summaryrefslogtreecommitdiffstats
path: root/drivers/block/umem.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/block/umem.c')
-rw-r--r--drivers/block/umem.c1256
1 files changed, 1256 insertions, 0 deletions
diff --git a/drivers/block/umem.c b/drivers/block/umem.c
new file mode 100644
index 000000000000..0c4c121d2e79
--- /dev/null
+++ b/drivers/block/umem.c
@@ -0,0 +1,1256 @@
+/*
+ * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
+ *
+ * (C) 2001 San Mehat <nettwerk@valinux.com>
+ * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
+ * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
+ *
+ * This driver for the Micro Memory PCI Memory Module with Battery Backup
+ * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
+ *
+ * This driver is released to the public under the terms of the
+ * GNU GENERAL PUBLIC LICENSE version 2
+ * See the file COPYING for details.
+ *
+ * This driver provides a standard block device interface for Micro Memory(tm)
+ * PCI based RAM boards.
+ * 10/05/01: Phap Nguyen - Rebuilt the driver
+ * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
+ * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
+ * - use stand disk partitioning (so fdisk works).
+ * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
+ * - incorporate into main kernel
+ * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
+ * - use spin_lock_bh instead of _irq
+ * - Never block on make_request. queue
+ * bh's instead.
+ * - unregister umem from devfs at mod unload
+ * - Change version to 2.3
+ * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
+ * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
+ * 15May2002:NeilBrown - convert to bio for 2.5
+ * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
+ * - a sequence of writes that cover the card, and
+ * - set initialised bit then.
+ */
+
+#include <linux/config.h>
+#include <linux/sched.h>
+#include <linux/fs.h>
+#include <linux/bio.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/mman.h>
+#include <linux/ioctl.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/smp_lock.h>
+#include <linux/timer.h>
+#include <linux/pci.h>
+#include <linux/slab.h>
+
+#include <linux/fcntl.h> /* O_ACCMODE */
+#include <linux/hdreg.h> /* HDIO_GETGEO */
+
+#include <linux/umem.h>
+
+#include <asm/uaccess.h>
+#include <asm/io.h>
+
+#define PRINTK(x...) do {} while (0)
+#define dprintk(x...) do {} while (0)
+/*#define dprintk(x...) printk(x) */
+
+#define MM_MAXCARDS 4
+#define MM_RAHEAD 2 /* two sectors */
+#define MM_BLKSIZE 1024 /* 1k blocks */
+#define MM_HARDSECT 512 /* 512-byte hardware sectors */
+#define MM_SHIFT 6 /* max 64 partitions on 4 cards */
+
+/*
+ * Version Information
+ */
+
+#define DRIVER_VERSION "v2.3"
+#define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
+#define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
+
+static int debug;
+/* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
+#define HW_TRACE(x)
+
+#define DEBUG_LED_ON_TRANSFER 0x01
+#define DEBUG_BATTERY_POLLING 0x02
+
+module_param(debug, int, 0644);
+MODULE_PARM_DESC(debug, "Debug bitmask");
+
+static int pci_read_cmd = 0x0C; /* Read Multiple */
+module_param(pci_read_cmd, int, 0);
+MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
+
+static int pci_write_cmd = 0x0F; /* Write and Invalidate */
+module_param(pci_write_cmd, int, 0);
+MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
+
+static int pci_cmds;
+
+static int major_nr;
+
+#include <linux/blkdev.h>
+#include <linux/blkpg.h>
+
+struct cardinfo {
+ int card_number;
+ struct pci_dev *dev;
+
+ int irq;
+
+ unsigned long csr_base;
+ unsigned char __iomem *csr_remap;
+ unsigned long csr_len;
+#ifdef CONFIG_MM_MAP_MEMORY
+ unsigned long mem_base;
+ unsigned char __iomem *mem_remap;
+ unsigned long mem_len;
+#endif
+
+ unsigned int win_size; /* PCI window size */
+ unsigned int mm_size; /* size in kbytes */
+
+ unsigned int init_size; /* initial segment, in sectors,
+ * that we know to
+ * have been written
+ */
+ struct bio *bio, *currentbio, **biotail;
+
+ request_queue_t *queue;
+
+ struct mm_page {
+ dma_addr_t page_dma;
+ struct mm_dma_desc *desc;
+ int cnt, headcnt;
+ struct bio *bio, **biotail;
+ } mm_pages[2];
