diff options
Diffstat (limited to 'arch/cris/arch-v32/mach-a3/arbiter.c')
-rw-r--r-- | arch/cris/arch-v32/mach-a3/arbiter.c | 634 |
1 files changed, 634 insertions, 0 deletions
diff --git a/arch/cris/arch-v32/mach-a3/arbiter.c b/arch/cris/arch-v32/mach-a3/arbiter.c new file mode 100644 index 000000000000..8b924db71c9a --- /dev/null +++ b/arch/cris/arch-v32/mach-a3/arbiter.c @@ -0,0 +1,634 @@ +/* + * Memory arbiter functions. Allocates bandwidth through the + * arbiter and sets up arbiter breakpoints. + * + * The algorithm first assigns slots to the clients that has specified + * bandwidth (e.g. ethernet) and then the remaining slots are divided + * on all the active clients. + * + * Copyright (c) 2004-2007 Axis Communications AB. + * + * The artpec-3 has two arbiters. The memory hierarchy looks like this: + * + * + * CPU DMAs + * | | + * | | + * -------------- ------------------ + * | foo arbiter|----| Internal memory| + * -------------- ------------------ + * | + * -------------- + * | L2 cache | + * -------------- + * | + * h264 etc | + * | | + * | | + * -------------- + * | bar arbiter| + * -------------- + * | + * --------- + * | SDRAM | + * --------- + * + */ + +#include <hwregs/reg_map.h> +#include <hwregs/reg_rdwr.h> +#include <hwregs/marb_foo_defs.h> +#include <hwregs/marb_bar_defs.h> +#include <arbiter.h> +#include <hwregs/intr_vect.h> +#include <linux/interrupt.h> +#include <linux/irq.h> +#include <linux/signal.h> +#include <linux/errno.h> +#include <linux/spinlock.h> +#include <asm/io.h> +#include <asm/irq_regs.h> + +#define D(x) + +struct crisv32_watch_entry { + unsigned long instance; + watch_callback *cb; + unsigned long start; + unsigned long end; + int used; +}; + +#define NUMBER_OF_BP 4 +#define SDRAM_BANDWIDTH 400000000 +#define INTMEM_BANDWIDTH 400000000 +#define NBR_OF_SLOTS 64 +#define NBR_OF_REGIONS 2 +#define NBR_OF_CLIENTS 15 +#define ARBITERS 2 +#define UNASSIGNED 100 + +struct arbiter { + unsigned long instance; + int nbr_regions; + int nbr_clients; + int requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS]; + int active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS]; +}; + +static struct crisv32_watch_entry watches[ARBITERS][NUMBER_OF_BP] = +{ + { + {regi_marb_foo_bp0}, + {regi_marb_foo_bp1}, + {regi_marb_foo_bp2}, + {regi_marb_foo_bp3} + }, + { + {regi_marb_bar_bp0}, + {regi_marb_bar_bp1}, + {regi_marb_bar_bp2}, + {regi_marb_bar_bp3} + } +}; + +struct arbiter arbiters[ARBITERS] = +{ + { /* L2 cache arbiter */ + .instance = regi_marb_foo, + .nbr_regions = 2, + .nbr_clients = 15 + }, + { /* DDR2 arbiter */ + .instance = regi_marb_bar, + .nbr_regions = 1, + .nbr_clients = 9 + } +}; + +static int max_bandwidth[NBR_OF_REGIONS] = {SDRAM_BANDWIDTH, INTMEM_BANDWIDTH}; + +DEFINE_SPINLOCK(arbiter_lock); + +static irqreturn_t +crisv32_foo_arbiter_irq(int irq, void *dev_id); +static irqreturn_t +crisv32_bar_arbiter_irq(int irq, void *dev_id); + +/* + * "I'm the arbiter, I know the score. + * From square one I'll be watching all 64." + * (memory arbiter slots, that is) + * + * Or in other words: + * Program the memory arbiter slots for "region" according to what's + * in requested_slots[] and active_clients[], while minimizing + * latency. A caller may pass a non-zero positive amount for + * "unused_slots", which must then be the unallocated, remaining + * number of slots, free to hand out to any client. + */ + +static void crisv32_arbiter_config(int arbiter, int region, int unused_slots) +{ + int slot; + int client; + int interval = 0; + + /* + * This vector corresponds to the hardware arbiter slots (see + * the hardware documentation for