summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/xe/xe_bo.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/xe/xe_bo.c')
-rw-r--r--drivers/gpu/drm/xe/xe_bo.c2269
1 files changed, 2269 insertions, 0 deletions
diff --git a/drivers/gpu/drm/xe/xe_bo.c b/drivers/gpu/drm/xe/xe_bo.c
new file mode 100644
index 000000000000..8e4a3b1f6b93
--- /dev/null
+++ b/drivers/gpu/drm/xe/xe_bo.c
@@ -0,0 +1,2269 @@
+// SPDX-License-Identifier: MIT
+/*
+ * Copyright © 2021 Intel Corporation
+ */
+
+#include "xe_bo.h"
+
+#include <linux/dma-buf.h>
+
+#include <drm/drm_drv.h>
+#include <drm/drm_gem_ttm_helper.h>
+#include <drm/drm_managed.h>
+#include <drm/ttm/ttm_device.h>
+#include <drm/ttm/ttm_placement.h>
+#include <drm/ttm/ttm_tt.h>
+#include <drm/xe_drm.h>
+
+#include "xe_device.h"
+#include "xe_dma_buf.h"
+#include "xe_drm_client.h"
+#include "xe_ggtt.h"
+#include "xe_gt.h"
+#include "xe_map.h"
+#include "xe_migrate.h"
+#include "xe_preempt_fence.h"
+#include "xe_res_cursor.h"
+#include "xe_trace.h"
+#include "xe_ttm_stolen_mgr.h"
+#include "xe_vm.h"
+
+static const struct ttm_place sys_placement_flags = {
+ .fpfn = 0,
+ .lpfn = 0,
+ .mem_type = XE_PL_SYSTEM,
+ .flags = 0,
+};
+
+static struct ttm_placement sys_placement = {
+ .num_placement = 1,
+ .placement = &sys_placement_flags,
+ .num_busy_placement = 1,
+ .busy_placement = &sys_placement_flags,
+};
+
+static const struct ttm_place tt_placement_flags = {
+ .fpfn = 0,
+ .lpfn = 0,
+ .mem_type = XE_PL_TT,
+ .flags = 0,
+};
+
+static struct ttm_placement tt_placement = {
+ .num_placement = 1,
+ .placement = &tt_placement_flags,
+ .num_busy_placement = 1,
+ .busy_placement = &sys_placement_flags,
+};
+
+bool mem_type_is_vram(u32 mem_type)
+{
+ return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN;
+}
+
+static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res)
+{
+ return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe);
+}
+
+static bool resource_is_vram(struct ttm_resource *res)
+{
+ return mem_type_is_vram(res->mem_type);
+}
+
+bool xe_bo_is_vram(struct xe_bo *bo)
+{
+ return resource_is_vram(bo->ttm.resource) ||
+ resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource);
+}
+
+bool xe_bo_is_stolen(struct xe_bo *bo)
+{
+ return bo->ttm.resource->mem_type == XE_PL_STOLEN;
+}
+
+/**
+ * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR
+ * @bo: The BO
+ *
+ * The stolen memory is accessed through the PCI BAR for both DGFX and some
+ * integrated platforms that have a dedicated bit in the PTE for devmem (DM).
+ *
+ * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise.
+ */
+bool xe_bo_is_stolen_devmem(struct xe_bo *bo)
+{
+ return xe_bo_is_stolen(bo) &&
+ GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270;
+}
+
+static bool xe_bo_is_user(struct xe_bo *bo)
+{
+ return bo->flags & XE_BO_CREATE_USER_BIT;
+}
+
+static struct xe_migrate *
+mem_type_to_migrate(struct xe_device *xe, u32 mem_type)
+{
+ struct xe_tile *tile;
+
+ xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type));
+ tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)];
+ return tile->migrate;
+}
+
+static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res)
+{
+ struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
+ struct ttm_resource_manager *mgr;
+
+ xe_assert(xe, resource_is_vram(res));
+ mgr = ttm_manager_type(&xe->ttm, res->mem_type);
+ return to_xe_ttm_vram_mgr(mgr)->vram;
+}
+
+static void try_add_system(struct xe_device *xe, struct xe_bo *bo,
+ u32 bo_flags, u32 *c)
+{
+ xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
+
+ if (bo_flags & XE_BO_CREATE_SYSTEM_BIT) {
+ bo->placements[*c] = (struct ttm_place) {
+ .mem_type = XE_PL_TT,
+ };
+ *c += 1;
+
+ if (bo->props.preferred_mem_type == XE_BO_PROPS_INVALID)
+ bo->props.preferred_mem_type = XE_PL_TT;
+ }
+}
+
+static void add_vram(struct xe_device *xe, struct xe_bo *bo,
+ struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c)
+{
+ struct ttm_place place = { .mem_type = mem_type };
+ struct xe_mem_region *vram;
+ u64 io_size;
+
+ vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram;
+ xe_assert(xe, vram && vram->usable_size);
+ io_size = vram->io_size;
+
+ /*
+ * For eviction / restore on suspend / resume objects
+ * pinned in VRAM must be contiguous
+ */
+ if (bo_flags & (XE_BO_CREATE_PINNED_BIT |
+ XE_BO_CREATE_GGTT_BIT))
+ place.flags |= TTM_PL_FLAG_CONTIGUOUS;
+
+ if (io_size < vram->usable_size) {
+ if (bo_flags & XE_BO_NEEDS_CPU_ACCESS) {
+ place.fpfn = 0;
+ place.lpfn = io_size >> PAGE_SHIFT;
+ } else {
+ place.flags |= TTM_PL_FLAG_TOPDOWN;
+ }
+ }
+ places[*c] = place;
+ *c += 1;
+
+ if (bo->props.preferred_mem_type == XE_BO_PROPS_INVALID)
+ bo->props.preferred_mem_type = mem_type;
+}
+
+static void try_add_vram(struct xe_device *xe, struct xe_bo *bo,
+ u32 bo_flags, u32 *c)
+{
+ xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
+
+ if (bo->props.preferred_gt == XE_GT1) {
+ if (bo_flags & XE_BO_CREATE_VRAM1_BIT)
+ add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c);
+ if (bo_flags & XE_BO_CREATE_VRAM0_BIT)
+ add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c);
+ } else {
+ if (bo_flags & XE_BO_CREATE_VRAM0_BIT)
+ add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c);
+ if (bo_flags & XE_BO_CREATE_VRAM1_BIT)
+ add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c);
+ }
+}
+
+static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo,
+ u32 bo_flags, u32 *c)
+{
+ xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
+
+ if (bo_flags & XE_BO_CREATE_STOLEN_BIT) {
+ bo->placements[*c] = (struct ttm_place) {
+ .mem_type = XE_PL_STOLEN,
+ .flags = bo_flags & (XE_BO_CREATE_PINNED_BIT |
+ XE_BO_CREATE_GGTT_BIT) ?
+ TTM_PL_FLAG_CONTIGUOUS : 0,
+ };
+ *c += 1;
+ }
+}
+
+static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
+ u32 bo_flags)
+{
+ u32 c = 0;
+
+ bo->props.preferred_mem_type = XE_BO_PROPS_INVALID;
+
+ /* The order of placements should indicate preferred location */
+
+ if (bo->props.preferred_mem_class == DRM_XE_MEM_REGION_CLASS_SYSMEM) {
+ try_add_system(xe, bo, bo_flags, &c);
+ try_add_vram(xe, bo, bo_flags, &c);
+ } else {
+ try_add_vram(xe, bo, bo_flags, &c);
+ try_add_system(xe, bo, bo_flags, &c);
+ }
+ try_add_stolen(xe, bo, bo_flags, &c);
+
+ if (!c)
+ return -EINVAL;
+
+ bo->placement = (struct ttm_placement) {
+ .num_placement = c,
+ .placement = bo->placements,
+ .num_busy_placement = c,
+ .busy_placement = bo->placements,
+ };
+
+ return 0;
+}
+
+int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
+ u32 bo_flags)
+{
+ xe_bo_assert_held(bo);
+ return __xe_bo_placement_for_flags(xe, bo, bo_flags);
+}
+
+static void xe_evict_flags(struct ttm_buffer_object *tbo,
+ struct ttm_placement *placement)
+{
+ if (!xe_bo_is_xe_bo(tbo)) {
+ /* Don't handle scatter gather BOs */
+ if (tbo->type == ttm_bo_type_sg) {
+ placement->num_placement = 0;
+ placement->num_busy_placement = 0;
+ return;
+ }
+
+ *placement = sys_placement;
+ return;
+ }
+
+ /*
+ * For xe, sg bos that are evicted to system just triggers a
+ * rebind of the sg list upon subsequent validation to XE_PL_TT.
