmu->tlb_vttbr && + vtcr == mmu->tlb_vtcr) + return mmu; + + if (!nested_stage2_enabled && + !mmu->nested_stage2_enabled && + get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr)) + return mmu; + } + return NULL; +} + +static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu) +{ + struct kvm *kvm = vcpu->kvm; + struct kvm_s2_mmu *s2_mmu; + int i; + + lockdep_assert_held_write(&vcpu->kvm->mmu_lock); + + s2_mmu = lookup_s2_mmu(vcpu); + if (s2_mmu) + goto out; + + /* + * Make sure we don't always search from the same point, or we + * will always reuse a potentially active context, leaving + * free contexts unused. + */ + for (i = kvm->arch.nested_mmus_next; + i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next); + i++) { + s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size]; + + if (atomic_read(&s2_mmu->refcnt) == 0) + break; + } + BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */ + + /* Set the scene for the next search */ + kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size; + + /* Clear the old state */ + if (kvm_s2_mmu_valid(s2_mmu)) + kvm_stage2_unmap_range(s2_mmu, 0, kvm_phys_size(s2_mmu)); + + /* + * The virtual VMID (modulo CnP) will be used as a key when matching + * an existing kvm_s2_mmu. + * + * We cache VTCR at allocation time, once and for all. It'd be great + * if the guest didn't screw that one up, as this is not very + * forgiving... + */ + s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT; + s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2); + s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM; + +out: + atomic_inc(&s2_mmu->refcnt); + return s2_mmu; +} + +void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu) +{ + /* CnP being set denotes an invalid entry */ + mmu->tlb_vttbr = VTTBR_CNP_BIT; + mmu->nested_stage2_enabled = false; + atomic_set(&mmu->refcnt, 0); +} + +void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu) +{ + if (is_hyp_ctxt(vcpu)) { + vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; + } else { + write_lock(&vcpu->kvm->mmu_lock); + vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu); + write_unlock(&vcpu->kvm->mmu_lock); + } +} + +void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu) +{ + if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu)) { + atomic_dec(&vcpu->arch.hw_mmu->refcnt); + vcpu->arch.hw_mmu = NULL; + } +} + +/* + * Returns non-zero if permission fault is handled by injecting it to the next + * level hypervisor. + */ +int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans) +{ + bool forward_fault = false; + + trans->esr = 0; + + if (!kvm_vcpu_trap_is_permission_fault(vcpu)) + return 0; + + if (kvm_vcpu_trap_is_iabt(vcpu)) { + forward_fault = !kvm_s2_trans_executable(trans); + } else { + bool write_fault = kvm_is_write_fault(vcpu); + + forward_fault = ((write_fault && !trans->writable) || + (!write_fault && !trans->readable)); + } + + if (forward_fault) + trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM); + + return forward_fault; +} + +int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2) +{ + vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2); + vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2); + + return kvm_inject_nested_sync(vcpu, esr_el2); +} + +void kvm_nested_s2_wp(struct kvm *kvm) +{ + int i; + + lockdep_assert_held_write(&kvm->mmu_lock); + + for (i = 0; i < kvm->arch.nested_mmus_size; i++) { + struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; + + if (kvm_s2_mmu_valid(mmu)) + kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu)); + } +} + +void kvm_nested_s2_unmap(struct kvm *kvm) +{ + int i; + + lockdep_assert_held_write(&kvm->mmu_lock); + + for (i = 0; i < kvm->arch.nested_mmus_size; i++) { + struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; + + if (kvm_s2_mmu_valid(mmu)) + kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu)); + } +} + +void kvm_nested_s2_flush(struct kvm *kvm) +{ + int i; + + lockdep_assert_held_write(&kvm->mmu_lock); + + for (i = 0; i < kvm->arch.nested_mmus_size; i++) { + struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; + + if (kvm_s2_mmu_valid(mmu)) + kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu)); + } +} + +void kvm_arch_flush_shadow_all(struct kvm *kvm) +{ + int i; + + for (i = 0; i < kvm->arch.nested_mmus_size; i++) { + struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; + + if (!WARN_ON(atomic_read(&mmu->refcnt))) + kvm_free_stage2_pgd(mmu); + } + kfree(kvm->arch.nested_mmus); + kvm->arch.nested_mmus = NULL; + kvm->arch.nested_mmus_size = 0; + kvm_uninit_stage2_mmu(kvm); +} + +/* + * Our emulated CPU doesn't support all the possible features. For the + * sake of simplicity (and probably mental sanity), wipe out a number + * of feature bits we don't intend to support for the time being. + * This list should get updated as new features get added to the NV + * support, and new extension to the architecture. + */ +static void limit_nv_id_regs(struct kvm *kvm) +{ + u64 val, tmp; + + /* Support everything but TME */ + val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64ISAR0_EL1); + val &= ~NV_FTR(ISAR0, TME); + kvm_set_vm_id_reg(kvm, SYS_ID_AA64ISAR0_EL1, val); + + /* Support everything but Spec Invalidation and LS64 */ + val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64ISAR1_EL1); + val &= ~(NV_FTR(ISAR1, LS64) | + NV_FTR(ISAR1, SPECRES)); + kvm_set_vm_id_reg(kvm, SYS_ID_AA64ISAR1_EL1, val); + + /* No AMU, MPAM, S-EL2, or RAS */ + val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1); + val &= ~(GENMASK_ULL(55, 52) | + NV_FTR(PFR0, AMU) | + NV_FTR(PFR0, MPAM) | + NV_FTR(PFR0, SEL2) | + NV_FTR(PFR0, RAS) | + NV_FTR(PFR0, EL3) | + NV_FTR(PFR0, EL2) | + NV_FTR(PFR0, EL1)); + /* 64bit EL1/EL2/EL3 only */ + val |= FIELD_PREP(NV_FTR(PFR0, EL1), 0b0001); + val |= FIELD_PREP(NV_FTR(PFR0, EL2), 0b0001); + val |= FIELD_PREP(NV_FTR(PFR0, EL3), 0b0001); + kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1, val); + + /* Only support BTI, SSBS, CSV2_frac */ + val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR1_EL1); + val &= (NV_FTR(PFR1, BT) | + NV_FTR(PFR1, SSBS) | + NV_FTR(PFR1, CSV2_frac)); + kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR1_EL1, val); + + /* Hide ECV, ExS, Secure Memory */ + val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR0_EL1); + val &= ~(NV_FTR(MMFR0, ECV) | + NV_FTR(MMFR0, EXS) | + NV_FTR(MMFR0, TGRAN4_2) | + NV_FTR(MMFR0, TGRAN16_2) | + NV_FTR(MMFR0, TGRAN64_2) | + NV_FTR(MMFR0, SNSMEM)); + + /* Disallow unsupported S2 page sizes */ + switch (PAGE_SIZE) { + case SZ_64K: + val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0001); + fallthrough; + case SZ_16K: + val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0001); + fallthrough; + case SZ_4K: + /* Support everything */ break; } + /* + * Since we can't support a guest S2 page size smaller than + * the host's own page size (due to KVM only populating its + * own S2 using the kernel's page size), advertise the + * limitation using FEAT_GTG. + */ + switch (PAGE_SIZE) { + case SZ_4K: + val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0010); + fallthrough; + case SZ_16K: + val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0010); + fallthrough; + case SZ_64K: + val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN64_2), 0b0010); + break; + } + /* Cap PARange to 48bits */ + tmp = FIELD_GET(NV_FTR(MMFR0, PARANGE), val); + if (tmp > 0b0101) { + val &= ~NV_FTR(MMFR0, PARANGE); + val |= FIELD_PREP(NV_FTR(MMFR0, PARANGE), 0b0101); + } + kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR0_EL1, val); + + val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR1_EL1); + val &= (NV_FTR(MMFR1, HCX) | + NV_FTR(MMFR1, PAN) | + NV_FTR(MMFR1, LO) | + NV_FTR(MMFR1, HPDS) | + NV_FTR(MMFR1, VH) | + NV_FTR(MMFR1, VMIDBits)); + kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR1_EL1, val); + + val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR2_EL1); + val &= ~(NV_FTR(MMFR2, BBM) | + NV_FTR(MMFR2, TTL) | + GENMASK_ULL(47, 44) | + NV_FTR(MMFR2, ST) | + NV_FTR(MMFR2, CCIDX) | + NV_FTR(MMFR2, VARange)); - return val; + /* Force TTL support */ + val |= FIELD_PREP(NV_FTR(MMFR2, TTL), 0b0001); + kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR2_EL1, val); + + val = 0; + if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1)) + val |= FIELD_PREP(NV_FTR(MMFR4, E2H0), + ID_AA64MMFR4_EL1_E2H0_NI_NV1); + kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR4_EL1, val); + + /* Only limited support for PMU, Debug, BPs and WPs */ + val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1); + val &= (NV_FTR(DFR0, PMUVer) | + NV_FTR(DFR0, WRPs) | + NV_FTR(DFR0, BRPs) | + NV_FTR(DFR0, DebugVer)); + + /* Cap Debug to ARMv8.1 */ + tmp = FIELD_GET(NV_FTR(DFR0, DebugVer), val); + if (tmp > 0b0111) { + val &= ~NV_FTR(DFR0, DebugVer); + val |= FIELD_PREP(NV_FTR(DFR0, DebugVer), 0b0111); + } + kvm_set_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1, val); } u64 kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu *vcpu, enum vcpu_sysreg sr) @@ -198,15 +962,13 @@ int kvm_init_nv_sysregs(struct kvm *kvm) goto out; kvm->arch.sysreg_masks = kzalloc(sizeof(*(kvm->arch.sysreg_masks)), - GFP_KERNEL); + GFP_KERNEL_ACCOUNT); if (!kvm->arch.sysreg_masks) { ret = -ENOMEM; goto out; } - for (int i = 0; i < KVM_ARM_ID_REG_NUM; i++) - kvm->arch.id_regs[i] = limit_nv_id_reg(IDX_IDREG(i), - kvm->arch.id_regs[i]); + limit_nv_id_regs(kvm); /* VTTBR_EL2 */ res0 = res1 = 0; |