summaryrefslogtreecommitdiffstats
path: root/drivers/crypto/sa2ul.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/crypto/sa2ul.c')
-rw-r--r--drivers/crypto/sa2ul.c1388
1 files changed, 1388 insertions, 0 deletions
diff --git a/drivers/crypto/sa2ul.c b/drivers/crypto/sa2ul.c
new file mode 100644
index 000000000000..860c7435fefa
--- /dev/null
+++ b/drivers/crypto/sa2ul.c
@@ -0,0 +1,1388 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * K3 SA2UL crypto accelerator driver
+ *
+ * Copyright (C) 2018-2020 Texas Instruments Incorporated - http://www.ti.com
+ *
+ * Authors: Keerthy
+ * Vitaly Andrianov
+ * Tero Kristo
+ */
+#include <linux/clk.h>
+#include <linux/dmaengine.h>
+#include <linux/dmapool.h>
+#include <linux/module.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_runtime.h>
+
+#include <crypto/aes.h>
+#include <crypto/des.h>
+#include <crypto/internal/skcipher.h>
+#include <crypto/scatterwalk.h>
+
+#include "sa2ul.h"
+
+/* Byte offset for key in encryption security context */
+#define SC_ENC_KEY_OFFSET (1 + 27 + 4)
+/* Byte offset for Aux-1 in encryption security context */
+#define SC_ENC_AUX1_OFFSET (1 + 27 + 4 + 32)
+
+#define SA_CMDL_UPD_ENC 0x0001
+#define SA_CMDL_UPD_AUTH 0x0002
+#define SA_CMDL_UPD_ENC_IV 0x0004
+#define SA_CMDL_UPD_AUTH_IV 0x0008
+#define SA_CMDL_UPD_AUX_KEY 0x0010
+
+#define SA_AUTH_SUBKEY_LEN 16
+#define SA_CMDL_PAYLOAD_LENGTH_MASK 0xFFFF
+#define SA_CMDL_SOP_BYPASS_LEN_MASK 0xFF000000
+
+#define MODE_CONTROL_BYTES 27
+#define SA_HASH_PROCESSING 0
+#define SA_CRYPTO_PROCESSING 0
+#define SA_UPLOAD_HASH_TO_TLR BIT(6)
+
+#define SA_SW0_FLAGS_MASK 0xF0000
+#define SA_SW0_CMDL_INFO_MASK 0x1F00000
+#define SA_SW0_CMDL_PRESENT BIT(4)
+#define SA_SW0_ENG_ID_MASK 0x3E000000
+#define SA_SW0_DEST_INFO_PRESENT BIT(30)
+#define SA_SW2_EGRESS_LENGTH 0xFF000000
+#define SA_BASIC_HASH 0x10
+
+#define SHA256_DIGEST_WORDS 8
+/* Make 32-bit word from 4 bytes */
+#define SA_MK_U32(b0, b1, b2, b3) (((b0) << 24) | ((b1) << 16) | \
+ ((b2) << 8) | (b3))
+
+/* size of SCCTL structure in bytes */
+#define SA_SCCTL_SZ 16
+
+/* Max Authentication tag size */
+#define SA_MAX_AUTH_TAG_SZ 64
+
+#define PRIV_ID 0x1
+#define PRIV 0x1
+
+static struct device *sa_k3_dev;
+
+/**
+ * struct sa_cmdl_cfg - Command label configuration descriptor
+ * @enc_eng_id: Encryption Engine ID supported by the SA hardware
+ * @iv_size: Initialization Vector size
+ */
+struct sa_cmdl_cfg {
+ u8 enc_eng_id;
+ u8 iv_size;
+};
+
+/**
+ * struct algo_data - Crypto algorithm specific data
+ * @enc_eng: Encryption engine info structure
+ * @iv_idx: iv index in psdata
+ * @iv_out_size: iv out size
+ * @ealg_id: Encryption Algorithm ID
+ * @mci_enc: Mode Control Instruction for Encryption algorithm
+ * @mci_dec: Mode Control Instruction for Decryption
+ * @inv_key: Whether the encryption algorithm demands key inversion
+ * @ctx: Pointer to the algorithm context
+ */
+struct algo_data {
+ struct sa_eng_info enc_eng;
+ u8 iv_idx;
+ u8 iv_out_size;
+ u8 ealg_id;
+ u8 *mci_enc;
+ u8 *mci_dec;
+ bool inv_key;
+ struct sa_tfm_ctx *ctx;
+};
+
+/**
+ * struct sa_alg_tmpl: A generic template encompassing crypto/aead algorithms
+ * @type: Type of the crypto algorithm.
+ * @alg: Union of crypto algorithm definitions.