+ */
+ switch (tbo->resource->mem_type) {
+ case XE_PL_VRAM0:
+ case XE_PL_VRAM1:
+ case XE_PL_STOLEN:
+ *placement = tt_placement;
+ break;
+ case XE_PL_TT:
+ default:
+ *placement = sys_placement;
+ break;
+ }
+}
+
+struct xe_ttm_tt {
+ struct ttm_tt ttm;
+ struct device *dev;
+ struct sg_table sgt;
+ struct sg_table *sg;
+};
+
+static int xe_tt_map_sg(struct ttm_tt *tt)
+{
+ struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
+ unsigned long num_pages = tt->num_pages;
+ int ret;
+
+ XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL);
+
+ if (xe_tt->sg)
+ return 0;
+
+ ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages,
+ num_pages, 0,
+ (u64)num_pages << PAGE_SHIFT,
+ xe_sg_segment_size(xe_tt->dev),
+ GFP_KERNEL);
+ if (ret)
+ return ret;
+
+ xe_tt->sg = &xe_tt->sgt;
+ ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL,
+ DMA_ATTR_SKIP_CPU_SYNC);
+ if (ret) {
+ sg_free_table(xe_tt->sg);
+ xe_tt->sg = NULL;
+ return ret;
+ }
+
+ return 0;
+}
+
+struct sg_table *xe_bo_sg(struct xe_bo *bo)
+{
+ struct ttm_tt *tt = bo->ttm.ttm;
+ struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
+
+ return xe_tt->sg;
+}
+
+static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo,
+ u32 page_flags)
+{
+ struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
+ struct xe_device *xe = xe_bo_device(bo);
+ struct xe_ttm_tt *tt;
+ unsigned long extra_pages;
+ enum ttm_caching caching;
+ int err;
+
+ tt = kzalloc(sizeof(*tt), GFP_KERNEL);
+ if (!tt)
+ return NULL;
+
+ tt->dev = xe->drm.dev;
+
+ extra_pages = 0;
+ if (xe_bo_needs_ccs_pages(bo))
+ extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size),
+ PAGE_SIZE);
+
+ switch (bo->cpu_caching) {
+ case DRM_XE_GEM_CPU_CACHING_WC:
+ caching = ttm_write_combined;
+ break;
+ default:
+ caching = ttm_cached;
+ break;
+ }
+
+ WARN_ON((bo->flags & XE_BO_CREATE_USER_BIT) && !bo->cpu_caching);
+
+ /*
+ * Display scanout is always non-coherent with the CPU cache.
+ *
+ * For Xe_LPG and beyond, PPGTT PTE lookups are also non-coherent and
+ * require a CPU:WC mapping.
+ */
+ if ((!bo->cpu_caching && bo->flags & XE_BO_SCANOUT_BIT) ||
+ (xe->info.graphics_verx100 >= 1270 && bo->flags & XE_BO_PAGETABLE))
+ caching = ttm_write_combined;
+
+ err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages);
+ if (err) {
+ kfree(tt);
+ return NULL;
+ }
+
+ return &tt->ttm;
+}
+
+static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt,
+ struct ttm_operation_ctx *ctx)
+{
+ int err;
+
+ /*
+ * dma-bufs are not populated with pages, and the dma-
+ * addresses are set up when moved to XE_PL_TT.
+ */
+ if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
+ return 0;
+
+ err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx);
+ if (err)
+ return err;
+
+ /* A follow up may move this xe_bo_move when BO is moved to XE_PL_TT */
+ err = xe_tt_map_sg(tt);
+ if (err)
+ ttm_pool_free(&ttm_dev->pool, tt);
+
+ return err;
+}
+
+static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt)
+{
+ struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
+
+ if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
+ return;
+
+ if (xe_tt->sg) {
+ dma_unmap_sgtable(xe_tt->dev, xe_tt->sg,
+ DMA_BIDIRECTIONAL, 0);
+ sg_free_table(xe_tt->sg);
+ xe_tt->sg = NULL;
+ }
+
+ return ttm_pool_free(&ttm_dev->pool, tt);
+}
+
+static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt)
+{
+ ttm_tt_fini(tt);
+ kfree(tt);
+}
+
+static int xe_ttm_io_mem_reserve(struct ttm_device *bdev,
+ struct ttm_resource *mem)
+{
+ struct xe_device *xe = ttm_to_xe_device(bdev);
+
+ switch (mem->mem_type) {
+ case XE_PL_SYSTEM:
+ case XE_PL_TT:
+ return 0;
+ case XE_PL_VRAM0:
+ case XE_PL_VRAM1: {
+ struct xe_ttm_vram_mgr_resource *vres =
+ to_xe_ttm_vram_mgr_resource(mem);
+ struct xe_mem_region *vram = res_to_mem_region(mem);
+
+ if (vres->used_visible_size < mem->size)
+ return -EINVAL;
+
+ mem->bus.offset = mem->start << PAGE_SHIFT;
+
+ if (vram->mapping &&
+ mem->placement & TTM_PL_FLAG_CONTIGUOUS)
+ mem->bus.addr = (u8 *)vram->mapping +
+ mem->bus.offset;
+
+ mem->bus.offset += vram->io_start;
+ mem->bus.is_iomem = true;
+
+#if !defined(CONFIG_X86)
+ mem->bus.caching = ttm_write_combined;
+#endif
+ return 0;
+ } case XE_PL_STOLEN:
+ return xe_ttm_stolen_io_mem_reserve(xe, mem);
+ default:
+ return -EINVAL;
+ }
+}
+
+static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo,
+ const struct ttm_operation_ctx *ctx)
+{
+ struct dma_resv_iter cursor;
+ struct dma_fence *fence;
+ struct drm_gem_object *obj = &bo->ttm.base;
+ struct drm_gpuvm_bo *vm_bo;
+ bool idle = false;
+ int ret = 0;
+
+ dma_resv_assert_held(bo->ttm.base.resv);
+
+ if (!list_empty(&bo->ttm.base.gpuva.list)) {
+ dma_resv_iter_begin(&cursor, bo->ttm.base.resv,
+ DMA_RESV_USAGE_BOOKKEEP);
+ dma_resv_for_each_fence_unlocked(&cursor, fence)
+ dma_fence_enable_sw_signaling(fence);
+ dma_resv_iter_end(&cursor);
+ }
+
+ drm_gem_for_each_gpuvm_bo(vm_bo, obj) {
+ struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
+ struct drm_gpuva *gpuva;
+
+ if (!xe_vm_in_fault_mode(vm)) {
+ drm_gpuvm_bo_evict(vm_bo, true);
+ continue;
+ }
+
+ if (!idle) {
+ long timeout;
+
+ if (ctx->no_wait_gpu &&
+ !dma_resv_test_signaled(bo->ttm.base.resv,
+ DMA_RESV_USAGE_BOOKKEEP))
+ return -EBUSY;
+
+ timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
+ DMA_RESV_USAGE_BOOKKEEP,
+ ctx->interruptible,
+ MAX_SCHEDULE_TIMEOUT);
+ if (!timeout)
+ return -ETIME;
+ if (timeout < 0)
+ return timeout;
+
+ idle = true;
+ }
+
+ drm_gpuvm_bo_for_each_va(gpuva, vm_bo) {
+ struct xe_vma *vma = gpuva_to_vma(gpuva);
+
+ trace_xe_vma_evict(vma);
+ ret = xe_vm_invalidate_vma(vma);
+ if (XE_WARN_ON(ret))
+ return ret;
+ }
+ }
+
+ return ret;
+}
+
+/*
+ * The dma-buf map_attachment() / unmap_attachment() is hooked up here.
+ * Note that unmapping the attachment is deferred to the next
+ * map_attachment time, or to bo destroy (after idling) whichever comes first.
+ * This is to avoid syncing before unmap_attachment(), assuming that the
+ * caller relies on idling the reservation object before moving the
+ * backing store out. Should that assumption not hold, then we will be able
+ * to unconditionally call unmap_attachment() when moving out to system.
+ */
+static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo,
+ struct ttm_resource *new_res)
+{
+ struct dma_buf_attachment *attach = ttm_bo->base.import_attach;
+ struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt,
+ ttm);
+ struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
+ struct sg_table *sg;
+
+ xe_assert(xe, attach);
+ xe_assert(xe, ttm_bo->ttm);
+
+ if (new_res->mem_type == XE_PL_SYSTEM)
+ goto out;
+
+ if (ttm_bo->sg) {
+ dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
+ ttm_bo->sg = NULL;
+ }
+
+ sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
+ if (IS_ERR(sg))
+ return PTR_ERR(sg);
+
+ ttm_bo->sg = sg;
+ xe_tt->sg = sg;
+
+out:
+ ttm_bo_move_null(ttm_bo, new_res);
+
+ return 0;
+}
+
+/**
+ * xe_bo_move_notify - Notify subsystems of a pending move
+ * @bo: The buffer object
+ * @ctx: The struct ttm_operation_ctx controlling locking and waits.
