diff options
Diffstat (limited to 'drivers/iommu/intel/iommu.c')
-rw-r--r-- | drivers/iommu/intel/iommu.c | 6207 |
1 files changed, 6207 insertions, 0 deletions
diff --git a/drivers/iommu/intel/iommu.c b/drivers/iommu/intel/iommu.c new file mode 100644 index 000000000000..9129663a7406 --- /dev/null +++ b/drivers/iommu/intel/iommu.c @@ -0,0 +1,6207 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright © 2006-2014 Intel Corporation. + * + * Authors: David Woodhouse <dwmw2@infradead.org>, + * Ashok Raj <ashok.raj@intel.com>, + * Shaohua Li <shaohua.li@intel.com>, + * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>, + * Fenghua Yu <fenghua.yu@intel.com> + * Joerg Roedel <jroedel@suse.de> + */ + +#define pr_fmt(fmt) "DMAR: " fmt +#define dev_fmt(fmt) pr_fmt(fmt) + +#include <linux/init.h> +#include <linux/bitmap.h> +#include <linux/debugfs.h> +#include <linux/export.h> +#include <linux/slab.h> +#include <linux/irq.h> +#include <linux/interrupt.h> +#include <linux/spinlock.h> +#include <linux/pci.h> +#include <linux/dmar.h> +#include <linux/dma-mapping.h> +#include <linux/mempool.h> +#include <linux/memory.h> +#include <linux/cpu.h> +#include <linux/timer.h> +#include <linux/io.h> +#include <linux/iova.h> +#include <linux/iommu.h> +#include <linux/intel-iommu.h> +#include <linux/syscore_ops.h> +#include <linux/tboot.h> +#include <linux/dmi.h> +#include <linux/pci-ats.h> +#include <linux/memblock.h> +#include <linux/dma-contiguous.h> +#include <linux/dma-direct.h> +#include <linux/crash_dump.h> +#include <linux/numa.h> +#include <linux/swiotlb.h> +#include <asm/irq_remapping.h> +#include <asm/cacheflush.h> +#include <asm/iommu.h> +#include <trace/events/intel_iommu.h> + +#include "../irq_remapping.h" +#include "intel-pasid.h" + +#define ROOT_SIZE VTD_PAGE_SIZE +#define CONTEXT_SIZE VTD_PAGE_SIZE + +#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) +#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB) +#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) +#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e) + +#define IOAPIC_RANGE_START (0xfee00000) +#define IOAPIC_RANGE_END (0xfeefffff) +#define IOVA_START_ADDR (0x1000) + +#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57 + +#define MAX_AGAW_WIDTH 64 +#define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT) + +#define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1) +#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1) + +/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR + to match. That way, we can use 'unsigned long' for PFNs with impunity. */ +#define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \ + __DOMAIN_MAX_PFN(gaw), (unsigned long)-1)) +#define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT) + +/* IO virtual address start page frame number */ +#define IOVA_START_PFN (1) + +#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) + +/* page table handling */ +#define LEVEL_STRIDE (9) +#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1) + +/* + * This bitmap is used to advertise the page sizes our hardware support + * to the IOMMU core, which will then use this information to split + * physically contiguous memory regions it is mapping into page sizes + * that we support. + * + * Traditionally the IOMMU core just handed us the mappings directly, + * after making sure the size is an order of a 4KiB page and that the + * mapping has natural alignment. + * + * To retain this behavior, we currently advertise that we support + * all page sizes that are an order of 4KiB. + * + * If at some point we'd like to utilize the IOMMU core's new behavior, + * we could change this to advertise the real page sizes we support. + */ +#define INTEL_IOMMU_PGSIZES (~0xFFFUL) + +static inline int agaw_to_level(int agaw) +{ + return agaw + 2; +} + +static inline int agaw_to_width(int agaw) +{ + return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH); +} + +static inline int width_to_agaw(int width) +{ + return DIV_ROUND_UP(width - 30, LEVEL_STRIDE); +} + +static inline unsigned int level_to_offset_bits(int level) +{ + return (level - 1) * LEVEL_STRIDE; +} + +static inline int pfn_level_offset(unsigned long pfn, int level) +{ + return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK; +} + +static inline unsigned long level_mask(int level) +{ + return -1UL << level_to_offset_bits(level); +} + +static inline unsigned long level_size(int level) +{ + return 1UL << level_to_offset_bits(level); +} + +static inline unsigned long align_to_level(unsigned long pfn, int level) +{ + return (pfn + level_size(level) - 1) & level_mask(level); +} + +static inline unsigned long lvl_to_nr_pages(unsigned int lvl) +{ + return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH); +} + +/* VT-d pages must always be _smaller_ than MM pages. Otherwise things + are never going to work. */ +static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn) +{ + return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT); +} + +static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn) +{ + return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT); +} +static inline unsigned long page_to_dma_pfn(struct page *pg) +{ + return mm_to_dma_pfn(page_to_pfn(pg)); +} +static inline unsigned long virt_to_dma_pfn(void *p) +{ + return page_to_dma_pfn(virt_to_page(p)); +} + +/* global iommu list, set NULL for ignored DMAR units */ +static struct intel_iommu **g_iommus; + +static void __init check_tylersburg_isoch(void); +static int rwbf_quirk; + +/* + * set to 1 to panic kernel if can't successfully enable VT-d + * (used when kernel is launched w/ TXT) + */ +static int force_on = 0; +int intel_iommu_tboot_noforce; +static int no_platform_optin; + +#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) + +/* + * Take a root_entry and return the Lower Context Table Pointer (LCTP) + * if marked present. + */ +static phys_addr_t root_entry_lctp(struct root_entry *re) +{ + if (!(re->lo & 1)) + return 0; + + return re->lo & VTD_PAGE_MASK; +} + +/* + * Take a root_entry and return the Upper Context Table Pointer (UCTP) + * if marked present. + */ +static phys_addr_t root_entry_uctp(struct root_entry *re) +{ + if (!(re->hi & 1)) + return 0; + + return re->hi & VTD_PAGE_MASK; +} + +static inline void context_clear_pasid_enable(struct context_entry *context) +{ + context->lo &= ~(1ULL << 11); +} + +static inline bool context_pasid_enabled(struct context_entry *context) +{ + return !!(context->lo & (1ULL << 11)); +} + +static inline void context_set_copied(struct context_entry *context) +{ + context->hi |= (1ull << 3); +} + +static inline bool context_copied(struct context_entry *context) +{ + return !!(context->hi & (1ULL << 3)); +} + +static inline bool __context_present(struct context_entry *context) +{ + return (context->lo & 1); +} + +bool context_present(struct context_entry *context) +{ + return context_pasid_enabled(context) ? + __context_present(context) : + __context_present(context) && !context_copied(context); +} + +static inline void context_set_present(struct context_entry *context) +{ + context->lo |= 1; +} + +static inline void context_set_fault_enable(struct context_entry *context) +{ + context->lo &= (((u64)-1) << 2) | 1; +} + +static inline void context_set_translation_type(struct context_entry *context, + unsigned long value) +{ + context->lo &= (((u64)-1) << 4) | 3; + context->lo |= (value & 3) << 2; +} + +static inline void context_set_address_root(struct context_entry *context, + unsigned long value) +{ + context->lo &= ~VTD_PAGE_MASK; + context->lo |= value & VTD_PAGE_MASK; +} + +static inline void context_set_address_width(struct context_entry *context, + unsigned long value) +{ + context->hi |= value & 7; +} + +static inline void context_set_domain_id(struct context_entry *context, + unsigned long value) +{ + context->hi |= (value & ((1 << 16) - 1)) << 8; +} + +static inline int context_domain_id(struct context_entry *c) +{ + return((c->hi >> 8) & 0xffff); +} + +static inline void context_clear_entry(struct context_entry *context) +{ + context->lo = 0; + context->hi = 0; +} + +/* + * This domain is a statically identity mapping domain. + * 1. This domain creats a static 1:1 mapping to all usable memory. + * 2. It maps to each iommu if successful. + * 3. Each iommu mapps to this domain if successful. + */ +static struct dmar_domain *si_domain; +static int hw_pass_through = 1; + +#define for_each_domain_iommu(idx, domain) \ + for (idx = 0; idx < g_num_of_iommus; idx++) \ + if (domain->iommu_refcnt[idx]) + +struct dmar_rmrr_unit { + struct list_head list; /* list of rmrr units */ + struct acpi_dmar_header *hdr; /* ACPI header */ + u64 base_address; /* reserved base address*/ + u64 end_address; /* reserved end address */ + struct dmar_dev_scope *devices; /* target devices */ + int devices_cnt; /* target device count */ +}; + +struct dmar_atsr_unit { + struct list_head list; /* list of ATSR units */ + struct acpi_dmar_header *hdr; /* ACPI header */ + struct dmar_dev_scope *devices; /* target devices */ + int devices_cnt; /* target device count */ + u8 include_all:1; /* include all ports */ +}; + +static LIST_HEAD(dmar_atsr_units); +static LIST_HEAD(dmar_rmrr_units); + +#define for_each_rmrr_units(rmrr) \ + list_for_each_entry(rmrr, &dmar_rmrr_units, list) + +/* bitmap for indexing intel_iommus */ +static int g_num_of_iommus; + +static void domain_exit(struct dmar_domain *domain); +static void domain_remove_dev_info(struct dmar_domain *domain); +static void dmar_remove_one_dev_info(struct device *dev); +static void __dmar_remove_one_dev_info(struct device_domain_info *info); +static int intel_iommu_attach_device(struct iommu_domain *domain, + struct device *dev); +static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, + dma_addr_t iova); + +#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON +int dmar_disabled = 0; +#else +int dmar_disabled = 1; +#endif /* CONFIG_INTEL_IOMMU_DEFAULT_ON */ + +#ifdef CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON +int intel_iommu_sm = 1; +#else +int intel_iommu_sm; +#endif /* CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON */ + +int intel_iommu_enabled = 0; +EXPORT_SYMBOL_GPL(intel_iommu_enabled); + +static int dmar_map_gfx = 1; +static int dmar_forcedac; +static int intel_iommu_strict; +static int intel_iommu_superpage = 1; +static int iommu_identity_mapping; +static int intel_no_bounce; + +#define IDENTMAP_GFX 2 +#define IDENTMAP_AZALIA 4 + +int intel_iommu_gfx_mapped; +EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped); + +#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1)) +#define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2)) +struct device_domain_info *get_domain_info(struct device *dev) +{ + struct device_domain_info *info; + + if (!dev) + return NULL; + + info = dev->archdata.iommu; + if (unlikely(info == DUMMY_DEVICE_DOMAIN_INFO || + info == DEFER_DEVICE_DOMAIN_INFO)) + return NULL; + + return info; +} + +DEFINE_SPINLOCK(device_domain_lock); +static LIST_HEAD(device_domain_list); + +#define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) && \ + to_pci_dev(d)->untrusted) + +/* + * Iterate over elements in device_domain_list and call the specified + * callback @fn against each element. + */ +int for_each_device_domain(int (*fn)(struct device_domain_info *info, + void *data), void *data) +{ + int ret = 0; + unsigned long flags; + struct device_domain_info *info; + + spin_lock_irqsave(&device_domain_lock, flags); + list_for_each_entry(info, &device_domain_list, global) { + ret = fn(info, data); + if (ret) { + spin_unlock_irqrestore(&device_domain_lock, flags); + return ret; + } + } + spin_unlock_irqrestore(&device_domain_lock, flags); + + return 0; +} + +const struct iommu_ops intel_iommu_ops; + +static bool translation_pre_enabled(struct intel_iommu *iommu) +{ + return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED); +} + +static void clear_translation_pre_enabled(struct intel_iommu *iommu) +{ + iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED; +} + +static void init_translation_status(struct intel_iommu *iommu) +{ + u32 gsts; + + gsts = readl(iommu->reg + DMAR_GSTS_REG); + if (gsts & DMA_GSTS_TES) + iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED; +} + +static int __init intel_iommu_setup(char *str) +{ + if (!str) + return -EINVAL; + while (*str) { + if (!strncmp(str, "on", 2)) { + dmar_disabled = 0; + pr_info("IOMMU enabled\n"); + } else if (!strncmp(str, "off", 3)) { + dmar_disabled = 1; + no_platform_optin = 1; + pr_info("IOMMU disabled\n"); + } else if (!strncmp(str, "igfx_off", 8)) { + dmar_map_gfx = 0; + pr_info("Disable GFX device mapping\n"); + } else if (!strncmp(str, "forcedac", 8)) { + pr_info("Forcing DAC for PCI devices\n"); + dmar_forcedac = 1; + } else if (!strncmp(str, "strict", 6)) { + pr_info("Disable batched IOTLB flush\n"); + intel_iommu_strict = 1; + } else if (!strncmp(str, "sp_off", 6)) { + pr_info("Disable supported super page\n"); + intel_iommu_superpage = 0; + } else if (!strncmp(str, "sm_on", 5)) { + pr_info("Intel-IOMMU: scalable mode supported\n"); + intel_iommu_sm = 1; + } else if (!strncmp(str, "tboot_noforce", 13)) { + pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n"); + intel_iommu_tboot_noforce = 1; + } else if (!strncmp(str, "nobounce", 8)) { + pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n"); + intel_no_bounce = 1; + } + + str += strcspn(str, ","); + while (*str == ',') + str++; + } + return 0; +} +__setup("intel_iommu=", intel_iommu_setup); + +static struct kmem_cache *iommu_domain_cache; +static struct kmem_cache *iommu_devinfo_cache; + +static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did) +{ + struct dmar_domain **domains; + int idx = did >> 8; + + domains = iommu->domains[idx]; + if (!domains) + return NULL; + + return domains[did & 0xff]; +} + +static void set_iommu_domain(struct intel_iommu *iommu, u16 did, + struct dmar_domain *domain) +{ + struct dmar_domain **domains; + int idx = did >> 8; + + if (!iommu->domains[idx]) { + size_t size = 256 * sizeof(struct dmar_domain *); + iommu->domains[idx] = kzalloc(size, GFP_ATOMIC); + } + + domains = iommu->domains[idx]; + if (WARN_ON(!domains)) + return; + else + domains[did & 0xff] = domain; +} + +void *alloc_pgtable_page(int node) +{ + struct page *page; + void *vaddr = NULL; + + page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0); + if (page) + vaddr = page_address(page); + return vaddr; +} + +void free_pgtable_page(void *vaddr) +{ + free_page((unsigned long)vaddr); +} + +static inline void *alloc_domain_mem(void) +{ + return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC); +} + +static void free_domain_mem(void *vaddr) +{ + kmem_cache_free(iommu_domain_cache, vaddr); +} + +static inline void * alloc_devinfo_mem(void) +{ + return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC); +} + +static inline void free_devinfo_mem(void *vaddr) +{ + kmem_cache_free(iommu_devinfo_cache, vaddr); +} + +static inline int domain_type_is_si(struct dmar_domain *domain) +{ + return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY; +} + +static inline bool domain_use_first_level(struct dmar_domain *domain) +{ + return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL; +} + +static inline int domain_pfn_supported(struct dmar_domain *domain, + unsigned long pfn) +{ + int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; + + return !(addr_width < BITS_PER_LONG && pfn >> addr_width); +} + +static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw) +{ + unsigned long sagaw; + int agaw = -1; + + sagaw = cap_sagaw(iommu->cap); + for (agaw = width_to_agaw(max_gaw); + agaw >= 0; agaw--) { + if (test_bit(agaw, &sagaw)) + break; + } + + return agaw; +} + +/* + * Calculate max SAGAW for each iommu. + */ +int iommu_calculate_max_sagaw(struct intel_iommu *iommu) +{ + return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH); +} + +/* + * calculate agaw for each iommu. + * "SAGAW" may be different across iommus, use a default agaw, and + * get a supported less agaw for iommus that don't support the default agaw. + */ +int iommu_calculate_agaw(struct intel_iommu *iommu) +{ + return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH); +} + +/* This functionin only returns single iommu in a domain */ +struct intel_iommu *domain_get_iommu(struct dmar_domain *domain) +{ + int iommu_id; + + /* si_domain and vm domain should not get here. */ + if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA)) + return NULL; + + for_each_domain_iommu(iommu_id, domain) + break; + + if (iommu_id < 0 || iommu_id >= g_num_of_iommus) + return NULL; + + return g_iommus[iommu_id]; +} + +static void domain_update_iommu_coherency(struct dmar_domain *domain) +{ + struct dmar_drhd_unit *drhd; + struct intel_iommu *iommu; + bool found = false; + int i; + + domain->iommu_coherency = 1; + + for_each_domain_iommu(i, domain) { + found = true; + if (!ecap_coherent(g_iommus[i]->ecap)) { + domain->iommu_coherency = 0; + break; + } + } + if (found) + return; + + /* No hardware attached; use lowest common denominator */ + rcu_read_lock(); + for_each_active_iommu(iommu, drhd) { + if (!ecap_coherent(iommu->ecap)) { + domain->iommu_coherency = 0; + break; + } + } + rcu_read_unlock(); +} + +static int domain_update_iommu_snooping(struct intel_iommu *skip) +{ + struct dmar_drhd_unit *drhd; + struct intel_iommu *iommu; + int ret = 1; + + rcu_read_lock(); + for_each_active_iommu(iommu, drhd) { + if (iommu != skip) { + if (!ecap_sc_support(iommu->ecap)) { + ret = 0; + break; + } + } + } + rcu_read_unlock(); + + return ret; +} + +static int domain_update_iommu_superpage(struct dmar_domain *domain, + struct intel_iommu *skip) +{ + struct dmar_drhd_unit *drhd; + struct intel_iommu *iommu; + int mask = 0x3; + + if (!intel_iommu_superpage) { + return 0; + } + + /* set iommu_superpage to the smallest common denominator */ + rcu_read_lock(); + for_each_active_iommu(iommu, drhd) { + if (iommu != skip) { + if (domain && domain_use_first_level(domain)) { + if (!cap_fl1gp_support(iommu->cap)) + mask = 0x1; + } else { + mask &= cap_super_page_val(iommu->cap); + } + + if (!mask) + break; + } + } + rcu_read_unlock(); + + return fls(mask); +} + +/* Some capabilities may be different across iommus */ +static void domain_update_iommu_cap(struct dmar_domain *domain) +{ + domain_update_iommu_coherency(domain); + domain->iommu_snooping = domain_update_iommu_snooping(NULL); + domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL); +} + +struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus, + u8 devfn, int alloc) +{ + struct root_entry *root = &iommu->root_entry[bus]; + struct context_entry *context; + u64 *entry; + + entry = &root->lo; + if (sm_supported(iommu)) { + if (devfn >= 0x80) { + devfn -= 0x80; + entry = &root->hi; + } + devfn *= 2; + } + if (*entry & 1) + context = phys_to_virt(*entry & VTD_PAGE_MASK); + else { + unsigned long phy_addr; + if (!alloc) + return NULL; + + context = alloc_pgtable_page(iommu->node); + if (!context) + return NULL; + + __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); + phy_addr = virt_to_phys((void *)context); + *entry = phy_addr | 1; + __iommu_flush_cache(iommu, entry, sizeof(*entry)); + } + return &context[devfn]; +} + +static int iommu_dummy(struct device *dev) +{ + return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO; +} + +static bool attach_deferred(struct device *dev) +{ + return dev->archdata.iommu == DEFER_DEVICE_DOMAIN_INFO; +} + +/** + * is_downstream_to_pci_bridge - test if a device belongs to the PCI + * sub-hierarchy of a candidate PCI-PCI bridge + * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy + * @bridge: the candidate PCI-PCI bridge + * + * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false. + */ +static bool +is_downstream_to_pci_bridge(struct device *dev, struct device *bridge) +{ + struct pci_dev *pdev, *pbridge; + + if (!dev_is_pci(dev) || !dev_is_pci(bridge)) + return false; + + pdev = to_pci_dev(dev); + pbridge = to_pci_dev(bridge); + + if (pbridge->subordinate && + pbridge->subordinate->number <= pdev->bus->number && + pbridge->subordinate->busn_res.end >= pdev->bus->number) + return true; + + return false; +} + +static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn) +{ + struct dmar_drhd_unit *drhd = NULL; + struct intel_iommu *iommu; + struct device *tmp; + struct pci_dev *pdev = NULL; + u16 segment = 0; + int i; + + if (iommu_dummy(dev)) + return NULL; + + if (dev_is_pci(dev)) { + struct pci_dev *pf_pdev; + + pdev = pci_real_dma_dev(to_pci_dev(dev)); + + /* VFs aren't listed in scope tables; we need to look up + * the PF instead to find the IOMMU. */ + pf_pdev = pci_physfn(pdev); + dev = &pf_pdev->dev; + segment = pci_domain_nr(pdev->bus); + } else if (has_acpi_companion(dev)) + dev = &ACPI_COMPANION(dev)->dev; + + rcu_read_lock(); + for_each_active_iommu(iommu, drhd) { + if (pdev && segment != drhd->segment) + continue; + + for_each_active_dev_scope(drhd->devices, + drhd->devices_cnt, i, tmp) { + if (tmp == dev) { + /* For a VF use its original BDF# not that of the PF + * which we used for the IOMMU lookup. Strictly speaking + * we could do this for all PCI devices; we only need to + * get the BDF# from the scope table for ACPI matches. */ + if (pdev && pdev->is_virtfn) + goto got_pdev; + + *bus = drhd->devices[i].bus; + *devfn = drhd->devices[i].devfn; + goto out; + } + + if (is_downstream_to_pci_bridge(dev, tmp)) + goto got_pdev; + } + + if (pdev && drhd->include_all) { + got_pdev: + *bus = pdev->bus->number; + *devfn = pdev->devfn; + goto out; + } + } + iommu = NULL; + out: + rcu_read_unlock(); + + return iommu; +} + +static void domain_flush_cache(struct dmar_domain *domain, + void *addr, int size) +{ + if (!domain->iommu_coherency) + clflush_cache_range(addr, size); +} + +static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) +{ + struct context_entry *context; + int ret = 0; + unsigned long flags; + + spin_lock_irqsave(&iommu->lock, flags); + context = iommu_context_addr(iommu, bus, devfn, 0); + if (context) + ret = context_present(context); + spin_unlock_irqrestore(&iommu->lock, flags); + return ret; +} + +static void free_context_table(struct intel_iommu *iommu) +{ + int i; + unsigned long flags; + struct context_entry *context; + + spin_lock_irqsave(&iommu->lock, flags); + if (!iommu->root_entry) { + goto out; + } + for (i = 0; i < ROOT_ENTRY_NR; i++) { + context = iommu_context_addr(iommu, i, 0, 0); + if (context) + free_pgtable_page(context); + + if (!sm_supported(iommu)) + continue; + + context = iommu_context_addr(iommu, i, 0x80, 0); + if (context) + free_pgtable_page(context); + + } + free_pgtable_page(iommu->root_entry); + iommu->root_entry = NULL; +out: + spin_unlock_irqrestore(&iommu->lock, flags); +} + +static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain, + unsigned long pfn, int *target_level) +{ + struct dma_pte *parent, *pte; + int level = agaw_to_level(domain->agaw); + int offset; + + BUG_ON(!domain->pgd); + + if (!domain_pfn_supported(domain, pfn)) + /* Address beyond IOMMU's addressing capabilities. */ + return NULL; + + parent = domain->pgd; + + while (1) { + void *tmp_page; + + offset = pfn_level_offset(pfn, level); + pte = &parent[offset]; + if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte))) + break; + if (level == *target_level) + break; + + if (!dma_pte_present(pte)) { + uint64_t pteval; + + tmp_page = alloc_pgtable_page(domain->nid); + + if (!tmp_page) + return NULL; + + domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE); + pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE; + if (domain_use_first_level(domain)) + pteval |= DMA_FL_PTE_XD; + if (cmpxchg64(&pte->val, 0ULL, pteval)) + /* Someone else set it while we were thinking; use theirs. */ + free_pgtable_page(tmp_page); + else + domain_flush_cache(domain, pte, sizeof(*pte)); + } + if (level == 1) + break; + + parent = phys_to_virt(dma_pte_addr(pte)); + level--; + } + + if (!*target_level) + *target_level = level; + + return pte; +} + +/* return address's pte at specific level */ +static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain, + unsigned long pfn, + int level, int *large_page) +{ + struct dma_pte *parent, *pte; + int total = agaw_to_level(domain->agaw); + int offset; + + parent = domain->pgd; + while (level <= total) { + offset = pfn_level_offset(pfn, total); + pte = &parent[offset]; + if (level == total) + return pte; + + if (!dma_pte_present(pte)) { + *large_page = total; + break; + } + + if (dma_pte_superpage(pte)) { + *large_page = total; + return pte; + } + + parent = phys_to_virt(dma_pte_addr(pte)); + total--; + } + return NULL; +} + +/* clear last level pte, a tlb flush should be followed */ +static void dma_pte_clear_range(struct dmar_domain *domain, + unsigned long start_pfn, + unsigned long last_pfn) +{ + unsigned int large_page; + struct dma_pte *first_pte, *pte; + + BUG_ON(!domain_pfn_supported(domain, start_pfn)); + BUG_ON(!domain_pfn_supported(domain, last_pfn)); + BUG_ON(start_pfn > last_pfn); + + /* we don't need lock here; nobody else touches the iova range */ + do { + large_page = 1; + first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page); + if (!pte) { + start_pfn = align_to_level(start_pfn + 1, large_page + 1); + continue; + } + do { + dma_clear_pte(pte); + start_pfn += lvl_to_nr_pages(large_page); + pte++; + } while (start_pfn <= last_pfn && !first_pte_in_page(pte)); + + domain_flush_cache(domain, first_pte, + (void *)pte - (void *)first_pte); + + } while (start_pfn && start_pfn <= last_pfn); +} + +static void dma_pte_free_level(struct dmar_domain *domain, int level, + int retain_level, struct dma_pte *pte, + unsigned long pfn, unsigned long start_pfn, + unsigned long last_pfn) +{ + pfn = max(start_pfn, pfn); + pte = &pte[pfn_level_offset(pfn, level)]; + + do { + unsigned long level_pfn; + struct dma_pte *level_pte; + + if (!dma_pte_present(pte) || dma_pte_superpage(pte)) + goto next; + + level_pfn = pfn & level_mask(level); + level_pte = phys_to_virt(dma_pte_addr(pte)); + + if (level > 2) { + dma_pte_free_level(domain, level - 1, retain_level, + level_pte, level_pfn, start_pfn, + last_pfn); + } + + /* + * Free the page table if we're below the level we want to + * retain and the range covers the entire table. + */ + if (level < retain_level && !(start_pfn > level_pfn || + last_pfn < level_pfn + level_size(level) - 1)) { + dma_clear_pte(pte); + domain_flush_cache(domain, pte, sizeof(*pte)); + free_pgtable_page(level_pte); + } +next: + pfn += level_size(level); + } while (!first_pte_in_page(++pte) && pfn <= last_pfn); +} + +/* + * clear last level (leaf) ptes and free page table pages below the + * level we wish to keep intact. + */ +static void dma_pte_free_pagetable(struct dmar_domain *domain, + unsigned long start_pfn, + unsigned long last_pfn, + int retain_level) +{ + BUG_ON(!domain_pfn_supported(domain, start_pfn)); + BUG_ON(!domain_pfn_supported(domain, last_pfn)); + BUG_ON(start_pfn > last_pfn); + + dma_pte_clear_range(domain, start_pfn, last_pfn); + + /* We don't need lock here; nobody else touches the iova range */ + dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level, + domain->pgd, 0, start_pfn, last_pfn); + + /* free pgd */ + if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { + free_pgtable_page(domain->pgd); + domain->pgd = NULL; + } +} + +/* When a page at a given level is being unlinked from its parent, we don't + need to *modify* it at all. All we need to do is make a list of all the + pages which can be freed just as soon as we've flushed the IOTLB and we + know the hardware page-walk will no longer touch them. + The 'pte' argument is the *parent* PTE, pointing to the page that is to + be freed. */ +static struct page *dma_pte_list_pagetables(struct dmar_domain *domain, + int level, struct dma_pte *pte, + struct page *freelist) +{ + struct page *pg; + + pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT); + pg->freelist = freelist; + freelist = pg; + + if (level == 1) + return freelist; + + pte = page_address(pg); + do { + if (dma_pte_present(pte) && !dma_pte_superpage(pte)) + freelist = dma_pte_list_pagetables(domain, level - 1, + pte, freelist); + pte++; + } while (!first_pte_in_page(pte)); + + return freelist; +} + +static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level, + struct dma_pte *pte, unsigned long pfn, + unsigned long start_pfn, + unsigned long last_pfn, + struct page *freelist) +{ + struct dma_pte *first_pte = NULL, *last_pte = NULL; + + pfn = max(start_pfn, pfn); + pte = &pte[pfn_level_offset(pfn, level)]; + + do { + unsigned long level_pfn; + + if (!dma_pte_present(pte)) + goto next; + + level_pfn = pfn & level_mask(level); + + /* If range covers entire pagetable, free it */ + if (start_pfn <= level_pfn && + last_pfn >= level_pfn + level_size(level) - 1) { + /* These suborbinate page tables are going away entirely. Don't + bother to clear them; we're just going to *free* them. */ + if (level > 1 && !dma_pte_superpage(pte)) + freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist); + + dma_clear_pte(pte); + if (!first_pte) + first_pte = pte; + last_pte = pte; + } else if (level > 1) { + /* Recurse down into a level that isn't *entirely* obsolete */ + freelist = dma_pte_clear_level(domain, level - 1, + phys_to_virt(dma_pte_addr(pte)), + level_pfn, start_pfn, last_pfn, + freelist); + } +next: + pfn += level_size(level); + } while (!first_pte_in_page(++pte) && pfn <= last_pfn); + + if (first_pte) + domain_flush_cache(domain, first_pte, + (void *)++last_pte - (void *)first_pte); + + return freelist; +} + +/* We can't just free the pages because the IOMMU may still be walking + the page tables, and may have cached the intermediate levels. The + pages can only be freed after the IOTLB flush has been done. */ +static struct page *domain_unmap(struct dmar_domain *domain, + unsigned long start_pfn, + unsigned long last_pfn) +{ + struct page *freelist; + + BUG_ON(!domain_pfn_supported(domain, start_pfn)); + BUG_ON(!domain_pfn_supported(domain, last_pfn)); + BUG_ON(start_pfn > last_pfn); + + /* we don't need lock here; nobody else touches the iova range */ + freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw), + domain->pgd, 0, start_pfn, last_pfn, NULL); + + /* free pgd */ + if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { + struct page *pgd_page = virt_to_page(domain->pgd); + pgd_page->freelist = freelist; + freelist = pgd_page; + + domain->pgd = NULL; + } + + return freelist; +} + +static void dma_free_pagelist(struct page *freelist) +{ + struct page *pg; + + while ((pg = freelist)) { + freelist = pg->freelist; + free_pgtable_page(page_address(pg)); + } +} + +static void iova_entry_free(unsigned long data) +{ + struct page *freelist = (struct page *)data; + + dma_free_pagelist(freelist); +} + +/* iommu handling */ +static int iommu_alloc_root_entry(struct intel_iommu *iommu) +{ + struct root_entry *root; + unsigned long flags; + + root = (struct root_entry *)alloc_pgtable_page(iommu->node); + if (!root) { + pr_err("Allocating root entry for %s failed\n", + iommu->name); + return -ENOMEM; + } + + __iommu_flush_cache(iommu, root, ROOT_SIZE); + + spin_lock_irqsave(&iommu->lock, flags); + iommu->root_entry = root; + spin_unlock_irqrestore(&iommu->lock, flags); + + return 0; +} + +static void iommu_set_root_entry(struct intel_iommu *iommu) +{ + u64 addr; + u32 sts; + unsigned long flag; + + addr = virt_to_phys(iommu->root_entry); + if (sm_supported(iommu)) + addr |= DMA_RTADDR_SMT; + + raw_spin_lock_irqsave(&iommu->register_lock, flag); + dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr); + + writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG); + + /* Make sure hardware complete it */ + IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, + readl, (sts & DMA_GSTS_RTPS), sts); + + raw_spin_unlock_irqrestore(&iommu->register_lock, flag); +} + +void iommu_flush_write_buffer(struct intel_iommu *iommu) +{ + u32 val; + unsigned long flag; + + if (!rwbf_quirk && !cap_rwbf(iommu->cap)) + return; + + raw_spin_lock_irqsave(&iommu->register_lock, flag); + writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG); + + /* Make sure hardware complete it */ + IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, + readl, (!(val & DMA_GSTS_WBFS)), val); + + raw_spin_unlock_irqrestore(&iommu->register_lock, flag); +} + +/* return value determine if we need a write buffer flush */ +static void __iommu_flush_context(struct intel_iommu *iommu, + u16 did, u16 source_id, u8 function_mask, + u64 type) +{ + u64 val = 0; + unsigned long flag; + + switch (type) { + case DMA_CCMD_GLOBAL_INVL: + val = DMA_CCMD_GLOBAL_INVL; + break; + case DMA_CCMD_DOMAIN_INVL: + val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); + break; + case DMA_CCMD_DEVICE_INVL: + val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) + | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); + break; + default: + BUG(); + } + val |= DMA_CCMD_ICC; + + raw_spin_lock_irqsave(&iommu->register_lock, flag); + dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); + + /* Make sure hardware complete it */ + IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, + dmar_readq, (!(val & DMA_CCMD_ICC)), val); + + raw_spin_unlock_irqrestore(&iommu->register_lock, flag); +} + +/* return value determine if we need a write buffer flush */ +static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, + u64 addr, unsigned int size_order, u64 type) +{ + int tlb_offset = ecap_iotlb_offset(iommu->ecap); + u64 val = 0, val_iva = 0; + unsigned long flag; + + switch (type) { + case DMA_TLB_GLOBAL_FLUSH: + /* global flush doesn't need set IVA_REG */ + val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; + break; + case DMA_TLB_DSI_FLUSH: + val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); + break; + case DMA_TLB_PSI_FLUSH: + val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); + /* IH bit is passed in as part of address */ + val_iva = size_order | addr; + break; + default: + BUG(); + } + /* Note: set drain read/write */ +#if 0 + /* + * This is probably to be super secure.. Looks like we can + * ignore it without any impact. + */ + if (cap_read_drain(iommu->cap)) + val |= DMA_TLB_READ_DRAIN; +#endif + if (cap_write_drain(iommu->cap)) + val |= DMA_TLB_WRITE_DRAIN; + + raw_spin_lock_irqsave(&iommu->register_lock, flag); + /* Note: Only uses first TLB reg currently */ + if (val_iva) + dmar_writeq(iommu->reg + tlb_offset, val_iva); + dmar_writeq(iommu->reg + tlb_offset + 8, val); + + /* Make sure hardware complete it */ + IOMMU_WAIT_OP(iommu, tlb_offset + 8, + dmar_readq, (!(val & DMA_TLB_IVT)), val); + + raw_spin_unlock_irqrestore(&iommu->register_lock, flag); + + /* check IOTLB invalidation granularity */ + if (DMA_TLB_IAIG(val) == 0) + pr_err("Flush IOTLB failed\n"); + if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) + pr_debug("TLB flush request %Lx, actual %Lx\n", + (unsigned long long)DMA_TLB_IIRG(type), + (unsigned long long)DMA_TLB_IAIG(val)); +} + +static struct device_domain_info * +iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu, + u8 bus, u8 devfn) +{ + struct device_domain_info *info; + + assert_spin_locked(&device_domain_lock); + + if (!iommu->qi) + return NULL; + + list_for_each_entry(info, &domain->devices, link) + if (info->iommu == iommu && info->bus == bus && + info->devfn == devfn) { + if (info->ats_supported && info->dev) + return info; + break; + } + + return NULL; +} + +static void domain_update_iotlb(struct dmar_domain *domain) +{ + struct device_domain_info *info; + bool has_iotlb_device = false; + + assert_spin_locked(&device_domain_lock); + + list_for_each_entry(info, &domain->devices, link) { + struct pci_dev *pdev; + + if (!info->dev || !dev_is_pci(info->dev)) + continue; + + pdev = to_pci_dev(info->dev); + if (pdev->ats_enabled) { + has_iotlb_device = true; + break; + } + } + + domain->has_iotlb_device = has_iotlb_device; +} + +static void iommu_enable_dev_iotlb(struct device_domain_info *info) +{ + struct pci_dev *pdev; + + assert_spin_locked(&device_domain_lock); + + if (!info || !dev_is_pci(info->dev)) + return; + + pdev = to_pci_dev(info->dev); + /* For IOMMU that supports device IOTLB throttling (DIT), we assign + * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge + * queue depth at PF level. If DIT is not set, PFSID will be treated as + * reserved, which should be set to 0. + */ + if (!ecap_dit(info->iommu->ecap)) + info->pfsid = 0; + else { + struct pci_dev *pf_pdev; + + /* pdev will be returned if device is not a vf */ + pf_pdev = pci_physfn(pdev); + info->pfsid = pci_dev_id(pf_pdev); + } + +#ifdef CONFIG_INTEL_IOMMU_SVM + /* The PCIe spec, in its wisdom, declares that the behaviour of + the device if you enable PASID support after ATS support is + undefined. So always enable PASID support on devices which + have it, even if we can't yet know if we're ever going to + use it. */ + if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1)) + info->pasid_enabled = 1; + + if (info->pri_supported && + (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1) && + !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) + info->pri_enabled = 1; +#endif + if (info->ats_supported && pci_ats_page_aligned(pdev) && + !