+ * @registered: Flag indicating if the crypto algorithm is already registered
+ */
+struct sa_alg_tmpl {
+ u32 type; /* CRYPTO_ALG_TYPE from <linux/crypto.h> */
+ union {
+ struct skcipher_alg skcipher;
+ } alg;
+ bool registered;
+};
+
+/**
+ * struct sa_rx_data: RX Packet miscellaneous data place holder
+ * @req: crypto request data pointer
+ * @ddev: pointer to the DMA device
+ * @tx_in: dma_async_tx_descriptor pointer for rx channel
+ * @split_src_sg: Set if the src sg is split and needs to be freed up
+ * @split_dst_sg: Set if the dst sg is split and needs to be freed up
+ * @enc: Flag indicating either encryption or decryption
+ * @enc_iv_size: Initialisation vector size
+ * @iv_idx: Initialisation vector index
+ * @rx_sg: Static scatterlist entry for overriding RX data
+ * @tx_sg: Static scatterlist entry for overriding TX data
+ * @src: Source data pointer
+ * @dst: Destination data pointer
+ */
+struct sa_rx_data {
+ void *req;
+ struct device *ddev;
+ struct dma_async_tx_descriptor *tx_in;
+ struct scatterlist *split_src_sg;
+ struct scatterlist *split_dst_sg;
+ u8 enc;
+ u8 enc_iv_size;
+ u8 iv_idx;
+ struct scatterlist rx_sg;
+ struct scatterlist tx_sg;
+ struct scatterlist *src;
+ struct scatterlist *dst;
+};
+
+/**
+ * struct sa_req: SA request definition
+ * @dev: device for the request
+ * @size: total data to the xmitted via DMA
+ * @enc_offset: offset of cipher data
+ * @enc_size: data to be passed to cipher engine
+ * @enc_iv: cipher IV
+ * @type: algorithm type for the request
+ * @cmdl: command label pointer
+ * @base: pointer to the base request
+ * @ctx: pointer to the algorithm context data
+ * @enc: true if this is an encode request
+ * @src: source data
+ * @dst: destination data
+ * @callback: DMA callback for the request
+ * @mdata_size: metadata size passed to DMA
+ */
+struct sa_req {
+ struct device *dev;
+ u16 size;
+ u8 enc_offset;
+ u16 enc_size;
+ u8 *enc_iv;
+ u32 type;
+ u32 *cmdl;
+ struct crypto_async_request *base;
+ struct sa_tfm_ctx *ctx;
+ bool enc;
+ struct scatterlist *src;
+ struct scatterlist *dst;
+ dma_async_tx_callback callback;
+ u16 mdata_size;
+};
+
+/*
+ * Mode Control Instructions for various Key lengths 128, 192, 256
+ * For CBC (Cipher Block Chaining) mode for encryption
+ */
+static u8 mci_cbc_enc_array[3][MODE_CONTROL_BYTES] = {
+ { 0x61, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x61, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x61, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+};
+
+/*
+ * Mode Control Instructions for various Key lengths 128, 192, 256
+ * For CBC (Cipher Block Chaining) mode for decryption
+ */
+static u8 mci_cbc_dec_array[3][MODE_CONTROL_BYTES] = {
+ { 0x71, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x71, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x71, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+};
+
+/*
+ * Mode Control Instructions for various Key lengths 128, 192, 256
+ * For ECB (Electronic Code Book) mode for encryption
+ */
+static u8 mci_ecb_enc_array[3][27] = {
+ { 0x21, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x21, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x21, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+};
+
+/*
+ * Mode Control Instructions for various Key lengths 128, 192, 256
+ * For ECB (Electronic Code Book) mode for decryption
+ */
+static u8 mci_ecb_dec_array[3][27] = {
+ { 0x31, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x31, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x31, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+};
+
+/*
+ * Mode Control Instructions for DES algorithm
+ * For CBC (Cipher Block Chaining) mode and ECB mode
+ * encryption and for decryption respectively
+ */
+static u8 mci_cbc_3des_enc_array[MODE_CONTROL_BYTES] = {
+ 0x60, 0x00, 0x00, 0x18, 0x88, 0x52, 0xaa, 0x4b, 0x7e, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00,
+};
+
+static u8 mci_cbc_3des_dec_array[MODE_CONTROL_BYTES] = {
+ 0x70, 0x00, 0x00, 0x85, 0x0a, 0xca, 0x98, 0xf4, 0x40, 0xc0, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00,
+};
+
+static u8 mci_ecb_3des_enc_array[MODE_CONTROL_BYTES] = {
+ 0x20, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00,
+};
+
+static u8 mci_ecb_3des_dec_array[MODE_CONTROL_BYTES] = {
+ 0x30, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00,
+};
+
+/*
+ * Perform 16 byte or 128 bit swizzling
+ * The SA2UL Expects the security context to
+ * be in little Endian and the bus width is 128 bits or 16 bytes
+ * Hence swap 16 bytes at a time from higher to lower address
+ */
+static void sa_swiz_128(u8 *in, u16 len)
+{
+ u8 data[16];
+ int i, j;
+
+ for (i = 0; i < len; i += 16) {
+ memcpy(data, &in[i], 16);
+ for (j = 0; j < 16; j++)
+ in[i + j] = data[15 - j];
+ }
+}
+
+/* Derive the inverse key used in AES-CBC decryption operation */
+static inline int sa_aes_inv_key(u8 *inv_key, const u8 *key, u16 key_sz)
+{
+ struct crypto_aes_ctx ctx;
+ int key_pos;
+
+ if (aes_expandkey(&ctx, key, key_sz)) {
+ dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz);
+ return -EINVAL;
+ }
+