+ *
+ * This function notifies subsystems of an upcoming buffer move.
+ * Upon receiving such a notification, subsystems should schedule
+ * halting access to the underlying pages and optionally add a fence
+ * to the buffer object's dma_resv object, that signals when access is
+ * stopped. The caller will wait on all dma_resv fences before
+ * starting the move.
+ *
+ * A subsystem may commence access to the object after obtaining
+ * bindings to the new backing memory under the object lock.
+ *
+ * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode,
+ * negative error code on error.
+ */
+static int xe_bo_move_notify(struct xe_bo *bo,
+ const struct ttm_operation_ctx *ctx)
+{
+ struct ttm_buffer_object *ttm_bo = &bo->ttm;
+ struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
+ int ret;
+
+ /*
+ * If this starts to call into many components, consider
+ * using a notification chain here.
+ */
+
+ if (xe_bo_is_pinned(bo))
+ return -EINVAL;
+
+ xe_bo_vunmap(bo);
+ ret = xe_bo_trigger_rebind(xe, bo, ctx);
+ if (ret)
+ return ret;
+
+ /* Don't call move_notify() for imported dma-bufs. */
+ if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach)
+ dma_buf_move_notify(ttm_bo->base.dma_buf);
+
+ return 0;
+}
+
+static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict,
+ struct ttm_operation_ctx *ctx,
+ struct ttm_resource *new_mem,
+ struct ttm_place *hop)
+{
+ struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
+ struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
+ struct ttm_resource *old_mem = ttm_bo->resource;
+ u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
+ struct ttm_tt *ttm = ttm_bo->ttm;
+ struct xe_migrate *migrate = NULL;
+ struct dma_fence *fence;
+ bool move_lacks_source;
+ bool tt_has_data;
+ bool needs_clear;
+ bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) &&
+ ttm && ttm_tt_is_populated(ttm)) ? true : false;
+ int ret = 0;
+ /* Bo creation path, moving to system or TT. */
+ if ((!old_mem && ttm) && !handle_system_ccs) {
+ ttm_bo_move_null(ttm_bo, new_mem);
+ return 0;
+ }
+
+ if (ttm_bo->type == ttm_bo_type_sg) {
+ ret = xe_bo_move_notify(bo, ctx);
+ if (!ret)
+ ret = xe_bo_move_dmabuf(ttm_bo, new_mem);
+ goto out;
+ }
+
+ tt_has_data = ttm && (ttm_tt_is_populated(ttm) ||
+ (ttm->page_flags & TTM_TT_FLAG_SWAPPED));
+
+ move_lacks_source = handle_system_ccs ? (!bo->ccs_cleared) :
+ (!mem_type_is_vram(old_mem_type) && !tt_has_data);
+
+ needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) ||
+ (!ttm && ttm_bo->type == ttm_bo_type_device);
+
+ if ((move_lacks_source && !needs_clear)) {
+ ttm_bo_move_null(ttm_bo, new_mem);
+ goto out;
+ }
+
+ if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) {
+ ttm_bo_move_null(ttm_bo, new_mem);
+ goto out;
+ }
+
+ /*
+ * Failed multi-hop where the old_mem is still marked as
+ * TTM_PL_FLAG_TEMPORARY, should just be a dummy move.
+ */
+ if (old_mem_type == XE_PL_TT &&
+ new_mem->mem_type == XE_PL_TT) {
+ ttm_bo_move_null(ttm_bo, new_mem);
+ goto out;
+ }
+
+ if (!move_lacks_source && !xe_bo_is_pinned(bo)) {
+ ret = xe_bo_move_notify(bo, ctx);
+ if (ret)
+ goto out;
+ }
+
+ if (old_mem_type == XE_PL_TT &&
+ new_mem->mem_type == XE_PL_SYSTEM) {
+ long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
+ DMA_RESV_USAGE_BOOKKEEP,
+ true,
+ MAX_SCHEDULE_TIMEOUT);
+ if (timeout < 0) {
+ ret = timeout;
+ goto out;
+ }
+
+ if (!handle_system_ccs) {
+ ttm_bo_move_null(ttm_bo, new_mem);
+ goto out;
+ }
+ }
+
+ if (!move_lacks_source &&
+ ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) ||
+ (mem_type_is_vram(old_mem_type) &&
+ new_mem->mem_type == XE_PL_SYSTEM))) {
+ hop->fpfn = 0;
+ hop->lpfn = 0;
+ hop->mem_type = XE_PL_TT;
+ hop->flags = TTM_PL_FLAG_TEMPORARY;
+ ret = -EMULTIHOP;
+ goto out;
+ }
+
+ if (bo->tile)
+ migrate = bo->tile->migrate;
+ else if (resource_is_vram(new_mem))
+ migrate = mem_type_to_migrate(xe, new_mem->mem_type);
+ else if (mem_type_is_vram(old_mem_type))
+ migrate = mem_type_to_migrate(xe, old_mem_type);
+ else
+ migrate = xe->tiles[0].migrate;
+
+ xe_assert(xe, migrate);
+
+ trace_xe_bo_move(bo);
+ xe_device_mem_access_get(xe);
+
+ if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) {
+ /*
+ * Kernel memory that is pinned should only be moved on suspend
+ * / resume, some of the pinned memory is required for the
+ * device to resume / use the GPU to move other evicted memory
+ * (user memory) around. This likely could be optimized a bit
+ * futher where we find the minimum set of pinned memory
+ * required for resume but for simplity doing a memcpy for all
+ * pinned memory.
+ */
+ ret = xe_bo_vmap(bo);
+ if (!ret) {
+ ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem);
+
+ /* Create a new VMAP once kernel BO back in VRAM */
+ if (!ret && resource_is_vram(new_mem)) {
+ struct xe_mem_region *vram = res_to_mem_region(new_mem);
+ void *new_addr = vram->mapping +
+ (new_mem->start << PAGE_SHIFT);
+
+ if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) {
+ ret = -EINVAL;
+ xe_device_mem_access_put(xe);
+ goto out;
+ }
+
+ xe_assert(xe, new_mem->start ==
+ bo->placements->fpfn);
+
+ iosys_map_set_vaddr_iomem(&bo->vmap, new_addr);
+ }
+ }
+ } else {
+ if (move_lacks_source)
+ fence = xe_migrate_clear(migrate, bo, new_mem);
+ else
+ fence = xe_migrate_copy(migrate, bo, bo, old_mem,
+ new_mem, handle_system_ccs);
+ if (IS_ERR(fence)) {
+ ret = PTR_ERR(fence);
+ xe_device_mem_access_put(xe);
+ goto out;
+ }
+ if (!move_lacks_source) {
+ ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict,
+ true, new_mem);
+ if (ret) {
+ dma_fence_wait(fence, false);
+ ttm_bo_move_null(ttm_bo, new_mem);
+ ret = 0;
+ }
+ } else {
+ /*
+ * ttm_bo_move_accel_cleanup() may blow up if
+ * bo->resource == NULL, so just attach the
+ * fence and set the new resource.
+ */
+ dma_resv_add_fence(ttm_bo->base.resv, fence,
+ DMA_RESV_USAGE_KERNEL);
+ ttm_bo_move_null(ttm_bo, new_mem);
+ }
+
+ dma_fence_put(fence);
+ }
+
+ xe_device_mem_access_put(xe);
+
+out:
+ return ret;
+
+}
+
+/**
+ * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory
+ * @bo: The buffer object to move.
+ *
+ * On successful completion, the object memory will be moved to sytem memory.
+ * This function blocks until the object has been fully moved.
+ *
+ * This is needed to for special handling of pinned VRAM object during
+ * suspend-resume.
+ *
+ * Return: 0 on success. Negative error code on failure.
+ */
+int xe_bo_evict_pinned(struct xe_bo *bo)
+{
+ struct ttm_place place = {
+ .mem_type = XE_PL_TT,
+ };
+ struct ttm_placement placement = {
+ .placement = &place,
+ .num_placement = 1,
+ };
+ struct ttm_operation_ctx ctx = {
+ .interruptible = false,
+ };
+ struct ttm_resource *new_mem;
+ int ret;
+
+ xe_bo_assert_held(bo);
+
+ if (WARN_ON(!bo->ttm.resource))
+ return -EINVAL;
+
+ if (WARN_ON(!xe_bo_is_pinned(bo)))
+ return -EINVAL;
+
+ if (WARN_ON(!xe_bo_is_vram(bo)))
+ return -EINVAL;
+
+ ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx);
+ if (ret)
+ return ret;
+
+ if (!bo->ttm.ttm) {
+ bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0);
+ if (!bo->ttm.ttm) {
+ ret = -ENOMEM;
+ goto err_res_free;
+ }
+ }
+
+ ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx);
+ if (ret)
+ goto err_res_free;
+
+ ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
+ if (ret)
+ goto err_res_free;
+
+ ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
+ if (ret)
+ goto err_res_free;
+
+ dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
+ false, MAX_SCHEDULE_TIMEOUT);
+
+ return 0;
+
+err_res_free:
+ ttm_resource_free(&bo->ttm, &new_mem);
+ return ret;
+}
+
+/**
+ * xe_bo_restore_pinned() - Restore a pinned VRAM object
+ * @bo: The buffer object to move.