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) { + info->ats_enabled = 1; + domain_update_iotlb(info->domain); + info->ats_qdep = pci_ats_queue_depth(pdev); + } +} + +static void iommu_disable_dev_iotlb(struct device_domain_info *info) +{ + struct pci_dev *pdev; + + assert_spin_locked(&device_domain_lock); + + if (!dev_is_pci(info->dev)) + return; + + pdev = to_pci_dev(info->dev); + + if (info->ats_enabled) { + pci_disable_ats(pdev); + info->ats_enabled = 0; + domain_update_iotlb(info->domain); + } +#ifdef CONFIG_INTEL_IOMMU_SVM + if (info->pri_enabled) { + pci_disable_pri(pdev); + info->pri_enabled = 0; + } + if (info->pasid_enabled) { + pci_disable_pasid(pdev); + info->pasid_enabled = 0; + } +#endif +} + +static void iommu_flush_dev_iotlb(struct dmar_domain *domain, + u64 addr, unsigned mask) +{ + u16 sid, qdep; + unsigned long flags; + struct device_domain_info *info; + + if (!domain->has_iotlb_device) + return; + + spin_lock_irqsave(&device_domain_lock, flags); + list_for_each_entry(info, &domain->devices, link) { + if (!info->ats_enabled) + continue; + + sid = info->bus << 8 | info->devfn; + qdep = info->ats_qdep; + qi_flush_dev_iotlb(info->iommu, sid, info->pfsid, + qdep, addr, mask); + } + spin_unlock_irqrestore(&device_domain_lock, flags); +} + +static void domain_flush_piotlb(struct intel_iommu *iommu, + struct dmar_domain *domain, + u64 addr, unsigned long npages, bool ih) +{ + u16 did = domain->iommu_did[iommu->seq_id]; + + if (domain->default_pasid) + qi_flush_piotlb(iommu, did, domain->default_pasid, + addr, npages, ih); + + if (!list_empty(&domain->devices)) + qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, npages, ih); +} + +static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, + struct dmar_domain *domain, + unsigned long pfn, unsigned int pages, + int ih, int map) +{ + unsigned int mask = ilog2(__roundup_pow_of_two(pages)); + uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT; + u16 did = domain->iommu_did[iommu->seq_id]; + + BUG_ON(pages == 0); + + if (ih) + ih = 1 << 6; + + if (domain_use_first_level(domain)) { + domain_flush_piotlb(iommu, domain, addr, pages, ih); + } else { + /* + * Fallback to domain selective flush if no PSI support or + * the size is too big. PSI requires page size to be 2 ^ x, + * and the base address is naturally aligned to the size. + */ + if (!cap_pgsel_inv(iommu->cap) || + mask > cap_max_amask_val(iommu->cap)) + iommu->flush.flush_iotlb(iommu, did, 0, 0, + DMA_TLB_DSI_FLUSH); + else + iommu->flush.flush_iotlb(iommu, did, addr | ih, mask, + DMA_TLB_PSI_FLUSH); + } + + /* + * In caching mode, changes of pages from non-present to present require + * flush. However, device IOTLB doesn't need to be flushed in this case. + */ + if (!cap_caching_mode(iommu->cap) || !map) + iommu_flush_dev_iotlb(domain, addr, mask); +} + +/* Notification for newly created mappings */ +static inline void __mapping_notify_one(struct intel_iommu *iommu, + struct dmar_domain *domain, + unsigned long pfn, unsigned int pages) +{ + /* + * It's a non-present to present mapping. Only flush if caching mode + * and second level. + */ + if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain)) + iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1); + else + iommu_flush_write_buffer(iommu); +} + +static void iommu_flush_iova(struct iova_domain *iovad) +{ + struct dmar_domain *domain; + int idx; + + domain = container_of(iovad, struct dmar_domain, iovad); + + for_each_domain_iommu(idx, domain) { + struct intel_iommu *iommu = g_iommus[idx]; + u16 did = domain->iommu_did[iommu->seq_id]; + + if (domain_use_first_level(domain)) + domain_flush_piotlb(iommu, domain, 0, -1, 0); + else + iommu->flush.flush_iotlb(iommu, did, 0, 0, + DMA_TLB_DSI_FLUSH); + + if (!cap_caching_mode(iommu->cap)) + iommu_flush_dev_iotlb(get_iommu_domain(iommu, did), + 0, MAX_AGAW_PFN_WIDTH); + } +} + +static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) +{ + u32 pmen; + unsigned long flags; + + if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap)) + return; + + raw_spin_lock_irqsave(&iommu->register_lock, flags); + pmen = readl(iommu->reg + DMAR_PMEN_REG); + pmen &= ~DMA_PMEN_EPM; + writel(pmen, iommu->reg + DMAR_PMEN_REG); + + /* wait for the protected region status bit to clear */ + IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, + readl, !(pmen & DMA_PMEN_PRS), pmen); + + raw_spin_unlock_irqrestore(&iommu->register_lock, flags); +} + +static void iommu_enable_translation(struct intel_iommu *iommu) +{ + u32 sts; + unsigned long flags; + + raw_spin_lock_irqsave(&iommu->register_lock, flags); + iommu->gcmd |= DMA_GCMD_TE; + writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); + + /* Make sure hardware complete it */ + IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, + readl, (sts & DMA_GSTS_TES), sts); + + raw_spin_unlock_irqrestore(&iommu->register_lock, flags); +} + +static void iommu_disable_translation(struct intel_iommu *iommu) +{ + u32 sts; + unsigned long flag; + + raw_spin_lock_irqsave(&iommu->register_lock, flag); + iommu->gcmd &= ~DMA_GCMD_TE; + writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); + + /* Make sure hardware complete it */ + IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, + readl, (!(sts & DMA_GSTS_TES)), sts); + + raw_spin_unlock_irqrestore(&iommu->register_lock, flag); +} + +static int iommu_init_domains(struct intel_iommu *iommu) +{ + u32 ndomains, nlongs; + size_t size; + + ndomains = cap_ndoms(iommu->cap); + pr_debug("%s: Number of Domains supported <%d>\n", + iommu->name, ndomains); + nlongs = BITS_TO_LONGS(ndomains); + + spin_lock_init(&iommu->lock); + + iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL); + if (!iommu->domain_ids) { + pr_err("%s: Allocating domain id array failed\n", + iommu->name); + return -ENOMEM; + } + + size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **); + iommu->domains = kzalloc(size, GFP_KERNEL); + + if (iommu->domains) { + size = 256 * sizeof(struct dmar_domain *); + iommu->domains[0] = kzalloc(size, GFP_KERNEL); + } + + if (!iommu->domains || !iommu->domains[0]) { + pr_err("%s: Allocating domain array failed\n", + iommu->name); + kfree(iommu->domain_ids); + kfree(iommu->domains); + iommu->domain_ids = NULL; + iommu->domains = NULL; + return -ENOMEM; + } + + /* + * If Caching mode is set, then invalid translations are tagged + * with domain-id 0, hence we need to pre-allocate it. We also + * use domain-id 0 as a marker for non-allocated domain-id, so + * make sure it is not used for a real domain. + */ + set_bit(0, iommu->domain_ids); + + /* + * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid + * entry for first-level or pass-through translation modes should + * be programmed with a domain id different from those used for + * second-level or nested translation. We reserve a domain id for + * this purpose. + */ + if (sm_supported(iommu)) + set_bit(FLPT_DEFAULT_DID, iommu->domain_ids); + + return 0; +} + +static void disable_dmar_iommu(struct intel_iommu *iommu) +{ + struct device_domain_info *info, *tmp; + unsigned long flags; + + if (!iommu->domains || !iommu->domain_ids) + return; + + spin_lock_irqsave(&device_domain_lock, flags); + list_for_each_entry_safe(info, tmp, &device_domain_list, global) { + if (info->iommu != iommu) + continue; + + if (!info->dev || !info->domain) + continue; + + __dmar_remove_one_dev_info(info); + } + spin_unlock_irqrestore(&device_domain_lock, flags); + + if (iommu->gcmd & DMA_GCMD_TE) + iommu_disable_translation(iommu); +} + +static void free_dmar_iommu(struct intel_iommu *iommu) +{ + if ((iommu->domains) && (iommu->domain_ids)) { + int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8; + int i; + + for (i = 0; i < elems; i++) + kfree(iommu->domains[i]); + kfree(iommu->domains); + kfree(iommu->domain_ids); + iommu->domains = NULL; + iommu->domain_ids = NULL; + } + + g_iommus[iommu->seq_id] = NULL; + + /* free context mapping */ + free_context_table(iommu); + +#ifdef CONFIG_INTEL_IOMMU_SVM + if (pasid_supported(iommu)) { + if (ecap_prs(iommu->ecap)) + intel_svm_finish_prq(iommu); + } + if (ecap_vcs(iommu->ecap) && vccap_pasid(iommu->vccap)) + ioasid_unregister_allocator(&iommu->pasid_allocator); + +#endif +} + +/* + * Check and return whether first level is used by default for + * DMA translation. + */ +static bool first_level_by_default(void) +{ + struct dmar_drhd_unit *drhd; + struct intel_iommu *iommu; + static int first_level_support = -1; + + if (likely(first_level_support != -1)) + return first_level_support; + + first_level_support = 1; + + rcu_read_lock(); + for_each_active_iommu(iommu, drhd) { + if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) { + first_level_support = 0; + break; + } + } + rcu_read_unlock(); + + return first_level_support; +} + +static struct dmar_domain *alloc_domain(int flags) +{ + struct dmar_domain *domain; + + domain = alloc_domain_mem(); + if (!domain) + return NULL; + + memset(domain, 0, sizeof(*domain)); + domain->nid = NUMA_NO_NODE; + domain->flags = flags; + if (first_level_by_default()) + domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL; + domain->has_iotlb_device = false; + INIT_LIST_HEAD(&domain->devices); + + return domain; +} + +/* Must be called with iommu->lock */ +static int domain_attach_iommu(struct dmar_domain *domain, + struct intel_iommu *iommu) +{ + unsigned long ndomains; + int num; + + assert_spin_locked(&device_domain_lock); + assert_spin_locked(&iommu->lock); + + domain->iommu_refcnt[iommu->seq_id] += 1; + domain->iommu_count += 1; + if (domain->iommu_refcnt[iommu->seq_id] == 1) { + ndomains = cap_ndoms(iommu->cap); + num = find_first_zero_bit(iommu->domain_ids, ndomains); + + if (num >= ndomains) { + pr_err("%s: No free domain ids\n", iommu->name); + domain->iommu_refcnt[iommu->seq_id] -= 1; + domain->iommu_count -= 1; + return -ENOSPC; + } + + set_bit(num, iommu->domain_ids); + set_iommu_domain(iommu, num, domain); + + domain->iommu_did[iommu->seq_id] = num; + domain->nid = iommu->node; + + domain_update_iommu_cap(domain); + } + + return 0; +} + +static int domain_detach_iommu(struct dmar_domain *domain, + struct intel_iommu *iommu) +{ + int num, count; + + assert_spin_locked(&device_domain_lock); + assert_spin_locked(&iommu->lock); + + domain->iommu_refcnt[iommu->seq_id] -= 1; + count = --domain->iommu_count; + if (domain->iommu_refcnt[iommu->seq_id] == 0) { + num = domain->iommu_did[iommu->seq_id]; + clear_bit(num, iommu->domain_ids); + set_iommu_domain(iommu, num, NULL); + + domain_update_iommu_cap(domain); + domain->iommu_did[iommu->seq_id] = 0; + } + + return count; +} + +static struct iova_domain reserved_iova_list; +static struct lock_class_key reserved_rbtree_key; + +static int dmar_init_reserved_ranges(void) +{ + struct pci_dev *pdev = NULL; + struct iova *iova; + int i; + + init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN); + + lockdep_set_class(&reserved_iova_list.iova_rbtree_lock, + &reserved_rbtree_key); + + /* IOAPIC ranges shouldn't be accessed by DMA */ + iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START), + IOVA_PFN(IOAPIC_RANGE_END)); + if (!iova) { + pr_err("Reserve IOAPIC range failed\n"); + return -ENODEV; + } + + /* Reserve all PCI MMIO to avoid peer-to-peer access */ + for_each_pci_dev(pdev) { + struct resource *r; + + for (i = 0; i < PCI_NUM_RESOURCES; i++) { + r = &pdev->resource[i]; + if (!r->flags || !(r->flags & IORESOURCE_MEM)) + continue; + iova = reserve_iova(&reserved_iova_list, + IOVA_PFN(r->start), + IOVA_PFN(r->end)); + if (!iova) { + pci_err(pdev, "Reserve iova for %pR failed\n", r); + return -ENODEV; + } + } + } + return 0; +} + +static inline int guestwidth_to_adjustwidth(int gaw) +{ + int agaw; + int r = (gaw - 12) % 9; + + if (r == 0) + agaw = gaw; + else + agaw = gaw + 9 - r; + if (agaw > 64) + agaw = 64; + return agaw; +} + +static void domain_exit(struct dmar_domain *domain) +{ + + /* Remove associated devices and clear attached or cached domains */ + domain_remove_dev_info(domain); + + /* destroy iovas */ + if (domain->domain.type == IOMMU_DOMAIN_DMA) + put_iova_domain(&domain->iovad); + + if (domain->pgd) { + struct page *freelist; + + freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); + dma_free_pagelist(freelist); + } + + free_domain_mem(domain); +} + +/* + * Get the PASID directory size for scalable mode context entry. + * Value of X in the PDTS field of a scalable mode context entry + * indicates PASID directory with 2^(X + 7) entries. + */ +static inline unsigned long context_get_sm_pds(struct pasid_table *table) +{ + int pds, max_pde; + + max_pde = table->max_pasid >> PASID_PDE_SHIFT; + pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS); + if (pds < 7) + return 0; + + return pds - 7; +} + +/* + * Set the RID_PASID field of a scalable mode context entry. The + * IOMMU hardware will use the PASID value set in this field for + * DMA translations of DMA requests without PASID. + */ +static inline void +context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid) +{ + context->hi |= pasid & ((1 << 20) - 1); + context->hi |= (1 << 20); +} + +/* + * Set the DTE(Device-TLB Enable) field of a scalable mode context + * entry. + */ +static inline void context_set_sm_dte(struct context_entry *context) +{ + context->lo |= (1 << 2); +} + +/* + * Set the PRE(Page Request Enable) field of a scalable mode context + * entry. + */ +static inline void context_set_sm_pre(struct context_entry *context) +{ + context->lo |= (1 << 4); +} + +/* Convert value to context PASID directory size field coding. */ +#define context_pdts(pds) (((pds) & 0x7) << 9) + +static int domain_context_mapping_one(struct dmar_domain *domain, + struct intel_iommu *iommu, + struct pasid_table *table, + u8 bus, u8 devfn) +{ + u16 did = domain->iommu_did[iommu->seq_id]; + int translation = CONTEXT_TT_MULTI_LEVEL; + struct device_domain_info *info = NULL; + struct context_entry *context; + unsigned long flags; + int ret; + + WARN_ON(did == 0); + + if (hw_pass_through && domain_type_is_si(domain)) + translation = CONTEXT_TT_PASS_THROUGH; + + pr_debug("Set context mapping for %02x:%02x.%d\n", + bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); + + BUG_ON(!domain->pgd); + + spin_lock_irqsave(&device_domain_lock, flags); + spin_lock(&iommu->lock); + + ret = -ENOMEM; + context = iommu_context_addr(iommu, bus, devfn, 1); + if (!context) + goto out_unlock; + + ret = 0; + if (context_present(context)) + goto out_unlock; + + /* + * For kdump cases, old valid entries may be cached due to the + * in-flight DMA and copied pgtable, but there is no unmapping + * behaviour for them, thus we need an explicit cache flush for + * the newly-mapped device. For kdump, at this point, the device + * is supposed to finish reset at its driver probe stage, so no + * in-flight DMA will exist, and we don't need to worry anymore + * hereafter. + */ + if (context_copied(context)) { + u16 did_old = context_domain_id(context); + + if (did_old < cap_ndoms(iommu->cap)) { + iommu->flush.flush_context(iommu, did_old, + (((u16)bus) << 8) | devfn, + DMA_CCMD_MASK_NOBIT, + DMA_CCMD_DEVICE_INVL); + iommu->flush.flush_iotlb(iommu, did_old, 0, 0, + DMA_TLB_DSI_FLUSH); + } + } + + context_clear_entry(context); + + if (sm_supported(iommu)) { + unsigned long pds; + + WARN_ON(!table); + + /* Setup the PASID DIR pointer: */ + pds = context_get_sm_pds(table); + context->lo = (u64)virt_to_phys(table->table) | + context_pdts(pds); + + /* Setup the RID_PASID field: */ + context_set_sm_rid2pasid(context, PASID_RID2PASID); + + /* + * Setup the Device-TLB enable bit and Page request + * Enable bit: + */ + info = iommu_support_dev_iotlb(domain, iommu, bus, devfn); + if (info && info->ats_supported) + context_set_sm_dte(context); + if (info && info->pri_supported) + context_set_sm_pre(context); + } else { + struct dma_pte *pgd = domain->pgd; + int agaw; + + context_set_domain_id(context, did); + + if (translation != CONTEXT_TT_PASS_THROUGH) { + /* + * Skip top levels of page tables for iommu which has + * less agaw than default. Unnecessary for PT mode. + */ + for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { + ret = -ENOMEM; + pgd = phys_to_virt(dma_pte_addr(pgd)); + if (!dma_pte_present(pgd)) + goto out_unlock; + } + + info = iommu_support_dev_iotlb(domain, iommu, bus, devfn); + if (info && info->ats_supported) + translation = CONTEXT_TT_DEV_IOTLB; + else + translation = CONTEXT_TT_MULTI_LEVEL; + + context_set_address_root(context, virt_to_phys(pgd)); + context_set_address_width(context, agaw); + } else { + /* + * In pass through mode, AW must be programmed to + * indicate the largest AGAW value supported by + * hardware. And ASR is ignored by hardware. + */ + context_set_address_width(context, iommu->msagaw); + } + + context_set_translation_type(context, translation); + } + + context_set_fault_enable(context); + context_set_present(context); + domain_flush_cache(domain, context, sizeof(*context)); + + /* + * It's a non-present to present mapping. If hardware doesn't cache + * non-present entry we only need to flush the write-buffer. If the + * _does_ cache non-present entries, then it does so in the special + * domain #0, which we have to flush: + */ + if (cap_caching_mode(iommu->cap)) { + iommu->flush.flush_context(iommu, 0, + (((u16)bus) << 8) | devfn, + DMA_CCMD_MASK_NOBIT, + DMA_CCMD_DEVICE_INVL); + iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH); + } else { + iommu_flush_write_buffer(iommu); + } + iommu_enable_dev_iotlb(info); + + ret = 0; + +out_unlock: + spin_unlock(&iommu->lock); + spin_unlock_irqrestore(&device_domain_lock, flags); + + return ret; +} + +struct domain_context_mapping_data { + struct dmar_domain *domain; + struct intel_iommu *iommu; + struct pasid_table *table; +}; + +static int domain_context_mapping_cb(struct pci_dev *pdev, + u16 alias, void *opaque) +{ + struct domain_context_mapping_data *data = opaque; + + return domain_context_mapping_one(data->domain, data->iommu, + data->table, PCI_BUS_NUM(alias), + alias & 0xff); +} + +static int +domain_context_mapping(struct dmar_domain *domain, struct device *dev) +{ + struct domain_context_mapping_data data; + struct pasid_table *table; + struct intel_iommu *iommu; + u8 bus, devfn; + + iommu = device_to_iommu(dev, &bus, &devfn); + if (!iommu) + return -ENODEV; + + table = intel_pasid_get_table(dev); + + if (!dev_is_pci(dev)) + return domain_context_mapping_one(domain, iommu, table, + bus, devfn); + + data.domain = domain; + data.iommu = iommu; + data.table = table; + + return pci_for_each_dma_alias(to_pci_dev(dev), + &domain_context_mapping_cb, &data); +} + +static int domain_context_mapped_cb(struct pci_dev *pdev, + u16 alias, void *opaque) +{ + struct intel_iommu *iommu = opaque; + + return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff); +} + +static int domain_context_mapped(struct device *dev) +{ + struct intel_iommu *iommu; + u8 bus, devfn; + + iommu = device_to_iommu(dev, &bus, &devfn); + if (!iommu) + return -ENODEV; + + if (!dev_is_pci(dev)) + return device_context_mapped(iommu, bus, devfn); + + return !pci_for_each_dma_alias(to_pci_dev(dev), + domain_context_mapped_cb, iommu); +} + +/* Returns a number of VTD pages, but aligned to MM page size */ +static inline unsigned long aligned_nrpages(unsigned long host_addr, + size_t size) +{ + host_addr &= ~PAGE_MASK; + return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT; +} + +/* Return largest possible superpage level for a given mapping */ +static inline int hardware_largepage_caps(struct dmar_domain *domain, + unsigned long iov_pfn, + unsigned long phy_pfn, + unsigned long pages) +{ + int support, level = 1; + unsigned long pfnmerge; + + support = domain->iommu_superpage; + + /* To use a large page, the virtual *and* physical addresses + must be aligned to 2MiB/1GiB/etc. Lower bits set in either + of them will mean we have to use smaller pages. So just + merge them and check both at once. */ + pfnmerge = iov_pfn | phy_pfn; + + while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) { + pages >>= VTD_STRIDE_SHIFT; + if (!pages) + break; + pfnmerge >>= VTD_STRIDE_SHIFT; + level++; + support--; + } + return level; +} + +static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, + struct scatterlist *sg, unsigned long phys_pfn, + unsigned long nr_pages, int prot) +{ + struct dma_pte *first_pte = NULL, *pte = NULL; + phys_addr_t uninitialized_var(pteval); + unsigned long sg_res = 0; + unsigned int largepage_lvl = 0; + unsigned long lvl_pages = 0; + u64 attr; + + BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1)); + + if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) + return -EINVAL; + + attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP); + if (domain_use_first_level(domain)) + attr |= DMA_FL_PTE_PRESENT | DMA_FL_PTE_XD; + + if (!sg) { + sg_res = nr_pages; + pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr; + } + + while (nr_pages > 0) { + uint64_t tmp; + + if (!sg_res) { + unsigned int pgoff = sg->offset & ~PAGE_MASK; + + sg_res = aligned_nrpages(sg->offset, sg->length); + sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff; + sg->dma_length = sg->length; + pteval = (sg_phys(sg) - pgoff) | attr; + phys_pfn = pteval >> VTD_PAGE_SHIFT; + } + + if (!pte) { + largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res); + + first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl); + if (!pte) + return -ENOMEM; + /* It is large page*/ + if (largepage_lvl > 1) { + unsigned long nr_superpages, end_pfn; + + pteval |= DMA_PTE_LARGE_PAGE; + lvl_pages = lvl_to_nr_pages(largepage_lvl); + + nr_superpages = sg_res / lvl_pages; + end_pfn = iov_pfn + nr_superpages * lvl_pages - 1; + + /* + * Ensure that old small page tables are + * removed to make room for superpage(s). + * We're adding