+ /* work around to get the right inverse for AES_KEYSIZE_192 size keys */
+ if (key_sz == AES_KEYSIZE_192) {
+ ctx.key_enc[52] = ctx.key_enc[51] ^ ctx.key_enc[46];
+ ctx.key_enc[53] = ctx.key_enc[52] ^ ctx.key_enc[47];
+ }
+
+ /* Based crypto_aes_expand_key logic */
+ switch (key_sz) {
+ case AES_KEYSIZE_128:
+ case AES_KEYSIZE_192:
+ key_pos = key_sz + 24;
+ break;
+
+ case AES_KEYSIZE_256:
+ key_pos = key_sz + 24 - 4;
+ break;
+
+ default:
+ dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz);
+ return -EINVAL;
+ }
+
+ memcpy(inv_key, &ctx.key_enc[key_pos], key_sz);
+ return 0;
+}
+
+/* Set Security context for the encryption engine */
+static int sa_set_sc_enc(struct algo_data *ad, const u8 *key, u16 key_sz,
+ u8 enc, u8 *sc_buf)
+{
+ const u8 *mci = NULL;
+
+ /* Set Encryption mode selector to crypto processing */
+ sc_buf[0] = SA_CRYPTO_PROCESSING;
+
+ if (enc)
+ mci = ad->mci_enc;
+ else
+ mci = ad->mci_dec;
+ /* Set the mode control instructions in security context */
+ if (mci)
+ memcpy(&sc_buf[1], mci, MODE_CONTROL_BYTES);
+
+ /* For AES-CBC decryption get the inverse key */
+ if (ad->inv_key && !enc) {
+ if (sa_aes_inv_key(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz))
+ return -EINVAL;
+ /* For all other cases: key is used */
+ } else {
+ memcpy(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz);
+ }
+
+ return 0;
+}
+
+static inline void sa_copy_iv(__be32 *out, const u8 *iv, bool size16)
+{
+ int j;
+
+ for (j = 0; j < ((size16) ? 4 : 2); j++) {
+ *out = cpu_to_be32(*((u32 *)iv));
+ iv += 4;
+ out++;
+ }
+}
+
+/* Format general command label */
+static int sa_format_cmdl_gen(struct sa_cmdl_cfg *cfg, u8 *cmdl,
+ struct sa_cmdl_upd_info *upd_info)
+{
+ u8 enc_offset = 0, total = 0;
+ u8 enc_next_eng = SA_ENG_ID_OUTPORT2;
+ u32 *word_ptr = (u32 *)cmdl;
+ int i;
+
+ /* Clear the command label */
+ memzero_explicit(cmdl, (SA_MAX_CMDL_WORDS * sizeof(u32)));
+
+ /* Iniialize the command update structure */
+ memzero_explicit(upd_info, sizeof(*upd_info));
+
+ if (cfg->enc_eng_id != SA_ENG_ID_NONE)
+ total = SA_CMDL_HEADER_SIZE_BYTES;
+
+ if (cfg->iv_size)
+ total += cfg->iv_size;
+
+ enc_next_eng = SA_ENG_ID_OUTPORT2;
+
+ if (cfg->enc_eng_id != SA_ENG_ID_NONE) {
+ upd_info->flags |= SA_CMDL_UPD_ENC;
+ upd_info->enc_size.index = enc_offset >> 2;
+ upd_info->enc_offset.index = upd_info->enc_size.index + 1;
+ /* Encryption command label */
+ cmdl[enc_offset + SA_CMDL_OFFSET_NESC] = enc_next_eng;
+
+ /* Encryption modes requiring IV */
+ if (cfg->iv_size) {
+ upd_info->flags |= SA_CMDL_UPD_ENC_IV;
+ upd_info->enc_iv.index =
+ (enc_offset + SA_CMDL_HEADER_SIZE_BYTES) >> 2;
+ upd_info->enc_iv.size = cfg->iv_size;
+
+ cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] =
+ SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size;
+
+ cmdl[enc_offset + SA_CMDL_OFFSET_OPTION_CTRL1] =
+ (SA_CTX_ENC_AUX2_OFFSET | (cfg->iv_size >> 3));
+ enc_offset += SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size;
+ } else {
+ cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] =
+ SA_CMDL_HEADER_SIZE_BYTES;
+ enc_offset += SA_CMDL_HEADER_SIZE_BYTES;
+ }
+ }
+
+ total = roundup(total, 8);
+
+ for (i = 0; i < total / 4; i++)
+ word_ptr[i] = swab32(word_ptr[i]);
+
+ return total;
+}
+
+/* Update Command label */
+static inline void sa_update_cmdl(struct sa_req *req, u32 *cmdl,
+ struct sa_cmdl_upd_info *upd_info)
+{
+ int i = 0, j;
+
+ if (likely(upd_info->flags & SA_CMDL_UPD_ENC)) {
+ cmdl[upd_info->enc_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK;
+ cmdl[upd_info->enc_size.index] |= req->enc_size;
+ cmdl[upd_info->enc_offset.index] &=
+ ~SA_CMDL_SOP_BYPASS_LEN_MASK;
+ cmdl[upd_info->enc_offset.index] |=
+ ((u32)req->enc_offset <<
+ __ffs(SA_CMDL_SOP_BYPASS_LEN_MASK));
+
+ if (likely(upd_info->flags & SA_CMDL_UPD_ENC_IV)) {
+ __be32 *data = (__be32 *)&cmdl[upd_info->enc_iv.index];
+ u32 *enc_iv = (u32 *)req->enc_iv;
+
+ for (j = 0; i < upd_info->enc_iv.size; i += 4, j++) {
+ data[j] = cpu_to_be32(*enc_iv);
+ enc_iv++;
+ }
+ }
+ }
+}
+
+/* Format SWINFO words to be sent to SA */
+static
+void sa_set_swinfo(u8 eng_id, u16 sc_id, dma_addr_t sc_phys,
+ u8 cmdl_present, u8 cmdl_offset, u8 flags,
+ u8 hash_size, u32 *swinfo)
+{
+ swinfo[0] = sc_id;
+ swinfo[0] |= (flags << __ffs(SA_SW0_FLAGS_MASK));
+ if (likely(cmdl_present))
+ swinfo[0] |= ((cmdl_offset | SA_SW0_CMDL_PRESENT) <<
+ __ffs(SA_SW0_CMDL_INFO_MASK));
+ swinfo[0] |= (eng_id << __ffs(SA_SW0_ENG_ID_MASK));
+
+ swinfo[0] |= SA_SW0_DEST_INFO_PRESENT;
+ swinfo[1] = (u32)(sc_phys & 0xFFFFFFFFULL);
+ swinfo[2] = (u32)((sc_phys & 0xFFFFFFFF00000000ULL) >> 32);
+ swinfo[2] |= (hash_size << __ffs(SA_SW2_EGRESS_LENGTH));
+}
+
+/* Dump the security context */
+static void sa_dump_sc(u8 *buf, dma_addr_t dma_addr)
+{
+#ifdef DEBUG
+ dev_info(sa_k3_dev, "Security context dump:: 0x%pad\n", &dma_addr);
+ print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
+ 16, 1, buf, SA_CTX_MAX_SZ, false);
+#endif
+}
+
+static
+int sa_init_sc(struct sa_ctx_info *ctx, const u8 *enc_key,
+ u16 enc_key_sz, struct algo_data *ad, u8 enc, u32 *swinfo)
+{
+ int enc_sc_offset = 0;
+ u8 *sc_buf = ctx->sc;
+ u16 sc_id = ctx->sc_id;
