summaryrefslogtreecommitdiffstats
path: root/arch/m68k/math-emu/fp_arith.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/m68k/math-emu/fp_arith.c')
-rw-r--r--arch/m68k/math-emu/fp_arith.c701
1 files changed, 701 insertions, 0 deletions
diff --git a/arch/m68k/math-emu/fp_arith.c b/arch/m68k/math-emu/fp_arith.c
new file mode 100644
index 000000000000..08f286db3c5a
--- /dev/null
+++ b/arch/m68k/math-emu/fp_arith.c
@@ -0,0 +1,701 @@
+/*
+
+ fp_arith.c: floating-point math routines for the Linux-m68k
+ floating point emulator.
+
+ Copyright (c) 1998-1999 David Huggins-Daines.
+
+ Somewhat based on the AlphaLinux floating point emulator, by David
+ Mosberger-Tang.
+
+ You may copy, modify, and redistribute this file under the terms of
+ the GNU General Public License, version 2, or any later version, at
+ your convenience.
+ */
+
+#include "fp_emu.h"
+#include "multi_arith.h"
+#include "fp_arith.h"
+
+const struct fp_ext fp_QNaN =
+{
+ .exp = 0x7fff,
+ .mant = { .m64 = ~0 }
+};
+
+const struct fp_ext fp_Inf =
+{
+ .exp = 0x7fff,
+};
+
+/* let's start with the easy ones */
+
+struct fp_ext *
+fp_fabs(struct fp_ext *dest, struct fp_ext *src)
+{
+ dprint(PINSTR, "fabs\n");
+
+ fp_monadic_check(dest, src);
+
+ dest->sign = 0;
+
+ return dest;
+}
+
+struct fp_ext *
+fp_fneg(struct fp_ext *dest, struct fp_ext *src)
+{
+ dprint(PINSTR, "fneg\n");
+
+ fp_monadic_check(dest, src);
+
+ dest->sign = !dest->sign;
+
+ return dest;
+}
+
+/* Now, the slightly harder ones */
+
+/* fp_fadd: Implements the kernel of the FADD, FSADD, FDADD, FSUB,
+ FDSUB, and FCMP instructions. */
+
+struct fp_ext *
+fp_fadd(struct fp_ext *dest, struct fp_ext *src)
+{
+ int diff;
+
+ dprint(PINSTR, "fadd\n");
+
+ fp_dyadic_check(dest, src);
+
+ if (IS_INF(dest)) {
+ /* infinity - infinity == NaN */
+ if (IS_INF(src) && (src->sign != dest->sign))
+ fp_set_nan(dest);
+ return dest;
+ }
+ if (IS_INF(src)) {
+ fp_copy_ext(dest, src);
+ return dest;
+ }
+
+ if (IS_ZERO(dest)) {
+ if (IS_ZERO(src)) {
+ if (src->sign != dest->sign) {
+ if (FPDATA->rnd == FPCR_ROUND_RM)
+ dest->sign = 1;
+ else
+ dest->sign = 0;
+ }
+ } else
+ fp_copy_ext(dest, src);
+ return dest;
+ }
+
+ dest->lowmant = src->lowmant = 0;
+
+ if ((diff = dest->exp - src->exp) > 0)
+ fp_denormalize(src, diff);
+ else if ((diff = -diff) > 0)
+ fp_denormalize(dest, diff);
+
+ if (dest->sign == src->sign) {
+ if (fp_addmant(dest, src))
+ if (!fp_addcarry(dest))
+ return dest;
+ } else {
+ if (dest->mant.m64 < src->mant.m64) {
+ fp_submant(dest, src, dest);
+ dest->sign = !dest->sign;
+ } else
+ fp_submant(dest, dest, src);
+ }
+
+ return dest;
+}
+
+/* fp_fsub: Implements the kernel of the FSUB, FSSUB, and FDSUB
+ instructions.