new large pages, so make sure + * we don't remove their parent tables. + */ + dma_pte_free_pagetable(domain, iov_pfn, end_pfn, + largepage_lvl + 1); + } else { + pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE; + } + + } + /* We don't need lock here, nobody else + * touches the iova range + */ + tmp = cmpxchg64_local(&pte->val, 0ULL, pteval); + if (tmp) { + static int dumps = 5; + pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n", + iov_pfn, tmp, (unsigned long long)pteval); + if (dumps) { + dumps--; + debug_dma_dump_mappings(NULL); + } + WARN_ON(1); + } + + lvl_pages = lvl_to_nr_pages(largepage_lvl); + + BUG_ON(nr_pages < lvl_pages); + BUG_ON(sg_res < lvl_pages); + + nr_pages -= lvl_pages; + iov_pfn += lvl_pages; + phys_pfn += lvl_pages; + pteval += lvl_pages * VTD_PAGE_SIZE; + sg_res -= lvl_pages; + + /* If the next PTE would be the first in a new page, then we + need to flush the cache on the entries we've just written. + And then we'll need to recalculate 'pte', so clear it and + let it get set again in the if (!pte) block above. + + If we're done (!nr_pages) we need to flush the cache too. + + Also if we've been setting superpages, we may need to + recalculate 'pte' and switch back to smaller pages for the + end of the mapping, if the trailing size is not enough to + use another superpage (i.e. sg_res < lvl_pages). */ + pte++; + if (!nr_pages || first_pte_in_page(pte) || + (largepage_lvl > 1 && sg_res < lvl_pages)) { + domain_flush_cache(domain, first_pte, + (void *)pte - (void *)first_pte); + pte = NULL; + } + + if (!sg_res && nr_pages) + sg = sg_next(sg); + } + return 0; +} + +static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, + struct scatterlist *sg, unsigned long phys_pfn, + unsigned long nr_pages, int prot) +{ + int iommu_id, ret; + struct intel_iommu *iommu; + + /* Do the real mapping first */ + ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot); + if (ret) + return ret; + + for_each_domain_iommu(iommu_id, domain) { + iommu = g_iommus[iommu_id]; + __mapping_notify_one(iommu, domain, iov_pfn, nr_pages); + } + + return 0; +} + +static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn, + struct scatterlist *sg, unsigned long nr_pages, + int prot) +{ + return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot); +} + +static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn, + unsigned long phys_pfn, unsigned long nr_pages, + int prot) +{ + return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot); +} + +static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn) +{ + unsigned long flags; + struct context_entry *context; + u16 did_old; + + if (!iommu) + return; + + spin_lock_irqsave(&iommu->lock, flags); + context = iommu_context_addr(iommu, bus, devfn, 0); + if (!context) { + spin_unlock_irqrestore(&iommu->lock, flags); + return; + } + did_old = context_domain_id(context); + context_clear_entry(context); + __iommu_flush_cache(iommu, context, sizeof(*context)); + spin_unlock_irqrestore(&iommu->lock, flags); + iommu->flush.flush_context(iommu, + did_old, + (((u16)bus) << 8) | devfn, + DMA_CCMD_MASK_NOBIT, + DMA_CCMD_DEVICE_INVL); + iommu->flush.flush_iotlb(iommu, + did_old, + 0, + 0, + DMA_TLB_DSI_FLUSH); +} + +static inline void unlink_domain_info(struct device_domain_info *info) +{ + assert_spin_locked(&device_domain_lock); + list_del(&info->link); + list_del(&info->global); + if (info->dev) + info->dev->archdata.iommu = NULL; +} + +static void domain_remove_dev_info(struct dmar_domain *domain) +{ + struct device_domain_info *info, *tmp; + unsigned long flags; + + spin_lock_irqsave(&device_domain_lock, flags); + list_for_each_entry_safe(info, tmp, &domain->devices, link) + __dmar_remove_one_dev_info(info); + spin_unlock_irqrestore(&device_domain_lock, flags); +} + +struct dmar_domain *find_domain(struct device *dev) +{ + struct device_domain_info *info; + + if (unlikely(attach_deferred(dev) || iommu_dummy(dev))) + return NULL; + + /* No lock here, assumes no domain exit in normal case */ + info = get_domain_info(dev); + if (likely(info)) + return info->domain; + + return NULL; +} + +static void do_deferred_attach(struct device *dev) +{ + struct iommu_domain *domain; + + dev->archdata.iommu = NULL; + domain = iommu_get_domain_for_dev(dev); + if (domain) + intel_iommu_attach_device(domain, dev); +} + +static inline struct device_domain_info * +dmar_search_domain_by_dev_info(int segment, int bus, int devfn) +{ + struct device_domain_info *info; + + list_for_each_entry(info, &device_domain_list, global) + if (info->segment == segment && info->bus == bus && + info->devfn == devfn) + return info; + + return NULL; +} + +static int domain_setup_first_level(struct intel_iommu *iommu, + struct dmar_domain *domain, + struct device *dev, + int pasid) +{ + int flags = PASID_FLAG_SUPERVISOR_MODE; + struct dma_pte *pgd = domain->pgd; + int agaw, level; + + /* + * Skip top levels of page tables for iommu which has + * less agaw than default. Unnecessary for PT mode. + */ + for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { + pgd = phys_to_virt(dma_pte_addr(pgd)); + if (!dma_pte_present(pgd)) + return -ENOMEM; + } + + level = agaw_to_level(agaw); + if (level != 4 && level != 5) + return -EINVAL; + + flags |= (level == 5) ? PASID_FLAG_FL5LP : 0; + + return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid, + domain->iommu_did[iommu->seq_id], + flags); +} + +static bool dev_is_real_dma_subdevice(struct device *dev) +{ + return dev && dev_is_pci(dev) && + pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev); +} + +static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu, + int bus, int devfn, + struct device *dev, + struct dmar_domain *domain) +{ + struct dmar_domain *found = NULL; + struct device_domain_info *info; + unsigned long flags; + int ret; + + info = alloc_devinfo_mem(); + if (!info) + return NULL; + + if (!dev_is_real_dma_subdevice(dev)) { + info->bus = bus; + info->devfn = devfn; + info->segment = iommu->segment; + } else { + struct pci_dev *pdev = to_pci_dev(dev); + + info->bus = pdev->bus->number; + info->devfn = pdev->devfn; + info->segment = pci_domain_nr(pdev->bus); + } + + info->ats_supported = info->pasid_supported = info->pri_supported = 0; + info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0; + info->ats_qdep = 0; + info->dev = dev; + info->domain = domain; + info->iommu = iommu; + info->pasid_table = NULL; + info->auxd_enabled = 0; + INIT_LIST_HEAD(&info->auxiliary_domains); + + if (dev && dev_is_pci(dev)) { + struct pci_dev *pdev = to_pci_dev(info->dev); + + if (ecap_dev_iotlb_support(iommu->ecap) && + pci_ats_supported(pdev) && + dmar_find_matched_atsr_unit(pdev)) + info->ats_supported = 1; + + if (sm_supported(iommu)) { + if (pasid_supported(iommu)) { + int features = pci_pasid_features(pdev); + if (features >= 0) + info->pasid_supported = features | 1; + } + + if (info->ats_supported && ecap_prs(iommu->ecap) && + pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI)) + info->pri_supported = 1; + } + } + + spin_lock_irqsave(&device_domain_lock, flags); + if (dev) + found = find_domain(dev); + + if (!found) { + struct device_domain_info *info2; + info2 = dmar_search_domain_by_dev_info(info->segment, info->bus, + info->devfn); + if (info2) { + found = info2->domain; + info2->dev = dev; + } + } + + if (found) { + spin_unlock_irqrestore(&device_domain_lock, flags); + free_devinfo_mem(info); + /* Caller must free the original domain */ + return found; + } + + spin_lock(&iommu->lock); + ret = domain_attach_iommu(domain, iommu); + spin_unlock(&iommu->lock); + + if (ret) { + spin_unlock_irqrestore(&device_domain_lock, flags); + free_devinfo_mem(info); + return NULL; + } + + list_add(&info->link, &domain->devices); + list_add(&info->global, &device_domain_list); + if (dev) + dev->archdata.iommu = info; + spin_unlock_irqrestore(&device_domain_lock, flags); + + /* PASID table is mandatory for a PCI device in scalable mode. */ + if (dev && dev_is_pci(dev) && sm_supported(iommu)) { + ret = intel_pasid_alloc_table(dev); + if (ret) { + dev_err(dev, "PASID table allocation failed\n"); + dmar_remove_one_dev_info(dev); + return NULL; + } + + /* Setup the PASID entry for requests without PASID: */ + spin_lock(&iommu->lock); + if (hw_pass_through && domain_type_is_si(domain)) + ret = intel_pasid_setup_pass_through(iommu, domain, + dev, PASID_RID2PASID); + else if (domain_use_first_level(domain)) + ret = domain_setup_first_level(iommu, domain, dev, + PASID_RID2PASID); + else + ret = intel_pasid_setup_second_level(iommu, domain, + dev, PASID_RID2PASID); + spin_unlock(&iommu->lock); + if (ret) { + dev_err(dev, "Setup RID2PASID failed\n"); + dmar_remove_one_dev_info(dev); + return NULL; + } + } + + if (dev && domain_context_mapping(domain, dev)) { + dev_err(dev, "Domain context map failed\n"); + dmar_remove_one_dev_info(dev); + return NULL; + } + + return domain; +} + +static int iommu_domain_identity_map(struct dmar_domain *domain, + unsigned long first_vpfn, + unsigned long last_vpfn) +{ + /* + * RMRR range might have overlap with physical memory range, + * clear it first + */ + dma_pte_clear_range(domain, first_vpfn, last_vpfn); + + return __domain_mapping(domain, first_vpfn, NULL, + first_vpfn, last_vpfn - first_vpfn + 1, + DMA_PTE_READ|DMA_PTE_WRITE); +} + +static int md_domain_init(struct dmar_domain *domain, int guest_width); + +static int __init si_domain_init(int hw) +{ + struct dmar_rmrr_unit *rmrr; + struct device *dev; + int i, nid, ret; + + si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY); + if (!si_domain) + return -EFAULT; + + if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { + domain_exit(si_domain); + return -EFAULT; + } + + if (hw) + return 0; + + for_each_online_node(nid) { + unsigned long start_pfn, end_pfn; + int i; + + for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { + ret = iommu_domain_identity_map(si_domain, + mm_to_dma_pfn(start_pfn), + mm_to_dma_pfn(end_pfn)); + if (ret) + return ret; + } + } + + /* + * Identity map the RMRRs so that devices with RMRRs could also use + * the si_domain. + */ + for_each_rmrr_units(rmrr) { + for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, + i, dev) { + unsigned long long start = rmrr->base_address; + unsigned long long end = rmrr->end_address; + + if (WARN_ON(end < start || + end >> agaw_to_width(si_domain->agaw))) + continue; + + ret = iommu_domain_identity_map(si_domain, start, end); + if (ret) + return ret; + } + } + + return 0; +} + +static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev) +{ + struct dmar_domain *ndomain; + struct intel_iommu *iommu; + u8 bus, devfn; + + iommu = device_to_iommu(dev, &bus, &devfn); + if (!iommu) + return -ENODEV; + + ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain); + if (ndomain != domain) + return -EBUSY; + + return 0; +} + +static bool device_has_rmrr(struct device *dev) +{ + struct dmar_rmrr_unit *rmrr; + struct device *tmp; + int i; + + rcu_read_lock(); + for_each_rmrr_units(rmrr) { + /* + * Return TRUE if this RMRR contains the device that + * is passed in. + */ + for_each_active_dev_scope(rmrr->devices, + rmrr->devices_cnt, i, tmp) + if (tmp == dev || + is_downstream_to_pci_bridge(dev, tmp)) { + rcu_read_unlock(); + return true; + } + } + rcu_read_unlock(); + return false; +} + +/** + * device_rmrr_is_relaxable - Test whether the RMRR of this device + * is relaxable (ie. is allowed to be not enforced under some conditions) + * @dev: device handle + * + * We assume that PCI USB devices with RMRRs have them largely + * for historical reasons and that the RMRR space is not actively used post + * boot. This exclusion may change if vendors begin to abuse it. + * + * The same exception is made for graphics devices, with the requirement that + * any use of the RMRR regions will be torn down before assigning the device + * to a guest. + * + * Return: true if the RMRR is relaxable, false otherwise + */ +static bool device_rmrr_is_relaxable(struct device *dev) +{ + struct pci_dev *pdev; + + if (!dev_is_pci(dev)) + return false; + + pdev = to_pci_dev(dev); + if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev)) + return true; + else + return false; +} + +/* + * There are a couple cases where we need to restrict the functionality of + * devices associated with RMRRs. The first is when evaluating a device for + * identity mapping because problems exist when devices are moved in and out + * of domains and their respective RMRR information is lost. This means that + * a device with associated RMRRs will never be in a "passthrough" domain. + * The second is use of the device through the IOMMU API. This interface + * expects to have full control of the IOVA space for the device. We cannot + * satisfy both the requirement that RMRR access is maintained and have an + * unencumbered IOVA space. We also have no ability to quiesce the device's + * use of the RMRR space or even inform the IOMMU API user of the restriction. + * We therefore prevent devices associated with an RMRR from participating in + * the IOMMU API, which eliminates them from device assignment. + * + * In both cases, devices which have relaxable RMRRs are not concerned by this + * restriction. See device_rmrr_is_relaxable comment. + */ +static bool device_is_rmrr_locked(struct device *dev) +{ + if (!device_has_rmrr(dev)) + return false; + + if (device_rmrr_is_relaxable(dev)) + return false; + + return true; +} + +/* + * Return the required default domain type for a specific device. + * + * @dev: the device in query + * @startup: true if this is during early boot + * + * Returns: + * - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain + * - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain + * - 0: both identity and dynamic domains work for this device + */ +static int device_def_domain_type(struct device *dev) +{ + if (dev_is_pci(dev)) { + struct pci_dev *pdev = to_pci_dev(dev); + + /* + * Prevent any device marked as untrusted from getting + * placed into the statically identity mapping domain. + */ + if (pdev->untrusted) + return IOMMU_DOMAIN_DMA; + + if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev)) + return IOMMU_DOMAIN_IDENTITY; + + if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev)) + return IOMMU_DOMAIN_IDENTITY; + } + + return 0; +} + +static void intel_iommu_init_qi(struct intel_iommu *iommu) +{ + /* + * Start from the sane iommu hardware state. + * If the queued invalidation is already initialized by us + * (for example, while enabling interrupt-remapping) then + * we got the things already rolling from a sane state. + */ + if (!iommu->qi) { + /* + * Clear any previous faults. + */ + dmar_fault(-1, iommu); + /* + * Disable queued invalidation if supported and already enabled + * before OS handover. + */ + dmar_disable_qi(iommu); + } + + if (dmar_enable_qi(iommu)) { + /* + * Queued Invalidate not enabled, use Register Based Invalidate + */ + iommu->flush.flush_context = __iommu_flush_context; + iommu->flush.flush_iotlb = __iommu_flush_iotlb; + pr_info("%s: Using Register based invalidation\n", + iommu->name); + } else { + iommu->flush.flush_context = qi_flush_context; + iommu->flush.flush_iotlb = qi_flush_iotlb; + pr_info("%s: Using Queued invalidation\n", iommu->name); + } +} + +static int copy_context_table(struct intel_iommu *iommu, + struct root_entry *old_re, + struct context_entry **tbl, + int bus, bool ext) +{ + int tbl_idx, pos = 0, idx, devfn, ret = 0, did; + struct context_entry *new_ce = NULL, ce; + struct context_entry *old_ce = NULL; + struct root_entry re; + phys_addr_t old_ce_phys; + + tbl_idx = ext ? bus * 2 : bus; + memcpy(&re, old_re, sizeof(re)); + + for (devfn = 0; devfn < 256; devfn++) { + /* First calculate the correct index */ + idx = (ext ? devfn * 2 : devfn) % 256; + + if (idx == 0) { + /* First save what we may have and clean up */ + if (new_ce) { + tbl[tbl_idx] = new_ce; + __iommu_flush_cache(iommu, new_ce, + VTD_PAGE_SIZE); + pos = 1; + } + + if (old_ce) + memunmap(old_ce); + + ret = 0; + if (devfn < 0x80) + old_ce_phys = root_entry_lctp(&re); + else + old_ce_phys = root_entry_uctp(&re); + + if (!old_ce_phys) { + if (ext && devfn == 0) { + /* No LCTP, try UCTP */ + devfn = 0x7f; + continue; + } else { + goto out; + } + } + + ret = -ENOMEM; + old_ce = memremap(old_ce_phys, PAGE_SIZE, + MEMREMAP_WB); + if (!old_ce) + goto out; + + new_ce = alloc_pgtable_page(iommu->node); + if (!new_ce) + goto out_unmap; + + ret = 0; + } + + /* Now copy the context entry */ + memcpy(&ce, old_ce + idx, sizeof(ce)); + + if (!__context_present(&ce)) + continue; + + did = context_domain_id(&ce); + if (did >= 0 && did < cap_ndoms(iommu->cap)) + set_bit(did, iommu->domain_ids); + + /* + * We need a marker for copied context entries. This + * marker needs to work for the old format as well as + * for extended context entries. + * + * Bit 67 of the context entry is used. In the old + * format this bit is available to software, in the + * extended format it is the PGE bit, but PGE is ignored + * by HW if PASIDs are disabled (and thus still + * available). + * + * So disable PASIDs first and then mark the entry + * copied. This means that we don't copy PASID + * translations from the old kernel, but this is fine as + * faults there are not fatal. + */ + context_clear_pasid_enable(&ce); + context_set_copied(&ce); + + new_ce[idx] = ce; + } + + tbl[tbl_idx + pos] = new_ce; + + __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE); + +out_unmap: + memunmap(old_ce); + +out: + return ret; +} + +static int copy_translation_tables(struct intel_iommu *iommu) +{ + struct context_entry **ctxt_tbls; + struct root_entry *old_rt; + phys_addr_t old_rt_phys; + int ctxt_table_entries; + unsigned long flags; + u64 rtaddr_reg; + int bus, ret; + bool new_ext, ext; + + rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG); + ext = !!(rtaddr_reg & DMA_RTADDR_RTT); + new_ext = !!ecap_ecs(iommu->ecap); + + /* + * The RTT bit can only be changed when translation is disabled, + * but disabling translation means to open a window for data + * corruption. So bail out and don't copy anything if we would + * have to change the bit. + */ + if (new_ext != ext) + return -EINVAL; + + old_rt_phys = rtaddr_reg & VTD_PAGE_MASK; + if (!old_rt_phys) + return -EINVAL; + + old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB); + if (!old_rt) + return -ENOMEM; + + /* This is too big for the stack - allocate it from slab */ + ctxt_table_entries = ext ? 