semantics). We initialize + * each slot with a suitable sentinel value outside the valid + * range {0 .. NBR_OF_CLIENTS - 1} and replace them with + * client indexes. Then it's fed to the hardware. + */ + s8 val[NBR_OF_SLOTS]; + + for (slot = 0; slot < NBR_OF_SLOTS; slot++) + val[slot] = -1; + + for (client = 0; client < arbiters[arbiter].nbr_clients; client++) { + int pos; + /* Allocate the requested non-zero number of slots, but + * also give clients with zero-requests one slot each + * while stocks last. We do the latter here, in client + * order. This makes sure zero-request clients are the + * first to get to any spare slots, else those slots + * could, when bandwidth is allocated close to the limit, + * all be allocated to low-index non-zero-request clients + * in the default-fill loop below. Another positive but + * secondary effect is a somewhat better spread of the + * zero-bandwidth clients in the vector, avoiding some of + * the latency that could otherwise be caused by the + * partitioning of non-zero-bandwidth clients at low + * indexes and zero-bandwidth clients at high + * indexes. (Note that this spreading can only affect the + * unallocated bandwidth.) All the above only matters for + * memory-intensive situations, of course. + */ + if (!arbiters[arbiter].requested_slots[region][client]) { + /* + * Skip inactive clients. Also skip zero-slot + * allocations in this pass when there are no known + * free slots. + */ + if (!arbiters[arbiter].active_clients[region][client] || + unused_slots <= 0) + continue; + + unused_slots--; + + /* Only allocate one slot for this client. */ + interval = NBR_OF_SLOTS; + } else + interval = NBR_OF_SLOTS / + arbiters[arbiter].requested_slots[region][client]; + + pos = 0; + while (pos < NBR_OF_SLOTS) { + if (val[pos] >= 0) + pos++; + else { + val[pos] = client; + pos += interval; + } + } + } + + client = 0; + for (slot = 0; slot < NBR_OF_SLOTS; slot++) { + /* + * Allocate remaining slots in round-robin + * client-number order for active clients. For this + * pass, we ignore requested bandwidth and previous + * allocations. + */ + if (val[slot] < 0) { + int first = client; + while (!arbiters[arbiter].active_clients[region][client]) { + client = (client + 1) % + arbiters[arbiter].nbr_clients; + if (client == first) + break; + } + val[slot] = client; + client = (client + 1) % arbiters[arbiter].nbr_clients; + } + if (arbiter == 0) { + if (region == EXT_REGION) + REG_WR_INT_VECT(marb_foo, regi_marb_foo, + rw_l2_slots, slot, val[slot]); + else if (region == INT_REGION) + REG_WR_INT_VECT(marb_foo, regi_marb_foo, + rw_intm_slots, slot, val[slot]); + } else { + REG_WR_INT_VECT(marb_bar, regi_marb_bar, + rw_ddr2_slots, slot, val[slot]); + } + } +} + +extern char _stext, _etext; + +static void crisv32_arbiter_init(void) +{ + static int initialized; + + if (initialized) + return; + + initialized = 1; + + /* + * CPU caches are always set to active, but with zero + * bandwidth allocated. It should be ok to allocate zero + * bandwidth for the caches, because DMA for other channels + * will supposedly finish, once their programmed amount is + * done, and then the caches will get access according to the + * "fixed scheme" for unclaimed slots. Though, if for some + * use-case somewhere, there's a maximum CPU latency for + * e.g. some interrupt, we have to start allocating specific + * bandwidth for the CPU caches too. + */ + arbiters[0].active_clients[EXT_REGION][11] = 1; + arbiters[0].active_clients[EXT_REGION][12] = 1; + crisv32_arbiter_config(0, EXT_REGION, 0); + crisv32_arbiter_config(0, INT_REGION, 0); + crisv32_arbiter_config(1, EXT_REGION, 