summaryrefslogtreecommitdiffstats
path: root/drivers/ata/libata-sff.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/ata/libata-sff.c')
-rw-r--r--drivers/ata/libata-sff.c2296
1 files changed, 2070 insertions, 226 deletions
diff --git a/drivers/ata/libata-sff.c b/drivers/ata/libata-sff.c
index 20dc572fb45a..15499522e642 100644
--- a/drivers/ata/libata-sff.c
+++ b/drivers/ata/libata-sff.c
@@ -35,11 +35,377 @@
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/libata.h>
+#include <linux/highmem.h>
#include "libata.h"
+const struct ata_port_operations ata_sff_port_ops = {
+ .inherits = &ata_base_port_ops,
+
+ .qc_prep = ata_sff_qc_prep,
+ .qc_issue = ata_sff_qc_issue,
+ .qc_fill_rtf = ata_sff_qc_fill_rtf,
+
+ .freeze = ata_sff_freeze,
+ .thaw = ata_sff_thaw,
+ .prereset = ata_sff_prereset,
+ .softreset = ata_sff_softreset,
+ .hardreset = sata_sff_hardreset,
+ .postreset = ata_sff_postreset,
+ .error_handler = ata_sff_error_handler,
+ .post_internal_cmd = ata_sff_post_internal_cmd,
+
+ .sff_dev_select = ata_sff_dev_select,
+ .sff_check_status = ata_sff_check_status,
+ .sff_tf_load = ata_sff_tf_load,
+ .sff_tf_read = ata_sff_tf_read,
+ .sff_exec_command = ata_sff_exec_command,
+ .sff_data_xfer = ata_sff_data_xfer,
+ .sff_irq_on = ata_sff_irq_on,
+ .sff_irq_clear = ata_sff_irq_clear,
+
+ .port_start = ata_sff_port_start,
+};
+
+const struct ata_port_operations ata_bmdma_port_ops = {
+ .inherits = &ata_sff_port_ops,
+
+ .mode_filter = ata_bmdma_mode_filter,
+
+ .bmdma_setup = ata_bmdma_setup,
+ .bmdma_start = ata_bmdma_start,
+ .bmdma_stop = ata_bmdma_stop,
+ .bmdma_status = ata_bmdma_status,
+};
+
+/**
+ * ata_fill_sg - Fill PCI IDE PRD table
+ * @qc: Metadata associated with taskfile to be transferred
+ *
+ * Fill PCI IDE PRD (scatter-gather) table with segments
+ * associated with the current disk command.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ *
+ */
+static void ata_fill_sg(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ struct scatterlist *sg;
+ unsigned int si, pi;
+
+ pi = 0;
+ for_each_sg(qc->sg, sg, qc->n_elem, si) {
+ u32 addr, offset;
+ u32 sg_len, len;
+
+ /* determine if physical DMA addr spans 64K boundary.
+ * Note h/w doesn't support 64-bit, so we unconditionally
+ * truncate dma_addr_t to u32.
+ */
+ addr = (u32) sg_dma_address(sg);
+ sg_len = sg_dma_len(sg);
+
+ while (sg_len) {
+ offset = addr & 0xffff;
+ len = sg_len;
+ if ((offset + sg_len) > 0x10000)
+ len = 0x10000 - offset;
+
+ ap->prd[pi].addr = cpu_to_le32(addr);
+ ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
+ VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
+
+ pi++;
+ sg_len -= len;
+ addr += len;
+ }
+ }
+
+ ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
+}
+
+/**
+ * ata_fill_sg_dumb - Fill PCI IDE PRD table
+ * @qc: Metadata associated with taskfile to be transferred
+ *
+ * Fill PCI IDE PRD (scatter-gather) table with segments
+ * associated with the current disk command. Perform the fill
+ * so that we avoid writing any length 64K records for
+ * controllers that don't follow the spec.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ *
+ */
+static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ struct scatterlist *sg;
+ unsigned int si, pi;
+
+ pi = 0;
+ for_each_sg(qc->sg, sg, qc->n_elem, si) {
+ u32 addr, offset;
+ u32 sg_len, len, blen;
+
+ /* determine if physical DMA addr spans 64K boundary.
+ * Note h/w doesn't support 64-bit, so we unconditionally
+ * truncate dma_addr_t to u32.
+ */
+ addr = (u32) sg_dma_address(sg);
+ sg_len = sg_dma_len(sg);
+
+ while (sg_len) {
+ offset = addr & 0xffff;
+ len = sg_len;
+ if ((offset + sg_len) > 0x10000)
+ len = 0x10000 - offset;
+
+ blen = len & 0xffff;
+ ap->prd[pi].addr = cpu_to_le32(addr);
+ if (blen == 0) {
+ /* Some PATA chipsets like the CS5530 can't
+ cope with 0x0000 meaning 64K as the spec says */
+ ap->prd[pi].flags_len = cpu_to_le32(0x8000);
+ blen = 0x8000;
+ ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
+ }
+ ap->prd[pi].flags_len = cpu_to_le32(blen);
+ VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
+
+ pi++;
+ sg_len -= len;
+ addr += len;
+ }
+ }
+
+ ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
+}
+
+/**
+ * ata_sff_qc_prep - Prepare taskfile for submission
+ * @qc: Metadata associated with taskfile to be prepared
+ *
+ * Prepare ATA taskfile for submission.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ */
+void ata_sff_qc_prep(struct ata_queued_cmd *qc)
+{
+ if (!(qc->flags & ATA_QCFLAG_DMAMAP))
+ return;
+
+ ata_fill_sg(qc);
+}
+
+/**
+ * ata_sff_dumb_qc_prep - Prepare taskfile for submission
+ * @qc: Metadata associated with taskfile to be prepared
+ *
+ * Prepare ATA taskfile for submission.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ */
+void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
+{
+ if (!(qc->flags & ATA_QCFLAG_DMAMAP))
+ return;
+
+ ata_fill_sg_dumb(qc);
+}
+
+/**
+ * ata_sff_check_status - Read device status reg & clear interrupt
+ * @ap: port where the device is
+ *
+ * Reads ATA taskfile status register for currently-selected device
+ * and return its value. This also clears pending interrupts
+ * from this device
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+u8 ata_sff_check_status(struct ata_port *ap)
+{
+ return ioread8(ap->ioaddr.status_addr);
+}
+
+/**
+ * ata_sff_altstatus - Read device alternate status reg
+ * @ap: port where the device is
+ *
+ * Reads ATA taskfile alternate status register for
+ * currently-selected device and return its value.
+ *
+ * Note: may NOT be used as the check_altstatus() entry in
+ * ata_port_operations.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+u8 ata_sff_altstatus(struct ata_port *ap)
+{
+ if (ap->ops->sff_check_altstatus)
+ return ap->ops->sff_check_altstatus(ap);
+
+ return ioread8(ap->ioaddr.altstatus_addr);
+}
+
+/**
+ * ata_sff_busy_sleep - sleep until BSY clears, or timeout
+ * @ap: port containing status register to be polled
+ * @tmout_pat: impatience timeout
+ * @tmout: overall timeout
+ *
+ * Sleep until ATA Status register bit BSY clears,
+ * or a timeout occurs.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep).
+ *
+ * RETURNS:
+ * 0 on success, -errno otherwise.
+ */
+int ata_sff_busy_sleep(struct ata_port *ap,
+ unsigned long tmout_pat, unsigned long tmout)
+{
+ unsigned long timer_start, timeout;
+ u8 status;
+
+ status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
+ timer_start = jiffies;
+ timeout = timer_start + tmout_pat;
+ while (status != 0xff && (status & ATA_BUSY) &&
+ time_before(jiffies, timeout)) {
+ msleep(50);
+ status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
+ }
+
+ if (status != 0xff && (status & ATA_BUSY))
+ ata_port_printk(ap, KERN_WARNING,
+ "port is slow to respond, please be patient "
+ "(Status 0x%x)\n", status);
+
+ timeout = timer_start + tmout;
+ while (status != 0xff && (status & ATA_BUSY) &&
+ time_before(jiffies, timeout)) {
+ msleep(50);
+ status = ap->ops->sff_check_status(ap);
+ }
+
+ if (status == 0xff)
+ return -ENODEV;
+
+ if (status & ATA_BUSY) {
+ ata_port_printk(ap, KERN_ERR, "port failed to respond "
+ "(%lu secs, Status 0x%x)\n",
+ tmout / HZ, status);
+ return -EBUSY;
+ }
+
+ return 0;
+}
+
+static int ata_sff_check_ready(struct ata_link *link)
+{
+ u8 status = link->ap->ops->sff_check_status(link->ap);
+
+ if (!(status & ATA_BUSY))
+ return 1;
+ if (status == 0xff)
+ return -ENODEV;
+ return 0;
+}
+
+/**
+ * ata_sff_wait_ready - sleep until BSY clears, or timeout
+ * @link: SFF link to wait ready status for
+ * @deadline: deadline jiffies for the operation
+ *
+ * Sleep until ATA Status register bit BSY clears, or timeout
+ * occurs.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep).
+ *
+ * RETURNS:
+ * 0 on success, -errno otherwise.
+ */
+int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
+{
+ return ata_wait_ready(link, deadline, ata_sff_check_ready);
+}
+
+/**
+ * ata_sff_dev_select - Select device 0/1 on ATA bus
+ * @ap: ATA channel to manipulate
+ * @device: ATA device (numbered from zero) to select
+ *
+ * Use the method defined in the ATA specification to
+ * make either device 0, or device 1, active on the
+ * ATA channel. Works with both PIO and MMIO.
+ *
+ * May be used as the dev_select() entry in ata_port_operations.
+ *
+ * LOCKING:
+ * caller.
+ */
+void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
+{
+ u8 tmp;
+
+ if (device == 0)
+ tmp = ATA_DEVICE_OBS;
+ else
+ tmp = ATA_DEVICE_OBS | ATA_DEV1;
+
+ iowrite8(tmp, ap->ioaddr.device_addr);
+ ata_sff_pause(ap); /* needed; also flushes, for mmio */
+}
+
+/**
+ * ata_dev_select - Select device 0/1 on ATA bus
+ * @ap: ATA channel to manipulate
+ * @device: ATA device (numbered from zero) to select
+ * @wait: non-zero to wait for Status register BSY bit to clear
+ * @can_sleep: non-zero if context allows sleeping
+ *
+ * Use the method defined in the ATA specification to
+ * make either device 0, or device 1, active on the
+ * ATA channel.