+ u8 first_engine;
+
+ memzero_explicit(sc_buf, SA_CTX_MAX_SZ);
+
+ enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ;
+
+ /* SCCTL Owner info: 0=host, 1=CP_ACE */
+ sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0;
+ /* SCCTL F/E control */
+ sc_buf[1] = SA_SCCTL_FE_ENC;
+ memcpy(&sc_buf[2], &sc_id, 2);
+ sc_buf[4] = 0x0;
+ sc_buf[5] = PRIV_ID;
+ sc_buf[6] = PRIV;
+ sc_buf[7] = 0x0;
+
+ /* Prepare context for encryption engine */
+ if (ad->enc_eng.sc_size) {
+ if (sa_set_sc_enc(ad, enc_key, enc_key_sz, enc,
+ &sc_buf[enc_sc_offset]))
+ return -EINVAL;
+ }
+
+ /* Set the ownership of context to CP_ACE */
+ sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0x80;
+
+ /* swizzle the security context */
+ sa_swiz_128(sc_buf, SA_CTX_MAX_SZ);
+ /* Setup SWINFO */
+ first_engine = ad->enc_eng.eng_id;
+
+ sa_set_swinfo(first_engine, ctx->sc_id, ctx->sc_phys, 1, 0,
+ SA_SW_INFO_FLAG_EVICT, ad->iv_out_size, swinfo);
+
+ sa_dump_sc(sc_buf, ctx->sc_phys);
+
+ return 0;
+}
+
+/* Free the per direction context memory */
+static void sa_free_ctx_info(struct sa_ctx_info *ctx,
+ struct sa_crypto_data *data)
+{
+ unsigned long bn;
+
+ bn = ctx->sc_id - data->sc_id_start;
+ spin_lock(&data->scid_lock);
+ __clear_bit(bn, data->ctx_bm);
+ data->sc_id--;
+ spin_unlock(&data->scid_lock);
+
+ if (ctx->sc) {
+ dma_pool_free(data->sc_pool, ctx->sc, ctx->sc_phys);
+ ctx->sc = NULL;
+ }
+}
+
+static int sa_init_ctx_info(struct sa_ctx_info *ctx,
+ struct sa_crypto_data *data)
+{
+ unsigned long bn;
+ int err;
+
+ spin_lock(&data->scid_lock);
+ bn = find_first_zero_bit(data->ctx_bm, SA_MAX_NUM_CTX);
+ __set_bit(bn, data->ctx_bm);
+ data->sc_id++;
+ spin_unlock(&data->scid_lock);
+
+ ctx->sc_id = (u16)(data->sc_id_start + bn);
+
+ ctx->sc = dma_pool_alloc(data->sc_pool, GFP_KERNEL, &ctx->sc_phys);
+ if (!ctx->sc) {
+ dev_err(&data->pdev->dev, "Failed to allocate SC memory\n");
+ err = -ENOMEM;
+ goto scid_rollback;
+ }
+
+ return 0;
+
+scid_rollback:
+ spin_lock(&data->scid_lock);
+ __clear_bit(bn, data->ctx_bm);
+ data->sc_id--;
+ spin_unlock(&data->scid_lock);
+
+ return err;
+}
+
+static void sa_cipher_cra_exit(struct crypto_skcipher *tfm)
+{
+ struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
+ struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
+
+ dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
+ __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
+ ctx->dec.sc_id, &ctx->dec.sc_phys);
+
+ sa_free_ctx_info(&ctx->enc, data);
+ sa_free_ctx_info(&ctx->dec, data);
+
+ crypto_free_sync_skcipher(ctx->fallback.skcipher);
+}
+
+static int sa_cipher_cra_init(struct crypto_skcipher *tfm)
+{
+ struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
+ struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
+ const char *name = crypto_tfm_alg_name(&tfm->base);
+ int ret;
+
+ memzero_explicit(ctx, sizeof(*ctx));
+ ctx->dev_data = data;
+
+ ret = sa_init_ctx_info(&ctx->enc, data);
+ if (ret)
+ return ret;
+ ret = sa_init_ctx_info(&ctx->dec, data);
+ if (ret) {
+ sa_free_ctx_info(&ctx->enc, data);
+ return ret;
+ }
+
+ ctx->fallback.skcipher =
+ crypto_alloc_sync_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
+
+ if (IS_ERR(ctx->fallback.skcipher)) {
+ dev_err(sa_k3_dev, "Error allocating fallback algo %s\n", name);
+ return PTR_ERR(ctx->fallback.skcipher);
+ }
+
+ dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
+ __func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
+ ctx->dec.sc_id, &ctx->dec.sc_phys);
+ return 0;
+}
+
+static int sa_cipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
+ unsigned int keylen, struct algo_data *ad)
+{
+ struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
+ int cmdl_len;
+ struct sa_cmdl_cfg cfg;
+ int ret;
+
+ if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
+ keylen != AES_KEYSIZE_256)
+ return -EINVAL;
+
+ ad->enc_eng.eng_id = SA_ENG_ID_EM1;
+ ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ;
+
+ memzero_explicit(&cfg, sizeof(cfg));
+ cfg.enc_eng_id = ad->enc_eng.eng_id;
+ cfg.iv_size = crypto_skcipher_ivsize(tfm);
+
+ crypto_sync_skcipher_clear_flags(ctx->fallback.skcipher,
+ CRYPTO_TFM_REQ_MASK);
+ crypto_sync_skcipher_set_flags(ctx->fallback.skcipher,
+ tfm->base.crt_flags &
+ CRYPTO_TFM_REQ_MASK);
+ ret = crypto_sync_skcipher_setkey(ctx->fallback.skcipher, key, keylen);
+ if (ret)
+ return ret;
+
+ /* Setup Encryption Security Context & Command label template */
+ if (sa_init_sc(&ctx->enc, key, keylen, ad, 1, &ctx->enc.epib[1]))
+ goto badkey;
+
+ cmdl_len = sa_format_cmdl_gen(&cfg,
+ (u8 *)ctx->enc.cmdl,
+ &ctx->enc.cmdl_upd_info);
+ if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
+ goto badkey;
+
+ ctx->enc.cmdl_size = cmdl_len;
+
+ /* Setup Decryption Security Context & Command label template */
+ if (sa_init_sc(&ctx->dec, key, keylen, ad, 0, &ctx->dec.epib[1]))
+ goto badkey;
+
+ cfg.enc_eng_id = ad->enc_eng.eng_id;
+ cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->dec.cmdl,
+ &ctx->dec.cmdl_upd_info);
+
+ if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
+ goto badkey;
+
+ ctx->dec.cmdl_size = cmdl_len;
