summaryrefslogtreecommitdiffstats
path: root/drivers/cpufreq
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/cpufreq')
-rw-r--r--drivers/cpufreq/cpufreq-dt.c3
-rw-r--r--drivers/cpufreq/cpufreq.c29
-rw-r--r--drivers/cpufreq/cpufreq_governor.c8
-rw-r--r--drivers/cpufreq/intel_pstate.c241
-rw-r--r--drivers/cpufreq/sti-cpufreq.c4
5 files changed, 240 insertions, 45 deletions
diff --git a/drivers/cpufreq/cpufreq-dt.c b/drivers/cpufreq/cpufreq-dt.c
index f951f911786e..5f8dbe640a20 100644
--- a/drivers/cpufreq/cpufreq-dt.c
+++ b/drivers/cpufreq/cpufreq-dt.c
@@ -4,9 +4,6 @@
* Copyright (C) 2014 Linaro.
* Viresh Kumar <viresh.kumar@linaro.org>
*
- * The OPP code in function set_target() is reused from
- * drivers/cpufreq/omap-cpufreq.c
- *
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
diff --git a/drivers/cpufreq/cpufreq.c b/drivers/cpufreq/cpufreq.c
index b87596b591b3..c4acfc5273b3 100644
--- a/drivers/cpufreq/cpufreq.c
+++ b/drivers/cpufreq/cpufreq.c
@@ -1491,6 +1491,9 @@ static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
{
unsigned int new_freq;
+ if (cpufreq_suspended)
+ return 0;
+
new_freq = cpufreq_driver->get(policy->cpu);
if (!new_freq)
return 0;
@@ -1554,21 +1557,25 @@ void cpufreq_suspend(void)
if (!cpufreq_driver)
return;
- if (!has_target())
+ if (!has_target() && !cpufreq_driver->suspend)
goto suspend;
pr_debug("%s: Suspending Governors\n", __func__);
for_each_active_policy(policy) {
- down_write(&policy->rwsem);
- ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP);
- up_write(&policy->rwsem);
+ if (has_target()) {
+ down_write(&policy->rwsem);
+ ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP);
+ up_write(&policy->rwsem);
- if (ret)
- pr_err("%s: Failed to stop governor for policy: %p\n",
- __func__, policy);
- else if (cpufreq_driver->suspend
- && cpufreq_driver->suspend(policy))
+ if (ret) {
+ pr_err("%s: Failed to stop governor for policy: %p\n",
+ __func__, policy);
+ continue;
+ }
+ }
+
+ if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
pr_err("%s: Failed to suspend driver: %p\n", __func__,
policy);
}
@@ -1593,7 +1600,7 @@ void cpufreq_resume(void)
cpufreq_suspended = false;
- if (!has_target())
+ if (!has_target() && !cpufreq_driver->resume)
return;
pr_debug("%s: Resuming Governors\n", __func__);
@@ -1602,7 +1609,7 @@ void cpufreq_resume(void)
if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
pr_err("%s: Failed to resume driver: %p\n", __func__,
policy);
- } else {
+ } else if (has_target()) {
down_write(&policy->rwsem);
ret = cpufreq_start_governor(policy);
up_write(&policy->rwsem);
diff --git a/drivers/cpufreq/cpufreq_governor.c b/drivers/cpufreq/cpufreq_governor.c
index 10a5cfeae8c5..5f1147fa9239 100644
--- a/drivers/cpufreq/cpufreq_governor.c
+++ b/drivers/cpufreq/cpufreq_governor.c
@@ -193,12 +193,8 @@ unsigned int dbs_update(struct cpufreq_policy *policy)
wall_time = cur_wall_time - j_cdbs->prev_cpu_wall;
j_cdbs->prev_cpu_wall = cur_wall_time;
- if (cur_idle_time <= j_cdbs->prev_cpu_idle) {
- idle_time = 0;
- } else {
- idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
- j_cdbs->prev_cpu_idle = cur_idle_time;
- }
+ idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
+ j_cdbs->prev_cpu_idle = cur_idle_time;
if (ignore_nice) {
u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
diff --git a/drivers/cpufreq/intel_pstate.c b/drivers/cpufreq/intel_pstate.c
index 4b644526fd59..b230ebaae66c 100644
--- a/drivers/cpufreq/intel_pstate.c
+++ b/drivers/cpufreq/intel_pstate.c
@@ -64,6 +64,25 @@ static inline int ceiling_fp(int32_t x)
return ret;
}
+/**
+ * struct sample - Store performance sample
+ * @core_pct_busy: Ratio of APERF/MPERF in percent, which is actual
+ * performance during last sample period
+ * @busy_scaled: Scaled busy value which is used to calculate next
+ * P state. This can be different than core_pct_busy
+ * to account for cpu idle period
+ * @aperf: Difference of actual performance frequency clock count
+ * read from APERF MSR between last and current sample
+ * @mperf: Difference of maximum performance frequency clock count
+ * read from MPERF MSR between last and current sample
+ * @tsc: Difference of time stamp counter between last and
+ * current sample
+ * @freq: Effective frequency calculated from APERF/MPERF
+ * @time: Current time from scheduler
+ *
+ * This structure is used in the cpudata structure to store performance sample
+ * data for choosing next P State.