+#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
+
+ int Active, Ready;
+
+ struct tasklet_struct tasklet;
+ unsigned int dma_status;
+
+ struct {
+ int good;
+ int warned;
+ unsigned long last_change;
+ } battery[2];
+
+ spinlock_t lock;
+ int check_batteries;
+
+ int flags;
+};
+
+static struct cardinfo cards[MM_MAXCARDS];
+static struct block_device_operations mm_fops;
+static struct timer_list battery_timer;
+
+static int num_cards = 0;
+
+static struct gendisk *mm_gendisk[MM_MAXCARDS];
+
+static void check_batteries(struct cardinfo *card);
+
+/*
+-----------------------------------------------------------------------------------
+-- get_userbit
+-----------------------------------------------------------------------------------
+*/
+static int get_userbit(struct cardinfo *card, int bit)
+{
+ unsigned char led;
+
+ led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
+ return led & bit;
+}
+/*
+-----------------------------------------------------------------------------------
+-- set_userbit
+-----------------------------------------------------------------------------------
+*/
+static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
+{
+ unsigned char led;
+
+ led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
+ if (state)
+ led |= bit;
+ else
+ led &= ~bit;
+ writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
+
+ return 0;
+}
+/*
+-----------------------------------------------------------------------------------
+-- set_led
+-----------------------------------------------------------------------------------
+*/
+/*
+ * NOTE: For the power LED, use the LED_POWER_* macros since they differ
+ */
+static void set_led(struct cardinfo *card, int shift, unsigned char state)
+{
+ unsigned char led;
+
+ led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
+ if (state == LED_FLIP)
+ led ^= (1<<shift);
+ else {
+ led &= ~(0x03 << shift);
+ led |= (state << shift);
+ }
+ writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
+
+}
+
+#ifdef MM_DIAG
+/*
+-----------------------------------------------------------------------------------
+-- dump_regs
+-----------------------------------------------------------------------------------
+*/
+static void dump_regs(struct cardinfo *card)
+{
+ unsigned char *p;
+ int i, i1;
+
+ p = card->csr_remap;
+ for (i = 0; i < 8; i++) {
+ printk(KERN_DEBUG "%p ", p);
+
+ for (i1 = 0; i1 < 16; i1++)
+ printk("%02x ", *p++);
+
+ printk("\n");
+ }
+}
+#endif
+/*
+-----------------------------------------------------------------------------------
+-- dump_dmastat
+-----------------------------------------------------------------------------------
+*/
+static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
+{
+ printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
+ if (dmastat & DMASCR_ANY_ERR)
+ printk("ANY_ERR ");
+ if (dmastat & DMASCR_MBE_ERR)
+ printk("MBE_ERR ");
+ if (dmastat & DMASCR_PARITY_ERR_REP)
+ printk("PARITY_ERR_REP ");
+ if (dmastat & DMASCR_PARITY_ERR_DET)
+ printk("PARITY_ERR_DET ");
+ if (dmastat & DMASCR_SYSTEM_ERR_SIG)
+ printk("SYSTEM_ERR_SIG ");
+ if (dmastat & DMASCR_TARGET_ABT)
+ printk("TARGET_ABT ");
+ if (dmastat & DMASCR_MASTER_ABT)
+ printk("MASTER_ABT ");
+ if (dmastat & DMASCR_CHAIN_COMPLETE)
+ printk("CHAIN_COMPLETE ");
+ if (dmastat & DMASCR_DMA_COMPLETE)
+ printk("DMA_COMPLETE ");
+ printk("\n");
+}
+
+/*
+ * Theory of request handling
+ *
+ * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
+ * We have two pages of mm_dma_desc, holding about 64 descriptors
+ * each. These are allocated at init time.
+ * One page is "Ready" and is either full, or can have request added.
+ * The other page might be "Active", which DMA is happening on it.
+ *
+ * Whenever IO on the active page completes, the Ready page is activated
+ * and the ex-Active page is clean out and made Ready.
+ * Otherwise the Ready page is only activated when it becomes full, or
+ * when mm_unplug_device is called via the unplug_io_fn.
+ *
+ * If a request arrives while both pages a full, it is queued, and b_rdev is
+ * overloaded to record whether it was a read or a write.
+ *
+ * The interrupt handler only polls the device to clear the interrupt.
+ * The processing of the result is done in a tasklet.