512 : 256; + ret = -ENOMEM; + ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL); + if (!ctxt_tbls) + goto out_unmap; + + for (bus = 0; bus < 256; bus++) { + ret = copy_context_table(iommu, &old_rt[bus], + ctxt_tbls, bus, ext); + if (ret) { + pr_err("%s: Failed to copy context table for bus %d\n", + iommu->name, bus); + continue; + } + } + + spin_lock_irqsave(&iommu->lock, flags); + + /* Context tables are copied, now write them to the root_entry table */ + for (bus = 0; bus < 256; bus++) { + int idx = ext ? bus * 2 : bus; + u64 val; + + if (ctxt_tbls[idx]) { + val = virt_to_phys(ctxt_tbls[idx]) | 1; + iommu->root_entry[bus].lo = val; + } + + if (!ext || !ctxt_tbls[idx + 1]) + continue; + + val = virt_to_phys(ctxt_tbls[idx + 1]) | 1; + iommu->root_entry[bus].hi = val; + } + + spin_unlock_irqrestore(&iommu->lock, flags); + + kfree(ctxt_tbls); + + __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE); + + ret = 0; + +out_unmap: + memunmap(old_rt); + + return ret; +} + +#ifdef CONFIG_INTEL_IOMMU_SVM +static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data) +{ + struct intel_iommu *iommu = data; + ioasid_t ioasid; + + if (!iommu) + return INVALID_IOASID; + /* + * VT-d virtual command interface always uses the full 20 bit + * PASID range. Host can partition guest PASID range based on + * policies but it is out of guest's control. + */ + if (min < PASID_MIN || max > intel_pasid_max_id) + return INVALID_IOASID; + + if (vcmd_alloc_pasid(iommu, &ioasid)) + return INVALID_IOASID; + + return ioasid; +} + +static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data) +{ + struct intel_iommu *iommu = data; + + if (!iommu) + return; + /* + * Sanity check the ioasid owner is done at upper layer, e.g. VFIO + * We can only free the PASID when all the devices are unbound. + */ + if (ioasid_find(NULL, ioasid, NULL)) { + pr_alert("Cannot free active IOASID %d\n", ioasid); + return; + } + vcmd_free_pasid(iommu, ioasid); +} + +static void register_pasid_allocator(struct intel_iommu *iommu) +{ + /* + * If we are running in the host, no need for custom allocator + * in that PASIDs are allocated from the host system-wide. + */ + if (!cap_caching_mode(iommu->cap)) + return; + + if (!sm_supported(iommu)) { + pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n"); + return; + } + + /* + * Register a custom PASID allocator if we are running in a guest, + * guest PASID must be obtained via virtual command interface. + * There can be multiple vIOMMUs in each guest but only one allocator + * is active. All vIOMMU allocators will eventually be calling the same + * host allocator. + */ + if (!ecap_vcs(iommu->ecap) || !vccap_pasid(iommu->vccap)) + return; + + pr_info("Register custom PASID allocator\n"); + iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc; + iommu->pasid_allocator.free = intel_vcmd_ioasid_free; + iommu->pasid_allocator.pdata = (void *)iommu; + if (ioasid_register_allocator(&iommu->pasid_allocator)) { + pr_warn("Custom PASID allocator failed, scalable mode disabled\n"); + /* + * Disable scalable mode on this IOMMU if there + * is no custom allocator. Mixing SM capable vIOMMU + * and non-SM vIOMMU are not supported. + */ + intel_iommu_sm = 0; + } +} +#endif + +static int __init init_dmars(void) +{ + struct dmar_drhd_unit *drhd; + struct intel_iommu *iommu; + int ret; + + /* + * for each drhd + * allocate root + * initialize and program root entry to not present + * endfor + */ + for_each_drhd_unit(drhd) { + /* + * lock not needed as this is only incremented in the single + * threaded kernel __init code path all other access are read + * only + */ + if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) { + g_num_of_iommus++; + continue; + } + pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED); + } + + /* Preallocate enough resources for IOMMU hot-addition */ + if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) + g_num_of_iommus = DMAR_UNITS_SUPPORTED; + + g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *), + GFP_KERNEL); + if (!g_iommus) { + pr_err("Allocating global iommu array failed\n"); + ret = -ENOMEM; + goto error; + } + + for_each_iommu(iommu, drhd) { + if (drhd->ignored) { + iommu_disable_translation(iommu); + continue; + } + + /* + * Find the max pasid size of all IOMMU's in the system. + * We need to ensure the system pasid table is no bigger + * than the smallest supported. + */ + if (pasid_supported(iommu)) { + u32 temp = 2 << ecap_pss(iommu->ecap); + + intel_pasid_max_id = min_t(u32, temp, + intel_pasid_max_id); + } + + g_iommus[iommu->seq_id] = iommu; + + intel_iommu_init_qi(iommu); + + ret = iommu_init_domains(iommu); + if (ret) + goto free_iommu; + + init_translation_status(iommu); + + if (translation_pre_enabled(iommu) && !is_kdump_kernel()) { + iommu_disable_translation(iommu); + clear_translation_pre_enabled(iommu); + pr_warn("Translation was enabled for %s but we are not in kdump mode\n", + iommu->name); + } + + /* + * TBD: + * we could share the same root & context tables + * among all IOMMU's. Need to Split it later. + */ + ret = iommu_alloc_root_entry(iommu); + if (ret) + goto free_iommu; + + if (translation_pre_enabled(iommu)) { + pr_info("Translation already enabled - trying to copy translation structures\n"); + + ret = copy_translation_tables(iommu); + if (ret) { + /* + * We found the IOMMU with translation + * enabled - but failed to copy over the + * old root-entry table. Try to proceed + * by disabling translation now and + * allocating a clean root-entry table. + * This might cause DMAR faults, but + * probably the dump will still succeed. + */ + pr_err("Failed to copy translation tables from previous kernel for %s\n", + iommu->name); + iommu_disable_translation(iommu); + clear_translation_pre_enabled(iommu); + } else { + pr_info("Copied translation tables from previous kernel for %s\n", + iommu->name); + } + } + + if (!ecap_pass_through(iommu->ecap)) + hw_pass_through = 0; + intel_svm_check(iommu); + } + + /* + * Now that qi is enabled on all iommus, set the root entry and flush + * caches. This is required on some Intel X58 chipsets, otherwise the + * flush_context function will loop forever and the boot hangs. + */ + for_each_active_iommu(iommu, drhd) { + iommu_flush_write_buffer(iommu); +#ifdef CONFIG_INTEL_IOMMU_SVM + register_pasid_allocator(iommu); +#endif + iommu_set_root_entry(iommu); + iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); + iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); + } + +#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA + dmar_map_gfx = 0; +#endif + + if (!dmar_map_gfx) + iommu_identity_mapping |= IDENTMAP_GFX; + + check_tylersburg_isoch(); + + ret = si_domain_init(hw_pass_through); + if (ret) + goto free_iommu; + + /* + * for each drhd + * enable fault log + * global invalidate context cache + * global invalidate iotlb + * enable translation + */ + for_each_iommu(iommu, drhd) { + if (drhd->ignored) { + /* + * we always have to disable PMRs or DMA may fail on + * this device + */ + if (force_on) + iommu_disable_protect_mem_regions(iommu); + continue; + } + + iommu_flush_write_buffer(iommu); + +#ifdef CONFIG_INTEL_IOMMU_SVM + if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) { + /* + * Call dmar_alloc_hwirq() with dmar_global_lock held, + * could cause possible lock race condition. + */ + up_write(&dmar_global_lock); + ret = intel_svm_enable_prq(iommu); + down_write(&dmar_global_lock); + if (ret) + goto free_iommu; + } +#endif + ret = dmar_set_interrupt(iommu); + if (ret) + goto free_iommu; + } + + return 0; + +free_iommu: + for_each_active_iommu(iommu, drhd) { + disable_dmar_iommu(iommu); + free_dmar_iommu(iommu); + } + + kfree(g_iommus); + +error: + return ret; +} + +/* This takes a number of _MM_ pages, not VTD pages */ +static unsigned long intel_alloc_iova(struct device *dev, + struct dmar_domain *domain, + unsigned long nrpages, uint64_t dma_mask) +{ + unsigned long iova_pfn; + + /* + * Restrict dma_mask to the width that the iommu can handle. + * First-level translation restricts the input-address to a + * canonical address (i.e., address bits 63:N have the same + * value as address bit [N-1], where N is 48-bits with 4-level + * paging and 57-bits with 5-level paging). Hence, skip bit + * [N-1]. + */ + if (domain_use_first_level(domain)) + dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw - 1), + dma_mask); + else + dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), + dma_mask); + + /* Ensure we reserve the whole size-aligned region */ + nrpages = __roundup_pow_of_two(nrpages); + + if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) { + /* + * First try to allocate an io virtual address in + * DMA_BIT_MASK(32) and if that fails then try allocating + * from higher range + */ + iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, + IOVA_PFN(DMA_BIT_MASK(32)), false); + if (iova_pfn) + return iova_pfn; + } + iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, + IOVA_PFN(dma_mask), true); + if (unlikely(!iova_pfn)) { + dev_err_once(dev, "Allocating %ld-page iova failed\n", + nrpages); + return 0; + } + + return iova_pfn; +} + +static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr, + size_t size, int dir, u64 dma_mask) +{ + struct dmar_domain *domain; + phys_addr_t start_paddr; + unsigned long iova_pfn; + int prot = 0; + int ret; + struct intel_iommu *iommu; + unsigned long paddr_pfn = paddr >> PAGE_SHIFT; + + BUG_ON(dir == DMA_NONE); + + if (unlikely(attach_deferred(dev))) + do_deferred_attach(dev); + + domain = find_domain(dev); + if (!domain) + return DMA_MAPPING_ERROR; + + iommu = domain_get_iommu(domain); + size = aligned_nrpages(paddr, size); + + iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask); + if (!iova_pfn) + goto error; + + /* + * Check if DMAR supports zero-length reads on write only + * mappings.. + */ + if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ + !cap_zlr(iommu->cap)) + prot |= DMA_PTE_READ; + if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) + prot |= DMA_PTE_WRITE; + /* + * paddr - (paddr + size) might be partial page, we should map the whole + * page. Note: if two part of one page are separately mapped, we + * might have two guest_addr mapping to the same host paddr, but this + * is not a big problem + */ + ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn), + mm_to_dma_pfn(paddr_pfn), size, prot); + if (ret) + goto error; + + start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT; + start_paddr += paddr & ~PAGE_MASK; + + trace_map_single(dev, start_paddr, paddr, size << VTD_PAGE_SHIFT); + + return start_paddr; + +error: + if (iova_pfn) + free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size)); + dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n", + size, (unsigned long long)paddr, dir); + return DMA_MAPPING_ERROR; +} + +static dma_addr_t intel_map_page(struct device *dev, struct page *page, + unsigned long offset, size_t size, + enum dma_data_direction dir, + unsigned long attrs) +{ + return __intel_map_single(dev, page_to_phys(page) + offset, + size, dir, *dev->dma_mask); +} + +static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr, + size_t size, enum dma_data_direction dir, + unsigned long attrs) +{ + return __intel_map_single(dev, phys_addr, size, dir, *dev->dma_mask); +} + +static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size) +{ + struct dmar_domain *domain; + unsigned long start_pfn, last_pfn; + unsigned long nrpages; + unsigned long iova_pfn; + struct intel_iommu *iommu; + struct page *freelist; + struct pci_dev *pdev = NULL; + + domain = find_domain(dev); + BUG_ON(!domain); + + iommu = domain_get_iommu(domain); + + iova_pfn = IOVA_PFN(dev_addr); + + nrpages = aligned_nrpages(dev_addr, size); + start_pfn = mm_to_dma_pfn(iova_pfn); + last_pfn = start_pfn + nrpages - 1; + + if (dev_is_pci(dev)) + pdev = to_pci_dev(dev); + + freelist = domain_unmap(domain, start_pfn, last_pfn); + if (intel_iommu_strict || (pdev && pdev->untrusted) || + !has_iova_flush_queue(&domain->iovad)) { + iommu_flush_iotlb_psi(iommu, domain, start_pfn, + nrpages, !freelist, 0); + /* free iova */ + free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages)); + dma_free_pagelist(freelist); + } else { + queue_iova(&domain->iovad, iova_pfn, nrpages, + (unsigned long)freelist); + /* + * queue up the release of the unmap to save the 1/6th of the + * cpu used up by the iotlb flush operation... + */ + } + + trace_unmap_single(dev, dev_addr, size); +} + +static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr, + size_t size, enum dma_data_direction dir, + unsigned long attrs) +{ + intel_unmap(dev, dev_addr, size); +} + +static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr, + size_t size, enum dma_data_direction dir, unsigned long attrs) +{ + intel_unmap(dev, dev_addr, size); +} + +static void *intel_alloc_coherent(struct device *dev, size_t size, + dma_addr_t *dma_handle, gfp_t flags, + unsigned long attrs) +{ + struct page *page = NULL; + int order; + + if (unlikely(attach_deferred(dev))) + do_deferred_attach(dev); + + size = PAGE_ALIGN(size); + order = get_order(size); + + if (gfpflags_allow_blocking(flags)) { + unsigned int count = size >> PAGE_SHIFT; + + page = dma_alloc_from_contiguous(dev, count, order, + flags & __GFP_NOWARN); + } + + if (!page) + page = alloc_pages(flags, order); + if (!page) + return NULL; + memset(page_address(page), 0, size); + + *dma_handle = __intel_map_single(dev, page_to_phys(page), size, + DMA_BIDIRECTIONAL, + dev->coherent_dma_mask); + if (*dma_handle != DMA_MAPPING_ERROR) + return page_address(page); + if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT)) + __free_pages(page, order); + + return NULL; +} + +static void intel_free_coherent(struct device *dev, size_t size, void *vaddr, + dma_addr_t dma_handle, unsigned long attrs) +{ + int order; + struct page *page = virt_to_page(vaddr); + + size = PAGE_ALIGN(size); + order = get_order(size); + + intel_unmap(dev, dma_handle, size); + if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT)) + __free_pages(page, order); +} + +static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist, + int nelems, enum dma_data_direction dir, + unsigned long attrs) +{ + dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK; + unsigned long nrpages = 0; + struct scatterlist *sg; + int i; + + for_each_sg(sglist, sg, nelems, i) { + nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg)); + } + + intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT); + + trace_unmap_sg(dev, startaddr, nrpages << VTD_PAGE_SHIFT); +} + +static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems, + enum dma_data_direction dir, unsigned long attrs) +{ + int i; + struct dmar_domain *domain; + size_t size = 0; + int prot = 0; + unsigned long iova_pfn; + int ret; + struct scatterlist *sg; + unsigned long start_vpfn; + struct intel_iommu *iommu; + + BUG_ON(dir == DMA_NONE); + + if (unlikely(attach_deferred(dev))) + do_deferred_attach(dev); + + domain = find_domain(dev); + if (!domain) + return 0; + + iommu = domain_get_iommu(domain); + + for_each_sg(sglist, sg, nelems, i) + size += aligned_nrpages(sg->offset, sg->length); + + iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), + *dev->dma_mask); + if (!iova_pfn) { + sglist->dma_length = 0; + return 0; + } + + /* + * Check if DMAR supports zero-length reads on write only + * mappings.. + */ + if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ + !cap_zlr(iommu->cap)) + prot |= DMA_PTE_READ; + if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) + prot |= DMA_PTE_WRITE; + + start_vpfn = mm_to_dma_pfn(iova_pfn); + + ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot); + if (unlikely(ret)) { + dma_pte_free_pagetable(domain, start_vpfn, + start_vpfn + size - 1, + agaw_to_level(domain->agaw) + 1); + free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size)); + return 0; + } + + for_each_sg(sglist, sg, nelems, i) + trace_map_sg(dev, i + 1, nelems, sg); + + return nelems; +} + +static u64 intel_get_required_mask(struct device *dev) +{ + return DMA_BIT_MASK(32); +} + +static const struct dma_map_ops intel_dma_ops = { + .alloc = intel_alloc_coherent, + .free = intel_free_coherent, + .map_sg = intel_map_sg, + .unmap_sg = intel_unmap_sg, + .map_page = intel_map_page, + .unmap_page = intel_unmap_page, + .map_resource = intel_map_resource, + .unmap_resource = intel_unmap_resource, + .dma_supported = dma_direct_supported, + .mmap = dma_common_mmap, + .get_sgtable = dma_common_get_sgtable, + .get_required_mask = intel_get_required_mask, +}; + +static void +bounce_sync_single(struct device *dev, dma_addr_t addr, size_t size, + enum dma_data_direction dir, enum dma_sync_target target) +{ + struct dmar_domain *domain; + phys_addr_t tlb_addr; + + domain = find_domain(dev); + if (WARN_ON(!domain)) + return; + + tlb_addr = intel_iommu_iova_to_phys(&domain->domain, addr); + if (is_swiotlb_buffer(tlb_addr)) + swiotlb_tbl_sync_single(dev, tlb_addr, size, dir, target); +} + +static dma_addr_t +bounce_map_single(struct device *dev, phys_addr_t paddr, size_t size, + enum dma_data_direction dir, unsigned long attrs, + u64 dma_mask) +{ + size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE); + struct dmar_domain *domain; + struct intel_iommu *iommu; + unsigned long iova_pfn; + unsigned long nrpages; + phys_addr_t tlb_addr; + int prot = 0; + int ret; + + if (unlikely(attach_deferred(dev))) + do_deferred_attach(dev); + + domain = find_domain(dev); + + if (WARN_ON(dir == DMA_NONE || !domain)) + return DMA_MAPPING_ERROR; + + iommu = domain_get_iommu(domain); + if (WARN_ON(!iommu)) + return DMA_MAPPING_ERROR; + + nrpages = aligned_nrpages(0, size); + iova_pfn = intel_alloc_iova(dev, domain, + dma_to_mm_pfn(nrpages), dma_mask); + if (!iova_pfn) + return DMA_MAPPING_ERROR; + + /* + * Check if DMAR supports zero-length reads on write only + * mappings.. + */ + if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || + !cap_zlr(iommu->cap)) + prot |= DMA_PTE_READ; + if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) + prot |= DMA_PTE_WRITE; + + /* + * If both the physical buffer start address and size are + * page aligned, we don't need to use a bounce page. + */ + if (!IS_ALIGNED(paddr | size, VTD_PAGE_SIZE)) { + tlb_addr = swiotlb_tbl_map_single(dev, + __phys_to_dma(dev, io_tlb_start), + paddr, size, aligned_size, dir, attrs); + if (tlb_addr == DMA_MAPPING_ERROR) { + goto swiotlb_error; + } else { + /* Cleanup the padding area. */ + void *padding_start = phys_to_virt(tlb_addr); + size_t padding_size = aligned_size; + + if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && + (dir == DMA_TO_DEVICE || + dir == DMA_BIDIRECTIONAL)) { + padding_start += size; + padding_size -= size; + } + + memset(padding_start, 0, padding_size); + } + } else { + tlb_addr = paddr; + } + + ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn), + tlb_addr >> VTD_PAGE_SHIFT, nrpages, prot); + if (ret) + goto mapping_error; + + trace_bounce_map_single(dev, iova_pfn << PAGE_SHIFT, paddr, size); + + return (phys_addr_t)iova_pfn << PAGE_SHIFT; + +mapping_error: + if (is_swiotlb_buffer(tlb_addr)) + swiotlb_tbl_unmap_single(dev, tlb_addr, size, + aligned_size, dir, attrs); +swiotlb_error: + free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages)); + dev_err(dev, "Device bounce map: %zx@%llx dir %d --- failed\n", + size, (unsigned long long)paddr, dir); + + return DMA_MAPPING_ERROR; +} + +static void +bounce_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size, + enum dma_data_direction dir, unsigned long attrs) +{ + size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE); + struct dmar_domain *domain; + phys_addr_t tlb_addr; + + domain = find_domain(dev); + if (WARN_ON(!domain)) + return; + + tlb_addr = intel_iommu_iova_to_phys(&domain->domain, dev_addr); + if (WARN_ON(!tlb_addr)) + return; + + intel_unmap(dev, dev_addr, size); + if (is_swiotlb_buffer(tlb_addr)) + swiotlb_tbl_unmap_single(dev, tlb_addr, size, + aligned_size, dir, attrs); + + trace_bounce_unmap_single(dev, dev_addr, size); +} + +static dma_addr_t +bounce_map_page(struct device *dev, struct page *page, unsigned long offset, + size_t size, enum dma_data_direction dir, unsigned long attrs) +{ + return bounce_map_single(dev, page_to_phys(page) + offset, + size, dir, attrs, *dev->dma_mask); +} + +static dma_addr_t +bounce_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size, + enum dma_data_direction dir, unsigned long attrs) +{ + return bounce_map_single(dev, phys_addr, size, + dir, attrs, *dev->dma_mask); +} + +static void +bounce_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size, + enum dma_data_direction dir, unsigned long attrs) +{ + bounce_unmap_single(dev, dev_addr, size, dir, attrs); +} + +static void +bounce_unmap_resource(struct device *dev, dma_addr_t dev_addr, size_t size, + enum dma_data_direction dir, unsigned long attrs) +{ + bounce_unmap_single(dev, dev_addr, size, dir, attrs); +} + +static