+ *
+ * On successful completion, the object memory will be moved back to VRAM.
+ * This function blocks until the object has been fully moved.
+ *
+ * This is needed to for special handling of pinned VRAM object during
+ * suspend-resume.
+ *
+ * Return: 0 on success. Negative error code on failure.
+ */
+int xe_bo_restore_pinned(struct xe_bo *bo)
+{
+ struct ttm_operation_ctx ctx = {
+ .interruptible = false,
+ };
+ struct ttm_resource *new_mem;
+ int ret;
+
+ xe_bo_assert_held(bo);
+
+ if (WARN_ON(!bo->ttm.resource))
+ return -EINVAL;
+
+ if (WARN_ON(!xe_bo_is_pinned(bo)))
+ return -EINVAL;
+
+ if (WARN_ON(xe_bo_is_vram(bo) || !bo->ttm.ttm))
+ return -EINVAL;
+
+ ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx);
+ if (ret)
+ return ret;
+
+ ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx);
+ if (ret)
+ goto err_res_free;
+
+ ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
+ if (ret)
+ goto err_res_free;
+
+ ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
+ if (ret)
+ goto err_res_free;
+
+ dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
+ false, MAX_SCHEDULE_TIMEOUT);
+
+ return 0;
+
+err_res_free:
+ ttm_resource_free(&bo->ttm, &new_mem);
+ return ret;
+}
+
+static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo,
+ unsigned long page_offset)
+{
+ struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
+ struct xe_res_cursor cursor;
+ struct xe_mem_region *vram;
+
+ if (ttm_bo->resource->mem_type == XE_PL_STOLEN)
+ return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT;
+
+ vram = res_to_mem_region(ttm_bo->resource);
+ xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
+ return (vram->io_start + cursor.start) >> PAGE_SHIFT;
+}
+
+static void __xe_bo_vunmap(struct xe_bo *bo);
+
+/*
+ * TODO: Move this function to TTM so we don't rely on how TTM does its
+ * locking, thereby abusing TTM internals.
+ */
+static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo)
+{
+ struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
+ bool locked;
+
+ xe_assert(xe, !kref_read(&ttm_bo->kref));
+
+ /*
+ * We can typically only race with TTM trylocking under the
+ * lru_lock, which will immediately be unlocked again since
+ * the ttm_bo refcount is zero at this point. So trylocking *should*
+ * always succeed here, as long as we hold the lru lock.
+ */
+ spin_lock(&ttm_bo->bdev->lru_lock);
+ locked = dma_resv_trylock(ttm_bo->base.resv);
+ spin_unlock(&ttm_bo->bdev->lru_lock);
+ xe_assert(xe, locked);
+
+ return locked;
+}
+
+static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo)
+{
+ struct dma_resv_iter cursor;
+ struct dma_fence *fence;
+ struct dma_fence *replacement = NULL;
+ struct xe_bo *bo;
+
+ if (!xe_bo_is_xe_bo(ttm_bo))
+ return;
+
+ bo = ttm_to_xe_bo(ttm_bo);
+ xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount)));
+
+ /*
+ * Corner case where TTM fails to allocate memory and this BOs resv
+ * still points the VMs resv
+ */
+ if (ttm_bo->base.resv != &ttm_bo->base._resv)
+ return;
+
+ if (!xe_ttm_bo_lock_in_destructor(ttm_bo))
+ return;
+
+ /*
+ * Scrub the preempt fences if any. The unbind fence is already
+ * attached to the resv.
+ * TODO: Don't do this for external bos once we scrub them after
+ * unbind.
+ */
+ dma_resv_for_each_fence(&cursor, ttm_bo->base.resv,
+ DMA_RESV_USAGE_BOOKKEEP, fence) {
+ if (xe_fence_is_xe_preempt(fence) &&
+ !dma_fence_is_signaled(fence)) {
+ if (!replacement)
+ replacement = dma_fence_get_stub();
+
+ dma_resv_replace_fences(ttm_bo->base.resv,
+ fence->context,
+ replacement,
+ DMA_RESV_USAGE_BOOKKEEP);
+ }
+ }
+ dma_fence_put(replacement);
+
+ dma_resv_unlock(ttm_bo->base.resv);
+}
+
+static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo)
+{
+ if (!xe_bo_is_xe_bo(ttm_bo))
+ return;
+
+ /*
+ * Object is idle and about to be destroyed. Release the
+ * dma-buf attachment.
+ */
+ if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
+ struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm,
+ struct xe_ttm_tt, ttm);
+
+ dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg,
+ DMA_BIDIRECTIONAL);
+ ttm_bo->sg = NULL;
+ xe_tt->sg = NULL;
+ }
+}
+
+struct ttm_device_funcs xe_ttm_funcs = {
+ .ttm_tt_create = xe_ttm_tt_create,
+ .ttm_tt_populate = xe_ttm_tt_populate,
+ .ttm_tt_unpopulate = xe_ttm_tt_unpopulate,
+ .ttm_tt_destroy = xe_ttm_tt_destroy,
+ .evict_flags = xe_evict_flags,
+ .move = xe_bo_move,
+ .io_mem_reserve = xe_ttm_io_mem_reserve,
+ .io_mem_pfn = xe_ttm_io_mem_pfn,
+ .release_notify = xe_ttm_bo_release_notify,
+ .eviction_valuable = ttm_bo_eviction_valuable,
+ .delete_mem_notify = xe_ttm_bo_delete_mem_notify,
+};
+
+static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo)
+{
+ struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
+ struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
+
+ if (bo->ttm.base.import_attach)
+ drm_prime_gem_destroy(&bo->ttm.base, NULL);
+ drm_gem_object_release(&bo->ttm.base);
+
+ xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list));
+
+ if (bo->ggtt_node.size)
+ xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo);
+
+#ifdef CONFIG_PROC_FS
+ if (bo->client)
+ xe_drm_client_remove_bo(bo);
+#endif
+
+ if (bo->vm && xe_bo_is_user(bo))
+ xe_vm_put(bo->vm);
+
+ kfree(bo);
+}
+
+static void xe_gem_object_free(struct drm_gem_object *obj)
+{
+ /* Our BO reference counting scheme works as follows:
+ *
+ * The gem object kref is typically used throughout the driver,
+ * and the gem object holds a ttm_buffer_object refcount, so
+ * that when the last gem object reference is put, which is when
+ * we end up in this function, we put also that ttm_buffer_object
+ * refcount. Anything using gem interfaces is then no longer
+ * allowed to access the object in a way that requires a gem
+ * refcount, including locking the object.
+ *
+ * driver ttm callbacks is allowed to use the ttm_buffer_object
+ * refcount directly if needed.
+ */
+ __xe_bo_vunmap(gem_to_xe_bo(obj));
+ ttm_bo_put(container_of(obj, struct ttm_buffer_object, base));
+}
+
+static void xe_gem_object_close(struct drm_gem_object *obj,
+ struct drm_file *file_priv)
+{
+ struct xe_bo *bo = gem_to_xe_bo(obj);
+
+ if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) {
+ xe_assert(xe_bo_device(bo), xe_bo_is_user(bo));
+
+ xe_bo_lock(bo, false);
+ ttm_bo_set_bulk_move(&bo->ttm, NULL);
+ xe_bo_unlock(bo);
+ }
+}
+
+static bool should_migrate_to_system(struct xe_bo *bo)
+{
+ struct xe_device *xe = xe_bo_device(bo);
+
+ return xe_device_in_fault_mode(xe) && bo->props.cpu_atomic;
+}
+
+static vm_fault_t xe_gem_fault(struct vm_fault *vmf)
+{
+ struct ttm_buffer_object *tbo = vmf->vma->vm_private_data;
+ struct drm_device *ddev = tbo->base.dev;
+ vm_fault_t ret;
+ int idx, r = 0;
+
+ ret = ttm_bo_vm_reserve(tbo, vmf);
+ if (ret)
+ return ret;
+
+ if (drm_dev_enter(ddev, &idx)) {
+ struct xe_bo *bo = ttm_to_xe_bo(tbo);
+
+ trace_xe_bo_cpu_fault(bo);
+
+ if (should_migrate_to_system(bo)) {
+ r = xe_bo_migrate(bo, XE_PL_TT);
+ if (r == -EBUSY || r == -ERESTARTSYS || r == -EINTR)
+ ret = VM_FAULT_NOPAGE;
+ else if (r)
+ ret = VM_FAULT_SIGBUS;
+ }
+ if (!ret)
+ ret = ttm_bo_vm_fault_reserved(vmf,
+ vmf->vma->vm_page_prot,
+ TTM_BO_VM_NUM_PREFAULT);
+ drm_dev_exit(idx);
+ } else {
+ ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
+ }
+ if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
+ return ret;
+
+ dma_resv_unlock(tbo->base.resv);
+ return ret;
+}
+
+static const struct vm_operations_struct xe_gem_vm_ops = {
+ .fault = xe_gem_fault,
+ .open = ttm_bo_vm_open,
+ .close = ttm_bo_vm_close,
+ .access = ttm_bo_vm_access
+};
+
+static const struct drm_gem_object_funcs xe_gem_object_funcs = {
+ .free = xe_gem_object_free,
+ .close = xe_gem_object_close,
+ .mmap = drm_gem_ttm_mmap,
+ .export = xe_gem_prime_export,
+ .vm_ops = &xe_gem_vm_ops,
+};
+
+/**
+ * xe_bo_alloc - Allocate storage for a struct xe_bo
+ *
+ * This funcition is intended to allocate storage to be used for input
+ * to __xe_bo_create_locked(), in the case a pointer to the bo to be
+ * created is needed before the call to __xe_bo_create_locked().