0); + + if (request_irq(MEMARB_FOO_INTR_VECT, crisv32_foo_arbiter_irq, + IRQF_DISABLED, "arbiter", NULL)) + printk(KERN_ERR "Couldn't allocate arbiter IRQ\n"); + + if (request_irq(MEMARB_BAR_INTR_VECT, crisv32_bar_arbiter_irq, + IRQF_DISABLED, "arbiter", NULL)) + printk(KERN_ERR "Couldn't allocate arbiter IRQ\n"); + +#ifndef CONFIG_ETRAX_KGDB + /* Global watch for writes to kernel text segment. */ + crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext, + MARB_CLIENTS(arbiter_all_clients, arbiter_bar_all_clients), + arbiter_all_write, NULL); +#endif + + /* Set up max burst sizes by default */ + REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_rd_burst, 3); + REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_wr_burst, 3); + REG_WR_INT(marb_bar, regi_marb_bar, rw_ccd_burst, 3); + REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_wr_burst, 3); + REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_rd_burst, 3); + REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_rd_burst, 3); + REG_WR_INT(marb_bar, regi_marb_bar, rw_vout_burst, 3); + REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_fifo_burst, 3); + REG_WR_INT(marb_bar, regi_marb_bar, rw_l2cache_burst, 3); +} + +int crisv32_arbiter_allocate_bandwidth(int client, int region, + unsigned long bandwidth) +{ + int i; + int total_assigned = 0; + int total_clients = 0; + int req; + int arbiter = 0; + + crisv32_arbiter_init(); + + if (client & 0xffff0000) { + arbiter = 1; + client >>= 16; + } + + for (i = 0; i < arbiters[arbiter].nbr_clients; i++) { + total_assigned += arbiters[arbiter].requested_slots[region][i]; + total_clients += arbiters[arbiter].active_clients[region][i]; + } + + /* Avoid division by 0 for 0-bandwidth requests. */ + req = bandwidth == 0 + ? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth); + + /* + * We make sure that there are enough slots only for non-zero + * requests. Requesting 0 bandwidth *may* allocate slots, + * though if all bandwidth is allocated, such a client won't + * get any and will have to rely on getting memory access + * according to the fixed scheme that's the default when one + * of the slot-allocated clients doesn't claim their slot. + */ + if (total_assigned + req > NBR_OF_SLOTS) + return -ENOMEM; + + arbiters[arbiter].active_clients[region][client] = 1; + arbiters[arbiter].requested_slots[region][client] = req; + crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned); + + /* Propagate allocation from foo to bar */ + if (arbiter == 0) + crisv32_arbiter_allocate_bandwidth(8 << 16, + EXT_REGION, bandwidth); + return 0; +} + +/* + * Main entry for bandwidth deallocation. + * + * Strictly speaking, for a somewhat constant set of clients where + * each client gets a constant bandwidth and is just enabled or + * disabled (somewhat dynamically), no action is necessary here to + * avoid starvation for non-zero-allocation clients, as the allocated + * slots will just be unused. However, handing out those unused slots + * to active clients avoids needless latency if the "fixed scheme" + * would give unclaimed slots to an eager low-index client. + */ + +void crisv32_arbiter_deallocate_bandwidth(int client, int region) +{ + int i; + int total_assigned = 0; + int arbiter = 0; + + if (client & 0xffff0000) + arbiter = 1; + + arbiters[arbiter].requested_slots[region][client] = 0; + arbiters[arbiter].active_clients[region][client] = 0; + + for (i = 0; i < arbiters[arbiter].nbr_clients; i++) + total_assigned += arbiters[arbiter].requested_slots[region][i]; + + crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned); +} + +int crisv32_arbiter_watch(unsigned