void +bounce_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems, + enum dma_data_direction dir, unsigned long attrs) +{ + struct scatterlist *sg; + int i; + + for_each_sg(sglist, sg, nelems, i) + bounce_unmap_page(dev, sg->dma_address, + sg_dma_len(sg), dir, attrs); +} + +static int +bounce_map_sg(struct device *dev, struct scatterlist *sglist, int nelems, + enum dma_data_direction dir, unsigned long attrs) +{ + int i; + struct scatterlist *sg; + + for_each_sg(sglist, sg, nelems, i) { + sg->dma_address = bounce_map_page(dev, sg_page(sg), + sg->offset, sg->length, + dir, attrs); + if (sg->dma_address == DMA_MAPPING_ERROR) + goto out_unmap; + sg_dma_len(sg) = sg->length; + } + + for_each_sg(sglist, sg, nelems, i) + trace_bounce_map_sg(dev, i + 1, nelems, sg); + + return nelems; + +out_unmap: + bounce_unmap_sg(dev, sglist, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); + return 0; +} + +static void +bounce_sync_single_for_cpu(struct device *dev, dma_addr_t addr, + size_t size, enum dma_data_direction dir) +{ + bounce_sync_single(dev, addr, size, dir, SYNC_FOR_CPU); +} + +static void +bounce_sync_single_for_device(struct device *dev, dma_addr_t addr, + size_t size, enum dma_data_direction dir) +{ + bounce_sync_single(dev, addr, size, dir, SYNC_FOR_DEVICE); +} + +static void +bounce_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist, + int nelems, enum dma_data_direction dir) +{ + struct scatterlist *sg; + int i; + + for_each_sg(sglist, sg, nelems, i) + bounce_sync_single(dev, sg_dma_address(sg), + sg_dma_len(sg), dir, SYNC_FOR_CPU); +} + +static void +bounce_sync_sg_for_device(struct device *dev, struct scatterlist *sglist, + int nelems, enum dma_data_direction dir) +{ + struct scatterlist *sg; + int i; + + for_each_sg(sglist, sg, nelems, i) + bounce_sync_single(dev, sg_dma_address(sg), + sg_dma_len(sg), dir, SYNC_FOR_DEVICE); +} + +static const struct dma_map_ops bounce_dma_ops = { + .alloc = intel_alloc_coherent, + .free = intel_free_coherent, + .map_sg = bounce_map_sg, + .unmap_sg = bounce_unmap_sg, + .map_page = bounce_map_page, + .unmap_page = bounce_unmap_page, + .sync_single_for_cpu = bounce_sync_single_for_cpu, + .sync_single_for_device = bounce_sync_single_for_device, + .sync_sg_for_cpu = bounce_sync_sg_for_cpu, + .sync_sg_for_device = bounce_sync_sg_for_device, + .map_resource = bounce_map_resource, + .unmap_resource = bounce_unmap_resource, + .dma_supported = dma_direct_supported, +}; + +static inline int iommu_domain_cache_init(void) +{ + int ret = 0; + + iommu_domain_cache = kmem_cache_create("iommu_domain", + sizeof(struct dmar_domain), + 0, + SLAB_HWCACHE_ALIGN, + + NULL); + if (!iommu_domain_cache) { + pr_err("Couldn't create iommu_domain cache\n"); + ret = -ENOMEM; + } + + return ret; +} + +static inline int iommu_devinfo_cache_init(void) +{ + int ret = 0; + + iommu_devinfo_cache = kmem_cache_create("iommu_devinfo", + sizeof(struct device_domain_info), + 0, + SLAB_HWCACHE_ALIGN, + NULL); + if (!iommu_devinfo_cache) { + pr_err("Couldn't create devinfo cache\n"); + ret = -ENOMEM; + } + + return ret; +} + +static int __init iommu_init_mempool(void) +{ + int ret; + ret = iova_cache_get(); + if (ret) + return ret; + + ret = iommu_domain_cache_init(); + if (ret) + goto domain_error; + + ret = iommu_devinfo_cache_init(); + if (!ret) + return ret; + + kmem_cache_destroy(iommu_domain_cache); +domain_error: + iova_cache_put(); + + return -ENOMEM; +} + +static void __init iommu_exit_mempool(void) +{ + kmem_cache_destroy(iommu_devinfo_cache); + kmem_cache_destroy(iommu_domain_cache); + iova_cache_put(); +} + +static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev) +{ + struct dmar_drhd_unit *drhd; + u32 vtbar; + int rc; + + /* We know that this device on this chipset has its own IOMMU. + * If we find it under a different IOMMU, then the BIOS is lying + * to us. Hope that the IOMMU for this device is actually + * disabled, and it needs no translation... + */ + rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar); + if (rc) { + /* "can't" happen */ + dev_info(&pdev->dev, "failed to run vt-d quirk\n"); + return; + } + vtbar &= 0xffff0000; + + /* we know that the this iommu should be at offset 0xa000 from vtbar */ + drhd = dmar_find_matched_drhd_unit(pdev); + if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) { + pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"); + add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); + pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO; + } +} +DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu); + +static void __init init_no_remapping_devices(void) +{ + struct dmar_drhd_unit *drhd; + struct device *dev; + int i; + + for_each_drhd_unit(drhd) { + if (!drhd->include_all) { + for_each_active_dev_scope(drhd->devices, + drhd->devices_cnt, i, dev) + break; + /* ignore DMAR unit if no devices exist */ + if (i == drhd->devices_cnt) + drhd->ignored = 1; + } + } + + for_each_active_drhd_unit(drhd) { + if (drhd->include_all) + continue; + + for_each_active_dev_scope(drhd->devices, + drhd->devices_cnt, i, dev) + if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev))) + break; + if (i < drhd->devices_cnt) + continue; + + /* This IOMMU has *only* gfx devices. Either bypass it or + set the gfx_mapped flag, as appropriate */ + if (!dmar_map_gfx) { + drhd->ignored = 1; + for_each_active_dev_scope(drhd->devices, + drhd->devices_cnt, i, dev) + dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO; + } + } +} + +#ifdef CONFIG_SUSPEND +static int init_iommu_hw(void) +{ + struct dmar_drhd_unit *drhd; + struct intel_iommu *iommu = NULL; + + for_each_active_iommu(iommu, drhd) + if (iommu->qi) + dmar_reenable_qi(iommu); + + for_each_iommu(iommu, drhd) { + if (drhd->ignored) { + /* + * we always have to disable PMRs or DMA may fail on + * this device + */ + if (force_on) + iommu_disable_protect_mem_regions(iommu); + continue; + } + + iommu_flush_write_buffer(iommu); + + iommu_set_root_entry(iommu); + + iommu->flush.flush_context(iommu, 0, 0, 0, + DMA_CCMD_GLOBAL_INVL); + iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); + iommu_enable_translation(iommu); + iommu_disable_protect_mem_regions(iommu); + } + + return 0; +} + +static void iommu_flush_all(void) +{ + struct dmar_drhd_unit *drhd; + struct intel_iommu *iommu; + + for_each_active_iommu(iommu, drhd) { + iommu->flush.flush_context(iommu, 0, 0, 0, + DMA_CCMD_GLOBAL_INVL); + iommu->flush.flush_iotlb(iommu, 0, 0, 0, + DMA_TLB_GLOBAL_FLUSH); + } +} + +static int iommu_suspend(void) +{ + struct dmar_drhd_unit *drhd; + struct intel_iommu *iommu = NULL; + unsigned long flag; + + for_each_active_iommu(iommu, drhd) { + iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32), + GFP_ATOMIC); + if (!iommu->iommu_state) + goto nomem; + } + + iommu_flush_all(); + + for_each_active_iommu(iommu, drhd) { + iommu_disable_translation(iommu); + + raw_spin_lock_irqsave(&iommu->register_lock, flag); + + iommu->iommu_state[SR_DMAR_FECTL_REG] = + readl(iommu->reg + DMAR_FECTL_REG); + iommu->iommu_state[SR_DMAR_FEDATA_REG] = + readl(iommu->reg + DMAR_FEDATA_REG); + iommu->iommu_state[SR_DMAR_FEADDR_REG] = + readl(iommu->reg + DMAR_FEADDR_REG); + iommu->iommu_state[SR_DMAR_FEUADDR_REG] = + readl(iommu->reg + DMAR_FEUADDR_REG); + + raw_spin_unlock_irqrestore(&iommu->register_lock, flag); + } + return 0; + +nomem: + for_each_active_iommu(iommu, drhd) + kfree(iommu->iommu_state); + + return -ENOMEM; +} + +static void iommu_resume(void) +{ + struct dmar_drhd_unit *drhd; + struct intel_iommu *iommu = NULL; + unsigned long flag; + + if (init_iommu_hw()) { + if (force_on) + panic("tboot: IOMMU setup failed, DMAR can not resume!\n"); + else + WARN(1, "IOMMU setup failed, DMAR can not resume!\n"); + return; + } + + for_each_active_iommu(iommu, drhd) { + + raw_spin_lock_irqsave(&iommu->register_lock, flag); + + writel(iommu->iommu_state[SR_DMAR_FECTL_REG], + iommu->reg + DMAR_FECTL_REG); + writel(iommu->iommu_state[SR_DMAR_FEDATA_REG], + iommu->reg + DMAR_FEDATA_REG); + writel(iommu->iommu_state[SR_DMAR_FEADDR_REG], + iommu->reg + DMAR_FEADDR_REG); + writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG], + iommu->reg + DMAR_FEUADDR_REG); + + raw_spin_unlock_irqrestore(&iommu->register_lock, flag); + } + + for_each_active_iommu(iommu, drhd) + kfree(iommu->iommu_state); +} + +static struct syscore_ops iommu_syscore_ops = { + .resume = iommu_resume, + .suspend = iommu_suspend, +}; + +static void __init init_iommu_pm_ops(void) +{ + register_syscore_ops(&iommu_syscore_ops); +} + +#else +static inline void init_iommu_pm_ops(void) {} +#endif /* CONFIG_PM */ + +static int rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr) +{ + if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) || + !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) || + rmrr->end_address <= rmrr->base_address || + arch_rmrr_sanity_check(rmrr)) + return -EINVAL; + + return 0; +} + +int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg) +{ + struct acpi_dmar_reserved_memory *rmrr; + struct dmar_rmrr_unit *rmrru; + + rmrr = (struct acpi_dmar_reserved_memory *)header; + if (rmrr_sanity_check(rmrr)) { + pr_warn(FW_BUG + "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n" + "BIOS vendor: %s; Ver: %s; Product Version: %s\n", + rmrr->base_address, rmrr->end_address, + dmi_get_system_info(DMI_BIOS_VENDOR), + dmi_get_system_info(DMI_BIOS_VERSION), + dmi_get_system_info(DMI_PRODUCT_VERSION)); + add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); + } + + rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL); + if (!rmrru) + goto out; + + rmrru->hdr = header; + + rmrru->base_address = rmrr->base_address; + rmrru->end_address = rmrr->end_address; + + rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1), + ((void *)rmrr) + rmrr->header.length, + &rmrru->devices_cnt); + if (rmrru->devices_cnt && rmrru->devices == NULL) + goto free_rmrru; + + list_add(&rmrru->list, &dmar_rmrr_units); + + return 0; +free_rmrru: + kfree(rmrru); +out: + return -ENOMEM; +} + +static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr) +{ + struct dmar_atsr_unit *atsru; + struct acpi_dmar_atsr *tmp; + + list_for_each_entry_rcu(atsru, &dmar_atsr_units, list, + dmar_rcu_check()) { + tmp = (struct acpi_dmar_atsr *)atsru->hdr; + if (atsr->segment != tmp->segment) + continue; + if (atsr->header.length != tmp->header.length) + continue; + if (memcmp(atsr, tmp, atsr->header.length) == 0) + return atsru; + } + + return NULL; +} + +int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg) +{ + struct acpi_dmar_atsr *atsr; + struct dmar_atsr_unit *atsru; + + if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled) + return 0; + + atsr = container_of(hdr, struct acpi_dmar_atsr, header); + atsru = dmar_find_atsr(atsr); + if (atsru) + return 0; + + atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL); + if (!atsru) + return -ENOMEM; + + /* + * If memory is allocated from slab by ACPI _DSM method, we need to + * copy the memory content because the memory buffer will be freed + * on return. + */ + atsru->hdr = (void *)(atsru + 1); + memcpy(atsru->hdr, hdr, hdr->length); + atsru->include_all = atsr->flags & 0x1; + if (!atsru->include_all) { + atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1), + (void *)atsr + atsr->header.length, + &atsru->devices_cnt); + if (atsru->devices_cnt && atsru->devices == NULL) { + kfree(atsru); + return -ENOMEM; + } + } + + list_add_rcu(&atsru->list, &dmar_atsr_units); + + return 0; +} + +static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru) +{ + dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt); + kfree(atsru); +} + +int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg) +{ + struct acpi_dmar_atsr *atsr; + struct dmar_atsr_unit *atsru; + + atsr = container_of(hdr, struct acpi_dmar_atsr, header); + atsru = dmar_find_atsr(atsr); + if (atsru) { + list_del_rcu(&atsru->list); + synchronize_rcu(); + intel_iommu_free_atsr(atsru); + } + + return 0; +} + +int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg) +{ + int i; + struct device *dev; + struct acpi_dmar_atsr *atsr; + struct dmar_atsr_unit *atsru; + + atsr = container_of(hdr, struct acpi_dmar_atsr, header); + atsru = dmar_find_atsr(atsr); + if (!atsru) + return 0; + + if (!atsru->include_all && atsru->devices && atsru->devices_cnt) { + for_each_active_dev_scope(atsru->devices, atsru->devices_cnt, + i, dev) + return -EBUSY; + } + + return 0; +} + +static int intel_iommu_add(struct dmar_drhd_unit *dmaru) +{ + int sp, ret; + struct intel_iommu *iommu = dmaru->iommu; + + if (g_iommus[iommu->seq_id]) + return 0; + + if (hw_pass_through && !ecap_pass_through(iommu->ecap)) { + pr_warn("%s: Doesn't support hardware pass through.\n", + iommu->name); + return -ENXIO; + } + if (!ecap_sc_support(iommu->ecap) && + domain_update_iommu_snooping(iommu)) { + pr_warn("%s: Doesn't support snooping.\n", + iommu->name); + return -ENXIO; + } + sp = domain_update_iommu_superpage(NULL, iommu) - 1; + if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) { + pr_warn("%s: Doesn't support large page.\n", + iommu->name); + return -ENXIO; + } + + /* + * Disable translation if already enabled prior to OS handover. + */ + if (iommu->gcmd & DMA_GCMD_TE) + iommu_disable_translation(iommu); + + g_iommus[iommu->seq_id] = iommu; + ret = iommu_init_domains(iommu); + if (ret == 0) + ret = iommu_alloc_root_entry(iommu); + if (ret) + goto out; + + intel_svm_check(iommu); + + if (dmaru->ignored) { + /* + * we always have to disable PMRs or DMA may fail on this device + */ + if (force_on) + iommu_disable_protect_mem_regions(iommu); + return 0; + } + + intel_iommu_init_qi(iommu); + iommu_flush_write_buffer(iommu); + +#ifdef CONFIG_INTEL_IOMMU_SVM + if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) { + ret = intel_svm_enable_prq(iommu); + if (ret) + goto disable_iommu; + } +#endif + ret = dmar_set_interrupt(iommu); + if (ret) + goto disable_iommu; + + iommu_set_root_entry(iommu); + iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); + iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); + iommu_enable_translation(iommu); + + iommu_disable_protect_mem_regions(iommu); + return 0; + +disable_iommu: + disable_dmar_iommu(iommu); +out: + free_dmar_iommu(iommu); + return ret; +} + +int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert) +{ + int ret = 0; + struct intel_iommu *iommu = dmaru->iommu; + + if (!intel_iommu_enabled) + return 0; + if (iommu == NULL) + return -EINVAL; + + if (insert) { + ret = intel_iommu_add(dmaru); + } else { + disable_dmar_iommu(iommu); + free_dmar_iommu(iommu); + } + + return ret; +} + +static void intel_iommu_free_dmars(void) +{ + struct dmar_rmrr_unit *rmrru, *rmrr_n; + struct dmar_atsr_unit *atsru, *atsr_n; + + list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) { + list_del(&rmrru->list); + dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt); + kfree(rmrru); + } + + list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) { + list_del(&atsru->list); + intel_iommu_free_atsr(atsru); + } +} + +int dmar_find_matched_atsr_unit(struct pci_dev *dev) +{ + int i, ret = 1; + struct pci_bus *bus; + struct pci_dev *bridge = NULL; + struct device *tmp; + struct acpi_dmar_atsr *atsr; + struct dmar_atsr_unit *atsru; + + dev = pci_physfn(dev); + for (bus = dev->bus; bus; bus = bus->parent) { + bridge = bus->self; + /* If it's an integrated device, allow ATS */ + if (!bridge) + return 1; + /* Connected via non-PCIe: no ATS */ + if (!pci_is_pcie(bridge) || + pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) + return 0; + /* If we found the root port, look it up in the ATSR */ + if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) + break; + } + + rcu_read_lock(); + list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) { + atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); + if (atsr->segment != pci_domain_nr(dev->bus)) + continue; + + for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp) + if (tmp == &bridge->dev) + goto out; + + if (atsru->include_all) + goto out; + } + ret = 0; +out: + rcu_read_unlock(); + + return ret; +} + +int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info) +{ + int ret; + struct dmar_rmrr_unit *rmrru; + struct dmar_atsr_unit *atsru; + struct acpi_dmar_atsr *atsr; + struct acpi_dmar_reserved_memory *rmrr; + + if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING) + return 0; + + list_for_each_entry(rmrru, &dmar_rmrr_units, list) { + rmrr = container_of(rmrru->hdr, + struct acpi_dmar_reserved_memory, header); + if (info->event == BUS_NOTIFY_ADD_DEVICE) { + ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1), + ((void *)rmrr) + rmrr->header.length, + rmrr->segment, rmrru->devices, + rmrru->devices_cnt); + if (ret < 0) + return ret; + } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { + dmar_remove_dev_scope(info, rmrr->segment, + rmrru->devices, rmrru->devices_cnt); + } + } + + list_for_each_entry(atsru, &dmar_atsr_units, list) { + if (atsru->include_all) + continue; + + atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); + if (info->event == BUS_NOTIFY_ADD_DEVICE) { + ret = dmar_insert_dev_scope(info, (void *)(atsr + 1), + (void *)atsr + atsr->header.length, + atsr->segment, atsru->devices, + atsru->devices_cnt); + if (ret > 0) + break; + else if (ret < 0) + return ret; + } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { + if (dmar_remove_dev_scope(info, atsr->segment, + atsru->devices, atsru->devices_cnt)) + break; + } + } + + return 0; +} + +static int intel_iommu_memory_notifier(struct notifier_block *nb, + unsigned long val, void *v) +{ + struct memory_notify *mhp = v; + unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn); + unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn + + mhp->nr_pages - 1); + + switch (val) { + case MEM_GOING_ONLINE: + if (iommu_domain_identity_map(si_domain, + start_vpfn, last_vpfn)) { + pr_warn("Failed to build identity map for [%lx-%lx]\n", + start_vpfn, last_vpfn); + return NOTIFY_BAD; + } + break; + + case MEM_OFFLINE: + case MEM_CANCEL_ONLINE: + { + struct dmar_drhd_unit *drhd; + struct intel_iommu *iommu; + struct page *freelist; + + freelist = domain_unmap(si_domain, + start_vpfn, last_vpfn); + + rcu_read_lock(); + for_each_active_iommu(iommu, drhd) + iommu_flush_iotlb_psi(iommu, si_domain, + start_vpfn, mhp->nr_pages, + !freelist, 0); + rcu_read_unlock(); + dma_free_pagelist(freelist); + } + break; + } + + return NOTIFY_OK; +} + +static struct notifier_block intel_iommu_memory_nb = { + .notifier_call = intel_iommu_memory_notifier, + .priority = 0 +}; + +static void free_all_cpu_cached_iovas(unsigned int cpu) +{ + int i; + + for (i = 0; i < g_num_of_iommus; i++) { + struct intel_iommu *iommu = g_iommus[i]; + struct dmar_domain *domain; + int did; + + if (!iommu) + continue; + + for (did = 0; did < cap_ndoms(iommu->cap); did++) { + domain = get_iommu_domain(iommu, (u16)did); + + if (!domain || domain->domain.type != IOMMU_DOMAIN_DMA) + continue; + + free_cpu_cached_iovas(cpu, &domain->iovad); + } + } +} + +static int intel_iommu_cpu_dead(unsigned int cpu) +{ + free_all_cpu_cached_iovas(cpu); + return 0; +} + +static void intel_disable_iommus(void) +{ + struct intel_iommu *iommu = NULL; + struct dmar_drhd_unit *drhd; + + for_each_iommu(iommu, drhd) + iommu_disable_translation(iommu); +} + +void intel_iommu_shutdown(void) +{ + struct dmar_drhd_unit *drhd; + struct intel_iommu *iommu = NULL; + + if (no_iommu || dmar_disabled) + return; + + down_write(&dmar_global_lock); + + /* Disable PMRs explicitly here. */ + for_each_iommu(iommu, drhd) + iommu_disable_protect_mem_regions(iommu); + + /* Make sure the IOMMUs are switched off */ + intel_disable_iommus(); + + up_write(&dmar_global_lock); +} + +static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev) +{ + struct iommu_device *iommu_dev = dev_to_iommu_device(dev); + + return container_of(iommu_dev, struct intel_iommu, iommu); +} + +static ssize_t intel_iommu_show_version(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct intel_iommu *iommu = dev_to_intel_iommu(dev); + u32 ver = readl(iommu->reg + DMAR_VER_REG); + return sprintf(buf, "%d:%d\n", + DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver)); +} +static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL); + +static ssize_t intel_iommu_show_address(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct intel_iommu *iommu = dev_to_intel_iommu(dev); + return sprintf(buf, "%llx\n", iommu->reg_phys); +} +static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL); + +static ssize_t intel_iommu_show_cap(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct intel_iommu *iommu = dev_to_intel_iommu(dev); + return sprintf(buf, "%llx\n", iommu->cap); +} +static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL); + +static ssize_t intel_iommu_show_ecap(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct intel_iommu *iommu = dev_to_intel_iommu(dev); + return sprintf(buf, "%llx\n", iommu->ecap); +} +static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL); + +static ssize_t intel_iommu_show_ndoms(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct intel_iommu *iommu = dev_to_intel_iommu(dev); + return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap)); +} +static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL); + +static ssize_t intel_iommu_show_ndoms_used(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct intel_iommu *iommu = dev_to_intel_iommu(dev); + return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids, + cap_ndoms(iommu->cap))); +} +static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL); + +static struct attribute *intel_iommu_attrs[] = { + &dev_attr_version.attr, + &dev_attr_address.attr, + &dev_attr_cap.attr, + &dev_attr_ecap.attr, + &dev_attr_domains_supported.attr, + &dev_attr_domains_used.attr, + NULL, +}; + +static struct attribute_group intel_iommu_group = { + .name = "intel-iommu", + .attrs = intel_iommu_attrs, +}; + +const struct attribute_group *intel_iommu_groups[] = { + &intel_iommu_group, + NULL, +}; + +static inline bool has_untrusted_dev(void) +{ + struct pci_dev *pdev = NULL; + + for_each_pci_dev(pdev) + if (pdev->untrusted) + return true; + + return false; +} + +static int __init platform_optin_force_iommu(void) +{ + if (!dmar_platform_optin() || no_platform_optin || !has_untrusted_dev()) + return 0; + + if (no_iommu || dmar_disabled) + pr_info("Intel-IOMMU force enabled due to platform opt in\n"); + + /* + * If Intel-IOMMU is disabled by default, we will apply identity + * map for all devices except those marked as being untrusted. + */ + if (dmar_disabled) + iommu_set_default_passthrough(false); + + dmar_disabled = 0; + no_iommu = 0; + + return 1; +} + +static int __init probe_acpi_namespace_devices(void) +{ + struct dmar_drhd_unit *drhd; + /* To avoid a -Wunused-but-set-variable warning. */ + struct intel_iommu *iommu __maybe_unused; + struct device *dev; + int i, ret = 0; + + for_each_active_iommu(iommu, drhd) { + for_each_active_dev_scope(drhd->devices, + drhd->devices_cnt, i, dev) { + struct acpi_device_physical_node *pn; + struct iommu_group *group; + struct acpi_device *adev; + + if (dev->bus != &acpi_bus_type) + continue; + + adev = to_acpi_device(dev); + mutex_lock(&adev->physical_node_lock); + list_for_each_entry(pn, + &adev->physical_node_list, node) { + group = iommu_group_get(pn->dev); + if (group) { + iommu_group_put(group); + continue; + } + + pn->dev->bus->iommu_ops = &intel_iommu_ops; + ret = iommu_probe_device(pn->dev); + if (ret) + break; + } + mutex_unlock(&adev->physical_node_lock); + + if (ret) + return ret; + } + } + + return 0; +} + +int __init intel_iommu_init(void) +{ + int ret = -ENODEV; + struct dmar_drhd_unit *drhd; + struct intel_iommu *iommu; + + /* + * Intel IOMMU is required for a TXT/tboot launch or platform + * opt in, so enforce that. + */ + force_on = tboot_force_iommu() || platform_optin_force_iommu(); + + if (iommu_init_mempool()) { + if (force_on) + panic("tboot: Failed to initialize iommu memory\n"); + return -ENOMEM; + } + + down_write(&dmar_global_lock); + if (dmar_table_init()) { + if (force_on) + panic("tboot: Failed to initialize DMAR table\n"); + goto out_free_dmar; + } + + if (dmar_dev_scope_init() < 0) { + if (force_on) + panic("tboot: Failed to initialize DMAR device scope\n"); + goto out_free_dmar; + } + + up_write(&dmar_global_lock); + + /* + * The bus notifier takes the dmar_global_lock, so lockdep will + * complain later when we register it under the lock. + */ + dmar_register_bus_notifier(); + + down_write(&dmar_global_lock); + + if (!no_iommu) + intel_iommu_debugfs_init(); + + if (no_iommu || dmar_disabled) { + /* + * We exit the function here to ensure IOMMU's remapping and + * mempool aren't setup, which means that the IOMMU's PMRs + * won't be disabled via the call to init_dmars(). So disable + * it explicitly here. The PMRs were setup by tboot prior to + * calling SENTER, but the kernel is expected to reset/tear + * down the PMRs. + */ + if (intel_iommu_tboot_noforce) { + for_each_iommu(iommu, drhd) + iommu_disable_protect_mem_regions(iommu); + } + + /* + * Make sure the IOMMUs are switched off, even when we + * boot into a kexec kernel and the previous kernel left + * them enabled + */ + intel_disable_iommus(); + goto out_free_dmar; + } + + if (list_empty(&dmar_rmrr_units)) + pr_info("No RMRR found\n"); + + if (list_empty(&dmar_atsr_units)) + pr_info("No ATSR found\n"); + + if (dmar_init_reserved_ranges()) { + if (force_on) + panic("tboot: Failed to reserve iommu ranges\n"); + goto out_free_reserved_range; + } + + if (dmar_map_gfx) + intel_iommu_gfx_mapped = 1; + + init_no_remapping_devices(); + + ret = init_dmars(); + if (ret) { + if (force_on) + panic("tboot: Failed to initialize DMARs\n"); + pr_err("Initialization failed\n"); + goto out_free_reserved_range; + } + up_write(&dmar_global_lock); + + init_iommu_pm_ops(); + + down_read(&dmar_global_lock); + for_each_active_iommu(iommu, drhd) { + iommu_device_sysfs_add(&iommu->iommu, NULL, + intel_iommu_groups, + "%s", iommu->name); + iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops); + iommu_device_register(&iommu->iommu); + } + up_read(&dmar_global_lock); + + bus_set_iommu(&pci_bus_type, &intel_iommu_ops); + if (si_domain && !hw_pass_through) + register_memory_notifier(&intel_iommu_memory_nb); + cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL, + intel_iommu_cpu_dead); + + down_read(&dmar_global_lock); + if (probe_acpi_namespace_devices()) + pr_warn("ACPI name space devices didn't probe correctly\n"); + + /* Finally, we enable the DMA remapping hardware. */ + for_each_iommu(iommu, drhd) { + if (!drhd->ignored && !translation_pre_enabled(iommu)) + iommu_enable_translation(iommu); + + iommu_disable_protect_mem_regions(iommu); + } + up_read(&dmar_global_lock); + + pr_info("Intel(R) Virtualization Technology for Directed I/O\n"); + + intel_iommu_enabled = 1; + + return 0; + +out_free_reserved_range: + put_iova_domain(&reserved_iova_list); +out_free_dmar: + intel_iommu_free_dmars(); + up_write(&dmar_global_lock); + iommu_exit_mempool(); + return ret; +} + +static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque) +{ + struct intel_iommu *iommu = opaque; + + domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff); + return 0; +} + +/* + * NB - intel-iommu lacks any sort of reference counting for the users of + * dependent devices. If multiple endpoints have intersecting dependent + * devices, unbinding the driver from any one of them will possibly leave + * the others unable to operate. + */ +static void domain_context_clear(struct intel_iommu *iommu, struct device *dev) +{ + if (!iommu || !dev || !dev_is_pci(dev)) + return; + + pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu); +} + +static void __dmar_remove_one_dev_info(struct device_domain_info *info) +{ + struct dmar_domain *domain; + struct intel_iommu *iommu; + unsigned long flags; + + assert_spin_locked(&device_domain_lock); + + if (WARN_ON(!info)) + return; + + iommu = info->iommu; + domain = info->domain; + + if (info->dev) { + if (dev_is_pci(info->dev) && sm_supported(iommu)) + intel_pasid_tear_down_entry(iommu, info->dev, + PASID_RID2PASID, false); + + iommu_disable_dev_iotlb(info); + if (!dev_is_real_dma_subdevice(info->dev)) + domain_context_clear(iommu, info->dev); + intel_pasid_free_table(info->dev); + } + + unlink_domain_info(info); + + spin_lock_irqsave(&iommu->lock, flags); + domain_detach_iommu(domain, iommu); + spin_unlock_irqrestore(&iommu->lock, flags); + + free_devinfo_mem(info); +} + +static void dmar_remove_one_dev_info(struct device *dev) +{ + struct device_domain_info *info; + unsigned long flags; + + spin_lock_irqsave(&device_domain_lock, flags); + info = get_domain_info(dev); + if (info) + __dmar_remove_one_dev_info(info); + spin_unlock_irqrestore(&device_domain_lock, flags); +} + +static int md_domain_init(struct dmar_domain *domain, int guest_width) +{ + int adjust_width; + + /* calculate AGAW */ + domain->gaw = guest_width; + adjust_width = guestwidth_to_adjustwidth(guest_width); + domain->agaw = width_to_agaw(adjust_width); + + domain->iommu_coherency = 0; + domain->iommu_snooping = 0; + domain->iommu_superpage = 0; + domain->max_addr = 0; + + /* always allocate the top pgd */ + domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid); + if (!domain->pgd) + return -ENOMEM; + domain_flush_cache(domain, domain->pgd, PAGE_SIZE); + return 0; +} + +static void intel_init_iova_domain(struct dmar_domain *dmar_domain) +{ + init_iova_domain(&dmar_domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN); + copy_reserved_iova(&reserved_iova_list, &dmar_domain->iovad); + + if (!intel_iommu_strict && + init_iova_flush_queue(&dmar_domain->iovad, + iommu_flush_iova, iova_entry_free)) + pr_info("iova flush queue initialization failed\n"); +} + +static struct iommu_domain *intel_iommu_domain_alloc(unsigned type) +{ + struct dmar_domain *dmar_domain; + struct iommu_domain *domain; + + switch (type) { + case IOMMU_DOMAIN_DMA: + /* fallthrough */ + case IOMMU_DOMAIN_UNMANAGED: + dmar_domain = alloc_domain(0); + if (!dmar_domain) { + pr_err("Can't allocate dmar_domain\n"); + return NULL; + } + if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { + pr_err("Domain initialization failed\n"); + domain_exit(dmar_domain); + return NULL; + } + + if (type == IOMMU_DOMAIN_DMA) + intel_init_iova_domain(dmar_domain); + + domain_update_iommu_cap(dmar_domain); + + domain = &dmar_domain->domain; + domain->geometry.aperture_start = 0; + domain->geometry.aperture_end = + __DOMAIN_MAX_ADDR(dmar_domain->gaw); + domain->geometry.force_aperture = true; + + return domain; + case IOMMU_DOMAIN_IDENTITY: + return &si_domain->domain; + default: + return NULL; + } + + return NULL; +} + +static void intel_iommu_domain_free(struct iommu_domain *domain) +{ + if (domain != &si_domain->domain) + domain_exit(to_dmar_domain(domain)); +} + +/* + * Check whether a @domain could be attached to the @dev through the + * aux-domain attach/detach APIs. + */ +static inline bool +is_aux_domain(struct device *dev, struct iommu_domain *domain) +{ + struct device_domain_info *info = get_domain_info(dev); + + return info && info->auxd_enabled && + domain->type == IOMMU_DOMAIN_UNMANAGED; +} + +static void auxiliary_link_device(struct dmar_domain *domain, + struct device *dev) +{ + struct device_domain_info *info = get_domain_info(dev); + + assert_spin_locked(&device_domain_lock); + if (WARN_ON(!info)) + return; + + domain->auxd_refcnt++; + list_add(&domain->auxd, &info->auxiliary_domains); +} + +static void auxiliary_unlink_device(struct dmar_domain *domain, + struct device *dev) +{ + struct device_domain_info *info = get_domain_info(dev); + + assert_spin_locked(&device_domain_lock); + if (WARN_ON(!info)) + return; + + list_del(&domain->auxd); + domain->auxd_refcnt--; + + if (!domain->auxd_refcnt && domain->default_pasid > 0) + ioasid_free(domain->default_pasid); +} + +static int aux_domain_add_dev(struct dmar_domain *domain, + struct device *dev) +{ + int ret; + u8 bus, devfn; + unsigned long flags; + struct intel_iommu *iommu; + + iommu = device_to_iommu(dev, &bus, &devfn); + if (!iommu) + return -ENODEV; + + if (domain->default_pasid <= 0) { + int pasid; + + /* No private data needed for the default pasid */ + pasid = ioasid_alloc(NULL, PASID_MIN, + pci_max_pasids(to_pci_dev(dev)) - 1, + NULL); + if (pasid == INVALID_IOASID) { + pr_err("Can't allocate default pasid\n"); + return -ENODEV; + } + domain->default_pasid = pasid; + } + + spin_lock_irqsave(&device_domain_lock, flags); + /* + * iommu->lock must be held to attach domain to iommu and setup the + * pasid entry for second level translation. + */ + spin_lock(&iommu->lock); + ret = domain_attach_iommu(domain, iommu); + if (ret) + goto attach_failed; + + /* Setup the PASID entry for mediated devices: */ + if (domain_use_first_level(domain)) + ret = domain_setup_first_level(iommu, domain, dev, + domain->default_pasid); + else + ret = intel_pasid_setup_second_level(iommu, domain, dev, + domain->default_pasid); + if (ret) + goto table_failed; + spin_unlock(&iommu->lock); + + auxiliary_link_device(domain, dev); + + spin_unlock_irqrestore(&device_domain_lock, flags); + + return 0; + +table_failed: + domain_detach_iommu(domain, iommu); +attach_failed: + spin_unlock(&iommu->lock); + spin_unlock_irqrestore(&device_domain_lock, flags); + if (!domain->auxd_refcnt && domain->default_pasid > 0) + ioasid_free(domain->default_pasid); + + return ret; +} + +static void aux_domain_remove_dev(struct dmar_domain *domain, + struct device *dev) +{ + struct device_domain_info *info; + struct intel_iommu *iommu; + unsigned long flags; + + if (!is_aux_domain(dev, &domain->domain)) + return; + + spin_lock_irqsave(&device_domain_lock, flags); + info = get_domain_info(dev); + iommu = info->iommu; + + auxiliary_unlink_device(domain, dev); + + spin_lock(&iommu->lock); + intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid, false); + domain_detach_iommu(domain, iommu); + spin_unlock(&iommu->lock); + + spin_unlock_irqrestore(&device_domain_lock, flags); +} + +static int prepare_domain_attach_device(struct iommu_domain *domain, + struct device *dev) +{ + struct dmar_domain *dmar_domain = to_dmar_domain(domain); + struct intel_iommu *iommu; + int addr_width; + u8 bus, devfn; + + iommu = device_to_iommu(dev, &bus, &devfn); + if (!iommu) + return -ENODEV; + + /* check if this iommu agaw is sufficient for max mapped address */ + addr_width = agaw_to_width(iommu->agaw); + if (addr_width > cap_mgaw(iommu->cap)) + addr_width = cap_mgaw(iommu->cap); + + if (dmar_domain->max_addr > (1LL << addr_width)) { + dev_err(dev, "%s: iommu width (%d) is not " + "sufficient for the mapped address (%llx)\n", + __func__, addr_width, dmar_domain->max_addr); + return -EFAULT; + } + dmar_domain->gaw = addr_width; + + /* + * Knock out extra levels of page tables if necessary + */ + while (iommu->agaw < dmar_domain->agaw) { + struct dma_pte *pte; + + pte = dmar_domain->pgd; + if (dma_pte_present(pte)) { + dmar_domain->pgd = (struct dma_pte *) + phys_to_virt(dma_pte_addr(pte)); + free_pgtable_page(pte); + } + dmar_domain->agaw--; + } + + return 0; +} + +static int intel_iommu_attach_device(struct iommu_domain *domain, + struct device *dev) +{ + int ret; + + if (domain->type == IOMMU_DOMAIN_UNMANAGED && + device_is_rmrr_locked(dev)) { + dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n"); + return -EPERM; + } + + if (is_aux_domain(dev, domain)) + return -EPERM; + + /* normally dev is not mapped */ + if (unlikely(domain_context_mapped(dev))) { + struct dmar_domain *old_domain; + + old_domain = find_domain(dev); + if (old_domain) + dmar_remove_one_dev_info(dev); + } + + ret = prepare_domain_attach_device(domain, dev); + if (ret) + return ret; + + return domain_add_dev_info(to_dmar_domain(domain), dev); +} + +static int intel_iommu_aux_attach_device(struct iommu_domain *domain, + struct device *dev) +{ + int ret; + + if (!is_aux_domain(dev, domain)) + return -EPERM; + + ret = prepare_domain_attach_device(domain, dev); + if (ret) + return ret; + + return aux_domain_add_dev(to_dmar_domain(domain), dev); +} + +static void intel_iommu_detach_device(struct iommu_domain *domain, + struct device *dev) +{ + dmar_remove_one_dev_info(dev); +} + +static void intel_iommu_aux_detach_device(struct iommu_domain *domain, + struct device *dev) +{ + aux_domain_remove_dev(to_dmar_domain(domain), dev); +} + +/* + * 2D array for converting and sanitizing IOMMU generic TLB granularity to + * VT-d granularity. Invalidation is typically included in the unmap operation + * as a result of DMA or VFIO unmap. However, for assigned devices guest + * owns the first level page tables. Invalidations of translation caches in the + * guest are trapped and passed down to the host. + * + * vIOMMU in the guest will only expose first level page tables, therefore + * we do not support IOTLB granularity for request without PASID (second level). + * + * For example, to find the VT-d granularity encoding for IOTLB + * type and page selective granularity within PASID: + * X: indexed by iommu cache type + * Y: indexed by enum iommu_inv_granularity + * [IOMMU_CACHE_INV_TYPE_IOTLB][IOMMU_INV_GRANU_ADDR] + */ + +static const int +inv_type_granu_table[IOMMU_CACHE_INV_TYPE_NR][IOMMU_INV_GRANU_NR] = { + /* + * PASID based IOTLB invalidation: PASID selective (per PASID), + * page selective (address granularity) + */ + {-EINVAL, QI_GRAN_NONG_PASID, QI_GRAN_PSI_PASID}, + /* PASID based dev TLBs */ + {-EINVAL, -EINVAL, QI_DEV_IOTLB_GRAN_PASID_SEL}, + /* PASID cache */ + {-EINVAL, -EINVAL, -EINVAL} +}; + +static inline int to_vtd_granularity(int type, int granu) +{ + return inv_type_granu_table[type][granu]; +} + +static inline u64 to_vtd_size(u64 granu_size, u64 nr_granules) +{ + u64 nr_pages = (granu_size * nr_granules) >> VTD_PAGE_SHIFT; + + /* VT-d size is encoded as 2^size of 4K pages, 0 for 4k, 9 for 2MB, etc. + * IOMMU cache invalidate API passes granu_size in bytes, and number of + * granu size in contiguous memory. + */ + return order_base_2(nr_pages); +} + +#ifdef CONFIG_INTEL_IOMMU_SVM +static int +intel_iommu_sva_invalidate(struct iommu_domain *domain, struct device *dev, + struct iommu_cache_invalidate_info *inv_info) +{ + struct dmar_domain *dmar_domain = to_dmar_domain(domain); + struct device_domain_info *info; + struct intel_iommu *iommu; + unsigned long flags; + int cache_type; + u8 bus, devfn; + u16 did, sid; + int ret = 0; + u64 size = 0; + + if (!inv_info || !dmar_domain || + inv_info->version != IOMMU_CACHE_INVALIDATE_INFO_VERSION_1) + return -EINVAL; + + if (!dev || !dev_is_pci(dev)) + return -ENODEV; + + iommu = device_to_iommu(dev, &bus, &devfn); + if (!iommu) + return -ENODEV; + + if (!