+ * If __xe_bo_create_locked ends up never to be called, then the
+ * storage allocated with this function needs to be freed using
+ * xe_bo_free().
+ *
+ * Return: A pointer to an uninitialized struct xe_bo on success,
+ * ERR_PTR(-ENOMEM) on error.
+ */
+struct xe_bo *xe_bo_alloc(void)
+{
+ struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL);
+
+ if (!bo)
+ return ERR_PTR(-ENOMEM);
+
+ return bo;
+}
+
+/**
+ * xe_bo_free - Free storage allocated using xe_bo_alloc()
+ * @bo: The buffer object storage.
+ *
+ * Refer to xe_bo_alloc() documentation for valid use-cases.
+ */
+void xe_bo_free(struct xe_bo *bo)
+{
+ kfree(bo);
+}
+
+struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo,
+ struct xe_tile *tile, struct dma_resv *resv,
+ struct ttm_lru_bulk_move *bulk, size_t size,
+ u16 cpu_caching, enum ttm_bo_type type,
+ u32 flags)
+{
+ struct ttm_operation_ctx ctx = {
+ .interruptible = true,
+ .no_wait_gpu = false,
+ };
+ struct ttm_placement *placement;
+ uint32_t alignment;
+ size_t aligned_size;
+ int err;
+
+ /* Only kernel objects should set GT */
+ xe_assert(xe, !tile || type == ttm_bo_type_kernel);
+
+ if (XE_WARN_ON(!size)) {
+ xe_bo_free(bo);
+ return ERR_PTR(-EINVAL);
+ }
+
+ if (flags & (XE_BO_CREATE_VRAM_MASK | XE_BO_CREATE_STOLEN_BIT) &&
+ !(flags & XE_BO_CREATE_IGNORE_MIN_PAGE_SIZE_BIT) &&
+ xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) {
+ aligned_size = ALIGN(size, SZ_64K);
+ if (type != ttm_bo_type_device)
+ size = ALIGN(size, SZ_64K);
+ flags |= XE_BO_INTERNAL_64K;
+ alignment = SZ_64K >> PAGE_SHIFT;
+
+ } else {
+ aligned_size = ALIGN(size, SZ_4K);
+ flags &= ~XE_BO_INTERNAL_64K;
+ alignment = SZ_4K >> PAGE_SHIFT;
+ }
+
+ if (type == ttm_bo_type_device && aligned_size != size)
+ return ERR_PTR(-EINVAL);
+
+ if (!bo) {
+ bo = xe_bo_alloc();
+ if (IS_ERR(bo))
+ return bo;
+ }
+
+ bo->ccs_cleared = false;
+ bo->tile = tile;
+ bo->size = size;
+ bo->flags = flags;
+ bo->cpu_caching = cpu_caching;
+ bo->ttm.base.funcs = &xe_gem_object_funcs;
+ bo->props.preferred_mem_class = XE_BO_PROPS_INVALID;
+ bo->props.preferred_gt = XE_BO_PROPS_INVALID;
+ bo->props.preferred_mem_type = XE_BO_PROPS_INVALID;
+ bo->ttm.priority = XE_BO_PRIORITY_NORMAL;
+ INIT_LIST_HEAD(&bo->pinned_link);
+#ifdef CONFIG_PROC_FS
+ INIT_LIST_HEAD(&bo->client_link);
+#endif
+
+ drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size);
+
+ if (resv) {
+ ctx.allow_res_evict = !(flags & XE_BO_CREATE_NO_RESV_EVICT);
+ ctx.resv = resv;
+ }
+
+ if (!(flags & XE_BO_FIXED_PLACEMENT_BIT)) {
+ err = __xe_bo_placement_for_flags(xe, bo, bo->flags);
+ if (WARN_ON(err)) {
+ xe_ttm_bo_destroy(&bo->ttm);
+ return ERR_PTR(err);
+ }
+ }
+
+ /* Defer populating type_sg bos */
+ placement = (type == ttm_bo_type_sg ||
+ bo->flags & XE_BO_DEFER_BACKING) ? &sys_placement :
+ &bo->placement;
+ err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type,
+ placement, alignment,
+ &ctx, NULL, resv, xe_ttm_bo_destroy);
+ if (err)
+ return ERR_PTR(err);
+
+ /*
+ * The VRAM pages underneath are potentially still being accessed by the
+ * GPU, as per async GPU clearing and async evictions. However TTM makes
+ * sure to add any corresponding move/clear fences into the objects
+ * dma-resv using the DMA_RESV_USAGE_KERNEL slot.
+ *
+ * For KMD internal buffers we don't care about GPU clearing, however we
+ * still need to handle async evictions, where the VRAM is still being
+ * accessed by the GPU. Most internal callers are not expecting this,
+ * since they are missing the required synchronisation before accessing
+ * the memory. To keep things simple just sync wait any kernel fences
+ * here, if the buffer is designated KMD internal.
+ *
+ * For normal userspace objects we should already have the required
+ * pipelining or sync waiting elsewhere, since we already have to deal
+ * with things like async GPU clearing.
+ */
+ if (type == ttm_bo_type_kernel) {
+ long timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
+ DMA_RESV_USAGE_KERNEL,
+ ctx.interruptible,
+ MAX_SCHEDULE_TIMEOUT);
+
+ if (timeout < 0) {
+ if (!resv)
+ dma_resv_unlock(bo->ttm.base.resv);
+ xe_bo_put(bo);
+ return ERR_PTR(timeout);
+ }
+ }
+
+ bo->created = true;
+ if (bulk)
+ ttm_bo_set_bulk_move(&bo->ttm, bulk);
+ else
+ ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
+
+ return bo;
+}
+
+static int __xe_bo_fixed_placement(struct xe_device *xe,
+ struct xe_bo *bo,
+ u32 flags,
+ u64 start, u64 end, u64 size)
+{
+ struct ttm_place *place = bo->placements;
+
+ if (flags & (XE_BO_CREATE_USER_BIT|XE_BO_CREATE_SYSTEM_BIT))
+ return -EINVAL;
+
+ place->flags = TTM_PL_FLAG_CONTIGUOUS;
+ place->fpfn = start >> PAGE_SHIFT;
+ place->lpfn = end >> PAGE_SHIFT;
+
+ switch (flags & (XE_BO_CREATE_STOLEN_BIT | XE_BO_CREATE_VRAM_MASK)) {
+ case XE_BO_CREATE_VRAM0_BIT:
+ place->mem_type = XE_PL_VRAM0;
+ break;
+ case XE_BO_CREATE_VRAM1_BIT:
+ place->mem_type = XE_PL_VRAM1;
+ break;
+ case XE_BO_CREATE_STOLEN_BIT:
+ place->mem_type = XE_PL_STOLEN;
+ break;
+
+ default:
+ /* 0 or multiple of the above set */
+ return -EINVAL;
+ }
+
+ bo->placement = (struct ttm_placement) {
+ .num_placement = 1,
+ .placement = place,
+ .num_busy_placement = 1,
+ .busy_placement = place,
+ };
+
+ return 0;
+}
+
+static struct xe_bo *
+__xe_bo_create_locked(struct xe_device *xe,
+ struct xe_tile *tile, struct xe_vm *vm,
+ size_t size, u64 start, u64 end,
+ u16 cpu_caching, enum ttm_bo_type type, u32 flags)
+{
+ struct xe_bo *bo = NULL;
+ int err;
+
+ if (vm)
+ xe_vm_assert_held(vm);
+
+ if (start || end != ~0ULL) {
+ bo = xe_bo_alloc();
+ if (IS_ERR(bo))
+ return bo;
+
+ flags |= XE_BO_FIXED_PLACEMENT_BIT;
+ err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size);
+ if (err) {
+ xe_bo_free(bo);
+ return ERR_PTR(err);
+ }
+ }
+
+ bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL,
+ vm && !xe_vm_in_fault_mode(vm) &&
+ flags & XE_BO_CREATE_USER_BIT ?