long start, unsigned long size, + unsigned long clients, unsigned long accesses, + watch_callback *cb) +{ + int i; + int arbiter; + int used[2]; + int ret = 0; + + crisv32_arbiter_init(); + + if (start > 0x80000000) { + printk(KERN_ERR "Arbiter: %lX doesn't look like a " + "physical address", start); + return -EFAULT; + } + + spin_lock(&arbiter_lock); + + if (clients & 0xffff) + used[0] = 1; + if (clients & 0xffff0000) + used[1] = 1; + + for (arbiter = 0; arbiter < ARBITERS; arbiter++) { + if (!used[arbiter]) + continue; + + for (i = 0; i < NUMBER_OF_BP; i++) { + if (!watches[arbiter][i].used) { + unsigned intr_mask; + if (arbiter) + intr_mask = REG_RD_INT(marb_bar, + regi_marb_bar, rw_intr_mask); + else + intr_mask = REG_RD_INT(marb_foo, + regi_marb_foo, rw_intr_mask); + + watches[arbiter][i].used = 1; + watches[arbiter][i].start = start; + watches[arbiter][i].end = start + size; + watches[arbiter][i].cb = cb; + + ret |= (i + 1) << (arbiter + 8); + if (arbiter) { + REG_WR_INT(marb_bar_bp, + watches[arbiter][i].instance, + rw_first_addr, + watches[arbiter][i].start); + REG_WR_INT(marb_bar_bp, + watches[arbiter][i].instance, + rw_last_addr, + watches[arbiter][i].end); + REG_WR_INT(marb_bar_bp, + watches[arbiter][i].instance, + rw_op, accesses); + REG_WR_INT(marb_bar_bp, + watches[arbiter][i].instance, + rw_clients, + clients & 0xffff); + } else { + REG_WR_INT(marb_foo_bp, + watches[arbiter][i].instance, + rw_first_addr, + watches[arbiter][i].start); + REG_WR_INT(marb_foo_bp, + watches[arbiter][i].instance, + rw_last_addr, + watches[arbiter][i].end); + REG_WR_INT(marb_foo_bp, + watches[arbiter][i].instance, + rw_op, accesses); + REG_WR_INT(marb_foo_bp, + watches[arbiter][i].instance, + rw_clients, clients >> 16); + } + + if (i == 0) + intr_mask |= 1; + else if (i == 1) + intr_mask |= 2; + else if (i == 2) + intr_mask |= 4; + else if (i == 3) + intr_mask |= 8; + + if (arbiter) + REG_WR_INT(marb_bar, regi_marb_bar, + rw_intr_mask, intr_mask); + else + REG_WR_INT(marb_foo, regi_marb_foo, + rw_intr_mask, intr_mask); + + spin_unlock(&arbiter_lock); + + break; + } + } + } + spin_unlock(&arbiter_lock); + if (ret) + return ret; + else + return -ENOMEM; +} + +int crisv32_arbiter_unwatch(int id) +{ + int arbiter; + int intr_mask; + + crisv32_arbiter_init(); + + spin_lock(&arbiter_lock); + + for (arbiter = 0; arbiter < ARBITERS; arbiter++) { + int id2; + + if (arbiter) + intr_mask = REG_RD_INT(marb_bar, regi_marb_bar, + rw_intr_mask); + else + intr_mask = REG_RD_INT(marb_foo, regi_marb_foo, + rw_intr_mask); + + id2 = (id & (0xff << (arbiter + 8))) >> (arbiter + 8); + if (id2 == 0) + continue; + id2--; + if ((id2 >= NUMBER_OF_BP) || (!watches[arbiter][id2].used)) { + spin_unlock(&arbiter_lock); + return -EINVAL; + } + + memset(&watches[arbiter][id2], 0, + sizeof(struct crisv32_watch_entry)); + + if (id2 == 0) + intr_mask &= ~1; + else if (id2 == 1) + intr_mask &= ~2; + else if (id2 == 2) + intr_mask &= ~4; + else if (id2 == 3) + intr_mask &= ~8; + + if (arbiter) + REG_WR_INT(marb_bar, regi_marb_bar, rw_intr_mask, + intr_mask); + else + REG_WR_INT(marb_foo, regi_marb_foo, rw_intr_mask, + intr_mask); + } + + spin_unlock(&arbiter_lock); + return 0; +} + +extern void show_registers(struct pt_regs *regs); + + +static irqreturn_t +crisv32_foo_arbiter_irq(int irq, void *dev_id) +{ + reg_marb_foo_r_masked_intr masked_intr = + REG_RD(marb_foo, regi_marb_foo, r_masked_intr); + reg_marb_foo_bp_r_brk_clients r_clients; + reg_marb_foo_bp_r_brk_addr r_addr; + reg_marb_foo_bp_r_brk_op r_op; + reg_marb_foo_bp_r_brk_first_client r_first; + reg_marb_foo_bp_r_brk_size r_size; + reg_marb_foo_bp_rw_ack