summaryrefslogtreecommitdiffstats
path: root/drivers/lguest/segments.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/lguest/segments.c')
-rw-r--r--drivers/lguest/segments.c177
1 files changed, 177 insertions, 0 deletions
diff --git a/drivers/lguest/segments.c b/drivers/lguest/segments.c
new file mode 100644
index 000000000000..9b81119f46e9
--- /dev/null
+++ b/drivers/lguest/segments.c
@@ -0,0 +1,177 @@
+/*P:600 The x86 architecture has segments, which involve a table of descriptors
+ * which can be used to do funky things with virtual address interpretation.
+ * We originally used to use segments so the Guest couldn't alter the
+ * Guest<->Host Switcher, and then we had to trim Guest segments, and restore
+ * for userspace per-thread segments, but trim again for on userspace->kernel
+ * transitions... This nightmarish creation was contained within this file,
+ * where we knew not to tread without heavy armament and a change of underwear.
+ *
+ * In these modern times, the segment handling code consists of simple sanity
+ * checks, and the worst you'll experience reading this code is butterfly-rash
+ * from frolicking through its parklike serenity. :*/
+#include "lg.h"
+
+/*H:600
+ * We've almost completed the Host; there's just one file to go!
+ *
+ * Segments & The Global Descriptor Table
+ *
+ * (That title sounds like a bad Nerdcore group. Not to suggest that there are
+ * any good Nerdcore groups, but in high school a friend of mine had a band
+ * called Joe Fish and the Chips, so there are definitely worse band names).
+ *
+ * To refresh: the GDT is a table of 8-byte values describing segments. Once
+ * set up, these segments can be loaded into one of the 6 "segment registers".
+ *
+ * GDT entries are passed around as "struct desc_struct"s, which like IDT
+ * entries are split into two 32-bit members, "a" and "b". One day, someone
+ * will clean that up, and be declared a Hero. (No pressure, I'm just saying).
+ *
+ * Anyway, the GDT entry contains a base (the start address of the segment), a
+ * limit (the size of the segment - 1), and some flags. Sounds simple, and it
+ * would be, except those zany Intel engineers decided that it was too boring
+ * to put the base at one end, the limit at the other, and the flags in
+ * between. They decided to shotgun the bits at random throughout the 8 bytes,
+ * like so:
+ *
+ * 0 16 40 48 52 56 63
+ * [ limit part 1 ][ base part 1 ][ flags ][li][fl][base ]
+ * mit ags part 2
+ * part 2
+ *
+ * As a result, this file contains a certain amount of magic numeracy. Let's
+ * begin.
+ */
+
+/* There are several entries we don't let the Guest set. The TSS entry is the
+ * "Task State Segment" which controls all kinds of delicate things. The
+ * LGUEST_CS and LGUEST_DS entries are reserved for the Switcher, and the
+ * the Guest can't be trusted to deal with double faults. */
+static int ignored_gdt(unsigned int num)
+{
+ return (num == GDT_ENTRY_TSS
+ || num == GDT_ENTRY_LGUEST_CS
+ || num == GDT_ENTRY_LGUEST_DS
+ || num == GDT_ENTRY_DOUBLEFAULT_TSS);
+}
+
+/*H:610 Once the GDT has been changed, we fix the new entries up a little. We
+ * don't care if they're invalid: the worst that can happen is a General
+ * Protection Fault in the Switcher when it restores a Guest segment register
+ * which tries to use that entry. Then we kill the Guest for causing such a
+ * mess: the message will be "unhandled trap 256". */
+static void fixup_gdt_table(struct lguest *lg, unsigned start, unsigned end)
+{
+ unsigned int i;
+
+ for (i = start; i < end; i++) {
+ /* We never copy these ones to real GDT, so we don't care what
+ * they say */
+ if (ignored_gdt(i))
+ continue;
+
+ /* Segment descriptors contain a privilege level: the Guest is
+ * sometimes careless and leaves this as 0, even though it's