+ &vm->lru_bulk_move : NULL, size,
+ cpu_caching, type, flags);
+ if (IS_ERR(bo))
+ return bo;
+
+ /*
+ * Note that instead of taking a reference no the drm_gpuvm_resv_bo(),
+ * to ensure the shared resv doesn't disappear under the bo, the bo
+ * will keep a reference to the vm, and avoid circular references
+ * by having all the vm's bo refereferences released at vm close
+ * time.
+ */
+ if (vm && xe_bo_is_user(bo))
+ xe_vm_get(vm);
+ bo->vm = vm;
+
+ if (bo->flags & XE_BO_CREATE_GGTT_BIT) {
+ if (!tile && flags & XE_BO_CREATE_STOLEN_BIT)
+ tile = xe_device_get_root_tile(xe);
+
+ xe_assert(xe, tile);
+
+ if (flags & XE_BO_FIXED_PLACEMENT_BIT) {
+ err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo,
+ start + bo->size, U64_MAX);
+ } else {
+ err = xe_ggtt_insert_bo(tile->mem.ggtt, bo);
+ }
+ if (err)
+ goto err_unlock_put_bo;
+ }
+
+ return bo;
+
+err_unlock_put_bo:
+ __xe_bo_unset_bulk_move(bo);
+ xe_bo_unlock_vm_held(bo);
+ xe_bo_put(bo);
+ return ERR_PTR(err);
+}
+
+struct xe_bo *
+xe_bo_create_locked_range(struct xe_device *xe,
+ struct xe_tile *tile, struct xe_vm *vm,
+ size_t size, u64 start, u64 end,
+ enum ttm_bo_type type, u32 flags)
+{
+ return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, flags);
+}
+
+struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile,
+ struct xe_vm *vm, size_t size,
+ enum ttm_bo_type type, u32 flags)
+{
+ return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, flags);
+}
+
+struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile,
+ struct xe_vm *vm, size_t size,
+ u16 cpu_caching,
+ enum ttm_bo_type type,
+ u32 flags)
+{
+ struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL,
+ cpu_caching, type,
+ flags | XE_BO_CREATE_USER_BIT);
+ if (!IS_ERR(bo))
+ xe_bo_unlock_vm_held(bo);
+
+ return bo;
+}
+
+struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile,
+ struct xe_vm *vm, size_t size,
+ enum ttm_bo_type type, u32 flags)
+{
+ struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags);
+
+ if (!IS_ERR(bo))
+ xe_bo_unlock_vm_held(bo);
+
+ return bo;
+}
+
+struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile,
+ struct xe_vm *vm,
+ size_t size, u64 offset,
+ enum ttm_bo_type type, u32 flags)
+{
+ struct xe_bo *bo;
+ int err;
+ u64 start = offset == ~0ull ? 0 : offset;
+ u64 end = offset == ~0ull ? offset : start + size;
+
+ if (flags & XE_BO_CREATE_STOLEN_BIT &&
+ xe_ttm_stolen_cpu_access_needs_ggtt(xe))
+ flags |= XE_BO_CREATE_GGTT_BIT;
+
+ bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type,
+ flags | XE_BO_NEEDS_CPU_ACCESS);
+ if (IS_ERR(bo))
+ return bo;
+
+ err = xe_bo_pin(bo);
+ if (err)
+ goto err_put;
+
+ err = xe_bo_vmap(bo);
+ if (err)
+ goto err_unpin;
+
+ xe_bo_unlock_vm_held(bo);
+
+ return bo;
+
+err_unpin:
+ xe_bo_unpin(bo);
+err_put:
+ xe_bo_unlock_vm_held(bo);
+ xe_bo_put(bo);
+ return ERR_PTR(err);
+}
+
+struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
+ struct xe_vm *vm, size_t size,
+ enum ttm_bo_type type, u32 flags)
+{
+ return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags);
+}
+
+struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
+ const void *data, size_t size,
+ enum ttm_bo_type type, u32 flags)
+{
+ struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL,
+ ALIGN(size, PAGE_SIZE),
+ type, flags);
+ if (IS_ERR(bo))
+ return bo;
+
+ xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
+
+ return bo;
+}
+
+static void __xe_bo_unpin_map_no_vm(struct drm_device *drm, void *arg)
+{
+ xe_bo_unpin_map_no_vm(arg);
+}
+
+struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
+ size_t size, u32 flags)
+{
+ struct xe_bo *bo;
+ int ret;
+
+ bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags);
+ if (IS_ERR(bo))
+ return bo;
+
+ ret = drmm_add_action_or_reset(&xe->drm, __xe_bo_unpin_map_no_vm, bo);
+ if (ret)
+ return ERR_PTR(ret);
+
+ return bo;
+}
+
+struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
+ const void *data, size_t size, u32 flags)
+{
+ struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags);
+
+ if (IS_ERR(bo))
+ return bo;
+
+ xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
+
+ return bo;
+}
+
+/*
+ * XXX: This is in the VM bind data path, likely should calculate this once and
+ * store, with a recalculation if the BO is moved.
+ */
+uint64_t vram_region_gpu_offset(struct ttm_resource *res)
+{
+ struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
+
+ if (res->mem_type == XE_PL_STOLEN)
+ return xe_ttm_stolen_gpu_offset(xe);
+
+ return res_to_mem_region(res)->dpa_base;
+}
+
+/**
+ * xe_bo_pin_external - pin an external BO
+ * @bo: buffer object to be pinned
+ *
+ * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD)
+ * BO. Unique call compared to xe_bo_pin as this function has it own set of
+ * asserts and code to ensure evict / restore on suspend / resume.
+ *
+ * Returns 0 for success, negative error code otherwise.
+ */
+int xe_bo_pin_external(struct xe_bo *bo)
+{
+ struct xe_device *xe = xe_bo_device(bo);
+ int err;
+
+ xe_assert(xe, !bo->vm);
+ xe_assert(xe, xe_bo_is_user(bo));
+
+ if (!xe_bo_is_pinned(bo)) {
+ err = xe_bo_validate(bo, NULL, false);
+ if (err)
+ return err;
+
+ if (xe_bo_is_vram(bo)) {
+ spin_lock(&xe->pinned.lock);
+ list_add_tail(&bo->pinned_link,
+ &xe->pinned.external_vram);
+ spin_unlock(&xe->pinned.lock);
+ }
+ }
+
+ ttm_bo_pin(&bo->ttm);
+
+ /*
+ * FIXME: If we always use the reserve / unreserve functions for locking
+ * we do not need this.
+ */
+ ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
+
+ return 0;
+}
+
+int xe_bo_pin(struct xe_bo *bo)
+{
+ struct xe_device *xe = xe_bo_device(bo);
+ int err;
+
+ /* We currently don't expect user BO to be pinned */
+ xe_assert(xe, !xe_bo_is_user(bo));
+
+ /* Pinned object must be in GGTT or have pinned flag */
+ xe_assert(xe, bo->flags & (XE_BO_CREATE_PINNED_BIT |
+ XE_BO_CREATE_GGTT_BIT));
+
+ /*
+ * No reason we can't support pinning imported dma-bufs we just don't
+ * expect to pin an imported dma-buf.
+ */
+ xe_assert(xe, !bo->ttm.base.import_attach);
+
+ /* We only expect at most 1 pin */
+ xe_assert(xe, !xe_bo_is_pinned(bo));
+
+ err = xe_bo_validate(bo, NULL, false);
+ if (err)
+ return err;
+
+ /*
+ * For pinned objects in on DGFX, which are also in vram, we expect
+ * these to be in contiguous VRAM memory. Required eviction / restore
+ * during suspend / resume (force restore to same physical address).
+ */
+ if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) &&
+ bo->flags & XE_BO_INTERNAL_TEST)) {
+ struct ttm_place *place = &(bo->placements[0]);
+
+ if (mem_type_is_vram(place->mem_type)) {
+ xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS);
+
+ place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) -
+ vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT;
+ place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT);
+
+ spin_lock(&xe->pinned.lock);
+ list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present);
+ spin_unlock(&xe->pinned.lock);
+ }
+ }
+
+ ttm_bo_pin(&bo->ttm);
+
+ /*
+ * FIXME: If we always use the reserve / unreserve functions for locking
+ * we do not need this.