+ *
+ * This is a high-level version of ata_sff_dev_select(), which
+ * additionally provides the services of inserting the proper
+ * pauses and status polling, where needed.
+ *
+ * LOCKING:
+ * caller.
+ */
+void ata_dev_select(struct ata_port *ap, unsigned int device,
+ unsigned int wait, unsigned int can_sleep)
+{
+ if (ata_msg_probe(ap))
+ ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
+ "device %u, wait %u\n", device, wait);
+
+ if (wait)
+ ata_wait_idle(ap);
+
+ ap->ops->sff_dev_select(ap, device);
+
+ if (wait) {
+ if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
+ msleep(150);
+ ata_wait_idle(ap);
+ }
+}
+
/**
- * ata_irq_on - Enable interrupts on a port.
+ * ata_sff_irq_on - Enable interrupts on a port.
* @ap: Port on which interrupts are enabled.
*
* Enable interrupts on a legacy IDE device using MMIO or PIO,
@@ -48,7 +414,7 @@
* LOCKING:
* Inherited from caller.
*/
-u8 ata_irq_on(struct ata_port *ap)
+u8 ata_sff_irq_on(struct ata_port *ap)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
u8 tmp;
@@ -60,13 +426,34 @@ u8 ata_irq_on(struct ata_port *ap)
iowrite8(ap->ctl, ioaddr->ctl_addr);
tmp = ata_wait_idle(ap);
- ap->ops->irq_clear(ap);
+ ap->ops->sff_irq_clear(ap);
return tmp;
}
/**
- * ata_tf_load - send taskfile registers to host controller
+ * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
+ * @ap: Port associated with this ATA transaction.
+ *
+ * Clear interrupt and error flags in DMA status register.
+ *
+ * May be used as the irq_clear() entry in ata_port_operations.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ */
+void ata_sff_irq_clear(struct ata_port *ap)
+{
+ void __iomem *mmio = ap->ioaddr.bmdma_addr;
+
+ if (!mmio)
+ return;
+
+ iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
+}
+
+/**
+ * ata_sff_tf_load - send taskfile registers to host controller
* @ap: Port to which output is sent
* @tf: ATA taskfile register set
*
@@ -75,8 +462,7 @@ u8 ata_irq_on(struct ata_port *ap)
* LOCKING:
* Inherited from caller.
*/
-
-void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
+void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
@@ -126,26 +512,7 @@ void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
}
/**
- * ata_exec_command - issue ATA command to host controller
- * @ap: port to which command is being issued
- * @tf: ATA taskfile register set
- *
- * Issues ATA command, with proper synchronization with interrupt
- * handler / other threads.
- *
- * LOCKING:
- * spin_lock_irqsave(host lock)
- */
-void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
-{
- DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
-
- iowrite8(tf->command, ap->ioaddr.command_addr);
- ata_pause(ap);
-}
-
-/**
- * ata_tf_read - input device's ATA taskfile shadow registers
+ * ata_sff_tf_read - input device's ATA taskfile shadow registers
* @ap: Port from which input is read
* @tf: ATA taskfile register set for storing input
*
@@ -157,11 +524,11 @@ void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
* LOCKING:
* Inherited from caller.
*/
-void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
+void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
- tf->command = ata_check_status(ap);
+ tf->command = ata_sff_check_status(ap);
tf->feature = ioread8(ioaddr->error_addr);
tf->nsect = ioread8(ioaddr->nsect_addr);
tf->lbal = ioread8(ioaddr->lbal_addr);
@@ -185,165 +552,1028 @@ void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
}
/**
- * ata_check_status - Read device status reg & clear interrupt
- * @ap: port where the device is
+ * ata_sff_exec_command - issue ATA command to host controller
+ * @ap: port to which command is being issued
+ * @tf: ATA taskfile register set
*
- * Reads ATA taskfile status register for currently-selected device
- * and return its value. This also clears pending interrupts
- * from this device
+ * Issues ATA command, with proper synchronization with interrupt
+ * handler / other threads.
*
* LOCKING:
- * Inherited from caller.
+ * spin_lock_irqsave(host lock)
*/
-u8 ata_check_status(struct ata_port *ap)
+void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
{
- return ioread8(ap->ioaddr.status_addr);
+ DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
+
+ iowrite8(tf->command, ap->ioaddr.command_addr);
+ ata_sff_pause(ap);
}
/**
- * ata_altstatus - Read device alternate status reg
- * @ap: port where the device is
+ * ata_tf_to_host - issue ATA taskfile to host controller
+ * @ap: port to which command is being issued
+ * @tf: ATA taskfile register set
*
- * Reads ATA taskfile alternate status register for
- * currently-selected device and return its value.
+ * Issues ATA taskfile register set to ATA host controller,
+ * with proper synchronization with interrupt handler and
+ * other threads.
*
- * Note: may NOT be used as the check_altstatus() entry in
- * ata_port_operations.
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ */
+static inline void ata_tf_to_host(struct ata_port *ap,
+ const struct ata_taskfile *tf)
+{
+ ap->ops->sff_tf_load(ap, tf);
+ ap->ops->sff_exec_command(ap, tf);
+}
+
+/**
+ * ata_sff_data_xfer - Transfer data by PIO
+ * @dev: device to target
+ * @buf: data buffer
+ * @buflen: buffer length
+ * @rw: read/write
+ *
+ * Transfer data from/to the device data register by PIO.
*
* LOCKING:
* Inherited from caller.
+ *
+ * RETURNS:
+ * Bytes consumed.
*/
-u8 ata_altstatus(struct ata_port *ap)
+unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
+ unsigned int buflen, int rw)
{
- if (ap->ops->check_altstatus)
- return ap->ops->check_altstatus(ap);
+ struct ata_port *ap = dev->link->ap;
+ void __iomem *data_addr = ap->ioaddr.data_addr;
+ unsigned int words = buflen >> 1;
- return ioread8(ap->ioaddr.altstatus_addr);
+ /* Transfer multiple of 2 bytes */
+ if (rw == READ)
+ ioread16_rep(data_addr, buf, words);
+ else
+ iowrite16_rep(data_addr, buf, words);
+
+ /* Transfer trailing 1 byte, if any. */
+ if (unlikely(buflen & 0x01)) {
+ __le16 align_buf[1] = { 0 };
+ unsigned char *trailing_buf = buf + buflen - 1;
+
+ if (rw == READ) {
+ align_buf[0] = cpu_to_le16(ioread16(data_addr));
+ memcpy(trailing_buf, align_buf, 1);
+ } else {
+ memcpy(align_buf, trailing_buf, 1);
+ iowrite16(le16_to_cpu(align_buf[0]), data_addr);
+ }
+ words++;
+ }
+
+ return words << 1;
}
/**
- * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
- * @qc: Info associated with this ATA transaction.
+ * ata_sff_data_xfer_noirq - Transfer data by PIO
+ * @dev: device to target
+ * @buf: data buffer
+ * @buflen: buffer length
+ * @rw: read/write
+ *
+ * Transfer data from/to the device data register by PIO. Do the
+ * transfer with interrupts disabled.
*
* LOCKING:
- * spin_lock_irqsave(host lock)
+ * Inherited from caller.
+ *
+ * RETURNS:
+ * Bytes consumed.
*/
-void ata_bmdma_setup(struct ata_queued_cmd *qc)
+unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
+ unsigned int buflen, int rw)
+{
+ unsigned long flags;
+ unsigned int consumed;
+
+ local_irq_save(flags);
+ consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
+ local_irq_restore(flags);
+
+ return consumed;
+}
+
+/**
+ * ata_pio_sector - Transfer a sector of data.
+ * @qc: Command on going
+ *
+ * Transfer qc->sect_size bytes of data from/to the ATA device.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+static void ata_pio_sector(struct ata_queued_cmd *qc)
{
+ int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
struct ata_port *ap = qc->ap;
- unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
- u8 dmactl;
+ struct page *page;
+ unsigned int offset;
+ unsigned char *buf;
- /* load PRD table addr. */
- mb(); /* make sure PRD table writes are visible to controller */
- iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
+ if (qc->curbytes == qc->nbytes - qc->sect_size)
+ ap->hsm_task_state = HSM_ST_LAST;
- /* specify data direction, triple-check start bit is clear */
- dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
- dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
- if (!rw)
- dmactl |= ATA_DMA_WR;
- iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
+ page = sg_page(qc->cursg);
+ offset = qc->cursg->offset + qc->cursg_ofs;
- /* issue r/w command */
- ap->ops->exec_command(ap, &qc->tf);
+ /* get the current page and offset */
+ page = nth_page(page, (offset >> PAGE_SHIFT));
+ offset %= PAGE_SIZE;
+
+ DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
+
+ if (PageHighMem(page)) {
+ unsigned long flags;
+
+ /* FIXME: use a bounce buffer */
+ local_irq_save(flags);
+ buf = kmap_atomic(page, KM_IRQ0);
+
+ /* do the actual data transfer */
+ ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
+ do_write);
+
+ kunmap_atomic(buf, KM_IRQ0);
+ local_irq_restore(flags);
+ } else {
+ buf = page_address(page);
+ ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
+ do_write);
+ }
+
+ qc->curbytes += qc->sect_size;
+ qc->cursg_ofs += qc->sect_size;
+
+ if (qc->cursg_ofs == qc->cursg->length) {
+ qc->cursg = sg_next(qc->cursg);
+ qc->cursg_ofs = 0;
+ }
}
/**
- * ata_bmdma_start - Start a PCI IDE BMDMA transaction
- * @qc: Info associated with this ATA transaction.
+ * ata_pio_sectors - Transfer one or many sectors.
+ * @qc: Command on going
+ *
+ * Transfer one or many sectors of data from/to the
+ * ATA device for the DRQ request.