+ */
struct sample {
int32_t core_pct_busy;
int32_t busy_scaled;
@@ -74,6 +93,20 @@ struct sample {
u64 time;
};
+/**
+ * struct pstate_data - Store P state data
+ * @current_pstate: Current requested P state
+ * @min_pstate: Min P state possible for this platform
+ * @max_pstate: Max P state possible for this platform
+ * @max_pstate_physical:This is physical Max P state for a processor
+ * This can be higher than the max_pstate which can
+ * be limited by platform thermal design power limits
+ * @scaling: Scaling factor to convert frequency to cpufreq
+ * frequency units
+ * @turbo_pstate: Max Turbo P state possible for this platform
+ *
+ * Stores the per cpu model P state limits and current P state.
+ */
struct pstate_data {
int current_pstate;
int min_pstate;
@@ -83,6 +116,19 @@ struct pstate_data {
int turbo_pstate;
};
+/**
+ * struct vid_data - Stores voltage information data
+ * @min: VID data for this platform corresponding to
+ * the lowest P state
+ * @max: VID data corresponding to the highest P State.
+ * @turbo: VID data for turbo P state
+ * @ratio: Ratio of (vid max - vid min) /
+ * (max P state - Min P State)
+ *
+ * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
+ * This data is used in Atom platforms, where in addition to target P state,
+ * the voltage data needs to be specified to select next P State.
+ */
struct vid_data {
int min;
int max;
@@ -90,6 +136,18 @@ struct vid_data {
int32_t ratio;
};
+/**
+ * struct _pid - Stores PID data
+ * @setpoint: Target set point for busyness or performance
+ * @integral: Storage for accumulated error values
+ * @p_gain: PID proportional gain
+ * @i_gain: PID integral gain
+ * @d_gain: PID derivative gain
+ * @deadband: PID deadband
+ * @last_err: Last error storage for integral part of PID calculation
+ *
+ * Stores PID coefficients and last error for PID controller.
+ */
struct _pid {
int setpoint;
int32_t integral;
@@ -100,6 +158,23 @@ struct _pid {
int32_t last_err;
};
+/**
+ * struct cpudata - Per CPU instance data storage
+ * @cpu: CPU number for this instance data
+ * @update_util: CPUFreq utility callback information
+ * @pstate: Stores P state limits for this CPU
+ * @vid: Stores VID limits for this CPU
+ * @pid: Stores PID parameters for this CPU
+ * @last_sample_time: Last Sample time
+ * @prev_aperf: Last APERF value read from APERF MSR
+ * @prev_mperf: Last MPERF value read from MPERF MSR
+ * @prev_tsc: Last timestamp counter (TSC) value
+ * @prev_cummulative_iowait: IO Wait time difference from last and
+ * current sample
+ * @sample: Storage for storing last Sample data
+ *
+ * This structure stores per CPU instance data for all CPUs.
+ */
struct cpudata {
int cpu;
@@ -118,6 +193,19 @@ struct cpudata {
};
static struct cpudata **all_cpu_data;
+
+/**
+ * struct pid_adjust_policy - Stores static PID configuration data
+ * @sample_rate_ms: PID calculation sample rate in ms
+ * @sample_rate_ns: Sample rate calculation in ns
+ * @deadband: PID deadband
+ * @setpoint: PID Setpoint
+ * @p_gain_pct: PID proportional gain
+ * @i_gain_pct: PID integral gain
+ * @d_gain_pct: PID derivative gain
+ *
+ * Stores per CPU model static PID configuration data.
+ */
struct pstate_adjust_policy {
int sample_rate_ms;
s64 sample_rate_ns;
@@ -128,6 +216,20 @@ struct pstate_adjust_policy {
int i_gain_pct;
};
+/**
+ * struct pstate_funcs - Per CPU model specific callbacks
+ * @get_max: Callback to get maximum non turbo effective P state
+ * @get_max_physical: Callback to get maximum non turbo physical P state
+ * @get_min: Callback to get minimum P state
+ * @get_turbo: Callback to get turbo P state
+ * @get_scaling: Callback to get frequency scaling factor
+ * @get_val: Callback to convert P state to actual MSR write value
+ * @get_vid: Callback to get VID data for Atom platforms
+ * @get_target_pstate: Callback to a function to calculate next P state to use
+ *
+ * Core and Atom CPU models have different way to get P State limits. This
+ * structure is used to store those callbacks.