(dmar_domain->flags & DOMAIN_FLAG_NESTING_MODE)) + return -EINVAL; + + spin_lock_irqsave(&device_domain_lock, flags); + spin_lock(&iommu->lock); + info = get_domain_info(dev); + if (!info) { + ret = -EINVAL; + goto out_unlock; + } + did = dmar_domain->iommu_did[iommu->seq_id]; + sid = PCI_DEVID(bus, devfn); + + /* Size is only valid in address selective invalidation */ + if (inv_info->granularity != IOMMU_INV_GRANU_PASID) + size = to_vtd_size(inv_info->addr_info.granule_size, + inv_info->addr_info.nb_granules); + + for_each_set_bit(cache_type, + (unsigned long *)&inv_info->cache, + IOMMU_CACHE_INV_TYPE_NR) { + int granu = 0; + u64 pasid = 0; + + granu = to_vtd_granularity(cache_type, inv_info->granularity); + if (granu == -EINVAL) { + pr_err_ratelimited("Invalid cache type and granu combination %d/%d\n", + cache_type, inv_info->granularity); + break; + } + + /* + * PASID is stored in different locations based on the + * granularity. + */ + if (inv_info->granularity == IOMMU_INV_GRANU_PASID && + (inv_info->pasid_info.flags & IOMMU_INV_PASID_FLAGS_PASID)) + pasid = inv_info->pasid_info.pasid; + else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR && + (inv_info->addr_info.flags & IOMMU_INV_ADDR_FLAGS_PASID)) + pasid = inv_info->addr_info.pasid; + + switch (BIT(cache_type)) { + case IOMMU_CACHE_INV_TYPE_IOTLB: + if (inv_info->granularity == IOMMU_INV_GRANU_ADDR && + size && + (inv_info->addr_info.addr & ((BIT(VTD_PAGE_SHIFT + size)) - 1))) { + pr_err_ratelimited("Address out of range, 0x%llx, size order %llu\n", + inv_info->addr_info.addr, size); + ret = -ERANGE; + goto out_unlock; + } + + /* + * If granu is PASID-selective, address is ignored. + * We use npages = -1 to indicate that. + */ + qi_flush_piotlb(iommu, did, pasid, + mm_to_dma_pfn(inv_info->addr_info.addr), + (granu == QI_GRAN_NONG_PASID) ? -1 : 1 << size, + inv_info->addr_info.flags & IOMMU_INV_ADDR_FLAGS_LEAF); + + /* + * Always flush device IOTLB if ATS is enabled. vIOMMU + * in the guest may assume IOTLB flush is inclusive, + * which is more efficient. + */ + if (info->ats_enabled) + qi_flush_dev_iotlb_pasid(iommu, sid, + info->pfsid, pasid, + info->ats_qdep, + inv_info->addr_info.addr, + size, granu); + break; + case IOMMU_CACHE_INV_TYPE_DEV_IOTLB: + if (info->ats_enabled) + qi_flush_dev_iotlb_pasid(iommu, sid, + info->pfsid, pasid, + info->ats_qdep, + inv_info->addr_info.addr, + size, granu); + else + pr_warn_ratelimited("Passdown device IOTLB flush w/o ATS!\n"); + break; + default: + dev_err_ratelimited(dev, "Unsupported IOMMU invalidation type %d\n", + cache_type); + ret = -EINVAL; + } + } +out_unlock: + spin_unlock(&iommu->lock); + spin_unlock_irqrestore(&device_domain_lock, flags); + + return ret; +} +#endif + +static int intel_iommu_map(struct iommu_domain *domain, + unsigned long iova, phys_addr_t hpa, + size_t size, int iommu_prot, gfp_t gfp) +{ + struct dmar_domain *dmar_domain = to_dmar_domain(domain); + u64 max_addr; + int prot = 0; + int ret; + + if (iommu_prot & IOMMU_READ) + prot |= DMA_PTE_READ; + if (iommu_prot & IOMMU_WRITE) + prot |= DMA_PTE_WRITE; + if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping) + prot |= DMA_PTE_SNP; + + max_addr = iova + size; + if (dmar_domain->max_addr < max_addr) { + u64 end; + + /* check if minimum agaw is sufficient for mapped address */ + end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1; + if (end < max_addr) { + pr_err("%s: iommu width (%d) is not " + "sufficient for the mapped address (%llx)\n", + __func__, dmar_domain->gaw, max_addr); + return -EFAULT; + } + dmar_domain->max_addr = max_addr; + } + /* Round up size to next multiple of PAGE_SIZE, if it and + the low bits of hpa would take us onto the next page */ + size = aligned_nrpages(hpa, size); + ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT, + hpa >> VTD_PAGE_SHIFT, size, prot); + return ret; +} + +static size_t intel_iommu_unmap(struct iommu_domain *domain, + unsigned long iova, size_t size, + struct iommu_iotlb_gather *gather) +{ + struct dmar_domain *dmar_domain = to_dmar_domain(domain); + struct page *freelist = NULL; + unsigned long start_pfn, last_pfn; + unsigned int npages; + int iommu_id, level = 0; + + /* Cope with horrid API which requires us to unmap more than the + size argument if it happens to be a large-page mapping. */ + BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level)); + + if (size < VTD_PAGE_SIZE << level_to_offset_bits(level)) + size = VTD_PAGE_SIZE << level_to_offset_bits(level); + + start_pfn = iova >> VTD_PAGE_SHIFT; + last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT; + + freelist = domain_unmap(dmar_domain, start_pfn, last_pfn); + + npages = last_pfn - start_pfn + 1; + + for_each_domain_iommu(iommu_id, dmar_domain) + iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain, + start_pfn, npages, !freelist, 0); + + dma_free_pagelist(freelist); + + if (dmar_domain->max_addr == iova + size) + dmar_domain->max_addr = iova; + + return size; +} + +static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, + dma_addr_t iova) +{ + struct dmar_domain *dmar_domain = to_dmar_domain(domain); + struct dma_pte *pte; + int level = 0; + u64 phys = 0; + + pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level); + if (pte && dma_pte_present(pte)) + phys = dma_pte_addr(pte) + + (iova & (BIT_MASK(level_to_offset_bits(level) + + VTD_PAGE_SHIFT) - 1)); + + return phys; +} + +static inline bool scalable_mode_support(void) +{ + struct dmar_drhd_unit *drhd; + struct intel_iommu *iommu; + bool ret = true; + + rcu_read_lock(); + for_each_active_iommu(iommu, drhd) { + if (!sm_supported(iommu)) { + ret = false; + break; + } + } + rcu_read_unlock(); + + return ret; +} + +static inline bool iommu_pasid_support(void) +{ + struct dmar_drhd_unit *drhd; + struct intel_iommu *iommu; + bool ret = true; + + rcu_read_lock(); + for_each_active_iommu(iommu, drhd) { + if (!pasid_supported(iommu)) { + ret = false; + break; + } + } + rcu_read_unlock(); + + return ret; +} + +static inline bool nested_mode_support(void) +{ + struct dmar_drhd_unit *drhd; + struct intel_iommu *iommu; + bool ret = true; + + rcu_read_lock(); + for_each_active_iommu(iommu, drhd) { + if (!sm_supported(iommu) || !ecap_nest(iommu->ecap)) { + ret = false; + break; + } + } + rcu_read_unlock(); + + return ret; +} + +static bool intel_iommu_capable(enum iommu_cap cap) +{ + if (cap == IOMMU_CAP_CACHE_COHERENCY) + return domain_update_iommu_snooping(NULL) == 1; + if (cap == IOMMU_CAP_INTR_REMAP) + return irq_remapping_enabled == 1; + + return false; +} + +static struct iommu_device *intel_iommu_probe_device(struct device *dev) +{ + struct intel_iommu *iommu; + u8 bus, devfn; + + iommu = device_to_iommu(dev, &bus, &devfn); + if (!iommu) + return ERR_PTR(-ENODEV); + + if (translation_pre_enabled(iommu)) + dev->archdata.iommu = DEFER_DEVICE_DOMAIN_INFO; + + return &iommu->iommu; +} + +static void intel_iommu_release_device(struct device *dev) +{ + struct intel_iommu *iommu; + u8 bus, devfn; + + iommu = device_to_iommu(dev, &bus, &devfn); + if (!iommu) + return; + + dmar_remove_one_dev_info(dev); + + set_dma_ops(dev, NULL); +} + +static void intel_iommu_probe_finalize(struct device *dev) +{ + struct iommu_domain *domain; + + domain = iommu_get_domain_for_dev(dev); + if (device_needs_bounce(dev)) + set_dma_ops(dev, &bounce_dma_ops); + else if (domain && domain->type == IOMMU_DOMAIN_DMA) + set_dma_ops(dev, &intel_dma_ops); + else + set_dma_ops(dev, NULL); +} + +static void intel_iommu_get_resv_regions(struct device *device, + struct list_head *head) +{ + int prot = DMA_PTE_READ | DMA_PTE_WRITE; + struct iommu_resv_region *reg; + struct dmar_rmrr_unit *rmrr; + struct device *i_dev; + int i; + + down_read(&dmar_global_lock); + for_each_rmrr_units(rmrr) { + for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, + i, i_dev) { + struct iommu_resv_region *resv; + enum iommu_resv_type type; + size_t length; + + if (i_dev != device && + !is_downstream_to_pci_bridge(device, i_dev)) + continue; + + length = rmrr->end_address - rmrr->base_address + 1; + + type = device_rmrr_is_relaxable(device) ? + IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT; + + resv = iommu_alloc_resv_region(rmrr->base_address, + length, prot, type); + if (!resv) + break; + + list_add_tail(&resv->list, head); + } + } + up_read(&dmar_global_lock); + +#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA + if (dev_is_pci(device)) { + struct pci_dev *pdev = to_pci_dev(device); + + if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) { + reg = iommu_alloc_resv_region(0, 1UL << 24, prot, + IOMMU_RESV_DIRECT_RELAXABLE); + if (reg) + list_add_tail(®->list, head); + } + } +#endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */ + + reg = iommu_alloc_resv_region(IOAPIC_RANGE_START, + IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1, + 0, IOMMU_RESV_MSI); + if (!reg) + return; + list_add_tail(®->list, head); +} + +int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev) +{ + struct device_domain_info *info; + struct context_entry *context; + struct dmar_domain *domain; + unsigned long flags; + u64 ctx_lo; + int ret; + + domain = find_domain(dev); + if (!domain) + return -EINVAL; + + spin_lock_irqsave(&device_domain_lock, flags); + spin_lock(&iommu->lock); + + ret = -EINVAL; + info = get_domain_info(dev); + if (!info || !info->pasid_supported) + goto out; + + context = iommu_context_addr(iommu, info->bus, info->devfn, 0); + if (WARN_ON(!context)) + goto out; + + ctx_lo = context[0].lo; + + if (!(ctx_lo & CONTEXT_PASIDE)) { + ctx_lo |= CONTEXT_PASIDE; + context[0].lo = ctx_lo; + wmb(); + iommu->flush.flush_context(iommu, + domain->iommu_did[iommu->seq_id], + PCI_DEVID(info->bus, info->devfn), + DMA_CCMD_MASK_NOBIT, + DMA_CCMD_DEVICE_INVL); + } + + /* Enable PASID support in the device, if it wasn't already */ + if (!info->pasid_enabled) + iommu_enable_dev_iotlb(info); + + ret = 0; + + out: + spin_unlock(&iommu->lock); + spin_unlock_irqrestore(&device_domain_lock, flags); + + return ret; +} + +static void intel_iommu_apply_resv_region(struct device *dev, + struct iommu_domain *domain, + struct iommu_resv_region *region) +{ + struct dmar_domain *dmar_domain = to_dmar_domain(domain); + unsigned long start, end; + + start = IOVA_PFN(region->start); + end = IOVA_PFN(region->start + region->length - 1); + + WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end)); +} + +static struct iommu_group *intel_iommu_device_group(struct device *dev) +{ + if (dev_is_pci(dev)) + return pci_device_group(dev); + return generic_device_group(dev); +} + +#ifdef CONFIG_INTEL_IOMMU_SVM +struct intel_iommu *intel_svm_device_to_iommu(struct device *dev) +{ + struct intel_iommu *iommu; + u8 bus, devfn; + + if (iommu_dummy(dev)) { + dev_warn(dev, + "No IOMMU translation for device; cannot enable SVM\n"); + return NULL; + } + + iommu = device_to_iommu(dev, &bus, &devfn); + if ((!iommu)) { + dev_err(dev, "No IOMMU for device; cannot enable SVM\n"); + return NULL; + } + + return iommu; +} +#endif /* CONFIG_INTEL_IOMMU_SVM */ + +static int intel_iommu_enable_auxd(struct device *dev) +{ + struct device_domain_info *info; + struct intel_iommu *iommu; + unsigned long flags; + u8 bus, devfn; + int ret; + + iommu = device_to_iommu(dev, &bus, &devfn); + if (!iommu || dmar_disabled) + return -EINVAL; + + if (!sm_supported(iommu) || !pasid_supported(iommu)) + return -EINVAL; + + ret = intel_iommu_enable_pasid(iommu, dev); + if (ret) + return -ENODEV; + + spin_lock_irqsave(&device_domain_lock, flags); + info = get_domain_info(dev); + info->auxd_enabled = 1; + spin_unlock_irqrestore(&device_domain_lock, flags); + + return 0; +} + +static int intel_iommu_disable_auxd(struct device *dev) +{ + struct device_domain_info *info; + unsigned long flags; + + spin_lock_irqsave(&device_domain_lock, flags); + info = get_domain_info(dev); + if (!WARN_ON(!info)) + info->auxd_enabled = 0; + spin_unlock_irqrestore(&device_domain_lock, flags); + + return 0; +} + +/* + * A PCI express designated vendor specific extended capability is defined + * in the section 3.7 of Intel scalable I/O virtualization technical spec + * for system software and tools to detect endpoint devices supporting the + * Intel scalable IO virtualization without host driver dependency. + * + * Returns the address of the matching extended capability structure within + * the device's PCI configuration space or 0 if the device does not support + * it. + */ +static int siov_find_pci_dvsec(struct pci_dev *pdev) +{ + int pos; + u16 vendor, id; + + pos = pci_find_next_ext_capability(pdev, 0, 0x23); + while (pos) { + pci_read_config_word(pdev, pos + 4, &vendor); + pci_read_config_word(pdev, pos + 8, &id); + if (vendor == PCI_VENDOR_ID_INTEL && id == 5) + return pos; + + pos = pci_find_next_ext_capability(pdev, pos, 0x23); + } + + return 0; +} + +static bool +intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat) +{ + if (feat == IOMMU_DEV_FEAT_AUX) { + int ret; + + if (!dev_is_pci(dev) || dmar_disabled || + !scalable_mode_support() || !iommu_pasid_support()) + return false; + + ret = pci_pasid_features(to_pci_dev(dev)); + if (ret < 0) + return false; + + return !!siov_find_pci_dvsec(to_pci_dev(dev)); + } + + if (feat == IOMMU_DEV_FEAT_SVA) { + struct device_domain_info *info = get_domain_info(dev); + + return info && (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) && + info->pasid_supported && info->pri_supported && + info->ats_supported; + } + + return false; +} + +static int +intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat) +{ + if (feat == IOMMU_DEV_FEAT_AUX) + return intel_iommu_enable_auxd(dev); + + if (feat == IOMMU_DEV_FEAT_SVA) { + struct device_domain_info *info = get_domain_info(dev); + + if (!info) + return -EINVAL; + + if (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) + return 0; + } + + return -ENODEV; +} + +static int +intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat) +{ + if (feat == IOMMU_DEV_FEAT_AUX) + return intel_iommu_disable_auxd(dev); + + return -ENODEV; +} + +static bool +intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat) +{ + struct device_domain_info *info = get_domain_info(dev); + + if (feat == IOMMU_DEV_FEAT_AUX) + return scalable_mode_support() && info && info->auxd_enabled; + + return false; +} + +static int +intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev) +{ + struct dmar_domain *dmar_domain = to_dmar_domain(domain); + + return dmar_domain->default_pasid > 0 ? + dmar_domain->default_pasid : -EINVAL; +} + +static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain, + struct device *dev) +{ + return attach_deferred(dev); +} + +static int +intel_iommu_domain_set_attr(struct iommu_domain *domain, + enum iommu_attr attr, void *data) +{ + struct dmar_domain *dmar_domain = to_dmar_domain(domain); + unsigned long flags; + int ret = 0; + + if (domain->type != IOMMU_DOMAIN_UNMANAGED) + return -EINVAL; + + switch (attr) { + case DOMAIN_ATTR_NESTING: + spin_lock_irqsave(&device_domain_lock, flags); + if (nested_mode_support() && + list_empty(&dmar_domain->devices)) { + dmar_domain->flags |= DOMAIN_FLAG_NESTING_MODE; + dmar_domain->flags &= ~DOMAIN_FLAG_USE_FIRST_LEVEL; + } else { + ret = -ENODEV; + } + spin_unlock_irqrestore(&device_domain_lock, flags); + break; + default: + ret = -EINVAL; + break; + } + + return ret; +} + +const struct iommu_ops intel_iommu_ops = { + .capable = intel_iommu_capable, + .domain_alloc = intel_iommu_domain_alloc, + .domain_free = intel_iommu_domain_free, + .domain_set_attr = intel_iommu_domain_set_attr, + .attach_dev = intel_iommu_attach_device, + .detach_dev = intel_iommu_detach_device, + .aux_attach_dev = intel_iommu_aux_attach_device, + .aux_detach_dev = intel_iommu_aux_detach_device, + .aux_get_pasid = intel_iommu_aux_get_pasid, + .map = intel_iommu_map, + .unmap = intel_iommu_unmap, + .iova_to_phys = intel_iommu_iova_to_phys, + .probe_device = intel_iommu_probe_device, + .probe_finalize = intel_iommu_probe_finalize, + .release_device = intel_iommu_release_device, + .get_resv_regions = intel_iommu_get_resv_regions, + .put_resv_regions = generic_iommu_put_resv_regions, + .apply_resv_region = intel_iommu_apply_resv_region, + .device_group = intel_iommu_device_group, + .dev_has_feat = intel_iommu_dev_has_feat, + .dev_feat_enabled = intel_iommu_dev_feat_enabled, + .dev_enable_feat = intel_iommu_dev_enable_feat, + .dev_disable_feat = intel_iommu_dev_disable_feat, + .is_attach_deferred = intel_iommu_is_attach_deferred, + .def_domain_type = device_def_domain_type, + .pgsize_bitmap = INTEL_IOMMU_PGSIZES, +#ifdef CONFIG_INTEL_IOMMU_SVM + .cache_invalidate = intel_iommu_sva_invalidate, + .sva_bind_gpasid = intel_svm_bind_gpasid, + .sva_unbind_gpasid = intel_svm_unbind_gpasid, + .sva_bind = intel_svm_bind, + .sva_unbind = intel_svm_unbind, + .sva_get_pasid = intel_svm_get_pasid, +#endif +}; + +static void quirk_iommu_igfx(struct pci_dev *dev) +{ + pci_info(dev, "Disabling IOMMU for graphics on this chipset\n"); + dmar_map_gfx = 0; +} + +/* G4x/GM45 integrated gfx dmar support is totally busted. */ +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx); + +/* Broadwell igfx malfunctions with dmar */ +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx); + +static void quirk_iommu_rwbf(struct pci_dev *dev) +{ + /* + * Mobile 4 Series Chipset neglects to set RWBF capability, + * but needs it. Same seems to hold for the desktop versions. + */ + pci_info(dev, "Forcing write-buffer flush capability\n"); + rwbf_quirk = 1; +} + +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf); + +#define GGC 0x52 +#define GGC_MEMORY_SIZE_MASK (0xf << 8) +#define GGC_MEMORY_SIZE_NONE (0x0 << 8) +#define GGC_MEMORY_SIZE_1M (0x1 << 8) +#define GGC_MEMORY_SIZE_2M (0x3 << 8) +#define GGC_MEMORY_VT_ENABLED (0x8 << 8) +#define GGC_MEMORY_SIZE_2M_VT (0x9 << 8) +#define GGC_MEMORY_SIZE_3M_VT (0xa << 8) +#define GGC_MEMORY_SIZE_4M_VT (0xb << 8) + +static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev) +{ + unsigned short ggc; + + if (pci_read_config_word(dev, GGC, &ggc)) + return; + + if (!(ggc & GGC_MEMORY_VT_ENABLED)) { + pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n"); + dmar_map_gfx = 0; + } else if (dmar_map_gfx) { + /* we have to ensure the gfx device is idle before we flush */ + pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n"); + intel_iommu_strict = 1; + } +} +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt); +DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt); + +/* On Tylersburg chipsets, some BIOSes have been known to enable the + ISOCH DMAR unit for the Azalia sound device, but not give it any + TLB entries, which causes it to deadlock. Check for that. We do + this in a function called from init_dmars(), instead of in a PCI + quirk, because we don't want to print the obnoxious "BIOS broken" + message if VT-d is actually disabled. +*/ +static void __init check_tylersburg_isoch(void) +{ + struct pci_dev *pdev; + uint32_t vtisochctrl; + + /* If there's no Azalia in the system anyway, forget it. */ + pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL); + if (!pdev) + return; + pci_dev_put(pdev); + + /* System Management Registers. Might be hidden, in which case + we can't do the sanity check. But that's OK, because the + known-broken BIOSes _don't_ actually hide it, so far. */ + pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL); + if (!pdev) + return; + + if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) { + pci_dev_put(pdev); + return; + } + + pci_dev_put(pdev); + + /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */ + if (vtisochctrl & 1) + return; + + /* Drop all bits other than the number of TLB entries */ + vtisochctrl &= 0x1c; + + /* If we have the recommended number of TLB entries (16), fine. */ + if (vtisochctrl == 0x10) + return; + + /* Zero TLB entries? You get to ride the short bus to school. */ + if (!vtisochctrl) { + WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n" + "BIOS vendor: %s; Ver: %s; Product Version: %s\n", + dmi_get_system_info(DMI_BIOS_VENDOR), + dmi_get_system_info(DMI_BIOS_VERSION), + dmi_get_system_info(DMI_PRODUCT_VERSION)); + iommu_identity_mapping |= IDENTMAP_AZALIA; + return; + } + + pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n", + vtisochctrl); +} |