*
* LOCKING:
- * spin_lock_irqsave(host lock)
+ * Inherited from caller.
*/
-void ata_bmdma_start(struct ata_queued_cmd *qc)
+static void ata_pio_sectors(struct ata_queued_cmd *qc)
+{
+ if (is_multi_taskfile(&qc->tf)) {
+ /* READ/WRITE MULTIPLE */
+ unsigned int nsect;
+
+ WARN_ON(qc->dev->multi_count == 0);
+
+ nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
+ qc->dev->multi_count);
+ while (nsect--)
+ ata_pio_sector(qc);
+ } else
+ ata_pio_sector(qc);
+
+ ata_sff_altstatus(qc->ap); /* flush */
+}
+
+/**
+ * atapi_send_cdb - Write CDB bytes to hardware
+ * @ap: Port to which ATAPI device is attached.
+ * @qc: Taskfile currently active
+ *
+ * When device has indicated its readiness to accept
+ * a CDB, this function is called. Send the CDB.
+ *
+ * LOCKING:
+ * caller.
+ */
+static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
+{
+ /* send SCSI cdb */
+ DPRINTK("send cdb\n");
+ WARN_ON(qc->dev->cdb_len < 12);
+
+ ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
+ ata_sff_altstatus(ap); /* flush */
+
+ switch (qc->tf.protocol) {
+ case ATAPI_PROT_PIO:
+ ap->hsm_task_state = HSM_ST;
+ break;
+ case ATAPI_PROT_NODATA:
+ ap->hsm_task_state = HSM_ST_LAST;
+ break;
+ case ATAPI_PROT_DMA:
+ ap->hsm_task_state = HSM_ST_LAST;
+ /* initiate bmdma */
+ ap->ops->bmdma_start(qc);
+ break;
+ }
+}
+
+/**
+ * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
+ * @qc: Command on going
+ * @bytes: number of bytes
+ *
+ * Transfer Transfer data from/to the ATAPI device.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ *
+ */
+static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
{
+ int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
struct ata_port *ap = qc->ap;
- u8 dmactl;
+ struct ata_device *dev = qc->dev;
+ struct ata_eh_info *ehi = &dev->link->eh_info;
+ struct scatterlist *sg;
+ struct page *page;
+ unsigned char *buf;
+ unsigned int offset, count, consumed;
+
+next_sg:
+ sg = qc->cursg;
+ if (unlikely(!sg)) {
+ ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
+ "buf=%u cur=%u bytes=%u",
+ qc->nbytes, qc->curbytes, bytes);
+ return -1;
+ }
- /* start host DMA transaction */
- dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
- iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
+ page = sg_page(sg);
+ offset = sg->offset + qc->cursg_ofs;
- /* Strictly, one may wish to issue an ioread8() here, to
- * flush the mmio write. However, control also passes
- * to the hardware at this point, and it will interrupt
- * us when we are to resume control. So, in effect,
- * we don't care when the mmio write flushes.
- * Further, a read of the DMA status register _immediately_
- * following the write may not be what certain flaky hardware
- * is expected, so I think it is best to not add a readb()
- * without first all the MMIO ATA cards/mobos.
- * Or maybe I'm just being paranoid.
- *
- * FIXME: The posting of this write means I/O starts are
- * unneccessarily delayed for MMIO
+ /* get the current page and offset */
+ page = nth_page(page, (offset >> PAGE_SHIFT));
+ offset %= PAGE_SIZE;
+
+ /* don't overrun current sg */
+ count = min(sg->length - qc->cursg_ofs, bytes);
+
+ /* don't cross page boundaries */
+ count = min(count, (unsigned int)PAGE_SIZE - offset);
+
+ DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
+
+ if (PageHighMem(page)) {
+ unsigned long flags;
+
+ /* FIXME: use bounce buffer */
+ local_irq_save(flags);
+ buf = kmap_atomic(page, KM_IRQ0);
+
+ /* do the actual data transfer */
+ consumed = ap->ops->sff_data_xfer(dev, buf + offset, count, rw);
+
+ kunmap_atomic(buf, KM_IRQ0);
+ local_irq_restore(flags);
+ } else {
+ buf = page_address(page);
+ consumed = ap->ops->sff_data_xfer(dev, buf + offset, count, rw);
+ }
+
+ bytes -= min(bytes, consumed);
+ qc->curbytes += count;
+ qc->cursg_ofs += count;
+
+ if (qc->cursg_ofs == sg->length) {
+ qc->cursg = sg_next(qc->cursg);
+ qc->cursg_ofs = 0;
+ }
+
+ /* consumed can be larger than count only for the last transfer */
+ WARN_ON(qc->cursg && count != consumed);
+
+ if (bytes)
+ goto next_sg;
+ return 0;
+}
+
+/**
+ * atapi_pio_bytes - Transfer data from/to the ATAPI device.
+ * @qc: Command on going
+ *
+ * Transfer Transfer data from/to the ATAPI device.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+static void atapi_pio_bytes(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ struct ata_device *dev = qc->dev;
+ struct ata_eh_info *ehi = &dev->link->eh_info;
+ unsigned int ireason, bc_lo, bc_hi, bytes;
+ int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
+
+ /* Abuse qc->result_tf for temp storage of intermediate TF
+ * here to save some kernel stack usage.
+ * For normal completion, qc->result_tf is not relevant. For
+ * error, qc->result_tf is later overwritten by ata_qc_complete().
+ * So, the correctness of qc->result_tf is not affected.
*/
+ ap->ops->sff_tf_read(ap, &qc->result_tf);
+ ireason = qc->result_tf.nsect;
+ bc_lo = qc->result_tf.lbam;
+ bc_hi = qc->result_tf.lbah;
+ bytes = (bc_hi << 8) | bc_lo;
+
+ /* shall be cleared to zero, indicating xfer of data */
+ if (unlikely(ireason & (1 << 0)))
+ goto atapi_check;
+
+ /* make sure transfer direction matches expected */
+ i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
+ if (unlikely(do_write != i_write))
+ goto atapi_check;
+
+ if (unlikely(!bytes))
+ goto atapi_check;
+
+ VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
+
+ if (unlikely(__atapi_pio_bytes(qc, bytes)))
+ goto err_out;
+ ata_sff_altstatus(ap); /* flush */
+
+ return;
+
+ atapi_check:
+ ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
+ ireason, bytes);
+ err_out:
+ qc->err_mask |= AC_ERR_HSM;
+ ap->hsm_task_state = HSM_ST_ERR;
}
/**
- * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
- * @ap: Port associated with this ATA transaction.
+ * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
+ * @ap: the target ata_port
+ * @qc: qc on going
*
- * Clear interrupt and error flags in DMA status register.
+ * RETURNS:
+ * 1 if ok in workqueue, 0 otherwise.
+ */
+static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
+{
+ if (qc->tf.flags & ATA_TFLAG_POLLING)
+ return 1;
+
+ if (ap->hsm_task_state == HSM_ST_FIRST) {
+ if (qc->tf.protocol == ATA_PROT_PIO &&
+ (qc->tf.flags & ATA_TFLAG_WRITE))
+ return 1;
+
+ if (ata_is_atapi(qc->tf.protocol) &&
+ !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
+ return 1;
+ }
+
+ return 0;
+}
+
+/**
+ * ata_hsm_qc_complete - finish a qc running on standard HSM
+ * @qc: Command to complete
+ * @in_wq: 1 if called from workqueue, 0 otherwise
*
- * May be used as the irq_clear() entry in ata_port_operations.
+ * Finish @qc which is running on standard HSM.
*
* LOCKING:
- * spin_lock_irqsave(host lock)
+ * If @in_wq is zero, spin_lock_irqsave(host lock).
+ * Otherwise, none on entry and grabs host lock.
*/
-void ata_bmdma_irq_clear(struct ata_port *ap)
+static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
{
- void __iomem *mmio = ap->ioaddr.bmdma_addr;
+ struct ata_port *ap = qc->ap;
+ unsigned long flags;
- if (!mmio)
- return;
+ if (ap->ops->error_handler) {
+ if (in_wq) {
+ spin_lock_irqsave(ap->lock, flags);
+
+ /* EH might have kicked in while host lock is
+ * released.
+ */
+ qc = ata_qc_from_tag(ap, qc->tag);
+ if (qc) {
+ if (likely(!(qc->err_mask & AC_ERR_HSM))) {
+ ap->ops->sff_irq_on(ap);
+ ata_qc_complete(qc);
+ } else
+ ata_port_freeze(ap);
+ }
+
+ spin_unlock_irqrestore(ap->lock, flags);
+ } else {
+ if (likely(!(qc->err_mask & AC_ERR_HSM)))
+ ata_qc_complete(qc);
+ else
+ ata_port_freeze(ap);
+ }
+ } else {
+ if (in_wq) {
+ spin_lock_irqsave(ap->lock, flags);
+ ap->ops->sff_irq_on(ap);
+ ata_qc_complete(qc);
+ spin_unlock_irqrestore(ap->lock, flags);
+ } else
+ ata_qc_complete(qc);
+ }
+}
- iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
+/**
+ * ata_sff_hsm_move - move the HSM to the next state.
+ * @ap: the target ata_port
+ * @qc: qc on going
+ * @status: current device status
+ * @in_wq: 1 if called from workqueue, 0 otherwise
+ *
+ * RETURNS:
+ * 1 when poll next status needed, 0 otherwise.
+ */
+int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
+ u8 status, int in_wq)
+{
+ unsigned long flags = 0;
+ int poll_next;
+
+ WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
+
+ /* Make sure ata_sff_qc_issue() does not throw things
+ * like DMA polling into the workqueue. Notice that
+ * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
+ */
+ WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
+
+fsm_start:
+ DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
+ ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
+
+ switch (ap->hsm_task_state) {
+ case HSM_ST_FIRST:
+ /* Send first data block or PACKET CDB */
+
+ /* If polling, we will stay in the work queue after
+ * sending the data. Otherwise, interrupt handler
+ * takes over after sending the data.