+ */
+
+static void mm_start_io(struct cardinfo *card)
+{
+ /* we have the lock, we know there is
+ * no IO active, and we know that card->Active
+ * is set
+ */
+ struct mm_dma_desc *desc;
+ struct mm_page *page;
+ int offset;
+
+ /* make the last descriptor end the chain */
+ page = &card->mm_pages[card->Active];
+ PRINTK("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
+ desc = &page->desc[page->cnt-1];
+
+ desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
+ desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
+ desc->sem_control_bits = desc->control_bits;
+
+
+ if (debug & DEBUG_LED_ON_TRANSFER)
+ set_led(card, LED_REMOVE, LED_ON);
+
+ desc = &page->desc[page->headcnt];
+ writel(0, card->csr_remap + DMA_PCI_ADDR);
+ writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
+
+ writel(0, card->csr_remap + DMA_LOCAL_ADDR);
+ writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
+
+ writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
+ writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
+
+ writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
+ writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
+
+ offset = ((char*)desc) - ((char*)page->desc);
+ writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
+ card->csr_remap + DMA_DESCRIPTOR_ADDR);
+ /* Force the value to u64 before shifting otherwise >> 32 is undefined C
+ * and on some ports will do nothing ! */
+ writel(cpu_to_le32(((u64)page->page_dma)>>32),
+ card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
+
+ /* Go, go, go */
+ writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
+ card->csr_remap + DMA_STATUS_CTRL);
+}
+
+static int add_bio(struct cardinfo *card);
+
+static void activate(struct cardinfo *card)
+{
+ /* if No page is Active, and Ready is
+ * not empty, then switch Ready page
+ * to active and start IO.
+ * Then add any bh's that are available to Ready
+ */
+
+ do {
+ while (add_bio(card))
+ ;
+
+ if (card->Active == -1 &&
+ card->mm_pages[card->Ready].cnt > 0) {
+ card->Active = card->Ready;
+ card->Ready = 1-card->Ready;
+ mm_start_io(card);
+ }
+
+ } while (card->Active == -1 && add_bio(card));
+}
+
+static inline void reset_page(struct mm_page *page)
+{
+ page->cnt = 0;
+ page->headcnt = 0;
+ page->bio = NULL;
+ page->biotail = & page->bio;
+}
+
+static void mm_unplug_device(request_queue_t *q)
+{
+ struct cardinfo *card = q->queuedata;
+ unsigned long flags;
+
+ spin_lock_irqsave(&card->lock, flags);
+ if (blk_remove_plug(q))
+ activate(card);
+ spin_unlock_irqrestore(&card->lock, flags);
+}
+
+/*
+ * If there is room on Ready page, take
+ * one bh off list and add it.
+ * return 1 if there was room, else 0.
+ */
+static int add_bio(struct cardinfo *card)
+{
+ struct mm_page *p;
+ struct mm_dma_desc *desc;
+ dma_addr_t dma_handle;
+ int offset;
+ struct bio *bio;
+ int rw;
+ int len;
+
+ bio = card->currentbio;
+ if (!bio && card->bio) {
+ card->currentbio = card->bio;
+ card->bio = card->bio->bi_next;
+ if (card->bio == NULL)
+ card->biotail = &card->bio;
+ card->currentbio->bi_next = NULL;
+ return 1;
+ }
+ if (!bio)
+ return 0;
+
+ rw = bio_rw(bio);
+ if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
+ return 0;
+
+ len = bio_iovec(bio)->bv_len;
+ dma_handle = pci_map_page(card->dev,
+ bio_page(bio),
+ bio_offset(bio),
+ len,
+ (rw==READ) ?
+ PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
+
+ p = &card->mm_pages[card->Ready];
+ desc = &p->desc[p->cnt];
+ p->cnt++;
+ if ((p->biotail) != &bio->bi_next) {
+ *(p->biotail) = bio;
+ p->biotail = &(bio->bi_next);
+ bio->bi_next = NULL;
+ }
+
+ desc->data_dma_handle = dma_handle;
+
+ desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
+ desc->local_addr= cpu_to_le64(bio->bi_sector << 9);
+ desc->transfer_size = cpu_to_le32(len);
+ offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
+ desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
+ desc->zero1 = desc->zero2 = 0;
+ offset = ( ((char*)(desc+1)) - ((char*)p->desc));
+ desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
+ desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
+ DMASCR_PARITY_INT_EN|
+ DMASCR_CHAIN_EN |
+ DMASCR_SEM_EN |
+ pci_cmds);
+ if (rw == WRITE)
+ desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
+ desc->sem_control_bits = desc->control_bits;
+
+ bio->bi_sector += (len>>9);
+ bio->bi_size -= len;
+ bio->bi_idx++;
+ if (bio->bi_idx >= bio->bi_vcnt)
+ card->currentbio = NULL;
+
+ return 1;
+}
+
+static void process_page(unsigned long data)
+{
+ /* check if any of the requests in the page are DMA_COMPLETE,
+ * and deal with them appropriately.
+ * If we find a descriptor without DMA_COMPLETE in the semaphore, then
+ * dma must have hit an error on that descriptor, so use dma_status instead
+ * and assume that all following descriptors must be re-tried.