+
+ Remember that the arguments are in assembler-syntax order! */
+
+struct fp_ext *
+fp_fsub(struct fp_ext *dest, struct fp_ext *src)
+{
+ dprint(PINSTR, "fsub ");
+
+ src->sign = !src->sign;
+ return fp_fadd(dest, src);
+}
+
+
+struct fp_ext *
+fp_fcmp(struct fp_ext *dest, struct fp_ext *src)
+{
+ dprint(PINSTR, "fcmp ");
+
+ FPDATA->temp[1] = *dest;
+ src->sign = !src->sign;
+ return fp_fadd(&FPDATA->temp[1], src);
+}
+
+struct fp_ext *
+fp_ftst(struct fp_ext *dest, struct fp_ext *src)
+{
+ dprint(PINSTR, "ftst\n");
+
+ (void)dest;
+
+ return src;
+}
+
+struct fp_ext *
+fp_fmul(struct fp_ext *dest, struct fp_ext *src)
+{
+ union fp_mant128 temp;
+ int exp;
+
+ dprint(PINSTR, "fmul\n");
+
+ fp_dyadic_check(dest, src);
+
+ /* calculate the correct sign now, as it's necessary for infinities */
+ dest->sign = src->sign ^ dest->sign;
+
+ /* Handle infinities */
+ if (IS_INF(dest)) {
+ if (IS_ZERO(src))
+ fp_set_nan(dest);
+ return dest;
+ }
+ if (IS_INF(src)) {
+ if (IS_ZERO(dest))
+ fp_set_nan(dest);
+ else
+ fp_copy_ext(dest, src);
+ return dest;
+ }
+
+ /* Of course, as we all know, zero * anything = zero. You may
+ not have known that it might be a positive or negative
+ zero... */
+ if (IS_ZERO(dest) || IS_ZERO(src)) {
+ dest->exp = 0;
+ dest->mant.m64 = 0;
+ dest->lowmant = 0;
+
+ return dest;
+ }
+
+ exp = dest->exp + src->exp - 0x3ffe;
+
+ /* shift up the mantissa for denormalized numbers,
+ so that the highest bit is set, this makes the
+ shift of the result below easier */
+ if ((long)dest->mant.m32[0] >= 0)
+ exp -= fp_overnormalize(dest);
+ if ((long)src->mant.m32[0] >= 0)
+ exp -= fp_overnormalize(src);
+
+ /* now, do a 64-bit multiply with expansion */
+ fp_multiplymant(&temp, dest, src);
+
+ /* normalize it back to 64 bits and stuff it back into the
+ destination struct */
+ if ((long)temp.m32[0] > 0) {
+ exp--;
+ fp_putmant128(dest, &temp, 1);
+ } else
+ fp_putmant128(dest, &temp, 0);
+
+ if (exp >= 0x7fff) {
+ fp_set_ovrflw(dest);
+ return dest;
+ }
+ dest->exp = exp;
+ if (exp < 0) {
+ fp_set_sr(FPSR_EXC_UNFL);
+ fp_denormalize(dest, -exp);
+ }
+
+ return dest;
+}
+
+/* fp_fdiv: Implements the "kernel" of the FDIV, FSDIV, FDDIV and
+ FSGLDIV instructions.
+
+ Note that the order of the operands is counter-intuitive: instead
+ of src / dest, the result is actually dest / src. */
+
+struct fp_ext *
+fp_fdiv(struct fp_ext *dest, struct fp_ext *src)
+{
+ union fp_mant128 temp;
+ int exp;
+
+ dprint(PINSTR, "fdiv\n");
+
+ fp_dyadic_check(dest, src);
+
+ /* calculate the correct sign now, as it's necessary for infinities */
+ dest->sign = src->sign ^ dest->sign;
+
+ /* Handle infinities */
+ if (IS_INF(dest)) {
+ /* infinity / infinity = NaN (quiet, as always) */
+ if (IS_INF(src))
+ fp_set_nan(dest);
+ /* infinity / anything else = infinity (with approprate sign) */
+ return dest;
+ }
+ if (IS_INF(src)) {
+ /* anything / infinity = zero (with appropriate sign) */
+ dest->exp = 0;
+ dest->mant.m64 = 0;
+ dest->lowmant = 0;
+
+ return dest;
+ }
+
+ /* zeroes */
+ if (IS_ZERO(dest)) {
+ /* zero / zero = NaN */
+ if (IS_ZERO(src))
+ fp_set_nan(dest);
+ /* zero / anything else = zero */
+ return dest;
+ }
+ if (IS_ZERO(src)) {
+ /* anything / zero = infinity (with appropriate sign) */
+ fp_set_sr(FPSR_EXC_DZ);
+ dest->exp = 0x7fff;
+ dest->mant.m64 = 0;
+
+ return dest;
+ }
+
+ exp = dest->exp - src->exp + 0x3fff;
+
+ /* shift up the mantissa for denormalized numbers,
+ so that the highest bit is set, this makes lots
+ of things below easier */
+ if ((long)dest->mant.m32[0] >= 0)