+ */
+ poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
+
+ /* check device status */
+ if (unlikely((status & ATA_DRQ) == 0)) {
+ /* handle BSY=0, DRQ=0 as error */
+ if (likely(status & (ATA_ERR | ATA_DF)))
+ /* device stops HSM for abort/error */
+ qc->err_mask |= AC_ERR_DEV;
+ else
+ /* HSM violation. Let EH handle this */
+ qc->err_mask |= AC_ERR_HSM;
+
+ ap->hsm_task_state = HSM_ST_ERR;
+ goto fsm_start;
+ }
+
+ /* Device should not ask for data transfer (DRQ=1)
+ * when it finds something wrong.
+ * We ignore DRQ here and stop the HSM by
+ * changing hsm_task_state to HSM_ST_ERR and
+ * let the EH abort the command or reset the device.
+ */
+ if (unlikely(status & (ATA_ERR | ATA_DF))) {
+ /* Some ATAPI tape drives forget to clear the ERR bit
+ * when doing the next command (mostly request sense).
+ * We ignore ERR here to workaround and proceed sending
+ * the CDB.
+ */
+ if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
+ ata_port_printk(ap, KERN_WARNING,
+ "DRQ=1 with device error, "
+ "dev_stat 0x%X\n", status);
+ qc->err_mask |= AC_ERR_HSM;
+ ap->hsm_task_state = HSM_ST_ERR;
+ goto fsm_start;
+ }
+ }
+
+ /* Send the CDB (atapi) or the first data block (ata pio out).
+ * During the state transition, interrupt handler shouldn't
+ * be invoked before the data transfer is complete and
+ * hsm_task_state is changed. Hence, the following locking.
+ */
+ if (in_wq)
+ spin_lock_irqsave(ap->lock, flags);
+
+ if (qc->tf.protocol == ATA_PROT_PIO) {
+ /* PIO data out protocol.
+ * send first data block.
+ */
+
+ /* ata_pio_sectors() might change the state
+ * to HSM_ST_LAST. so, the state is changed here
+ * before ata_pio_sectors().
+ */
+ ap->hsm_task_state = HSM_ST;
+ ata_pio_sectors(qc);
+ } else
+ /* send CDB */
+ atapi_send_cdb(ap, qc);
+
+ if (in_wq)
+ spin_unlock_irqrestore(ap->lock, flags);
+
+ /* if polling, ata_pio_task() handles the rest.
+ * otherwise, interrupt handler takes over from here.
+ */
+ break;
+
+ case HSM_ST:
+ /* complete command or read/write the data register */
+ if (qc->tf.protocol == ATAPI_PROT_PIO) {
+ /* ATAPI PIO protocol */
+ if ((status & ATA_DRQ) == 0) {
+ /* No more data to transfer or device error.
+ * Device error will be tagged in HSM_ST_LAST.
+ */
+ ap->hsm_task_state = HSM_ST_LAST;
+ goto fsm_start;
+ }
+
+ /* Device should not ask for data transfer (DRQ=1)
+ * when it finds something wrong.
+ * We ignore DRQ here and stop the HSM by
+ * changing hsm_task_state to HSM_ST_ERR and
+ * let the EH abort the command or reset the device.
+ */
+ if (unlikely(status & (ATA_ERR | ATA_DF))) {
+ ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
+ "device error, dev_stat 0x%X\n",
+ status);
+ qc->err_mask |= AC_ERR_HSM;
+ ap->hsm_task_state = HSM_ST_ERR;
+ goto fsm_start;
+ }
+
+ atapi_pio_bytes(qc);
+
+ if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
+ /* bad ireason reported by device */
+ goto fsm_start;
+
+ } else {
+ /* ATA PIO protocol */
+ if (unlikely((status & ATA_DRQ) == 0)) {
+ /* handle BSY=0, DRQ=0 as error */
+ if (likely(status & (ATA_ERR | ATA_DF)))
+ /* device stops HSM for abort/error */
+ qc->err_mask |= AC_ERR_DEV;
+ else
+ /* HSM violation. Let EH handle this.
+ * Phantom devices also trigger this
+ * condition. Mark hint.
+ */
+ qc->err_mask |= AC_ERR_HSM |
+ AC_ERR_NODEV_HINT;
+
+ ap->hsm_task_state = HSM_ST_ERR;
+ goto fsm_start;
+ }
+
+ /* For PIO reads, some devices may ask for
+ * data transfer (DRQ=1) alone with ERR=1.
+ * We respect DRQ here and transfer one
+ * block of junk data before changing the
+ * hsm_task_state to HSM_ST_ERR.
+ *
+ * For PIO writes, ERR=1 DRQ=1 doesn't make
+ * sense since the data block has been
+ * transferred to the device.
+ */
+ if (unlikely(status & (ATA_ERR | ATA_DF))) {
+ /* data might be corrputed */
+ qc->err_mask |= AC_ERR_DEV;
+
+ if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
+ ata_pio_sectors(qc);
+ status = ata_wait_idle(ap);
+ }
+
+ if (status & (ATA_BUSY | ATA_DRQ))
+ qc->err_mask |= AC_ERR_HSM;
+
+ /* ata_pio_sectors() might change the
+ * state to HSM_ST_LAST. so, the state
+ * is changed after ata_pio_sectors().
+ */
+ ap->hsm_task_state = HSM_ST_ERR;
+ goto fsm_start;
+ }
+
+ ata_pio_sectors(qc);
+
+ if (ap->hsm_task_state == HSM_ST_LAST &&
+ (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
+ /* all data read */
+ status = ata_wait_idle(ap);
+ goto fsm_start;
+ }
+ }
+
+ poll_next = 1;
+ break;
+
+ case HSM_ST_LAST:
+ if (unlikely(!ata_ok(status))) {
+ qc->err_mask |= __ac_err_mask(status);
+ ap->hsm_task_state = HSM_ST_ERR;
+ goto fsm_start;
+ }
+
+ /* no more data to transfer */
+ DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
+ ap->print_id, qc->dev->devno, status);
+
+ WARN_ON(qc->err_mask);
+
+ ap->hsm_task_state = HSM_ST_IDLE;
+
+ /* complete taskfile transaction */
+ ata_hsm_qc_complete(qc, in_wq);
+
+ poll_next = 0;
+ break;
+
+ case HSM_ST_ERR:
+ /* make sure qc->err_mask is available to
+ * know what's wrong and recover
+ */
+ WARN_ON(qc->err_mask == 0);
+
+ ap->hsm_task_state = HSM_ST_IDLE;
+
+ /* complete taskfile transaction */
+ ata_hsm_qc_complete(qc, in_wq);
+
+ poll_next = 0;
+ break;
+ default:
+ poll_next = 0;
+ BUG();
+ }
+
+ return poll_next;
+}
+
+void ata_pio_task(struct work_struct *work)
+{
+ struct ata_port *ap =
+ container_of(work, struct ata_port, port_task.work);
+ struct ata_queued_cmd *qc = ap->port_task_data;
+ u8 status;
+ int poll_next;
+
+fsm_start:
+ WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
+
+ /*
+ * This is purely heuristic. This is a fast path.
+ * Sometimes when we enter, BSY will be cleared in
+ * a chk-status or two. If not, the drive is probably seeking
+ * or something. Snooze for a couple msecs, then
+ * chk-status again. If still busy, queue delayed work.
+ */
+ status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
+ if (status & ATA_BUSY) {
+ msleep(2);
+ status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
+ if (status & ATA_BUSY) {
+ ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
+ return;
+ }
+ }
+
+ /* move the HSM */
+ poll_next = ata_sff_hsm_move(ap, qc, status, 1);
+
+ /* another command or interrupt handler
+ * may be running at this point.
+ */
+ if (poll_next)
+ goto fsm_start;
}
/**
- * ata_bmdma_status - Read PCI IDE BMDMA status
- * @ap: Port associated with this ATA transaction.
+ * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
+ * @qc: command to issue to device
*
- * Read and return BMDMA status register.
+ * Using various libata functions and hooks, this function
+ * starts an ATA command. ATA commands are grouped into
+ * classes called "protocols", and issuing each type of protocol
+ * is slightly different.
*
- * May be used as the bmdma_status() entry in ata_port_operations.
+ * May be used as the qc_issue() entry in ata_port_operations.
*
* LOCKING:
* spin_lock_irqsave(host lock)
+ *
+ * RETURNS:
+ * Zero on success, AC_ERR_* mask on failure
*/
-u8 ata_bmdma_status(struct ata_port *ap)
+unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
{
- return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
+ struct ata_port *ap = qc->ap;
+
+ /* Use polling pio if the LLD doesn't handle
+ * interrupt driven pio and atapi CDB interrupt.
+ */
+ if (ap->flags & ATA_FLAG_PIO_POLLING) {
+ switch (qc->tf.protocol) {
+ case ATA_PROT_PIO:
+ case ATA_PROT_NODATA:
+ case ATAPI_PROT_PIO:
+ case ATAPI_PROT_NODATA:
+ qc->tf.flags |= ATA_TFLAG_POLLING;
+ break;
+ case ATAPI_PROT_DMA:
+ if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
+ /* see ata_dma_blacklisted() */
+ BUG();
+ break;
+ default:
+ break;
+ }
+ }
+
+ /* select the device */
+ ata_dev_select(ap, qc->dev->devno, 1, 0);
+
+ /* start the command */
+ switch (qc->tf.protocol) {
+ case ATA_PROT_NODATA:
+ if (qc->tf.flags & ATA_TFLAG_POLLING)
+ ata_qc_set_polling(qc);
+
+ ata_tf_to_host(ap, &qc->tf);
+ ap->hsm_task_state = HSM_ST_LAST;
+
+ if (qc->tf.flags & ATA_TFLAG_POLLING)
+ ata_pio_queue_task(ap, qc, 0);
+
+ break;
+
+ case ATA_PROT_DMA:
+ WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
+
+ ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
+ ap->ops->bmdma_setup(qc); /* set up bmdma */
+ ap->ops->bmdma_start(qc); /* initiate bmdma */
+ ap->hsm_task_state = HSM_ST_LAST;
+ break;
+
+ case ATA_PROT_PIO:
+ if (qc->tf.flags & ATA_TFLAG_POLLING)
+ ata_qc_set_polling(qc);
+
+ ata_tf_to_host(ap, &qc->tf);
+
+ if (qc->tf.flags & ATA_TFLAG_WRITE) {
+ /* PIO data out protocol */
+ ap->hsm_task_state = HSM_ST_FIRST;
+ ata_pio_queue_task(ap, qc, 0);
+
+ /* always send first data block using
+ * the ata_pio_task() codepath.