+ */
struct pstate_funcs {
int (*get_max)(void);
int (*get_max_physical)(void);
@@ -139,6 +241,11 @@ struct pstate_funcs {
int32_t (*get_target_pstate)(struct cpudata *);
};
+/**
+ * struct cpu_defaults- Per CPU model default config data
+ * @pid_policy: PID config data
+ * @funcs: Callback function data
+ */
struct cpu_defaults {
struct pstate_adjust_policy pid_policy;
struct pstate_funcs funcs;
@@ -151,6 +258,34 @@ static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;
static int hwp_active;
+
+/**
+ * struct perf_limits - Store user and policy limits
+ * @no_turbo: User requested turbo state from intel_pstate sysfs
+ * @turbo_disabled: Platform turbo status either from msr
+ * MSR_IA32_MISC_ENABLE or when maximum available pstate
+ * matches the maximum turbo pstate
+ * @max_perf_pct: Effective maximum performance limit in percentage, this
+ * is minimum of either limits enforced by cpufreq policy
+ * or limits from user set limits via intel_pstate sysfs
+ * @min_perf_pct: Effective minimum performance limit in percentage, this
+ * is maximum of either limits enforced by cpufreq policy
+ * or limits from user set limits via intel_pstate sysfs
+ * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
+ * This value is used to limit max pstate
+ * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
+ * This value is used to limit min pstate
+ * @max_policy_pct: The maximum performance in percentage enforced by
+ * cpufreq setpolicy interface
+ * @max_sysfs_pct: The maximum performance in percentage enforced by
+ * intel pstate sysfs interface
+ * @min_policy_pct: The minimum performance in percentage enforced by
+ * cpufreq setpolicy interface
+ * @min_sysfs_pct: The minimum performance in percentage enforced by
+ * intel pstate sysfs interface
+ *
+ * Storage for user and policy defined limits.
+ */
struct perf_limits {
int no_turbo;
int turbo_disabled;
@@ -318,6 +453,14 @@ static void intel_pstate_hwp_set(const struct cpumask *cpumask)
}
}
+static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
+{
+ if (hwp_active)
+ intel_pstate_hwp_set(policy->cpus);
+
+ return 0;
+}
+
static void intel_pstate_hwp_set_online_cpus(void)
{
get_online_cpus();
@@ -678,6 +821,11 @@ static int core_get_max_pstate(void)
if (err)
goto skip_tar;
+ /* For level 1 and 2, bits[23:16] contain the ratio */
+ if (tdp_ctrl)
+ tdp_ratio >>= 16;
+
+ tdp_ratio &= 0xff; /* ratios are only 8 bits long */
if (tdp_ratio - 1 == tar) {
max_pstate = tar;
pr_debug("max_pstate=TAC %x\n", max_pstate);
@@ -910,13 +1058,21 @@ static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
cpu->prev_aperf = aperf;
cpu->prev_mperf = mperf;
cpu->prev_tsc = tsc;
- return true;
+ /*
+ * First time this function is invoked in a given cycle, all of the
+ * previous sample data fields are equal to zero or stale and they must
+ * be populated with meaningful numbers for things to work, so assume
+ * that sample.time will always be reset before setting the utilization
+ * update hook and make the caller skip the sample then.
+ */
+ return !!cpu->last_sample_time;
}
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
- return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
- cpu->pstate.scaling, cpu->sample.mperf);
+ return fp_toint(mul_fp(cpu->sample.core_pct_busy,
+ int_tofp(cpu->pstate.max_pstate_physical *
+ cpu->pstate.scaling / 100)));
}
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
@@ -959,8 +1115,6 @@ static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
int32_t core_busy, max_pstate, current_pstate, sample_ratio;
u64 duration_ns;
- intel_pstate_calc_busy(cpu);
-
/*
* core_busy is the ratio of actual performance to max
* max_pstate is the max non turbo pstate available
@@ -984,11 +1138,14 @@ static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
* enough period of time to adjust our busyness.