+ * running at privilege level 1. If so, we fix it here. */
+ if ((lg->gdt[i].b & 0x00006000) == 0)
+ lg->gdt[i].b |= (GUEST_PL << 13);
+
+ /* Each descriptor has an "accessed" bit. If we don't set it
+ * now, the CPU will try to set it when the Guest first loads
+ * that entry into a segment register. But the GDT isn't
+ * writable by the Guest, so bad things can happen. */
+ lg->gdt[i].b |= 0x00000100;
+ }
+}
+
+/* This routine is called at boot or modprobe time for each CPU to set up the
+ * "constant" GDT entries for Guests running on that CPU. */
+void setup_default_gdt_entries(struct lguest_ro_state *state)
+{
+ struct desc_struct *gdt = state->guest_gdt;
+ unsigned long tss = (unsigned long)&state->guest_tss;
+
+ /* The hypervisor segments are full 0-4G segments, privilege level 0 */
+ gdt[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT;
+ gdt[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT;
+
+ /* The TSS segment refers to the TSS entry for this CPU, so we cannot
+ * copy it from the Guest. Forgive the magic flags */
+ gdt[GDT_ENTRY_TSS].a = 0x00000067 | (tss << 16);
+ gdt[GDT_ENTRY_TSS].b = 0x00008900 | (tss & 0xFF000000)
+ | ((tss >> 16) & 0x000000FF);
+}
+
+/* This routine is called before the Guest is run for the first time. */
+void setup_guest_gdt(struct lguest *lg)
+{
+ /* Start with full 0-4G segments... */
+ lg->gdt[GDT_ENTRY_KERNEL_CS] = FULL_EXEC_SEGMENT;
+ lg->gdt[GDT_ENTRY_KERNEL_DS] = FULL_SEGMENT;
+ /* ...except the Guest is allowed to use them, so set the privilege
+ * level appropriately in the flags. */
+ lg->gdt[GDT_ENTRY_KERNEL_CS].b |= (GUEST_PL << 13);
+ lg->gdt[GDT_ENTRY_KERNEL_DS].b |= (GUEST_PL << 13);
+}
+
+/* Like the IDT, we never simply use the GDT the Guest gives us. We set up the
+ * GDTs for each CPU, then we copy across the entries each time we want to run
+ * a different Guest on that CPU. */
+
+/* A partial GDT load, for the three "thead-local storage" entries. Otherwise
+ * it's just like load_guest_gdt(). So much, in fact, it would probably be
+ * neater to have a single hypercall to cover both. */
+void copy_gdt_tls(const struct lguest *lg, struct desc_struct *gdt)
+{
+ unsigned int i;
+
+ for (i = GDT_ENTRY_TLS_MIN; i <= GDT_ENTRY_TLS_MAX; i++)
+ gdt[i] = lg->gdt[i];
+}
+
+/* This is the full version */
+void copy_gdt(const struct lguest *lg, struct desc_struct *gdt)
+{
+ unsigned int i;
+
+ /* The default entries from setup_default_gdt_entries() are not
+ * replaced. See ignored_gdt() above. */
+ for (i = 0; i < GDT_ENTRIES; i++)
+ if (!ignored_gdt(i))
+ gdt[i] = lg->gdt[i];
+}
+
+/* This is where the Guest asks us to load a new GDT (LHCALL_LOAD_GDT). */
+void load_guest_gdt(struct lguest *lg, unsigned long table, u32 num)
+{
+ /* We assume the Guest has the same number of GDT entries as the
+ * Host, otherwise we'd have to dynamically allocate the Guest GDT. */
+ if (num > ARRAY_SIZE(lg->gdt))
+ kill_guest(lg, "too many gdt entries %i", num);
+
+ /* We read the whole thing in, then fix it up. */
+ lgread(lg, lg->gdt, table, num * sizeof(lg->gdt[0]));
+ fixup_gdt_table(lg, 0, ARRAY_SIZE(lg->gdt));
+ /* Mark that the GDT changed so the core knows it has to copy it again,
+ * even if the Guest is run on the same CPU. */
+ lg->changed |= CHANGED_GDT;
+}
+
+void guest_load_tls(struct lguest *lg, unsigned long gtls)
+{
+ struct desc_struct *tls = &lg->gdt[GDT_ENTRY_TLS_MIN];
+
+ lgread(lg, tls, gtls, sizeof(*tls)*GDT_ENTRY_TLS_ENTRIES);
+ fixup_gdt_table(lg, GDT_ENTRY_TLS_MIN, GDT_ENTRY_TLS_MAX+1);
+ lg->changed |= CHANGED_GDT_TLS;
+}
+
+/*
+ * With this, we have finished the Host.
+ *
+ * Five of the seven parts of our task are complete. You have made it through
+ * the Bit of Despair (I think that's somewhere in the page table code,
+ * myself).
+ *
+ * Next, we examine "make Switcher". It's short, but intense.
+ */