+ */
+ } else {
+ /* PIO data in protocol */
+ ap->hsm_task_state = HSM_ST;
+
+ if (qc->tf.flags & ATA_TFLAG_POLLING)
+ ata_pio_queue_task(ap, qc, 0);
+
+ /* if polling, ata_pio_task() handles the rest.
+ * otherwise, interrupt handler takes over from here.
+ */
+ }
+
+ break;
+
+ case ATAPI_PROT_PIO:
+ case ATAPI_PROT_NODATA:
+ if (qc->tf.flags & ATA_TFLAG_POLLING)
+ ata_qc_set_polling(qc);
+
+ ata_tf_to_host(ap, &qc->tf);
+
+ ap->hsm_task_state = HSM_ST_FIRST;
+
+ /* send cdb by polling if no cdb interrupt */
+ if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
+ (qc->tf.flags & ATA_TFLAG_POLLING))
+ ata_pio_queue_task(ap, qc, 0);
+ break;
+
+ case ATAPI_PROT_DMA:
+ WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
+
+ ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
+ ap->ops->bmdma_setup(qc); /* set up bmdma */
+ ap->hsm_task_state = HSM_ST_FIRST;
+
+ /* send cdb by polling if no cdb interrupt */
+ if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
+ ata_pio_queue_task(ap, qc, 0);
+ break;
+
+ default:
+ WARN_ON(1);
+ return AC_ERR_SYSTEM;
+ }
+
+ return 0;
}
/**
- * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
- * @qc: Command we are ending DMA for
+ * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
+ * @qc: qc to fill result TF for
*
- * Clears the ATA_DMA_START flag in the dma control register
+ * @qc is finished and result TF needs to be filled. Fill it
+ * using ->sff_tf_read.
*
- * May be used as the bmdma_stop() entry in ata_port_operations.
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ *
+ * RETURNS:
+ * true indicating that result TF is successfully filled.
+ */
+bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
+{
+ qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
+ return true;
+}
+
+/**
+ * ata_sff_host_intr - Handle host interrupt for given (port, task)
+ * @ap: Port on which interrupt arrived (possibly...)
+ * @qc: Taskfile currently active in engine
+ *
+ * Handle host interrupt for given queued command. Currently,
+ * only DMA interrupts are handled. All other commands are
+ * handled via polling with interrupts disabled (nIEN bit).
*
* LOCKING:
* spin_lock_irqsave(host lock)
+ *
+ * RETURNS:
+ * One if interrupt was handled, zero if not (shared irq).
*/
-void ata_bmdma_stop(struct ata_queued_cmd *qc)
+inline unsigned int ata_sff_host_intr(struct ata_port *ap,
+ struct ata_queued_cmd *qc)
{
- struct ata_port *ap = qc->ap;
- void __iomem *mmio = ap->ioaddr.bmdma_addr;
+ struct ata_eh_info *ehi = &ap->link.eh_info;
+ u8 status, host_stat = 0;
- /* clear start/stop bit */
- iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
- mmio + ATA_DMA_CMD);
+ VPRINTK("ata%u: protocol %d task_state %d\n",
+ ap->print_id, qc->tf.protocol, ap->hsm_task_state);
- /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
- ata_altstatus(ap); /* dummy read */
+ /* Check whether we are expecting interrupt in this state */
+ switch (ap->hsm_task_state) {
+ case HSM_ST_FIRST:
+ /* Some pre-ATAPI-4 devices assert INTRQ
+ * at this state when ready to receive CDB.
+ */
+
+ /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
+ * The flag was turned on only for atapi devices. No
+ * need to check ata_is_atapi(qc->tf.protocol) again.
+ */
+ if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
+ goto idle_irq;
+ break;
+ case HSM_ST_LAST:
+ if (qc->tf.protocol == ATA_PROT_DMA ||
+ qc->tf.protocol == ATAPI_PROT_DMA) {
+ /* check status of DMA engine */
+ host_stat = ap->ops->bmdma_status(ap);
+ VPRINTK("ata%u: host_stat 0x%X\n",
+ ap->print_id, host_stat);
+
+ /* if it's not our irq... */
+ if (!(host_stat & ATA_DMA_INTR))
+ goto idle_irq;
+
+ /* before we do anything else, clear DMA-Start bit */
+ ap->ops->bmdma_stop(qc);
+
+ if (unlikely(host_stat & ATA_DMA_ERR)) {
+ /* error when transfering data to/from memory */
+ qc->err_mask |= AC_ERR_HOST_BUS;
+ ap->hsm_task_state = HSM_ST_ERR;
+ }
+ }
+ break;
+ case HSM_ST:
+ break;
+ default:
+ goto idle_irq;
+ }
+
+ /* check altstatus */
+ status = ata_sff_altstatus(ap);
+ if (status & ATA_BUSY)
+ goto idle_irq;
+
+ /* check main status, clearing INTRQ */
+ status = ap->ops->sff_check_status(ap);
+ if (unlikely(status & ATA_BUSY))
+ goto idle_irq;
+
+ /* ack bmdma irq events */
+ ap->ops->sff_irq_clear(ap);
+
+ ata_sff_hsm_move(ap, qc, status, 0);
+
+ if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
+ qc->tf.protocol == ATAPI_PROT_DMA))
+ ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
+
+ return 1; /* irq handled */
+
+idle_irq:
+ ap->stats.idle_irq++;
+
+#ifdef ATA_IRQ_TRAP
+ if ((ap->stats.idle_irq % 1000) == 0) {
+ ap->ops->sff_check_status(ap);
+ ap->ops->sff_irq_clear(ap);
+ ata_port_printk(ap, KERN_WARNING, "irq trap\n");
+ return 1;
+ }
+#endif
+ return 0; /* irq not handled */
+}
+
+/**
+ * ata_sff_interrupt - Default ATA host interrupt handler
+ * @irq: irq line (unused)
+ * @dev_instance: pointer to our ata_host information structure
+ *
+ * Default interrupt handler for PCI IDE devices. Calls
+ * ata_sff_host_intr() for each port that is not disabled.
+ *
+ * LOCKING:
+ * Obtains host lock during operation.
+ *
+ * RETURNS:
+ * IRQ_NONE or IRQ_HANDLED.
+ */
+irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
+{
+ struct ata_host *host = dev_instance;
+ unsigned int i;
+ unsigned int handled = 0;
+ unsigned long flags;
+
+ /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
+ spin_lock_irqsave(&host->lock, flags);
+
+ for (i = 0; i < host->n_ports; i++) {
+ struct ata_port *ap;
+
+ ap = host->ports[i];
+ if (ap &&
+ !(ap->flags & ATA_FLAG_DISABLED)) {
+ struct ata_queued_cmd *qc;
+
+ qc = ata_qc_from_tag(ap, ap->link.active_tag);
+ if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
+ (qc->flags & ATA_QCFLAG_ACTIVE))
+ handled |= ata_sff_host_intr(ap, qc);
+ }
+ }
+
+ spin_unlock_irqrestore(&host->lock, flags);
+
+ return IRQ_RETVAL(handled);
}
/**
- * ata_bmdma_freeze - Freeze BMDMA controller port
+ * ata_sff_freeze - Freeze SFF controller port
* @ap: port to freeze
*
* Freeze BMDMA controller port.
@@ -351,7 +1581,7 @@ void ata_bmdma_stop(struct ata_queued_cmd *qc)
* LOCKING:
* Inherited from caller.
*/
-void ata_bmdma_freeze(struct ata_port *ap)
+void ata_sff_freeze(struct ata_port *ap)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
@@ -365,51 +1595,412 @@ void ata_bmdma_freeze(struct ata_port *ap)
* ATA_NIEN manipulation. Also, many controllers fail to mask
* previously pending IRQ on ATA_NIEN assertion. Clear it.
*/
- ata_chk_status(ap);
+ ap->ops->sff_check_status(ap);
- ap->ops->irq_clear(ap);
+ ap->ops->sff_irq_clear(ap);
}
/**
- * ata_bmdma_thaw - Thaw BMDMA controller port
+ * ata_sff_thaw - Thaw SFF controller port
* @ap: port to thaw
*
- * Thaw BMDMA controller port.
+ * Thaw SFF controller port.
*
* LOCKING:
* Inherited from caller.
*/
-void ata_bmdma_thaw(struct ata_port *ap)
+void ata_sff_thaw(struct ata_port *ap)
{
/* clear & re-enable interrupts */
- ata_chk_status(ap);
- ap->ops->irq_clear(ap);
- ap->ops->irq_on(ap);
+ ap->ops->sff_check_status(ap);
+ ap->ops->sff_irq_clear(ap);
+ ap->ops->sff_irq_on(ap);
+}
+
+/**
+ * ata_sff_prereset - prepare SFF link for reset
+ * @link: SFF link to be reset
+ * @deadline: deadline jiffies for the operation
+ *
+ * SFF link @link is about to be reset. Initialize it. It first
+ * calls ata_std_prereset() and wait for !BSY if the port is
+ * being softreset.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ *
+ * RETURNS:
+ * 0 on success, -errno otherwise.
+ */
+int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
+{
+ struct ata_eh_context *ehc = &link->eh_context;
+ int rc;
+
+ rc = ata_std_prereset(link, deadline);
+ if (rc)
+ return rc;
+
+ /* if we're about to do hardreset, nothing more to do */
+ if (ehc->i.action & ATA_EH_HARDRESET)
+ return 0;
+
+ /* wait for !BSY if we don't know that no device is attached */
+ if (!ata_link_offline(link)) {
+ rc = ata_sff_wait_ready(link, deadline);
+ if (rc && rc != -ENODEV) {
+ ata_link_printk(link, KERN_WARNING, "device not ready "
+ "(errno=%d), forcing hardreset\n", rc);
+ ehc->i.action |= ATA_EH_HARDRESET;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * ata_devchk - PATA device presence detection
+ * @ap: ATA channel to examine
+ * @device: Device to examine (starting at zero)
+ *
+ * This technique was originally described in
+ * Hale Landis's ATADRVR (www.ata-atapi.com), and
+ * later found its way into the ATA/ATAPI spec.