*/
duration_ns = cpu->sample.time - cpu->last_sample_time;
- if ((s64)duration_ns > pid_params.sample_rate_ns * 3
- && cpu->last_sample_time > 0) {
+ if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
sample_ratio = div_fp(int_tofp(pid_params.sample_rate_ns),
int_tofp(duration_ns));
core_busy = mul_fp(core_busy, sample_ratio);
+ } else {
+ sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
+ if (sample_ratio < int_tofp(1))
+ core_busy = 0;
}
cpu->sample.busy_scaled = core_busy;
@@ -1041,8 +1198,11 @@ static void intel_pstate_update_util(struct update_util_data *data, u64 time,
if ((s64)delta_ns >= pid_params.sample_rate_ns) {
bool sample_taken = intel_pstate_sample(cpu, time);
- if (sample_taken && !hwp_active)
- intel_pstate_adjust_busy_pstate(cpu);
+ if (sample_taken) {
+ intel_pstate_calc_busy(cpu);
+ if (!hwp_active)
+ intel_pstate_adjust_busy_pstate(cpu);
+ }
}
}
@@ -1100,10 +1260,8 @@ static int intel_pstate_init_cpu(unsigned int cpunum)
intel_pstate_get_cpu_pstates(cpu);
intel_pstate_busy_pid_reset(cpu);
- intel_pstate_sample(cpu, 0);
cpu->update_util.func = intel_pstate_update_util;
- cpufreq_set_update_util_data(cpunum, &cpu->update_util);
pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
@@ -1122,22 +1280,54 @@ static unsigned int intel_pstate_get(unsigned int cpu_num)
return get_avg_frequency(cpu);
}
+static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
+{
+ struct cpudata *cpu = all_cpu_data[cpu_num];
+
+ /* Prevent intel_pstate_update_util() from using stale data. */
+ cpu->sample.time = 0;
+ cpufreq_set_update_util_data(cpu_num, &cpu->update_util);
+}
+
+static void intel_pstate_clear_update_util_hook(unsigned int cpu)
+{
+ cpufreq_set_update_util_data(cpu, NULL);
+ synchronize_sched();
+}
+
+static void intel_pstate_set_performance_limits(struct perf_limits *limits)
+{
+ limits->no_turbo = 0;
+ limits->turbo_disabled = 0;
+ limits->max_perf_pct = 100;
+ limits->max_perf = int_tofp(1);
+ limits->min_perf_pct = 100;
+ limits->min_perf = int_tofp(1);
+ limits->max_policy_pct = 100;
+ limits->max_sysfs_pct = 100;
+ limits->min_policy_pct = 0;
+ limits->min_sysfs_pct = 0;
+}
+
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
if (!policy->cpuinfo.max_freq)
return -ENODEV;
- if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
- policy->max >= policy->cpuinfo.max_freq) {
- pr_debug("intel_pstate: set performance\n");
+ intel_pstate_clear_update_util_hook(policy->cpu);
+
+ if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
limits = &performance_limits;
- if (hwp_active)
- intel_pstate_hwp_set(policy->cpus);
- return 0;
+ if (policy->max >= policy->cpuinfo.max_freq) {
+ pr_debug("intel_pstate: set performance\n");
+ intel_pstate_set_performance_limits(limits);
+ goto out;
+ }
+ } else {
+ pr_debug("intel_pstate: set powersave\n");
+ limits = &powersave_limits;
}
- pr_debug("intel_pstate: set powersave\n");
- limits = &powersave_limits;
limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
@@ -1163,8 +1353,10 @@ static int intel_pstate_set_policy(struct cpufreq_policy *policy)
limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
int_tofp(100));
- if (hwp_active)
- intel_pstate_hwp_set(policy->cpus);
+ out:
+ intel_pstate_set_update_util_hook(policy->cpu);
+
+ intel_pstate_hwp_set_policy(policy);
return 0;
}
@@ -1187,8 +1379,7 @@ static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
- cpufreq_set_update_util_data(cpu_num, NULL);
- synchronize_sched();
+ intel_pstate_clear_update_util_hook(cpu_num);
if (hwp_active)
return;
@@ -1229,6 +1420,7 @@ static struct cpufreq_driver intel_pstate_driver = {
.flags = CPUFREQ_CONST_LOOPS,
.verify = intel_pstate_verify_policy,
.setpolicy = intel_pstate_set_policy,
+ .resume = intel_pstate_hwp_set_policy,
.get = intel_pstate_get,
.init = intel_pstate_cpu_init,
.stop_cpu = intel_pstate_stop_cpu,
@@ -1455,8 +1647,7 @@ out:
get_online_cpus();
for_each_online_cpu(cpu) {
if (all_cpu_data[cpu]) {
- cpufreq_set_update_util_data(cpu, NULL);
- synchronize_sched();
+ intel_pstate_clear_update_util_hook(cpu);
kfree(all_cpu_data[cpu]);
}
}
diff --git a/drivers/cpufreq/sti-cpufreq.c b/drivers/cpufreq/sti-cpufreq.c
index a9c659f58974..04042038ec4b 100644
--- a/drivers/cpufreq/sti-cpufreq.c
+++ b/drivers/cpufreq/sti-cpufreq.c
@@ -259,6 +259,10 @@ static int sti_cpufreq_init(void)
{
int ret;
+ if ((!of_machine_is_compatible("st,stih407")) &&
+ (!of_machine_is_compatible("st,stih410")))
+ return -ENODEV;
+
ddata.cpu = get_cpu_device(0);
if (!ddata.cpu) {
dev_err(ddata.cpu, "Failed to get device for CPU0\n");