+ */
+ struct mm_page *page;
+ struct bio *return_bio=NULL;
+ struct cardinfo *card = (struct cardinfo *)data;
+ unsigned int dma_status = card->dma_status;
+
+ spin_lock_bh(&card->lock);
+ if (card->Active < 0)
+ goto out_unlock;
+ page = &card->mm_pages[card->Active];
+
+ while (page->headcnt < page->cnt) {
+ struct bio *bio = page->bio;
+ struct mm_dma_desc *desc = &page->desc[page->headcnt];
+ int control = le32_to_cpu(desc->sem_control_bits);
+ int last=0;
+ int idx;
+
+ if (!(control & DMASCR_DMA_COMPLETE)) {
+ control = dma_status;
+ last=1;
+ }
+ page->headcnt++;
+ idx = bio->bi_phys_segments;
+ bio->bi_phys_segments++;
+ if (bio->bi_phys_segments >= bio->bi_vcnt)
+ page->bio = bio->bi_next;
+
+ pci_unmap_page(card->dev, desc->data_dma_handle,
+ bio_iovec_idx(bio,idx)->bv_len,
+ (control& DMASCR_TRANSFER_READ) ?
+ PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
+ if (control & DMASCR_HARD_ERROR) {
+ /* error */
+ clear_bit(BIO_UPTODATE, &bio->bi_flags);
+ printk(KERN_WARNING "MM%d: I/O error on sector %d/%d\n",
+ card->card_number,
+ le32_to_cpu(desc->local_addr)>>9,
+ le32_to_cpu(desc->transfer_size));
+ dump_dmastat(card, control);
+ } else if (test_bit(BIO_RW, &bio->bi_rw) &&
+ le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
+ card->init_size += le32_to_cpu(desc->transfer_size)>>9;
+ if (card->init_size>>1 >= card->mm_size) {
+ printk(KERN_INFO "MM%d: memory now initialised\n",
+ card->card_number);
+ set_userbit(card, MEMORY_INITIALIZED, 1);
+ }
+ }
+ if (bio != page->bio) {
+ bio->bi_next = return_bio;
+ return_bio = bio;
+ }
+
+ if (last) break;
+ }
+
+ if (debug & DEBUG_LED_ON_TRANSFER)
+ set_led(card, LED_REMOVE, LED_OFF);
+
+ if (card->check_batteries) {
+ card->check_batteries = 0;
+ check_batteries(card);
+ }
+ if (page->headcnt >= page->cnt) {
+ reset_page(page);
+ card->Active = -1;
+ activate(card);
+ } else {
+ /* haven't finished with this one yet */
+ PRINTK("do some more\n");
+ mm_start_io(card);
+ }
+ out_unlock:
+ spin_unlock_bh(&card->lock);
+
+ while(return_bio) {
+ struct bio *bio = return_bio;
+
+ return_bio = bio->bi_next;
+ bio->bi_next = NULL;
+ bio_endio(bio, bio->bi_size, 0);
+ }
+}
+
+/*
+-----------------------------------------------------------------------------------
+-- mm_make_request
+-----------------------------------------------------------------------------------
+*/
+static int mm_make_request(request_queue_t *q, struct bio *bio)
+{
+ struct cardinfo *card = q->queuedata;
+ PRINTK("mm_make_request %ld %d\n", bh->b_rsector, bh->b_size);
+
+ bio->bi_phys_segments = bio->bi_idx; /* count of completed segments*/
+ spin_lock_irq(&card->lock);
+ *card->biotail = bio;
+ bio->bi_next = NULL;
+ card->biotail = &bio->bi_next;
+ blk_plug_device(q);
+ spin_unlock_irq(&card->lock);
+
+ return 0;
+}
+
+/*
+-----------------------------------------------------------------------------------
+-- mm_interrupt
+-----------------------------------------------------------------------------------
+*/
+static irqreturn_t mm_interrupt(int irq, void *__card, struct pt_regs *regs)
+{
+ struct cardinfo *card = (struct cardinfo *) __card;
+ unsigned int dma_status;
+ unsigned short cfg_status;
+
+HW_TRACE(0x30);
+
+ dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
+
+ if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
+ /* interrupt wasn't for me ... */
+ return IRQ_NONE;
+ }
+
+ /* clear COMPLETION interrupts */
+ if (card->flags & UM_FLAG_NO_BYTE_STATUS)
+ writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
+ card->csr_remap+ DMA_STATUS_CTRL);
+ else
+ writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
+ card->csr_remap+ DMA_STATUS_CTRL + 2);
+
+ /* log errors and clear interrupt status */
+ if (dma_status & DMASCR_ANY_ERR) {
+ unsigned int data_log1, data_log2;
+ unsigned int addr_log1, addr_log2;
+ unsigned char stat, count, syndrome, check;
+
+ stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
+
+ data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
+ data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
+ addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
+ addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
+
+ count = readb(card->csr_remap + ERROR_COUNT);
+ syndrome = readb(card->csr_remap + ERROR_SYNDROME);
+ check = readb(card->csr_remap + ERROR_CHECK);
+
+ dump_dmastat(card, dma_status);
+
+ if (stat & 0x01)
+ printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
+ card->card_number, count);
+ if (stat & 0x02)
+ printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
+ card->card_number);
+
+ printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
+ card->card_number, addr_log2, addr_log1, data_log2, data_log1);
+ printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
+ card->card_number, check, syndrome);
+
+ writeb(0, card->csr_remap + ERROR_COUNT);
+ }
+
+ if (dma_status & DMASCR_PARITY_ERR_REP) {
+ printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
+ pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
+ pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
+ }
+
+ if (dma_status & DMASCR_PARITY_ERR_DET) {
+ printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number);
+ pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
+ pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
+ }
+
+ if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
+ printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number);
+ pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
+ pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
+ }
+
+ if (dma_status & DMASCR_TARGET_ABT) {
+ printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number);
+ pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
+ pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
+ }
+
+ if (dma_status & DMASCR_MASTER_ABT) {
+ printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number);
+ pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
+ pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
+ }
+
+ /* and process the DMA descriptors */
+ card->dma_status = dma_status;
+ tasklet_schedule(&card->tasklet);
+
+HW_TRACE(0x36);
+
+ return IRQ_HANDLED;
+}
+/*
+-----------------------------------------------------------------------------------
+-- set_fault_to_battery_status
+-----------------------------------------------------------------------------------
+*/
+/*
+ * If both batteries are good, no LED
+ * If either battery has been warned, solid LED
+ * If both batteries are bad, flash the LED quickly
+ * If either battery is bad, flash the LED semi quickly
+ */
+static void set_fault_to_battery_status(struct cardinfo *card)
+{
+ if (card->battery[0].good && card->battery[1].good)
+ set_led(card, LED_FAULT, LED_OFF);
+ else if (card->battery[0].warned || card->battery[1].warned)
+ set_led(card, LED_FAULT, LED_ON);
+ else if (!card->battery[0].good && !card->battery[1].good)
+ set_led(card, LED_FAULT, LED_FLASH_7_0);
+ else
+ set_led(card, LED_FAULT, LED_FLASH_3_5);
+}
+
+static void init_battery_timer(void);
+
+
+/*
+-----------------------------------------------------------------------------------
+-- check_battery
+-----------------------------------------------------------------------------------
+*/
+static int check_battery(struct cardinfo *card, int battery, int status)
+{
+ if (status != card->battery[battery].good) {
+ card->battery[battery].good = !card->battery[battery].good;
+ card->battery[battery].last_change = jiffies;
+
+ if (card->battery[battery].good) {
+ printk(KERN_ERR "MM%d: Battery %d now good\n",
+ card->card_number, battery + 1);
+ card->battery[battery].warned = 0;
+ } else
+ printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
+ card->card_number, battery + 1);
+
+ return 1;
+ } else if (!card->battery[battery].good &&
+ !card->battery[battery].warned &&
+ time_after_eq(jiffies, card->battery[battery].last_change +
+ (HZ * 60 * 60 * 5))) {
+ printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
+ card->card_number, battery + 1);
+ card->battery[battery].warned = 1;
+
+ return 1;
+ }
+
+ return 0;
+}
+/*
+-----------------------------------------------------------------------------------
+-- check_batteries
+-----------------------------------------------------------------------------------
+*/
+static void check_batteries(struct cardinfo *card)
+{
+ /* NOTE: this must *never* be called while the card
+ * is doing (bus-to-card) DMA, or you will need the
+ * reset switch
+ */
+ unsigned char status;
+ int ret1, ret2;
+
+ status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
+ if (debug & DEBUG_BATTERY_POLLING)
+ printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
+ card->card_number,
+ (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
+ (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
+
+ ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
+ ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
+
+ if (ret1 || ret2)
+ set_fault_to_battery_status(card);
+}
+
+static void check_all_batteries(unsigned long ptr)
+{
+ int i;
+
+ for (i = 0; i < num_cards; i++)
+ if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
+ struct cardinfo *card = &cards[i];
+ spin_lock_bh(&card->lock);
+ if (card->Active >= 0)
+ card->check_batteries = 1;
+ else
+ check_batteries(card);
+ spin_unlock_bh(&card->lock);
+ }
+
+ init_battery_timer();
+}
+/*
+-----------------------------------------------------------------------------------
+-- init_battery_timer
+-----------------------------------------------------------------------------------
+*/
+static void init_battery_timer(void)
+{
+ init_timer(&battery_timer);
+ battery_timer.function = check_all_batteries;
+ battery_timer.expires = jiffies + (HZ * 60);
+ add_timer(&battery_timer);
+}
+/*
+-----------------------------------------------------------------------------------
+-- del_battery_timer
+-----------------------------------------------------------------------------------
+*/
+static void del_battery_timer(void)
+{
+ del_timer(&battery_timer);
+}
+/*
+-----------------------------------------------------------------------------------
+-- mm_revalidate
+-----------------------------------------------------------------------------------
+*/
+/*
+ * Note no locks taken out here. In a worst case scenario, we could drop
+ * a chunk of system memory. But that should never happen, since validation
+ * happens at open or mount time, when locks are held.