+ ctx->iv_idx = ad->iv_idx;
+
+ return 0;
+
+badkey:
+ dev_err(sa_k3_dev, "%s: badkey\n", __func__);
+ return -EINVAL;
+}
+
+static int sa_aes_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key,
+ unsigned int keylen)
+{
+ struct algo_data ad = { 0 };
+ /* Convert the key size (16/24/32) to the key size index (0/1/2) */
+ int key_idx = (keylen >> 3) - 2;
+
+ if (key_idx >= 3)
+ return -EINVAL;
+
+ ad.mci_enc = mci_cbc_enc_array[key_idx];
+ ad.mci_dec = mci_cbc_dec_array[key_idx];
+ ad.inv_key = true;
+ ad.ealg_id = SA_EALG_ID_AES_CBC;
+ ad.iv_idx = 4;
+ ad.iv_out_size = 16;
+
+ return sa_cipher_setkey(tfm, key, keylen, &ad);
+}
+
+static int sa_aes_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key,
+ unsigned int keylen)
+{
+ struct algo_data ad = { 0 };
+ /* Convert the key size (16/24/32) to the key size index (0/1/2) */
+ int key_idx = (keylen >> 3) - 2;
+
+ if (key_idx >= 3)
+ return -EINVAL;
+
+ ad.mci_enc = mci_ecb_enc_array[key_idx];
+ ad.mci_dec = mci_ecb_dec_array[key_idx];
+ ad.inv_key = true;
+ ad.ealg_id = SA_EALG_ID_AES_ECB;
+
+ return sa_cipher_setkey(tfm, key, keylen, &ad);
+}
+
+static int sa_3des_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key,
+ unsigned int keylen)
+{
+ struct algo_data ad = { 0 };
+
+ ad.mci_enc = mci_cbc_3des_enc_array;
+ ad.mci_dec = mci_cbc_3des_dec_array;
+ ad.ealg_id = SA_EALG_ID_3DES_CBC;
+ ad.iv_idx = 6;
+ ad.iv_out_size = 8;
+
+ return sa_cipher_setkey(tfm, key, keylen, &ad);
+}
+
+static int sa_3des_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key,
+ unsigned int keylen)
+{
+ struct algo_data ad = { 0 };
+
+ ad.mci_enc = mci_ecb_3des_enc_array;
+ ad.mci_dec = mci_ecb_3des_dec_array;
+
+ return sa_cipher_setkey(tfm, key, keylen, &ad);
+}
+
+static void sa_aes_dma_in_callback(void *data)
+{
+ struct sa_rx_data *rxd = (struct sa_rx_data *)data;
+ struct skcipher_request *req;
+ int sglen;
+ u32 *result;
+ __be32 *mdptr;
+ size_t ml, pl;
+ int i;
+ enum dma_data_direction dir_src;
+ bool diff_dst;
+
+ req = container_of(rxd->req, struct skcipher_request, base);
+ sglen = sg_nents_for_len(req->src, req->cryptlen);
+
+ diff_dst = (req->src != req->dst) ? true : false;
+ dir_src = diff_dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL;
+
+ if (req->iv) {
+ mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl,
+ &ml);
+ result = (u32 *)req->iv;
+
+ for (i = 0; i < (rxd->enc_iv_size / 4); i++)
+ result[i] = be32_to_cpu(mdptr[i + rxd->iv_idx]);
+ }
+
+ dma_unmap_sg(rxd->ddev, req->src, sglen, dir_src);
+ kfree(rxd->split_src_sg);
+
+ if (diff_dst) {
+ sglen = sg_nents_for_len(req->dst, req->cryptlen);
+
+ dma_unmap_sg(rxd->ddev, req->dst, sglen,
+ DMA_FROM_DEVICE);
+ kfree(rxd->split_dst_sg);
+ }
+
+ kfree(rxd);
+
+ skcipher_request_complete(req, 0);
+}
+
+static void
+sa_prepare_tx_desc(u32 *mdptr, u32 pslen, u32 *psdata, u32 epiblen, u32 *epib)
+{
+ u32 *out, *in;
+ int i;
+
+ for (out = mdptr, in = epib, i = 0; i < epiblen / sizeof(u32); i++)
+ *out++ = *in++;
+
+ mdptr[4] = (0xFFFF << 16);
+ for (out = &mdptr[5], in = psdata, i = 0;
+ i < pslen / sizeof(u32); i++)
+ *out++ = *in++;
+}
+
+static int sa_run(struct sa_req *req)
+{
+ struct sa_rx_data *rxd;
+ gfp_t gfp_flags;
+ u32 cmdl[SA_MAX_CMDL_WORDS];
+ struct sa_crypto_data *pdata = dev_get_drvdata(sa_k3_dev);
+ struct device *ddev;
+ struct dma_chan *dma_rx;
+ int sg_nents, src_nents, dst_nents;
+ int mapped_src_nents, mapped_dst_nents;
+ struct scatterlist *src, *dst;
+ size_t pl, ml, split_size;
+ struct sa_ctx_info *sa_ctx = req->enc ? &req->ctx->enc : &req->ctx->dec;
+ int ret;
+ struct dma_async_tx_descriptor *tx_out;
+ u32 *mdptr;
+ bool diff_dst;
+ enum dma_data_direction dir_src;
+
+ gfp_flags = req->base->flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
+ GFP_KERNEL : GFP_ATOMIC;
+
+ rxd = kzalloc(sizeof(*rxd), gfp_flags);
+ if (!rxd)
+ return -ENOMEM;
+
+ if (req->src != req->dst) {
+ diff_dst = true;
+ dir_src = DMA_TO_DEVICE;
+ } else {
+ diff_dst = false;
+ dir_src = DMA_BIDIRECTIONAL;
+ }
+
+ /*
+ * SA2UL has an interesting feature where the receive DMA channel
+ * is selected based on the data passed to the engine. Within the
+ * transition range, there is also a space where it is impossible
+ * to determine where the data will end up, and this should be
+ * avoided. This will be handled by the SW fallback mechanism by
+ * the individual algorithm implementations.
+ */
+ if (req->size >= 256)
+ dma_rx = pdata->dma_rx2;
+ else
+ dma_rx = pdata->dma_rx1;
+
+ ddev = dma_rx->device->dev;
+
+ memcpy(cmdl, sa_ctx->cmdl, sa_ctx->cmdl_size);
+
+ sa_update_cmdl(req, cmdl, &sa_ctx->cmdl_upd_info);
+
+ if (req->type != CRYPTO_ALG_TYPE_AHASH) {
+ if (req->enc)
+ req->type |=
+ (SA_REQ_SUBTYPE_ENC << SA_REQ_SUBTYPE_SHIFT);
+ else
+ req->type |=
+ (SA_REQ_SUBTYPE_DEC << SA_REQ_SUBTYPE_SHIFT);
+ }
+
+ cmdl[sa_ctx->cmdl_size / sizeof(u32)] = req->type;
+
+ /*
+ * Map the packets, first we check if the data fits into a single
+ * sg entry and use that if possible. If it does not fit, we check
+ * if we need to do sg_split to align the scatterlist data on the
+ * actual data size being processed by the crypto engine.