+ exp -= fp_overnormalize(dest);
+ if ((long)src->mant.m32[0] >= 0)
+ exp -= fp_overnormalize(src);
+
+ /* now, do the 64-bit divide */
+ fp_dividemant(&temp, dest, src);
+
+ /* normalize it back to 64 bits and stuff it back into the
+ destination struct */
+ if (!temp.m32[0]) {
+ exp--;
+ fp_putmant128(dest, &temp, 32);
+ } else
+ fp_putmant128(dest, &temp, 31);
+
+ if (exp >= 0x7fff) {
+ fp_set_ovrflw(dest);
+ return dest;
+ }
+ dest->exp = exp;
+ if (exp < 0) {
+ fp_set_sr(FPSR_EXC_UNFL);
+ fp_denormalize(dest, -exp);
+ }
+
+ return dest;
+}
+
+struct fp_ext *
+fp_fsglmul(struct fp_ext *dest, struct fp_ext *src)
+{
+ int exp;
+
+ dprint(PINSTR, "fsglmul\n");
+
+ fp_dyadic_check(dest, src);
+
+ /* calculate the correct sign now, as it's necessary for infinities */
+ dest->sign = src->sign ^ dest->sign;
+
+ /* Handle infinities */
+ if (IS_INF(dest)) {
+ if (IS_ZERO(src))
+ fp_set_nan(dest);
+ return dest;
+ }
+ if (IS_INF(src)) {
+ if (IS_ZERO(dest))
+ fp_set_nan(dest);
+ else
+ fp_copy_ext(dest, src);
+ return dest;
+ }
+
+ /* Of course, as we all know, zero * anything = zero. You may
+ not have known that it might be a positive or negative
+ zero... */
+ if (IS_ZERO(dest) || IS_ZERO(src)) {
+ dest->exp = 0;
+ dest->mant.m64 = 0;
+ dest->lowmant = 0;
+
+ return dest;
+ }
+
+ exp = dest->exp + src->exp - 0x3ffe;
+
+ /* do a 32-bit multiply */
+ fp_mul64(dest->mant.m32[0], dest->mant.m32[1],
+ dest->mant.m32[0] & 0xffffff00,
+ src->mant.m32[0] & 0xffffff00);
+
+ if (exp >= 0x7fff) {
+ fp_set_ovrflw(dest);
+ return dest;
+ }
+ dest->exp = exp;
+ if (exp < 0) {
+ fp_set_sr(FPSR_EXC_UNFL);
+ fp_denormalize(dest, -exp);
+ }
+
+ return dest;
+}
+
+struct fp_ext *
+fp_fsgldiv(struct fp_ext *dest, struct fp_ext *src)
+{
+ int exp;
+ unsigned long quot, rem;
+
+ dprint(PINSTR, "fsgldiv\n");
+
+ fp_dyadic_check(dest, src);
+
+ /* calculate the correct sign now, as it's necessary for infinities */
+ dest->sign = src->sign ^ dest->sign;
+
+ /* Handle infinities */
+ if (IS_INF(dest)) {
+ /* infinity / infinity = NaN (quiet, as always) */
+ if (IS_INF(src))
+ fp_set_nan(dest);
+ /* infinity / anything else = infinity (with approprate sign) */
+ return dest;
+ }
+ if (IS_INF(src)) {
+ /* anything / infinity = zero (with appropriate sign) */
+ dest->exp = 0;
+ dest->mant.m64 = 0;
+ dest->lowmant = 0;
+
+ return dest;
+ }
+
+ /* zeroes */
+ if (IS_ZERO(dest)) {
+ /* zero / zero = NaN */
+ if (IS_ZERO(src))
+ fp_set_nan(dest);
+ /* zero / anything else = zero */
+ return dest;
+ }
+ if (IS_ZERO(src)) {
+ /* anything / zero = infinity (with appropriate sign) */
+ fp_set_sr(FPSR_EXC_DZ);
+ dest->exp = 0x7fff;
+ dest->mant.m64 = 0;
+
+ return dest;
+ }
+
+ exp = dest->exp - src->exp + 0x3fff;
+
+ dest->mant.m32[0] &= 0xffffff00;
+ src->mant.m32[0] &= 0xffffff00;
+
+ /* do the 32-bit divide */
+ if (dest->mant.m32[0] >= src->mant.m32[0]) {
+ fp_sub64(dest->mant, src->mant);
+ fp_div64(quot, rem, dest->mant.m32[0], 0, src->mant.m32[0]);
+ dest->mant.m32[0] = 0x80000000 | (quot >> 1);
+ dest->mant.m32[1] = (quot & 1) | rem; /* only for rounding */
+ } else {
+ fp_div64(quot, rem, dest->mant.m32[0], 0, src->mant.m32[0]);
+ dest->mant.m32[0] = quot;
+ dest->mant.m32[1] = rem; /* only for rounding */
+ exp--;
+ }
+
+ if (exp >= 0x7fff) {
+ fp_set_ovrflw(dest);
+ return dest;
+ }
+ dest->exp = exp;
+ if (exp < 0) {
+ fp_set_sr(FPSR_EXC_UNFL);
+ fp_denormalize(dest, -exp);
+ }
+
+ return dest;
+}
+
+/* fp_roundint: Internal rounding function for use by several of these
+ emulated instructions.