+ */
+ ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
+
+ return 0;
+}
+
+/**
+ * xe_bo_unpin_external - unpin an external BO
+ * @bo: buffer object to be unpinned
+ *
+ * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD)
+ * BO. Unique call compared to xe_bo_unpin as this function has it own set of
+ * asserts and code to ensure evict / restore on suspend / resume.
+ *
+ * Returns 0 for success, negative error code otherwise.
+ */
+void xe_bo_unpin_external(struct xe_bo *bo)
+{
+ struct xe_device *xe = xe_bo_device(bo);
+
+ xe_assert(xe, !bo->vm);
+ xe_assert(xe, xe_bo_is_pinned(bo));
+ xe_assert(xe, xe_bo_is_user(bo));
+
+ if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) {
+ spin_lock(&xe->pinned.lock);
+ list_del_init(&bo->pinned_link);
+ spin_unlock(&xe->pinned.lock);
+ }
+
+ ttm_bo_unpin(&bo->ttm);
+
+ /*
+ * FIXME: If we always use the reserve / unreserve functions for locking
+ * we do not need this.
+ */
+ ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
+}
+
+void xe_bo_unpin(struct xe_bo *bo)
+{
+ struct xe_device *xe = xe_bo_device(bo);
+
+ xe_assert(xe, !bo->ttm.base.import_attach);
+ xe_assert(xe, xe_bo_is_pinned(bo));
+
+ if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) &&
+ bo->flags & XE_BO_INTERNAL_TEST)) {
+ struct ttm_place *place = &(bo->placements[0]);
+
+ if (mem_type_is_vram(place->mem_type)) {
+ xe_assert(xe, !list_empty(&bo->pinned_link));
+
+ spin_lock(&xe->pinned.lock);
+ list_del_init(&bo->pinned_link);
+ spin_unlock(&xe->pinned.lock);
+ }
+ }
+
+ ttm_bo_unpin(&bo->ttm);
+}
+
+/**
+ * xe_bo_validate() - Make sure the bo is in an allowed placement
+ * @bo: The bo,
+ * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or
+ * NULL. Used together with @allow_res_evict.
+ * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's
+ * reservation object.
+ *
+ * Make sure the bo is in allowed placement, migrating it if necessary. If
+ * needed, other bos will be evicted. If bos selected for eviction shares
+ * the @vm's reservation object, they can be evicted iff @allow_res_evict is
+ * set to true, otherwise they will be bypassed.
+ *
+ * Return: 0 on success, negative error code on failure. May return
+ * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal.
+ */
+int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict)
+{
+ struct ttm_operation_ctx ctx = {
+ .interruptible = true,
+ .no_wait_gpu = false,
+ };
+
+ if (vm) {
+ lockdep_assert_held(&vm->lock);
+ xe_vm_assert_held(vm);
+
+ ctx.allow_res_evict = allow_res_evict;
+ ctx.resv = xe_vm_resv(vm);
+ }
+
+ return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx);
+}
+
+bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo)
+{
+ if (bo->destroy == &xe_ttm_bo_destroy)
+ return true;
+
+ return false;
+}
+
+/*
+ * Resolve a BO address. There is no assert to check if the proper lock is held
+ * so it should only be used in cases where it is not fatal to get the wrong
+ * address, such as printing debug information, but not in cases where memory is
+ * written based on this result.
+ */
+dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
+{
+ struct xe_device *xe = xe_bo_device(bo);
+ struct xe_res_cursor cur;
+ u64 page;
+
+ xe_assert(xe, page_size <= PAGE_SIZE);
+ page = offset >> PAGE_SHIFT;
+ offset &= (PAGE_SIZE - 1);
+
+ if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
+ xe_assert(xe, bo->ttm.ttm);
+
+ xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT,
+ page_size, &cur);
+ return xe_res_dma(&cur) + offset;
+ } else {
+ struct xe_res_cursor cur;
+
+ xe_res_first(bo->ttm.resource, page << PAGE_SHIFT,
+ page_size, &cur);
+ return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource);
+ }
+}
+
+dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
+{
+ if (!READ_ONCE(bo->ttm.pin_count))
+ xe_bo_assert_held(bo);
+ return __xe_bo_addr(bo, offset, page_size);
+}
+
+int xe_bo_vmap(struct xe_bo *bo)
+{
+ void *virtual;
+ bool is_iomem;
+ int ret;
+
+ xe_bo_assert_held(bo);
+
+ if (!(bo->flags & XE_BO_NEEDS_CPU_ACCESS))
+ return -EINVAL;
+
+ if (!iosys_map_is_null(&bo->vmap))
+ return 0;
+
+ /*
+ * We use this more or less deprecated interface for now since
+ * ttm_bo_vmap() doesn't offer the optimization of kmapping
+ * single page bos, which is done here.
+ * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap
+ * to use struct iosys_map.
+ */
+ ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap);
+ if (ret)
+ return ret;
+
+ virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem);
+ if (is_iomem)
+ iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual);
+ else
+ iosys_map_set_vaddr(&bo->vmap, virtual);
+
+ return 0;
+}
+
+static void __xe_bo_vunmap(struct xe_bo *bo)
+{
+ if (!iosys_map_is_null(&bo->vmap)) {
+ iosys_map_clear(&bo->vmap);
+ ttm_bo_kunmap(&bo->kmap);
+ }
+}
+
+void xe_bo_vunmap(struct xe_bo *bo)
+{
+ xe_bo_assert_held(bo);
+ __xe_bo_vunmap(bo);
+}
+
+int xe_gem_create_ioctl(struct drm_device *dev, void *data,
+ struct drm_file *file)
+{
+ struct xe_device *xe = to_xe_device(dev);
+ struct xe_file *xef = to_xe_file(file);
+ struct drm_xe_gem_create *args = data;
+ struct xe_vm *vm = NULL;
+ struct xe_bo *bo;
+ unsigned int bo_flags;
+ u32 handle;
+ int err;
+
+ if (XE_IOCTL_DBG(xe, args->extensions) ||
+ XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
+ XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
+ return -EINVAL;
+
+ /* at least one valid memory placement must be specified */
+ if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) ||
+ !args->placement))
+ return -EINVAL;
+
+ if (XE_IOCTL_DBG(xe, args->flags &
+ ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING |
+ DRM_XE_GEM_CREATE_FLAG_SCANOUT |
+ DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM)))
+ return -EINVAL;
+
+ if (XE_IOCTL_DBG(xe, args->handle))
+ return -EINVAL;
+
+ if (XE_IOCTL_DBG(xe, !args->size))
+ return -EINVAL;
+
+ if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX))
+ return -EINVAL;
+
+ if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK))
+ return -EINVAL;
+
+ bo_flags = 0;
+ if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING)
+ bo_flags |= XE_BO_DEFER_BACKING;
+
+ if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT)
+ bo_flags |= XE_BO_SCANOUT_BIT;
+
+ bo_flags |= args->placement << (ffs(XE_BO_CREATE_SYSTEM_BIT) - 1);
+
+ if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) {
+ if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_CREATE_VRAM_MASK)))
+ return -EINVAL;
+
+ bo_flags |= XE_BO_NEEDS_CPU_ACCESS;
+ }
+
+ if (XE_IOCTL_DBG(xe, !args->cpu_caching ||
+ args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC))
+ return -EINVAL;
+
+ if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_CREATE_VRAM_MASK &&
+ args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC))
+ return -EINVAL;
+
+ if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_SCANOUT_BIT &&
+ args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB))
+ return -EINVAL;
+
+ if (args->vm_id) {
+ vm = xe_vm_lookup(xef, args->vm_id);
+ if (XE_IOCTL_DBG(xe, !vm))
+ return -ENOENT;
+ err = xe_vm_lock(vm, true);
+ if (err)
+ goto out_vm;
+ }
+
+ bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching,
+ ttm_bo_type_device, bo_flags);
+
+ if (vm)
+ xe_vm_unlock(vm);
+
+ if (IS_ERR(bo)) {
+ err = PTR_ERR(bo);
+ goto out_vm;
+ }
+
+ err = drm_gem_handle_create(file, &bo->ttm.base, &handle);
+ if (err)
+ goto out_bulk;
+
+ args->handle = handle;
+ goto out_put;
+
+out_bulk:
+ if (vm && !xe_vm_in_fault_mode(vm)) {
+ xe_vm_lock(vm, false);
+ __xe_bo_unset_bulk_move(bo);
+ xe_vm_unlock(vm);
+ }
+out_put:
+ xe_bo_put(bo);
+out_vm:
+ if (vm)
+ xe_vm_put(vm);
+
+ return err;
+}
+
+int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
+ struct drm_file *file)
+{
+ struct xe_device *xe = to_xe_device(dev);
+ struct drm_xe_gem_mmap_offset *args = data;
+ struct drm_gem_object *gem_obj;
+
+ if (XE_IOCTL_DBG(xe, args->extensions) ||
+ XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
+ return -EINVAL;
+
+ if (XE_IOCTL_DBG(xe, args->flags))
+ return -EINVAL;
+
+ gem_obj = drm_gem_object_lookup(file, args->handle);
+ if (XE_IOCTL_DBG(xe, !gem_obj))
+ return -ENOENT;
+
+ /* The mmap offset was set up at BO allocation time. */
+ args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node);
+
+ xe_bo_put(gem_to_xe_bo(gem_obj));
+ return 0;
+}
+
+/**
+ * xe_bo_lock() - Lock the buffer object's dma_resv object
+ * @bo: The struct xe_bo whose lock is to be taken
+ * @intr: Whether to perform any wait interruptible
+ *
+ * Locks the buffer object's dma_resv object. If the buffer object is
+ * pointing to a shared dma_resv object, that shared lock is locked.