+ *
+ * That's crap, since doing that while some partitions are opened
+ * or mounted will give you really nasty results.
+ */
+static int mm_revalidate(struct gendisk *disk)
+{
+ struct cardinfo *card = disk->private_data;
+ set_capacity(disk, card->mm_size << 1);
+ return 0;
+}
+/*
+-----------------------------------------------------------------------------------
+-- mm_ioctl
+-----------------------------------------------------------------------------------
+*/
+static int mm_ioctl(struct inode *i, struct file *f, unsigned int cmd, unsigned long arg)
+{
+ if (cmd == HDIO_GETGEO) {
+ struct cardinfo *card = i->i_bdev->bd_disk->private_data;
+ int size = card->mm_size * (1024 / MM_HARDSECT);
+ struct hd_geometry geo;
+ /*
+ * get geometry: we have to fake one... trim the size to a
+ * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
+ * whatever cylinders.
+ */
+ geo.heads = 64;
+ geo.sectors = 32;
+ geo.start = get_start_sect(i->i_bdev);
+ geo.cylinders = size / (geo.heads * geo.sectors);
+
+ if (copy_to_user((void __user *) arg, &geo, sizeof(geo)))
+ return -EFAULT;
+ return 0;
+ }
+
+ return -EINVAL;
+}
+/*
+-----------------------------------------------------------------------------------
+-- mm_check_change
+-----------------------------------------------------------------------------------
+ Future support for removable devices
+*/
+static int mm_check_change(struct gendisk *disk)
+{
+/* struct cardinfo *dev = disk->private_data; */
+ return 0;
+}
+/*
+-----------------------------------------------------------------------------------
+-- mm_fops
+-----------------------------------------------------------------------------------
+*/
+static struct block_device_operations mm_fops = {
+ .owner = THIS_MODULE,
+ .ioctl = mm_ioctl,
+ .revalidate_disk= mm_revalidate,
+ .media_changed = mm_check_change,
+};
+/*
+-----------------------------------------------------------------------------------
+-- mm_pci_probe
+-----------------------------------------------------------------------------------
+*/
+static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
+{
+ int ret = -ENODEV;
+ struct cardinfo *card = &cards[num_cards];
+ unsigned char mem_present;
+ unsigned char batt_status;
+ unsigned int saved_bar, data;
+ int magic_number;
+
+ if (pci_enable_device(dev) < 0)
+ return -ENODEV;
+
+ pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
+ pci_set_master(dev);
+
+ card->dev = dev;
+ card->card_number = num_cards;
+
+ card->csr_base = pci_resource_start(dev, 0);
+ card->csr_len = pci_resource_len(dev, 0);
+#ifdef CONFIG_MM_MAP_MEMORY
+ card->mem_base = pci_resource_start(dev, 1);
+ card->mem_len = pci_resource_len(dev, 1);
+#endif
+
+ printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
+ card->card_number, dev->bus->number, dev->devfn);
+
+ if (pci_set_dma_mask(dev, 0xffffffffffffffffLL) &&
+ !pci_set_dma_mask(dev, 0xffffffffLL)) {
+ printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
+ return -ENOMEM;
+ }
+ if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
+ printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
+ ret = -ENOMEM;
+
+ goto failed_req_csr;
+ }
+
+ card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
+ if (!card->csr_remap) {
+ printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
+ ret = -ENOMEM;
+
+ goto failed_remap_csr;
+ }
+
+ printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
+ card->csr_base, card->csr_remap, card->csr_len);
+
+#ifdef CONFIG_MM_MAP_MEMORY
+ if (!request_mem_region(card->mem_base, card->mem_len, "Micro Memory")) {
+ printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
+ ret = -ENOMEM;
+
+ goto failed_req_mem;
+ }
+
+ if (!(card->mem_remap = ioremap(card->mem_base, cards->mem_len))) {
+ printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
+ ret = -ENOMEM;
+
+ goto failed_remap_mem;
+ }
+
+ printk(KERN_INFO "MM%d: MEM 0x%8lx -> 0x%8lx (0x%lx)\n", card->card_number,
+ card->mem_base, card->mem_remap, card->mem_len);
+#else
+ printk(KERN_INFO "MM%d: MEM area not remapped (CONFIG_MM_MAP_MEMORY not set)\n",
+ card->card_number);
+#endif
+ switch(card->dev->device) {