+
+ This one rounds off the fractional part using the rounding mode
+ specified. */
+
+static void fp_roundint(struct fp_ext *dest, int mode)
+{
+ union fp_mant64 oldmant;
+ unsigned long mask;
+
+ if (!fp_normalize_ext(dest))
+ return;
+
+ /* infinities and zeroes */
+ if (IS_INF(dest) || IS_ZERO(dest))
+ return;
+
+ /* first truncate the lower bits */
+ oldmant = dest->mant;
+ switch (dest->exp) {
+ case 0 ... 0x3ffe:
+ dest->mant.m64 = 0;
+ break;
+ case 0x3fff ... 0x401e:
+ dest->mant.m32[0] &= 0xffffffffU << (0x401e - dest->exp);
+ dest->mant.m32[1] = 0;
+ if (oldmant.m64 == dest->mant.m64)
+ return;
+ break;
+ case 0x401f ... 0x403e:
+ dest->mant.m32[1] &= 0xffffffffU << (0x403e - dest->exp);
+ if (oldmant.m32[1] == dest->mant.m32[1])
+ return;
+ break;
+ default:
+ return;
+ }
+ fp_set_sr(FPSR_EXC_INEX2);
+
+ /* We might want to normalize upwards here... however, since
+ we know that this is only called on the output of fp_fdiv,
+ or with the input to fp_fint or fp_fintrz, and the inputs
+ to all these functions are either normal or denormalized
+ (no subnormals allowed!), there's really no need.
+
+ In the case of fp_fdiv, observe that 0x80000000 / 0xffff =
+ 0xffff8000, and the same holds for 128-bit / 64-bit. (i.e. the
+ smallest possible normal dividend and the largest possible normal
+ divisor will still produce a normal quotient, therefore, (normal
+ << 64) / normal is normal in all cases) */
+
+ switch (mode) {
+ case FPCR_ROUND_RN:
+ switch (dest->exp) {
+ case 0 ... 0x3ffd:
+ return;
+ case 0x3ffe:
+ /* As noted above, the input is always normal, so the
+ guard bit (bit 63) is always set. therefore, the
+ only case in which we will NOT round to 1.0 is when
+ the input is exactly 0.5. */
+ if (oldmant.m64 == (1ULL << 63))
+ return;
+ break;
+ case 0x3fff ... 0x401d:
+ mask = 1 << (0x401d - dest->exp);
+ if (!(oldmant.m32[0] & mask))
+ return;
+ if (oldmant.m32[0] & (mask << 1))
+ break;
+ if (!(oldmant.m32[0] << (dest->exp - 0x3ffd)) &&
+ !oldmant.m32[1])
+ return;
+ break;
+ case 0x401e:
+ if (!(oldmant.m32[1] >= 0))
+ return;
+ if (oldmant.m32[0] & 1)
+ break;
+ if (!(oldmant.m32[1] << 1))
+ return;
+ break;
+ case 0x401f ... 0x403d:
+ mask = 1 << (0x403d - dest->exp);
+ if (!(oldmant.m32[1] & mask))
+ return;
+ if (oldmant.m32[1] & (mask << 1))
+ break;
+ if (!(oldmant.m32[1] << (dest->exp - 0x401d)))
+ return;
+ break;
+ default:
+ return;
+ }
+ break;
+ case FPCR_ROUND_RZ:
+ return;
+ default:
+ if (dest->sign ^ (mode - FPCR_ROUND_RM))
+ break;
+ return;
+ }
+
+ switch (dest->exp) {
+ case 0 ... 0x3ffe:
+ dest->exp = 0x3fff;
+ dest->mant.m64 = 1ULL << 63;
+ break;
+ case 0x3fff ... 0x401e:
+ mask = 1 << (0x401e - dest->exp);
+ if (dest->mant.m32[0] += mask)
+ break;
+ dest->mant.m32[0] = 0x80000000;
+ dest->exp++;
+ break;
+ case 0x401f ... 0x403e:
+ mask = 1 << (0x403e - dest->exp);