+ *
+ * Write a pattern to the ATA shadow registers,
+ * and if a device is present, it will respond by
+ * correctly storing and echoing back the
+ * ATA shadow register contents.
+ *
+ * LOCKING:
+ * caller.
+ */
+static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
+{
+ struct ata_ioports *ioaddr = &ap->ioaddr;
+ u8 nsect, lbal;
+
+ ap->ops->sff_dev_select(ap, device);
+
+ iowrite8(0x55, ioaddr->nsect_addr);
+ iowrite8(0xaa, ioaddr->lbal_addr);
+
+ iowrite8(0xaa, ioaddr->nsect_addr);
+ iowrite8(0x55, ioaddr->lbal_addr);
+
+ iowrite8(0x55, ioaddr->nsect_addr);
+ iowrite8(0xaa, ioaddr->lbal_addr);
+
+ nsect = ioread8(ioaddr->nsect_addr);
+ lbal = ioread8(ioaddr->lbal_addr);
+
+ if ((nsect == 0x55) && (lbal == 0xaa))
+ return 1; /* we found a device */
+
+ return 0; /* nothing found */
+}
+
+/**
+ * ata_sff_dev_classify - Parse returned ATA device signature
+ * @dev: ATA device to classify (starting at zero)
+ * @present: device seems present
+ * @r_err: Value of error register on completion
+ *
+ * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
+ * an ATA/ATAPI-defined set of values is placed in the ATA
+ * shadow registers, indicating the results of device detection
+ * and diagnostics.
+ *
+ * Select the ATA device, and read the values from the ATA shadow
+ * registers. Then parse according to the Error register value,
+ * and the spec-defined values examined by ata_dev_classify().
+ *
+ * LOCKING:
+ * caller.
+ *
+ * RETURNS:
+ * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
+ */
+unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
+ u8 *r_err)
+{
+ struct ata_port *ap = dev->link->ap;
+ struct ata_taskfile tf;
+ unsigned int class;
+ u8 err;
+
+ ap->ops->sff_dev_select(ap, dev->devno);
+
+ memset(&tf, 0, sizeof(tf));
+
+ ap->ops->sff_tf_read(ap, &tf);
+ err = tf.feature;
+ if (r_err)
+ *r_err = err;
+
+ /* see if device passed diags: continue and warn later */
+ if (err == 0)
+ /* diagnostic fail : do nothing _YET_ */
+ dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
+ else if (err == 1)
+ /* do nothing */ ;
+ else if ((dev->devno == 0) && (err == 0x81))
+ /* do nothing */ ;
+ else
+ return ATA_DEV_NONE;
+
+ /* determine if device is ATA or ATAPI */
+ class = ata_dev_classify(&tf);
+
+ if (class == ATA_DEV_UNKNOWN) {
+ /* If the device failed diagnostic, it's likely to
+ * have reported incorrect device signature too.
+ * Assume ATA device if the device seems present but
+ * device signature is invalid with diagnostic
+ * failure.
+ */
+ if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
+ class = ATA_DEV_ATA;
+ else
+ class = ATA_DEV_NONE;
+ } else if ((class == ATA_DEV_ATA) &&
+ (ap->ops->sff_check_status(ap) == 0))
+ class = ATA_DEV_NONE;
+
+ return class;
+}
+
+/**
+ * ata_sff_wait_after_reset - wait for devices to become ready after reset
+ * @link: SFF link which is just reset
+ * @devmask: mask of present devices
+ * @deadline: deadline jiffies for the operation
+ *
+ * Wait devices attached to SFF @link to become ready after
+ * reset. It contains preceding 150ms wait to avoid accessing TF
+ * status register too early.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep).
+ *
+ * RETURNS:
+ * 0 on success, -ENODEV if some or all of devices in @devmask
+ * don't seem to exist. -errno on other errors.
+ */
+int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
+ unsigned long deadline)
+{
+ struct ata_port *ap = link->ap;
+ struct ata_ioports *ioaddr = &ap->ioaddr;
+ unsigned int dev0 = devmask & (1 << 0);
+ unsigned int dev1 = devmask & (1 << 1);
+ int rc, ret = 0;
+
+ msleep(ATA_WAIT_AFTER_RESET_MSECS);
+
+ /* always check readiness of the master device */
+ rc = ata_sff_wait_ready(link, deadline);
+ /* -ENODEV means the odd clown forgot the D7 pulldown resistor
+ * and TF status is 0xff, bail out on it too.
+ */
+ if (rc)
+ return rc;
+
+ /* if device 1 was found in ata_devchk, wait for register
+ * access briefly, then wait for BSY to clear.
+ */
+ if (dev1) {
+ int i;
+
+ ap->ops->sff_dev_select(ap, 1);
+
+ /* Wait for register access. Some ATAPI devices fail
+ * to set nsect/lbal after reset, so don't waste too
+ * much time on it. We're gonna wait for !BSY anyway.
+ */
+ for (i = 0; i < 2; i++) {
+ u8 nsect, lbal;
+
+ nsect = ioread8(ioaddr->nsect_addr);
+ lbal = ioread8(ioaddr->lbal_addr);
+ if ((nsect == 1) && (lbal == 1))
+ break;
+ msleep(50); /* give drive a breather */
+ }
+
+ rc = ata_sff_wait_ready(link, deadline);
+ if (rc) {
+ if (rc != -ENODEV)
+ return rc;
+ ret = rc;
+ }
+ }
+
+ /* is all this really necessary? */
+ ap->ops->sff_dev_select(ap, 0);
+ if (dev1)
+ ap->ops->sff_dev_select(ap, 1);
+ if (dev0)
+ ap->ops->sff_dev_select(ap, 0);
+
+ return ret;
+}
+
+static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
+ unsigned long deadline)
+{
+ struct ata_ioports *ioaddr = &ap->ioaddr;
+
+ DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
+
+ /* software reset. causes dev0 to be selected */
+ iowrite8(ap->ctl, ioaddr->ctl_addr);
+ udelay(20); /* FIXME: flush */
+ iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
+ udelay(20); /* FIXME: flush */
+ iowrite8(ap->ctl, ioaddr->ctl_addr);
+
+ /* wait the port to become ready */
+ return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
+}
+
+/**
+ * ata_sff_softreset - reset host port via ATA SRST
+ * @link: ATA link to reset
+ * @classes: resulting classes of attached devices
+ * @deadline: deadline jiffies for the operation
+ *
+ * Reset host port using ATA SRST.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ *
+ * RETURNS:
+ * 0 on success, -errno otherwise.
+ */
+int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
+ unsigned long deadline)
+{
+ struct ata_port *ap = link->ap;
+ unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
+ unsigned int devmask = 0;
+ int rc;
+ u8 err;
+
+ DPRINTK("ENTER\n");
+
+ /* determine if device 0/1 are present */
+ if (ata_devchk(ap, 0))
+ devmask |= (1 << 0);
+ if (slave_possible && ata_devchk(ap, 1))
+ devmask |= (1 << 1);
+
+ /* select device 0 again */
+ ap->ops->sff_dev_select(ap, 0);
+
+ /* issue bus reset */
+ DPRINTK("about to softreset, devmask=%x\n", devmask);
+ rc = ata_bus_softreset(ap, devmask, deadline);
+ /* if link is occupied, -ENODEV too is an error */
+ if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
+ ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
+ return rc;
+ }
+
+ /* determine by signature whether we have ATA or ATAPI devices */
+ classes[0] = ata_sff_dev_classify(&link->device[0],
+ devmask & (1 << 0), &err);
+ if (slave_possible && err != 0x81)
+ classes[1] = ata_sff_dev_classify(&link->device[1],
+ devmask & (1 << 1), &err);
+
+ DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
+ return 0;
+}
+
+/**
+ * sata_sff_hardreset - reset host port via SATA phy reset
+ * @link: link to reset
+ * @class: resulting class of attached device
+ * @deadline: deadline jiffies for the operation
+ *
+ * SATA phy-reset host port using DET bits of SControl register,
+ * wait for !BSY and classify the attached device.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ *
+ * RETURNS:
+ * 0 on success, -errno otherwise.
+ */
+int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
+ unsigned long deadline)
+{
+ struct ata_eh_context *ehc = &link->eh_context;
+ const unsigned long *timing = sata_ehc_deb_timing(ehc);
+ bool online;
+ int rc;
+
+ rc = sata_link_hardreset(link, timing, deadline, &online,
+ ata_sff_check_ready);
+ if (online)
+ *class = ata_sff_dev_classify(link->device, 1, NULL);
+
+ DPRINTK("EXIT, class=%u\n", *class);
+ return rc;
}
/**
- * ata_bmdma_drive_eh - Perform EH with given methods for BMDMA controller
+ * ata_sff_postreset - SFF postreset callback
+ * @link: the target SFF ata_link
+ * @classes: classes of attached devices
+ *
+ * This function is invoked after a successful reset. It first
+ * calls ata_std_postreset() and performs SFF specific postreset
+ * processing.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ */
+void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
+{
+ struct ata_port *ap = link->ap;
+
+ ata_std_postreset(link, classes);
+
+ /* is double-select really necessary? */
+ if (classes[0] != ATA_DEV_NONE)
+ ap->ops->sff_dev_select(ap, 1);
+ if (classes[1] != ATA_DEV_NONE)
+ ap->ops->sff_dev_select(ap, 0);
+
+ /* bail out if no device is present */
+ if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
+ DPRINTK("EXIT, no device\n");
+ return;
+ }
+
+ /* set up device control */
+ if (ap->ioaddr.ctl_addr)
+ iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
+}
+
+/**
+ * ata_sff_error_handler - Stock error handler for BMDMA controller
* @ap: port to handle error for
- * @prereset: prereset method (can be NULL)
- * @softreset: softreset method (can be NULL)
- * @hardreset: hardreset method (can be NULL)
- * @postreset: postreset method (can be NULL)
*
- * Handle error for ATA BMDMA controller. It can handle both
+ * Stock error handler for SFF controller. It can handle both
* PATA and SATA controllers. Many controllers should be able to
* use this EH as-is or with some added handling before and
* after.