+ */
+ src = req->src;
+ sg_nents = sg_nents_for_len(src, req->size);
+
+ split_size = req->size;
+
+ if (sg_nents == 1 && split_size <= req->src->length) {
+ src = &rxd->rx_sg;
+ sg_init_table(src, 1);
+ sg_set_page(src, sg_page(req->src), split_size,
+ req->src->offset);
+ src_nents = 1;
+ dma_map_sg(ddev, src, sg_nents, dir_src);
+ } else {
+ mapped_src_nents = dma_map_sg(ddev, req->src, sg_nents,
+ dir_src);
+ ret = sg_split(req->src, mapped_src_nents, 0, 1, &split_size,
+ &src, &src_nents, gfp_flags);
+ if (ret) {
+ src_nents = sg_nents;
+ src = req->src;
+ } else {
+ rxd->split_src_sg = src;
+ }
+ }
+
+ if (!diff_dst) {
+ dst_nents = src_nents;
+ dst = src;
+ } else {
+ dst_nents = sg_nents_for_len(req->dst, req->size);
+
+ if (dst_nents == 1 && split_size <= req->dst->length) {
+ dst = &rxd->tx_sg;
+ sg_init_table(dst, 1);
+ sg_set_page(dst, sg_page(req->dst), split_size,
+ req->dst->offset);
+ dst_nents = 1;
+ dma_map_sg(ddev, dst, dst_nents, DMA_FROM_DEVICE);
+ } else {
+ mapped_dst_nents = dma_map_sg(ddev, req->dst, dst_nents,
+ DMA_FROM_DEVICE);
+ ret = sg_split(req->dst, mapped_dst_nents, 0, 1,
+ &split_size, &dst, &dst_nents,
+ gfp_flags);
+ if (ret) {
+ dst_nents = dst_nents;
+ dst = req->dst;
+ } else {
+ rxd->split_dst_sg = dst;
+ }
+ }
+ }
+
+ if (unlikely(src_nents != sg_nents)) {
+ dev_warn_ratelimited(sa_k3_dev, "failed to map tx pkt\n");
+ ret = -EIO;
+ goto err_cleanup;
+ }
+
+ rxd->tx_in = dmaengine_prep_slave_sg(dma_rx, dst, dst_nents,
+ DMA_DEV_TO_MEM,
+ DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+ if (!rxd->tx_in) {
+ dev_err(pdata->dev, "IN prep_slave_sg() failed\n");
+ ret = -EINVAL;
+ goto err_cleanup;
+ }
+
+ rxd->req = (void *)req->base;
+ rxd->enc = req->enc;
+ rxd->ddev = ddev;
+ rxd->src = src;
+ rxd->dst = dst;
+ rxd->iv_idx = req->ctx->iv_idx;
+ rxd->enc_iv_size = sa_ctx->cmdl_upd_info.enc_iv.size;
+ rxd->tx_in->callback = req->callback;
+ rxd->tx_in->callback_param = rxd;
+
+ tx_out = dmaengine_prep_slave_sg(pdata->dma_tx, src,
+ src_nents, DMA_MEM_TO_DEV,
+ DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+
+ if (!tx_out) {
+ dev_err(pdata->dev, "OUT prep_slave_sg() failed\n");
+ ret = -EINVAL;
+ goto err_cleanup;
+ }
+
+ /*
+ * Prepare metadata for DMA engine. This essentially describes the
+ * crypto algorithm to be used, data sizes, different keys etc.
+ */
+ mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(tx_out, &pl, &ml);
+
+ sa_prepare_tx_desc(mdptr, (sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS *
+ sizeof(u32))), cmdl, sizeof(sa_ctx->epib),
+ sa_ctx->epib);
+
+ ml = sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS * sizeof(u32));
+ dmaengine_desc_set_metadata_len(tx_out, req->mdata_size);
+
+ dmaengine_submit(tx_out);
+ dmaengine_submit(rxd->tx_in);
+
+ dma_async_issue_pending(dma_rx);
+ dma_async_issue_pending(pdata->dma_tx);
+
+ return -EINPROGRESS;
+
+err_cleanup:
+ dma_unmap_sg(ddev, req->src, sg_nents, DMA_TO_DEVICE);
+ kfree(rxd->split_src_sg);
+
+ if (req->src != req->dst) {
+ dst_nents = sg_nents_for_len(req->dst, req->size);
+ dma_unmap_sg(ddev, req->dst, dst_nents, DMA_FROM_DEVICE);
+ kfree(rxd->split_dst_sg);
+ }
+
+ kfree(rxd);
+
+ return ret;
+}
+
+static int sa_cipher_run(struct skcipher_request *req, u8 *iv, int enc)
+{
+ struct sa_tfm_ctx *ctx =
+ crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
+ struct crypto_alg *alg = req->base.tfm->__crt_alg;
+ struct sa_req sa_req = { 0 };
+ int ret;
+
+ if (!req->cryptlen)
+ return 0;
+
+ if (req->cryptlen % alg->cra_blocksize)
+ return -EINVAL;
+
+ /* Use SW fallback if the data size is not supported */
+ if (req->cryptlen > SA_MAX_DATA_SZ ||
+ (req->cryptlen >= SA_UNSAFE_DATA_SZ_MIN &&
+ req->cryptlen <= SA_UNSAFE_DATA_SZ_MAX)) {
+ SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback.skcipher);
+
+ skcipher_request_set_sync_tfm(subreq, ctx->fallback.skcipher);
+ skcipher_request_set_callback(subreq, req->base.flags,
+ NULL, NULL);
+ skcipher_request_set_crypt(subreq, req->src, req->dst,
+ req->cryptlen, req->iv);
+ if (enc)
+ ret = crypto_skcipher_encrypt(subreq);
+ else
+ ret = crypto_skcipher_decrypt(subreq);
+
+ skcipher_request_zero(subreq);
+ return ret;
+ }
+
+ sa_req.size = req->cryptlen;
+ sa_req.enc_size = req->cryptlen;
+ sa_req.src = req->src;
+ sa_req.dst = req->dst;
+ sa_req.enc_iv = iv;