+ *
+ * Return: 0 on success, -EINTR if @intr is true and the wait for a
+ * contended lock was interrupted. If @intr is set to false, the
+ * function always returns 0.
+ */
+int xe_bo_lock(struct xe_bo *bo, bool intr)
+{
+ if (intr)
+ return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL);
+
+ dma_resv_lock(bo->ttm.base.resv, NULL);
+
+ return 0;
+}
+
+/**
+ * xe_bo_unlock() - Unlock the buffer object's dma_resv object
+ * @bo: The struct xe_bo whose lock is to be released.
+ *
+ * Unlock a buffer object lock that was locked by xe_bo_lock().
+ */
+void xe_bo_unlock(struct xe_bo *bo)
+{
+ dma_resv_unlock(bo->ttm.base.resv);
+}
+
+/**
+ * xe_bo_can_migrate - Whether a buffer object likely can be migrated
+ * @bo: The buffer object to migrate
+ * @mem_type: The TTM memory type intended to migrate to
+ *
+ * Check whether the buffer object supports migration to the
+ * given memory type. Note that pinning may affect the ability to migrate as
+ * returned by this function.
+ *
+ * This function is primarily intended as a helper for checking the
+ * possibility to migrate buffer objects and can be called without
+ * the object lock held.
+ *
+ * Return: true if migration is possible, false otherwise.
+ */
+bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type)
+{
+ unsigned int cur_place;
+
+ if (bo->ttm.type == ttm_bo_type_kernel)
+ return true;
+
+ if (bo->ttm.type == ttm_bo_type_sg)
+ return false;
+
+ for (cur_place = 0; cur_place < bo->placement.num_placement;
+ cur_place++) {
+ if (bo->placements[cur_place].mem_type == mem_type)
+ return true;
+ }
+
+ return false;
+}
+
+static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place)
+{
+ memset(place, 0, sizeof(*place));
+ place->mem_type = mem_type;
+}
+
+/**
+ * xe_bo_migrate - Migrate an object to the desired region id
+ * @bo: The buffer object to migrate.
+ * @mem_type: The TTM region type to migrate to.
+ *
+ * Attempt to migrate the buffer object to the desired memory region. The
+ * buffer object may not be pinned, and must be locked.
+ * On successful completion, the object memory type will be updated,
+ * but an async migration task may not have completed yet, and to
+ * accomplish that, the object's kernel fences must be signaled with
+ * the object lock held.
+ *
+ * Return: 0 on success. Negative error code on failure. In particular may
+ * return -EINTR or -ERESTARTSYS if signal pending.
+ */
+int xe_bo_migrate(struct xe_bo *bo, u32 mem_type)
+{
+ struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
+ struct ttm_operation_ctx ctx = {
+ .interruptible = true,
+ .no_wait_gpu = false,
+ };
+ struct ttm_placement placement;
+ struct ttm_place requested;
+
+ xe_bo_assert_held(bo);
+
+ if (bo->ttm.resource->mem_type == mem_type)
+ return 0;
+
+ if (xe_bo_is_pinned(bo))
+ return -EBUSY;
+
+ if (!xe_bo_can_migrate(bo, mem_type))
+ return -EINVAL;
+
+ xe_place_from_ttm_type(mem_type, &requested);
+ placement.num_placement = 1;
+ placement.num_busy_placement = 1;
+ placement.placement = &requested;
+ placement.busy_placement = &requested;
+
+ /*
+ * Stolen needs to be handled like below VRAM handling if we ever need
+ * to support it.
+ */
+ drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN);
+
+ if (mem_type_is_vram(mem_type)) {
+ u32 c = 0;
+
+ add_vram(xe, bo, &requested, bo->flags, mem_type, &c);
+ }
+
+ return ttm_bo_validate(&bo->ttm, &placement, &ctx);
+}
+
+/**
+ * xe_bo_evict - Evict an object to evict placement
+ * @bo: The buffer object to migrate.
+ * @force_alloc: Set force_alloc in ttm_operation_ctx
+ *
+ * On successful completion, the object memory will be moved to evict
+ * placement. Ths function blocks until the object has been fully moved.
+ *
+ * Return: 0 on success. Negative error code on failure.
+ */
+int xe_bo_evict(struct xe_bo *bo, bool force_alloc)
+{
+ struct ttm_operation_ctx ctx = {
+ .interruptible = false,
+ .no_wait_gpu = false,
+ .force_alloc = force_alloc,
+ };
+ struct ttm_placement placement;
+ int ret;
+
+ xe_evict_flags(&bo->ttm, &placement);
+ ret = ttm_bo_validate(&bo->ttm, &placement, &ctx);
+ if (ret)
+ return ret;
+
+ dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
+ false, MAX_SCHEDULE_TIMEOUT);
+
+ return 0;
+}
+
+/**
+ * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when
+ * placed in system memory.
+ * @bo: The xe_bo
+ *
+ * Return: true if extra pages need to be allocated, false otherwise.
+ */
+bool xe_bo_needs_ccs_pages(struct xe_bo *bo)
+{
+ struct xe_device *xe = xe_bo_device(bo);
+
+ if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device)
+ return false;
+
+ /* On discrete GPUs, if the GPU can access this buffer from
+ * system memory (i.e., it allows XE_PL_TT placement), FlatCCS
+ * can't be used since there's no CCS storage associated with
+ * non-VRAM addresses.
+ */
+ if (IS_DGFX(xe) && (bo->flags & XE_BO_CREATE_SYSTEM_BIT))
+ return false;
+
+ return true;
+}
+
+/**
+ * __xe_bo_release_dummy() - Dummy kref release function
+ * @kref: The embedded struct kref.
+ *
+ * Dummy release function for xe_bo_put_deferred(). Keep off.
+ */
+void __xe_bo_release_dummy(struct kref *kref)
+{
+}
+
+/**
+ * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred().
+ * @deferred: The lockless list used for the call to xe_bo_put_deferred().
+ *
+ * Puts all bos whose put was deferred by xe_bo_put_deferred().
+ * The @deferred list can be either an onstack local list or a global
+ * shared list used by a workqueue.
+ */
+void xe_bo_put_commit(struct llist_head *deferred)
+{
+ struct llist_node *freed;
+ struct xe_bo *bo, *next;
+
+ if (!deferred)
+ return;
+
+ freed = llist_del_all(deferred);
+ if (!freed)
+ return;
+
+ llist_for_each_entry_safe(bo, next, freed, freed)
+ drm_gem_object_free(&bo->ttm.base.refcount);
+}
+
+/**
+ * xe_bo_dumb_create - Create a dumb bo as backing for a fb
+ * @file_priv: ...
+ * @dev: ...
+ * @args: ...
+ *
+ * See dumb_create() hook in include/drm/drm_drv.h
+ *
+ * Return: ...
+ */
+int xe_bo_dumb_create(struct drm_file *file_priv,
+ struct drm_device *dev,
+ struct drm_mode_create_dumb *args)
+{
+ struct xe_device *xe = to_xe_device(dev);
+ struct xe_bo *bo;
+ uint32_t handle;
+ int cpp = DIV_ROUND_UP(args->bpp, 8);
+ int err;
+ u32 page_size = max_t(u32, PAGE_SIZE,
+ xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K);
+
+ args->pitch = ALIGN(args->width * cpp, 64);
+ args->size = ALIGN(mul_u32_u32(args->pitch, args->height),
+ page_size);
+
+ bo = xe_bo_create_user(xe, NULL, NULL, args->size,
+ DRM_XE_GEM_CPU_CACHING_WC,
+ ttm_bo_type_device,
+ XE_BO_CREATE_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) |
+ XE_BO_CREATE_USER_BIT | XE_BO_SCANOUT_BIT |
+ XE_BO_NEEDS_CPU_ACCESS);
+ if (IS_ERR(bo))
+ return PTR_ERR(bo);
+
+ err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle);
+ /* drop reference from allocate - handle holds it now */
+ drm_gem_object_put(&bo->ttm.base);
+ if (!err)
+ args->handle = handle;
+ return err;
+}
+
+#if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
+#include "tests/xe_bo.c"
+#endif