+ case 0x5415:
+ card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
+ magic_number = 0x59;
+ break;
+
+ case 0x5425:
+ card->flags |= UM_FLAG_NO_BYTE_STATUS;
+ magic_number = 0x5C;
+ break;
+
+ case 0x6155:
+ card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
+ magic_number = 0x99;
+ break;
+
+ default:
+ magic_number = 0x100;
+ break;
+ }
+
+ if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
+ printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
+ ret = -ENOMEM;
+ goto failed_magic;
+ }
+
+ card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
+ PAGE_SIZE*2,
+ &card->mm_pages[0].page_dma);
+ card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
+ PAGE_SIZE*2,
+ &card->mm_pages[1].page_dma);
+ if (card->mm_pages[0].desc == NULL ||
+ card->mm_pages[1].desc == NULL) {
+ printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
+ goto failed_alloc;
+ }
+ reset_page(&card->mm_pages[0]);
+ reset_page(&card->mm_pages[1]);
+ card->Ready = 0; /* page 0 is ready */
+ card->Active = -1; /* no page is active */
+ card->bio = NULL;
+ card->biotail = &card->bio;
+
+ card->queue = blk_alloc_queue(GFP_KERNEL);
+ if (!card->queue)
+ goto failed_alloc;
+
+ blk_queue_make_request(card->queue, mm_make_request);
+ card->queue->queuedata = card;
+ card->queue->unplug_fn = mm_unplug_device;
+
+ tasklet_init(&card->tasklet, process_page, (unsigned long)card);
+
+ card->check_batteries = 0;
+
+ mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
+ switch (mem_present) {
+ case MEM_128_MB:
+ card->mm_size = 1024 * 128;
+ break;
+ case MEM_256_MB:
+ card->mm_size = 1024 * 256;
+ break;
+ case MEM_512_MB:
+ card->mm_size = 1024 * 512;
+ break;
+ case MEM_1_GB:
+ card->mm_size = 1024 * 1024;
+ break;
+ case MEM_2_GB:
+ card->mm_size = 1024 * 2048;
+ break;
+ default:
+ card->mm_size = 0;
+ break;
+ }
+
+ /* Clear the LED's we control */
+ set_led(card, LED_REMOVE, LED_OFF);
+ set_led(card, LED_FAULT, LED_OFF);
+
+ batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
+
+ card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
+ card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
+ card->battery[0].last_change = card->battery[1].last_change = jiffies;
+
+ if (card->flags & UM_FLAG_NO_BATT)
+ printk(KERN_INFO "MM%d: Size %d KB\n",
+ card->card_number, card->mm_size);
+ else {
+ printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
+ card->card_number, card->mm_size,
+ (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
+ card->battery[0].good ? "OK" : "FAILURE",
+ (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
+ card->battery[1].good ? "OK" : "FAILURE");
+
+ set_fault_to_battery_status(card);
+ }
+
+ pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
+ data = 0xffffffff;
+ pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
+ pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
+ pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
+ data &= 0xfffffff0;
+ data = ~data;
+ data += 1;
+
+ card->win_size = data;
+
+
+ if (request_irq(dev->irq, mm_interrupt, SA_SHIRQ, "pci-umem", card)) {
+ printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
+ ret = -ENODEV;
+
+ goto failed_req_irq;
+ }
+
+ card->irq = dev->irq;
+ printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
+ card->win_size, card->irq);
+
+ spin_lock_init(&card->lock);
+
+ pci_set_drvdata(dev, card);
+
+ if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
+ pci_write_cmd = 0x07; /* then Memory Write command */
+
+ if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
+ unsigned short cfg_command;
+ pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
+ cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
+ pci_write_config_word(dev, PCI_COMMAND, cfg_command);
+ }
+ pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
+
+ num_cards++;
+
+ if (!get_userbit(card, MEMORY_INITIALIZED)) {
+ printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.\n", card->card_number);
+ card->init_size = 0;
+ } else {
+ printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
+ card->init_size = card->mm_size;
+ }
+
+ /* Enable ECC */
+ writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
+
+ return 0;
+
+ failed_req_irq:
+ failed_alloc:
+ if (card->mm_pages[0].desc)
+ pci_free_consistent(card->dev, PAGE_SIZE*2,
+ card->mm_pages[0].desc,
+ card->mm_pages[0].page_dma);
+ if (card->mm_pages[1].desc)
+ pci_free_consistent(card->dev, PAGE_SIZE*2,
+ card->mm_pages[1].desc,
+ card->mm_pages[1].page_dma);
+ failed_magic:
+#ifdef CONFIG_MM_MAP_MEMORY
+ iounmap(card->mem_remap);
+ failed_remap_mem:
+ release_mem_region(card->mem_base, card->mem_len);
+ failed_req_mem:
+#endif
+ iounmap(card->csr_remap);
+ failed_remap_csr:
+ release_mem_region(card->csr_base, card->csr_len);
+ failed_req_csr:
+
+ return ret;
+}
+/*
+-----------------------------------------------------------------------------------
+-- mm_pci_remove
+-----------------------------------------------------------------------------------
+*/
+static void mm_pci_remove(struct pci_dev *dev)
+{
+ struct cardinfo *card = pci_get_drvdata(dev);
+
+ tasklet_kill(&card->tasklet);
+ iounmap(card->csr_remap);
+ release_mem_region(card->csr_base, card->csr_len);
+#ifdef CONFIG_MM_MAP_MEMORY
+ iounmap(card->mem_remap);
+ release_mem_region(card->mem_base, card->mem_len);
+#endif
+ free_irq(card->irq, card);
+
+ if (card->mm_pages[0].desc)
+ pci_free_consistent(card->dev, PAGE_SIZE*2,
+ card->mm_pages[0].desc,
+ card->mm_pages[0].page_dma);
+ if (card->mm_pages[1].desc)
+ pci_free_consistent(card->dev, PAGE_SIZE*2,
+ card->mm_pages[1].desc,
+ card->mm_pages[1].page_dma);
+ blk_put_queue(card->queue);
+}
+
+static const struct pci_device_id mm_pci_ids[] = { {
+ .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
+ .device = PCI_DEVICE_ID_MICRO_MEMORY_5415CN,
+ }, {
+ .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
+ .device = PCI_DEVICE_ID_MICRO_MEMORY_5425CN,
+ }, {
+ .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
+ .device = PCI_DEVICE_ID_MICRO_MEMORY_6155,
+ }, {
+ .vendor = 0x8086,
+ .device = 0xB555,
+ .subvendor= 0x1332,
+ .subdevice= 0x5460,
+ .class = 0x050000,
+ .class_mask= 0,
+ }, { /* end: all zeroes */ }
+};
+
+MODULE_DEVICE_TABLE(pci, mm_pci_ids);
+
+static struct pci_driver mm_pci_driver = {
+ .name = "umem",
+ .id_table = mm_pci_ids,
+ .probe = mm_pci_probe,
+ .remove = mm_pci_remove,
+};
+/*
+-----------------------------------------------------------------------------------
+-- mm_init
+-----------------------------------------------------------------------------------
+*/
+
+static int __init mm_init(void)
+{
+ int retval, i;
+ int err;
+
+ printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
+
+ retval = pci_module_init(&mm_pci_driver);
+ if (retval)
+ return -ENOMEM;
+
+ err = major_nr = register_blkdev(0, "umem");
+ if (err < 0)
+ return -EIO;
+
+ for (i = 0; i < num_cards; i++) {
+ mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
+ if (!mm_gendisk[i])
+ goto out;
+ }
+
+ for (i = 0; i < num_cards; i++) {
+ struct gendisk *disk = mm_gendisk[i];
+ sprintf(disk->disk_name, "umem%c", 'a'+i);
+ sprintf(disk->devfs_name, "umem/card%d", i);
+ spin_lock_init(&cards[i].lock);
+ disk->major = major_nr;
+ disk->first_minor = i << MM_SHIFT;
+ disk->fops = &mm_fops;
+ disk->private_data = &cards[i];
+ disk->queue = cards[i].queue;
+ set_capacity(disk, cards[i].mm_size << 1);
+ add_disk(disk);
+ }
+
+ init_battery_timer();
+ printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
+/* printk("mm_init: Done. 10-19-01 9:00\n"); */
+ return 0;
+
+out:
+ unregister_blkdev(major_nr, "umem");
+ while (i--)
+ put_disk(mm_gendisk[i]);
+ return -ENOMEM;
+}
+/*
+-----------------------------------------------------------------------------------
+-- mm_cleanup
+-----------------------------------------------------------------------------------
+*/
+static void __exit mm_cleanup(void)
+{
+ int i;
+
+ del_battery_timer();
+
+ for (i=0; i < num_cards ; i++) {
+ del_gendisk(mm_gendisk[i]);
+ put_disk(mm_gendisk[i]);
+ }
+
+ pci_unregister_driver(&mm_pci_driver);
+
+ unregister_blkdev(major_nr, "umem");
+}
+
+module_init(mm_init);
+module_exit(mm_cleanup);
+
+MODULE_AUTHOR(DRIVER_AUTHOR);
+MODULE_DESCRIPTION(DRIVER_DESC);
+MODULE_LICENSE("GPL");