ack = {0}; + reg_marb_foo_rw_ack_intr ack_intr = { + .bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1 + }; + struct crisv32_watch_entry *watch; + unsigned arbiter = (unsigned)dev_id; + + masked_intr = REG_RD(marb_foo, regi_marb_foo, r_masked_intr); + + if (masked_intr.bp0) + watch = &watches[arbiter][0]; + else if (masked_intr.bp1) + watch = &watches[arbiter][1]; + else if (masked_intr.bp2) + watch = &watches[arbiter][2]; + else if (masked_intr.bp3) + watch = &watches[arbiter][3]; + else + return IRQ_NONE; + + /* Retrieve all useful information and print it. */ + r_clients = REG_RD(marb_foo_bp, watch->instance, r_brk_clients); + r_addr = REG_RD(marb_foo_bp, watch->instance, r_brk_addr); + r_op = REG_RD(marb_foo_bp, watch->instance, r_brk_op); + r_first = REG_RD(marb_foo_bp, watch->instance, r_brk_first_client); + r_size = REG_RD(marb_foo_bp, watch->instance, r_brk_size); + + printk(KERN_DEBUG "Arbiter IRQ\n"); + printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n", + REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_clients, r_clients), + REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_addr, r_addr), + REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_op, r_op), + REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_first_client, r_first), + REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_size, r_size)); + + REG_WR(marb_foo_bp, watch->instance, rw_ack, ack); + REG_WR(marb_foo, regi_marb_foo, rw_ack_intr, ack_intr); + + printk(KERN_DEBUG "IRQ occured at %X\n", (unsigned)get_irq_regs()); + + if (watch->cb) + watch->cb(); + + return IRQ_HANDLED; +} + +static irqreturn_t +crisv32_bar_arbiter_irq(int irq, void *dev_id) +{ + reg_marb_bar_r_masked_intr masked_intr = + REG_RD(marb_bar, regi_marb_bar, r_masked_intr); + reg_marb_bar_bp_r_brk_clients r_clients; + reg_marb_bar_bp_r_brk_addr r_addr; + reg_marb_bar_bp_r_brk_op r_op; + reg_marb_bar_bp_r_brk_first_client r_first; + reg_marb_bar_bp_r_brk_size r_size; + reg_marb_bar_bp_rw_ack ack = {0}; + reg_marb_bar_rw_ack_intr ack_intr = { + .bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1 + }; + struct crisv32_watch_entry *watch; + unsigned arbiter = (unsigned)dev_id; + + masked_intr = REG_RD(marb_bar, regi_marb_bar, r_masked_intr); + + if (masked_intr.bp0) + watch = &watches[arbiter][0]; + else if (masked_intr.bp1) + watch = &watches[arbiter][1]; + else if (masked_intr.bp2) + watch = &watches[arbiter][2]; + else if (masked_intr.bp3) + watch = &watches[arbiter][3]; + else + return IRQ_NONE; + + /* Retrieve all useful information and print it. */ + r_clients = REG_RD(marb_bar_bp, watch->instance, r_brk_clients); + r_addr = REG_RD(marb_bar_bp, watch->instance, r_brk_addr); + r_op = REG_RD(marb_bar_bp, watch->instance, r_brk_op); + r_first = REG_RD(marb_bar_bp, watch->instance, r_brk_first_client); + r_size = REG_RD(marb_bar_bp, watch->instance, r_brk_size); + + printk(KERN_DEBUG "Arbiter IRQ\n"); + printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n", + REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_clients, r_clients), + REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_addr, r_addr), + REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_op, r_op), + REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_first_client, r_first), + REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_size, r_size)); + + REG_WR(marb_bar_bp, watch->instance, rw_ack, ack); + REG_WR(marb_bar, regi_marb_bar, rw_ack_intr, ack_intr); + + printk(KERN_DEBUG "IRQ occured at %X\n", (unsigned)get_irq_regs()->erp); + + if (watch->cb) + watch->cb(); + + return IRQ_HANDLED; +} + |