+ sa_req.type = CRYPTO_ALG_TYPE_SKCIPHER;
+ sa_req.enc = enc;
+ sa_req.callback = sa_aes_dma_in_callback;
+ sa_req.mdata_size = 44;
+ sa_req.base = &req->base;
+ sa_req.ctx = ctx;
+
+ return sa_run(&sa_req);
+}
+
+static int sa_encrypt(struct skcipher_request *req)
+{
+ return sa_cipher_run(req, req->iv, 1);
+}
+
+static int sa_decrypt(struct skcipher_request *req)
+{
+ return sa_cipher_run(req, req->iv, 0);
+}
+
+static struct sa_alg_tmpl sa_algs[] = {
+ {
+ .type = CRYPTO_ALG_TYPE_SKCIPHER,
+ .alg.skcipher = {
+ .base.cra_name = "cbc(aes)",
+ .base.cra_driver_name = "cbc-aes-sa2ul",
+ .base.cra_priority = 30000,
+ .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
+ CRYPTO_ALG_KERN_DRIVER_ONLY |
+ CRYPTO_ALG_ASYNC |
+ CRYPTO_ALG_NEED_FALLBACK,
+ .base.cra_blocksize = AES_BLOCK_SIZE,
+ .base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
+ .base.cra_module = THIS_MODULE,
+ .init = sa_cipher_cra_init,
+ .exit = sa_cipher_cra_exit,
+ .min_keysize = AES_MIN_KEY_SIZE,
+ .max_keysize = AES_MAX_KEY_SIZE,
+ .ivsize = AES_BLOCK_SIZE,
+ .setkey = sa_aes_cbc_setkey,
+ .encrypt = sa_encrypt,
+ .decrypt = sa_decrypt,
+ }
+ },
+ {
+ .type = CRYPTO_ALG_TYPE_SKCIPHER,
+ .alg.skcipher = {
+ .base.cra_name = "ecb(aes)",
+ .base.cra_driver_name = "ecb-aes-sa2ul",
+ .base.cra_priority = 30000,
+ .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
+ CRYPTO_ALG_KERN_DRIVER_ONLY |
+ CRYPTO_ALG_ASYNC |
+ CRYPTO_ALG_NEED_FALLBACK,
+ .base.cra_blocksize = AES_BLOCK_SIZE,
+ .base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
+ .base.cra_module = THIS_MODULE,
+ .init = sa_cipher_cra_init,
+ .exit = sa_cipher_cra_exit,
+ .min_keysize = AES_MIN_KEY_SIZE,
+ .max_keysize = AES_MAX_KEY_SIZE,
+ .setkey = sa_aes_ecb_setkey,
+ .encrypt = sa_encrypt,
+ .decrypt = sa_decrypt,
+ }
+ },
+ {
+ .type = CRYPTO_ALG_TYPE_SKCIPHER,
+ .alg.skcipher = {
+ .base.cra_name = "cbc(des3_ede)",
+ .base.cra_driver_name = "cbc-des3-sa2ul",
+ .base.cra_priority = 30000,
+ .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
+ CRYPTO_ALG_KERN_DRIVER_ONLY |
+ CRYPTO_ALG_ASYNC |
+ CRYPTO_ALG_NEED_FALLBACK,
+ .base.cra_blocksize = DES_BLOCK_SIZE,
+ .base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
+ .base.cra_module = THIS_MODULE,
+ .init = sa_cipher_cra_init,
+ .exit = sa_cipher_cra_exit,
+ .min_keysize = 3 * DES_KEY_SIZE,
+ .max_keysize = 3 * DES_KEY_SIZE,
+ .ivsize = DES_BLOCK_SIZE,
+ .setkey = sa_3des_cbc_setkey,
+ .encrypt = sa_encrypt,
+ .decrypt = sa_decrypt,
+ }
+ },
+ {
+ .type = CRYPTO_ALG_TYPE_SKCIPHER,
+ .alg.skcipher = {
+ .base.cra_name = "ecb(des3_ede)",
+ .base.cra_driver_name = "ecb-des3-sa2ul",
+ .base.cra_priority = 30000,
+ .base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
+ CRYPTO_ALG_KERN_DRIVER_ONLY |
+ CRYPTO_ALG_ASYNC |
+ CRYPTO_ALG_NEED_FALLBACK,
+ .base.cra_blocksize = DES_BLOCK_SIZE,
+ .base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
+ .base.cra_module = THIS_MODULE,
+ .init = sa_cipher_cra_init,
+ .exit = sa_cipher_cra_exit,
+ .min_keysize = 3 * DES_KEY_SIZE,
+ .max_keysize = 3 * DES_KEY_SIZE,
+ .setkey = sa_3des_ecb_setkey,
+ .encrypt = sa_encrypt,
+ .decrypt = sa_decrypt,
+ }
+ },
+};
+
+/* Register the algorithms in crypto framework */
+static void sa_register_algos(const struct device *dev)
+{
+ char *alg_name;
+ u32 type;
+ int i, err;
+
+ for (i = 0; i < ARRAY_SIZE(sa_algs); i++) {
+ type = sa_algs[i].type;
+ if (type == CRYPTO_ALG_TYPE_SKCIPHER) {
+ alg_name = sa_algs[i].alg.skcipher.base.cra_name;
+ err = crypto_register_skcipher(&sa_algs[i].alg.skcipher);
+ } else {
+ dev_err(dev,
+ "un-supported crypto algorithm (%d)",
+ sa_algs[i].type);
+ continue;
+ }
+
+ if (err)
+ dev_err(dev, "Failed to register '%s'\n", alg_name);
+ else
+ sa_algs[i].registered = true;
+ }
+}
+
+/* Unregister the algorithms in crypto framework */
+static void sa_unregister_algos(const struct device *dev)
+{
+ u32 type;
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(sa_algs); i++) {
+ type = sa_algs[i].type;
+ if (!sa_algs[i].registered)
+ continue;
+ if (type == CRYPTO_ALG_TYPE_SKCIPHER)
+ crypto_unregister_skcipher(&sa_algs[i].alg.skcipher);
+
+ sa_algs[i].registered = false;
+ }
+}
+
+static int sa_init_mem(struct sa_crypto_data *dev_data)
+{
+ struct device *dev = &dev_data->pdev->dev;
+ /* Setup dma pool for security context buffers */