*
- * This function is intended to be used for constructing
- * ->error_handler callback by low level drivers.
- *
* LOCKING:
* Kernel thread context (may sleep)
*/
-void ata_bmdma_drive_eh(struct ata_port *ap, ata_prereset_fn_t prereset,
- ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
- ata_postreset_fn_t postreset)
+void ata_sff_error_handler(struct ata_port *ap)
{
+ ata_reset_fn_t softreset = ap->ops->softreset;
+ ata_reset_fn_t hardreset = ap->ops->hardreset;
struct ata_queued_cmd *qc;
unsigned long flags;
int thaw = 0;
@@ -423,7 +2014,8 @@ void ata_bmdma_drive_eh(struct ata_port *ap, ata_prereset_fn_t prereset,
ap->hsm_task_state = HSM_ST_IDLE;
- if (qc && (qc->tf.protocol == ATA_PROT_DMA ||
+ if (ap->ioaddr.bmdma_addr &&
+ qc && (qc->tf.protocol == ATA_PROT_DMA ||
qc->tf.protocol == ATAPI_PROT_DMA)) {
u8 host_stat;
@@ -442,9 +2034,9 @@ void ata_bmdma_drive_eh(struct ata_port *ap, ata_prereset_fn_t prereset,
ap->ops->bmdma_stop(qc);
}
- ata_altstatus(ap);
- ata_chk_status(ap);
- ap->ops->irq_clear(ap);
+ ata_sff_altstatus(ap);
+ ap->ops->sff_check_status(ap);
+ ap->ops->sff_irq_clear(ap);
spin_unlock_irqrestore(ap->lock, flags);
@@ -452,40 +2044,27 @@ void ata_bmdma_drive_eh(struct ata_port *ap, ata_prereset_fn_t prereset,
ata_eh_thaw_port(ap);
/* PIO and DMA engines have been stopped, perform recovery */
- ata_do_eh(ap, prereset, softreset, hardreset, postreset);
-}
-
-/**
- * ata_bmdma_error_handler - Stock error handler for BMDMA controller
- * @ap: port to handle error for
- *
- * Stock error handler for BMDMA controller.
- *
- * LOCKING:
- * Kernel thread context (may sleep)
- */
-void ata_bmdma_error_handler(struct ata_port *ap)
-{
- ata_reset_fn_t softreset = NULL, hardreset = NULL;
- if (ap->ioaddr.ctl_addr)
- softreset = ata_std_softreset;
- if (sata_scr_valid(&ap->link))
- hardreset = sata_std_hardreset;
+ /* Ignore ata_sff_softreset if ctl isn't accessible and
+ * built-in hardresets if SCR access isn't available.
+ */
+ if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
+ softreset = NULL;
+ if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
+ hardreset = NULL;
- ata_bmdma_drive_eh(ap, ata_std_prereset, softreset, hardreset,
- ata_std_postreset);
+ ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
+ ap->ops->postreset);
}
/**
- * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for
- * BMDMA controller
+ * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
* @qc: internal command to clean up
*
* LOCKING:
* Kernel thread context (may sleep)
*/
-void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
+void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
{
if (qc->ap->ioaddr.bmdma_addr)
ata_bmdma_stop(qc);
@@ -504,7 +2083,6 @@ void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
* LOCKING:
* Inherited from caller.
*/
-
int ata_sff_port_start(struct ata_port *ap)
{
if (ap->ioaddr.bmdma_addr)
@@ -512,24 +2090,262 @@ int ata_sff_port_start(struct ata_port *ap)
return 0;
}
-#ifdef CONFIG_PCI
+/**
+ * ata_sff_std_ports - initialize ioaddr with standard port offsets.
+ * @ioaddr: IO address structure to be initialized
+ *
+ * Utility function which initializes data_addr, error_addr,
+ * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
+ * device_addr, status_addr, and command_addr to standard offsets
+ * relative to cmd_addr.
+ *
+ * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
+ */
+void ata_sff_std_ports(struct ata_ioports *ioaddr)
+{
+ ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
+ ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
+ ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
+ ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
+ ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
+ ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
+ ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
+ ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
+ ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
+ ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
+}
-static int ata_resources_present(struct pci_dev *pdev, int port)
+unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
+ unsigned long xfer_mask)
{
- int i;
+ /* Filter out DMA modes if the device has been configured by
+ the BIOS as PIO only */
- /* Check the PCI resources for this channel are enabled */
- port = port * 2;
- for (i = 0; i < 2; i ++) {
- if (pci_resource_start(pdev, port + i) == 0 ||
- pci_resource_len(pdev, port + i) == 0)
- return 0;
+ if (adev->link->ap->ioaddr.bmdma_addr == NULL)
+ xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
+ return xfer_mask;
+}
+
+/**
+ * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
+ * @qc: Info associated with this ATA transaction.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ */
+void ata_bmdma_setup(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
+ u8 dmactl;
+
+ /* load PRD table addr. */
+ mb(); /* make sure PRD table writes are visible to controller */
+ iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
+
+ /* specify data direction, triple-check start bit is clear */
+ dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
+ dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
+ if (!rw)
+ dmactl |= ATA_DMA_WR;
+ iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
+
+ /* issue r/w command */
+ ap->ops->sff_exec_command(ap, &qc->tf);
+}
+
+/**
+ * ata_bmdma_start - Start a PCI IDE BMDMA transaction
+ * @qc: Info associated with this ATA transaction.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ */
+void ata_bmdma_start(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ u8 dmactl;
+
+ /* start host DMA transaction */
+ dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
+ iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
+
+ /* Strictly, one may wish to issue an ioread8() here, to
+ * flush the mmio write. However, control also passes
+ * to the hardware at this point, and it will interrupt
+ * us when we are to resume control. So, in effect,
+ * we don't care when the mmio write flushes.
+ * Further, a read of the DMA status register _immediately_
+ * following the write may not be what certain flaky hardware
+ * is expected, so I think it is best to not add a readb()
+ * without first all the MMIO ATA cards/mobos.
+ * Or maybe I'm just being paranoid.
+ *
+ * FIXME: The posting of this write means I/O starts are
+ * unneccessarily delayed for MMIO
+ */
+}
+
+/**
+ * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
+ * @qc: Command we are ending DMA for
+ *
+ * Clears the ATA_DMA_START flag in the dma control register
+ *
+ * May be used as the bmdma_stop() entry in ata_port_operations.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ */
+void ata_bmdma_stop(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ void __iomem *mmio = ap->ioaddr.bmdma_addr;
+
+ /* clear start/stop bit */
+ iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
+ mmio + ATA_DMA_CMD);
+
+ /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
+ ata_sff_altstatus(ap); /* dummy read */
+}
+
+/**
+ * ata_bmdma_status - Read PCI IDE BMDMA status
+ * @ap: Port associated with this ATA transaction.
+ *
+ * Read and return BMDMA status register.
+ *
+ * May be used as the bmdma_status() entry in ata_port_operations.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ */
+u8 ata_bmdma_status(struct ata_port *ap)
+{
+ return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
+}
+
+/**
+ * ata_bus_reset - reset host port and associated ATA channel
+ * @ap: port to reset
+ *
+ * This is typically the first time we actually start issuing
+ * commands to the ATA channel. We wait for BSY to clear, then
+ * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
+ * result. Determine what devices, if any, are on the channel
+ * by looking at the device 0/1 error register. Look at the signature
+ * stored in each device's taskfile registers, to determine if
+ * the device is ATA or ATAPI.
+ *
+ * LOCKING:
+ * PCI/etc. bus probe sem.
+ * Obtains host lock.
+ *
+ * SIDE EFFECTS:
+ * Sets ATA_FLAG_DISABLED if bus reset fails.
+ *
+ * DEPRECATED:
+ * This function is only for drivers which still use old EH and
+ * will be removed soon.
+ */
+void ata_bus_reset(struct ata_port *ap)
+{
+ struct ata_device *device = ap->link.device;
+ struct ata_ioports *ioaddr = &ap->ioaddr;
+ unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
+ u8 err;
+ unsigned int dev0, dev1 = 0, devmask = 0;
+ int rc;
+
+ DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
+
+ /* determine if device 0/1 are present */
+ if (ap->flags & ATA_FLAG_SATA_RESET)
+ dev0 = 1;
+ else {
+ dev0 = ata_devchk(ap, 0);
+ if (slave_possible)
+ dev1 = ata_devchk(ap, 1);
}
- return 1;
+
+ if (dev0)
+ devmask |= (1 << 0);
+ if (dev1)
+ devmask |= (1 << 1);
+
+ /* select device 0 again */
+ ap->ops->sff_dev_select(ap, 0);
+
+ /* issue bus reset */
+ if (ap->flags & ATA_FLAG_SRST) {
+ rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
+ if (rc && rc != -ENODEV)
+ goto err_out;
+ }
+
+ /*
+ * determine by signature whether we have ATA or ATAPI devices
+ */
+ device[0].class = ata_sff_dev_classify(&device[0], dev0, &err);
+ if ((slave_possible) && (err != 0x81))
+ device[1].class = ata_sff_dev_classify(&device[1], dev1, &err);
+
+ /* is double-select really necessary? */
+ if (device[1].class != ATA_DEV_NONE)
+ ap->ops->sff_dev_select(ap, 1);
+ if (device[0].class != ATA_DEV_NONE)
+ ap->ops->sff_dev_select(ap, 0);
+
+ /* if no devices were detected, disable this port */
+ if ((device[0].class == ATA_DEV_NONE) &&
+ (device[1].class == ATA_DEV_NONE))
+ goto err_out;
+
+ if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
+ /* set up device control for ATA_FLAG_SATA_RESET */
+ iowrite8(ap->ctl, ioaddr->ctl_addr);
+ }
+
+ DPRINTK("EXIT\n");
+ return;
+
+err_out:
+ ata_port_printk(ap, KERN_ERR, "disabling port\n");
+ ata_port_disable(ap);
+
+ DPRINTK("EXIT\n");
}
+#ifdef CONFIG_PCI
+
/**
- * ata_pci_init_bmdma - acquire PCI BMDMA resources and init ATA host
+ * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
+ * @pdev: PCI device
+ *
+ * Some PCI ATA devices report simplex mode but in fact can be told to
+ * enter non simplex mode. This implements the necessary logic to
+ * perform the task on such devices. Calling it on other devices will
+ * have -undefined- behaviour.