+ if (dest->mant.m32[1] += mask)
+ break;
+ if (dest->mant.m32[0] += 1)
+ break;
+ dest->mant.m32[0] = 0x80000000;
+ dest->exp++;
+ break;
+ }
+}
+
+/* modrem_kernel: Implementation of the FREM and FMOD instructions
+ (which are exactly the same, except for the rounding used on the
+ intermediate value) */
+
+static struct fp_ext *
+modrem_kernel(struct fp_ext *dest, struct fp_ext *src, int mode)
+{
+ struct fp_ext tmp;
+
+ fp_dyadic_check(dest, src);
+
+ /* Infinities and zeros */
+ if (IS_INF(dest) || IS_ZERO(src)) {
+ fp_set_nan(dest);
+ return dest;
+ }
+ if (IS_ZERO(dest) || IS_INF(src))
+ return dest;
+
+ /* FIXME: there is almost certainly a smarter way to do this */
+ fp_copy_ext(&tmp, dest);
+ fp_fdiv(&tmp, src); /* NOTE: src might be modified */
+ fp_roundint(&tmp, mode);
+ fp_fmul(&tmp, src);
+ fp_fsub(dest, &tmp);
+
+ /* set the quotient byte */
+ fp_set_quotient((dest->mant.m64 & 0x7f) | (dest->sign << 7));
+ return dest;
+}
+
+/* fp_fmod: Implements the kernel of the FMOD instruction.
+
+ Again, the argument order is backwards. The result, as defined in
+ the Motorola manuals, is:
+
+ fmod(src,dest) = (dest - (src * floor(dest / src))) */
+
+struct fp_ext *
+fp_fmod(struct fp_ext *dest, struct fp_ext *src)
+{
+ dprint(PINSTR, "fmod\n");
+ return modrem_kernel(dest, src, FPCR_ROUND_RZ);
+}
+
+/* fp_frem: Implements the kernel of the FREM instruction.
+
+ frem(src,dest) = (dest - (src * round(dest / src)))
+ */
+
+struct fp_ext *
+fp_frem(struct fp_ext *dest, struct fp_ext *src)
+{
+ dprint(PINSTR, "frem\n");
+ return modrem_kernel(dest, src, FPCR_ROUND_RN);
+}
+
+struct fp_ext *
+fp_fint(struct fp_ext *dest, struct fp_ext *src)
+{
+ dprint(PINSTR, "fint\n");
+
+ fp_copy_ext(dest, src);
+
+ fp_roundint(dest, FPDATA->rnd);
+
+ return dest;
+}
+
+struct fp_ext *
+fp_fintrz(struct fp_ext *dest, struct fp_ext *src)
+{
+ dprint(PINSTR, "fintrz\n");
+
+ fp_copy_ext(dest, src);
+
+ fp_roundint(dest, FPCR_ROUND_RZ);
+
+ return dest;
+}
+
+struct fp_ext *
+fp_fscale(struct fp_ext *dest, struct fp_ext *src)
+{
+ int scale, oldround;
+
+ dprint(PINSTR, "fscale\n");
+
+ fp_dyadic_check(dest, src);
+
+ /* Infinities */
+ if (IS_INF(src)) {
+ fp_set_nan(dest);
+ return dest;
+ }
+ if (IS_INF(dest))
+ return dest;
+
+ /* zeroes */
+ if (IS_ZERO(src) || IS_ZERO(dest))
+ return dest;
+
+ /* Source exponent out of range */
+ if (src->exp >= 0x400c) {
+ fp_set_ovrflw(dest);
+ return dest;
+ }
+
+ /* src must be rounded with round to zero. */
+ oldround = FPDATA->rnd;
+ FPDATA->rnd = FPCR_ROUND_RZ;
+ scale = fp_conv_ext2long(src);
+ FPDATA->rnd = oldround;
+
+ /* new exponent */
+ scale += dest->exp;
+
+ if (scale >= 0x7fff) {
+ fp_set_ovrflw(dest);
+ } else if (scale <= 0) {
+ fp_set_sr(FPSR_EXC_UNFL);
+ fp_denormalize(dest, -scale);
+ } else
+ dest->exp = scale;
+
+ return dest;
+}
+