+ dev_data->sc_pool = dma_pool_create("keystone-sc", dev,
+ SA_CTX_MAX_SZ, 64, 0);
+ if (!dev_data->sc_pool) {
+ dev_err(dev, "Failed to create dma pool");
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static int sa_dma_init(struct sa_crypto_data *dd)
+{
+ int ret;
+ struct dma_slave_config cfg;
+
+ dd->dma_rx1 = NULL;
+ dd->dma_tx = NULL;
+ dd->dma_rx2 = NULL;
+
+ ret = dma_coerce_mask_and_coherent(dd->dev, DMA_BIT_MASK(48));
+ if (ret)
+ return ret;
+
+ dd->dma_rx1 = dma_request_chan(dd->dev, "rx1");
+ if (IS_ERR(dd->dma_rx1)) {
+ if (PTR_ERR(dd->dma_rx1) != -EPROBE_DEFER)
+ dev_err(dd->dev, "Unable to request rx1 DMA channel\n");
+ return PTR_ERR(dd->dma_rx1);
+ }
+
+ dd->dma_rx2 = dma_request_chan(dd->dev, "rx2");
+ if (IS_ERR(dd->dma_rx2)) {
+ dma_release_channel(dd->dma_rx1);
+ if (PTR_ERR(dd->dma_rx2) != -EPROBE_DEFER)
+ dev_err(dd->dev, "Unable to request rx2 DMA channel\n");
+ return PTR_ERR(dd->dma_rx2);
+ }
+
+ dd->dma_tx = dma_request_chan(dd->dev, "tx");
+ if (IS_ERR(dd->dma_tx)) {
+ if (PTR_ERR(dd->dma_rx1) != -EPROBE_DEFER)
+ dev_err(dd->dev, "Unable to request tx DMA channel\n");
+ ret = PTR_ERR(dd->dma_tx);
+ goto err_dma_tx;
+ }
+
+ memzero_explicit(&cfg, sizeof(cfg));
+
+ cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ cfg.src_maxburst = 4;
+ cfg.dst_maxburst = 4;
+
+ ret = dmaengine_slave_config(dd->dma_rx1, &cfg);
+ if (ret) {
+ dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
+ ret);
+ return ret;
+ }
+
+ ret = dmaengine_slave_config(dd->dma_rx2, &cfg);
+ if (ret) {
+ dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
+ ret);
+ return ret;
+ }
+
+ ret = dmaengine_slave_config(dd->dma_tx, &cfg);
+ if (ret) {
+ dev_err(dd->dev, "can't configure OUT dmaengine slave: %d\n",
+ ret);
+ return ret;
+ }
+
+ return 0;
+
+err_dma_tx:
+ dma_release_channel(dd->dma_rx1);
+ dma_release_channel(dd->dma_rx2);
+
+ return ret;
+}
+
+static int sa_ul_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct device_node *node = dev->of_node;
+ struct resource *res;
+ static void __iomem *saul_base;
+ struct sa_crypto_data *dev_data;
+ u32 val;
+ int ret;
+
+ dev_data = devm_kzalloc(dev, sizeof(*dev_data), GFP_KERNEL);
+ if (!dev_data)
+ return -ENOMEM;
+
+ sa_k3_dev = dev;
+ dev_data->dev = dev;
+ dev_data->pdev = pdev;
+ platform_set_drvdata(pdev, dev_data);
+ dev_set_drvdata(sa_k3_dev, dev_data);
+
+ pm_runtime_enable(dev);
+ ret = pm_runtime_get_sync(dev);
+ if (ret) {
+ dev_err(&pdev->dev, "%s: failed to get sync: %d\n", __func__,
+ ret);
+ return ret;
+ }
+
+ sa_init_mem(dev_data);
+ ret = sa_dma_init(dev_data);
+ if (ret)
+ goto disable_pm_runtime;
+
+ spin_lock_init(&dev_data->scid_lock);
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ saul_base = devm_ioremap_resource(dev, res);
+
+ dev_data->base = saul_base;
+ val = SA_EEC_ENCSS_EN | SA_EEC_AUTHSS_EN | SA_EEC_CTXCACH_EN |
+ SA_EEC_CPPI_PORT_IN_EN | SA_EEC_CPPI_PORT_OUT_EN |
+ SA_EEC_TRNG_EN;
+
+ writel_relaxed(val, saul_base + SA_ENGINE_ENABLE_CONTROL);
+
+ sa_register_algos(dev);
+
+ ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
+ if (ret)
+ goto release_dma;
+
+ return 0;
+
+release_dma:
+ sa_unregister_algos(&pdev->dev);
+
+ dma_release_channel(dev_data->dma_rx2);
+ dma_release_channel(dev_data->dma_rx1);
+ dma_release_channel(dev_data->dma_tx);
+
+ dma_pool_destroy(dev_data->sc_pool);
+
+disable_pm_runtime:
+ pm_runtime_put_sync(&pdev->dev);
+ pm_runtime_disable(&pdev->dev);
+
+ return ret;
+}
+
+static int sa_ul_remove(struct platform_device *pdev)
+{
+ struct sa_crypto_data *dev_data = platform_get_drvdata(pdev);
+
+ sa_unregister_algos(&pdev->dev);
+
+ dma_release_channel(dev_data->dma_rx2);
+ dma_release_channel(dev_data->dma_rx1);
+ dma_release_channel(dev_data->dma_tx);
+
+ dma_pool_destroy(dev_data->sc_pool);
+
+ platform_set_drvdata(pdev, NULL);
+
+ pm_runtime_put_sync(&pdev->dev);
+ pm_runtime_disable(&pdev->dev);
+
+ return 0;
+}
+
+static const struct of_device_id of_match[] = {
+ {.compatible = "ti,j721e-sa2ul",},
+ {.compatible = "ti,am654-sa2ul",},
+ {},
+};
+MODULE_DEVICE_TABLE(of, of_match);
+
+static struct platform_driver sa_ul_driver = {
+ .probe = sa_ul_probe,
+ .remove = sa_ul_remove,
+ .driver = {
+ .name = "saul-crypto",
+ .of_match_table = of_match,
+ },
+};
+module_platform_driver(sa_ul_driver);
+MODULE_LICENSE("GPL v2");