+ */
+int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
+{
+ unsigned long bmdma = pci_resource_start(pdev, 4);
+ u8 simplex;
+
+ if (bmdma == 0)
+ return -ENOENT;
+
+ simplex = inb(bmdma + 0x02);
+ outb(simplex & 0x60, bmdma + 0x02);
+ simplex = inb(bmdma + 0x02);
+ if (simplex & 0x80)
+ return -EOPNOTSUPP;
+ return 0;
+}
+
+/**
+ * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
* @host: target ATA host
*
* Acquire PCI BMDMA resources and initialize @host accordingly.
@@ -540,7 +2356,7 @@ static int ata_resources_present(struct pci_dev *pdev, int port)
* RETURNS:
* 0 on success, -errno otherwise.
*/
-int ata_pci_init_bmdma(struct ata_host *host)
+int ata_pci_bmdma_init(struct ata_host *host)
{
struct device *gdev = host->dev;
struct pci_dev *pdev = to_pci_dev(gdev);
@@ -585,8 +2401,22 @@ int ata_pci_init_bmdma(struct ata_host *host)
return 0;
}
+static int ata_resources_present(struct pci_dev *pdev, int port)
+{
+ int i;
+
+ /* Check the PCI resources for this channel are enabled */
+ port = port * 2;
+ for (i = 0; i < 2; i ++) {
+ if (pci_resource_start(pdev, port + i) == 0 ||
+ pci_resource_len(pdev, port + i) == 0)
+ return 0;
+ }
+ return 1;
+}
+
/**
- * ata_pci_init_sff_host - acquire native PCI ATA resources and init host
+ * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
* @host: target ATA host
*
* Acquire native PCI ATA resources for @host and initialize the
@@ -604,7 +2434,7 @@ int ata_pci_init_bmdma(struct ata_host *host)
* 0 if at least one port is initialized, -ENODEV if no port is
* available.
*/
-int ata_pci_init_sff_host(struct ata_host *host)
+int ata_pci_sff_init_host(struct ata_host *host)
{
struct device *gdev = host->dev;
struct pci_dev *pdev = to_pci_dev(gdev);
@@ -646,7 +2476,7 @@ int ata_pci_init_sff_host(struct ata_host *host)
ap->ioaddr.altstatus_addr =
ap->ioaddr.ctl_addr = (void __iomem *)
((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
- ata_std_ports(&ap->ioaddr);
+ ata_sff_std_ports(&ap->ioaddr);
ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
(unsigned long long)pci_resource_start(pdev, base),
@@ -664,7 +2494,7 @@ int ata_pci_init_sff_host(struct ata_host *host)
}
/**
- * ata_pci_prepare_sff_host - helper to prepare native PCI ATA host
+ * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
* @pdev: target PCI device
* @ppi: array of port_info, must be enough for two ports
* @r_host: out argument for the initialized ATA host
@@ -678,7 +2508,7 @@ int ata_pci_init_sff_host(struct ata_host *host)
* RETURNS:
* 0 on success, -errno otherwise.
*/
-int ata_pci_prepare_sff_host(struct pci_dev *pdev,
+int ata_pci_sff_prepare_host(struct pci_dev *pdev,
const struct ata_port_info * const * ppi,
struct ata_host **r_host)
{
@@ -696,12 +2526,12 @@ int ata_pci_prepare_sff_host(struct pci_dev *pdev,
goto err_out;
}
- rc = ata_pci_init_sff_host(host);
+ rc = ata_pci_sff_init_host(host);
if (rc)
goto err_out;
/* init DMA related stuff */
- rc = ata_pci_init_bmdma(host);
+ rc = ata_pci_bmdma_init(host);
if (rc)
goto err_bmdma;
@@ -722,7 +2552,7 @@ int ata_pci_prepare_sff_host(struct pci_dev *pdev,
}
/**
- * ata_pci_activate_sff_host - start SFF host, request IRQ and register it
+ * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
* @host: target SFF ATA host
* @irq_handler: irq_handler used when requesting IRQ(s)
* @sht: scsi_host_template to use when registering the host
@@ -737,7 +2567,7 @@ int ata_pci_prepare_sff_host(struct pci_dev *pdev,
* RETURNS:
* 0 on success, -errno otherwise.
*/
-int ata_pci_activate_sff_host(struct ata_host *host,
+int ata_pci_sff_activate_host(struct ata_host *host,
irq_handler_t irq_handler,
struct scsi_host_template *sht)
{
@@ -815,9 +2645,11 @@ int ata_pci_activate_sff_host(struct ata_host *host,
}
/**
- * ata_pci_init_one - Initialize/register PCI IDE host controller
+ * ata_pci_sff_init_one - Initialize/register PCI IDE host controller
* @pdev: Controller to be initialized
* @ppi: array of port_info, must be enough for two ports
+ * @sht: scsi_host_template to use when registering the host
+ * @host_priv: host private_data
*
* This is a helper function which can be called from a driver's
* xxx_init_one() probe function if the hardware uses traditional
@@ -837,8 +2669,9 @@ int ata_pci_activate_sff_host(struct ata_host *host,
* RETURNS:
* Zero on success, negative on errno-based value on error.
*/
-int ata_pci_init_one(struct pci_dev *pdev,
- const struct ata_port_info * const * ppi)
+int ata_pci_sff_init_one(struct pci_dev *pdev,
+ const struct ata_port_info * const * ppi,
+ struct scsi_host_template *sht, void *host_priv)
{
struct device *dev = &pdev->dev;
const struct ata_port_info *pi = NULL;
@@ -869,13 +2702,13 @@ int ata_pci_init_one(struct pci_dev *pdev,
goto out;
/* prepare and activate SFF host */
- rc = ata_pci_prepare_sff_host(pdev, ppi, &host);
+ rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
if (rc)
goto out;
+ host->private_data = host_priv;
pci_set_master(pdev);
- rc = ata_pci_activate_sff_host(host, pi->port_ops->irq_handler,
- pi->sht);
+ rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
out:
if (rc == 0)
devres_remove_group(&pdev->dev, NULL);
@@ -885,41 +2718,52 @@ int ata_pci_init_one(struct pci_dev *pdev,
return rc;
}
-/**
- * ata_pci_clear_simplex - attempt to kick device out of simplex
- * @pdev: PCI device
- *
- * Some PCI ATA devices report simplex mode but in fact can be told to
- * enter non simplex mode. This implements the necessary logic to
- * perform the task on such devices. Calling it on other devices will
- * have -undefined- behaviour.
- */
-
-int ata_pci_clear_simplex(struct pci_dev *pdev)
-{
- unsigned long bmdma = pci_resource_start(pdev, 4);
- u8 simplex;
-
- if (bmdma == 0)
- return -ENOENT;
-
- simplex = inb(bmdma + 0x02);
- outb(simplex & 0x60, bmdma + 0x02);
- simplex = inb(bmdma + 0x02);
- if (simplex & 0x80)
- return -EOPNOTSUPP;
- return 0;
-}
-
-unsigned long ata_pci_default_filter(struct ata_device *adev, unsigned long xfer_mask)
-{
- /* Filter out DMA modes if the device has been configured by
- the BIOS as PIO only */
-
- if (adev->link->ap->ioaddr.bmdma_addr == NULL)
- xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
- return xfer_mask;
-}
-
#endif /* CONFIG_PCI */
+EXPORT_SYMBOL_GPL(ata_sff_port_ops);
+EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
+EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
+EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
+EXPORT_SYMBOL_GPL(ata_sff_dev_select);
+EXPORT_SYMBOL_GPL(ata_sff_check_status);
+EXPORT_SYMBOL_GPL(ata_sff_altstatus);
+EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
+EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
+EXPORT_SYMBOL_GPL(ata_sff_tf_load);
+EXPORT_SYMBOL_GPL(ata_sff_tf_read);
+EXPORT_SYMBOL_GPL(ata_sff_exec_command);
+EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
+EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
+EXPORT_SYMBOL_GPL(ata_sff_irq_on);
+EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
+EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
+EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
+EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
+EXPORT_SYMBOL_GPL(ata_sff_host_intr);
+EXPORT_SYMBOL_GPL(ata_sff_interrupt);
+EXPORT_SYMBOL_GPL(ata_sff_freeze);
+EXPORT_SYMBOL_GPL(ata_sff_thaw);
+EXPORT_SYMBOL_GPL(ata_sff_prereset);
+EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
+EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
+EXPORT_SYMBOL_GPL(ata_sff_softreset);
+EXPORT_SYMBOL_GPL(sata_sff_hardreset);
+EXPORT_SYMBOL_GPL(ata_sff_postreset);
+EXPORT_SYMBOL_GPL(ata_sff_error_handler);
+EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
+EXPORT_SYMBOL_GPL(ata_sff_port_start);
+EXPORT_SYMBOL_GPL(ata_sff_std_ports);
+EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
+EXPORT_SYMBOL_GPL(ata_bmdma_setup);
+EXPORT_SYMBOL_GPL(ata_bmdma_start);
+EXPORT_SYMBOL_GPL(ata_bmdma_stop);
+EXPORT_SYMBOL_GPL(ata_bmdma_status);
+EXPORT_SYMBOL_GPL(ata_bus_reset);
+#ifdef CONFIG_PCI
+EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
+EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
+EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
+EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
+EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
+EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
+#endif /* CONFIG_PCI */