summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/nand_base.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand/nand_base.c')
-rw-r--r--drivers/mtd/nand/nand_base.c2563
1 files changed, 2563 insertions, 0 deletions
diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c
new file mode 100644
index 000000000000..44d5b128911f
--- /dev/null
+++ b/drivers/mtd/nand/nand_base.c
@@ -0,0 +1,2563 @@
+/*
+ * drivers/mtd/nand.c
+ *
+ * Overview:
+ * This is the generic MTD driver for NAND flash devices. It should be
+ * capable of working with almost all NAND chips currently available.
+ * Basic support for AG-AND chips is provided.
+ *
+ * Additional technical information is available on
+ * http://www.linux-mtd.infradead.org/tech/nand.html
+ *
+ * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ * 2002 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * 02-08-2004 tglx: support for strange chips, which cannot auto increment
+ * pages on read / read_oob
+ *
+ * 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes
+ * pointed this out, as he marked an auto increment capable chip
+ * as NOAUTOINCR in the board driver.
+ * Make reads over block boundaries work too
+ *
+ * 04-14-2004 tglx: first working version for 2k page size chips
+ *
+ * 05-19-2004 tglx: Basic support for Renesas AG-AND chips
+ *
+ * 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared
+ * among multiple independend devices. Suggestions and initial patch
+ * from Ben Dooks <ben-mtd@fluff.org>
+ *
+ * Credits:
+ * David Woodhouse for adding multichip support
+ *
+ * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
+ * rework for 2K page size chips
+ *
+ * TODO:
+ * Enable cached programming for 2k page size chips
+ * Check, if mtd->ecctype should be set to MTD_ECC_HW
+ * if we have HW ecc support.
+ * The AG-AND chips have nice features for speed improvement,
+ * which are not supported yet. Read / program 4 pages in one go.
+ *
+ * $Id: nand_base.c,v 1.126 2004/12/13 11:22:25 lavinen Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/delay.h>
+#include <linux/errno.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/compatmac.h>
+#include <linux/interrupt.h>
+#include <linux/bitops.h>
+#include <asm/io.h>
+
+#ifdef CONFIG_MTD_PARTITIONS
+#include <linux/mtd/partitions.h>
+#endif
+
+/* Define default oob placement schemes for large and small page devices */
+static struct nand_oobinfo nand_oob_8 = {
+ .useecc = MTD_NANDECC_AUTOPLACE,
+ .eccbytes = 3,
+ .eccpos = {0, 1, 2},
+ .oobfree = { {3, 2}, {6, 2} }
+};
+
+static struct nand_oobinfo nand_oob_16 = {
+ .useecc = MTD_NANDECC_AUTOPLACE,
+ .eccbytes = 6,
+ .eccpos = {0, 1, 2, 3, 6, 7},
+ .oobfree = { {8, 8} }
+};
+
+static struct nand_oobinfo nand_oob_64 = {
+ .useecc = MTD_NANDECC_AUTOPLACE,
+ .eccbytes = 24,
+ .eccpos = {
+ 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55,
+ 56, 57, 58, 59, 60, 61, 62, 63},
+ .oobfree = { {2, 38} }
+};
+
+/* This is used for padding purposes in nand_write_oob */
+static u_char ffchars[] = {
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+};
+
+/*
+ * NAND low-level MTD interface functions
+ */
+static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
+static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
+static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
+
+static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
+static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
+ size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
+static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
+static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
+static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
+ size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
+static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
+static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
+ unsigned long count, loff_t to, size_t * retlen);
+static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs,
+ unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
+static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
+static void nand_sync (struct mtd_info *mtd);
+
+/* Some internal functions */
+static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf,
+ struct nand_oobinfo *oobsel, int mode);
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
+ u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
+#else
+#define nand_verify_pages(...) (0)
+#endif
+
+static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state);
+
+/**
+ * nand_release_device - [GENERIC] release chip
+ * @mtd: MTD device structure
+ *
+ * Deselect, release chip lock and wake up anyone waiting on the device
+ */
+static void nand_release_device (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+
+ /* De-select the NAND device */
+ this->select_chip(mtd, -1);
+ /* Do we have a hardware controller ? */
+ if (this->controller) {
+ spin_lock(&this->controller->lock);
+ this->controller->active = NULL;
+ spin_unlock(&this->controller->lock);
+ }
+ /* Release the chip */
+ spin_lock (&this->chip_lock);
+ this->state = FL_READY;
+ wake_up (&this->wq);
+ spin_unlock (&this->chip_lock);
+}
+
+/**
+ * nand_read_byte - [DEFAULT] read one byte from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 8bit buswith
+ */
+static u_char nand_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ return readb(this->IO_ADDR_R);
+}
+
+/**
+ * nand_write_byte - [DEFAULT] write one byte to the chip
+ * @mtd: MTD device structure
+ * @byte: pointer to data byte to write
+ *
+ * Default write function for 8it buswith
+ */
+static void nand_write_byte(struct mtd_info *mtd, u_char byte)
+{
+ struct nand_chip *this = mtd->priv;
+ writeb(byte, this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 16bit buswith with
+ * endianess conversion
+ */
+static u_char nand_read_byte16(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ return (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
+}
+
+/**
+ * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
+ * @mtd: MTD device structure
+ * @byte: pointer to data byte to write
+ *
+ * Default write function for 16bit buswith with
+ * endianess conversion
+ */
+static void nand_write_byte16(struct mtd_info *mtd, u_char byte)
+{
+ struct nand_chip *this = mtd->priv;
+ writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_word - [DEFAULT] read one word from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 16bit buswith without
+ * endianess conversion
+ */
+static u16 nand_read_word(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ return readw(this->IO_ADDR_R);
+}
+
+/**
+ * nand_write_word - [DEFAULT] write one word to the chip
+ * @mtd: MTD device structure
+ * @word: data word to write
+ *
+ * Default write function for 16bit buswith without
+ * endianess conversion
+ */
+static void nand_write_word(struct mtd_info *mtd, u16 word)
+{
+ struct nand_chip *this = mtd->priv;
+ writew(word, this->IO_ADDR_W);
+}
+
+/**
+ * nand_select_chip - [DEFAULT] control CE line
+ * @mtd: MTD device structure
+ * @chip: chipnumber to select, -1 for deselect
+ *
+ * Default select function for 1 chip devices.
+ */
+static void nand_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ switch(chip) {
+ case -1:
+ this->hwcontrol(mtd, NAND_CTL_CLRNCE);
+ break;
+ case 0:
+ this->hwcontrol(mtd, NAND_CTL_SETNCE);
+ break;
+
+ default:
+ BUG();
+ }
+}
+
+/**
+ * nand_write_buf - [DEFAULT] write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 8bit buswith
+ */
+static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ writeb(buf[i], this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_buf - [DEFAULT] read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 8bit buswith
+ */
+static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ buf[i] = readb(this->IO_ADDR_R);
+}
+
+/**
+ * nand_verify_buf - [DEFAULT] Verify chip data against buffer
+ * @mtd: MTD device structure
+ * @buf: buffer containing the data to compare
+ * @len: number of bytes to compare
+ *
+ * Default verify function for 8bit buswith
+ */
+static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ if (buf[i] != readb(this->IO_ADDR_R))
+ return -EFAULT;
+
+ return 0;
+}
+
+/**
+ * nand_write_buf16 - [DEFAULT] write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 16bit buswith
+ */
+static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+ u16 *p = (u16 *) buf;
+ len >>= 1;
+
+ for (i=0; i<len; i++)
+ writew(p[i], this->IO_ADDR_W);
+
+}
+
+/**
+ * nand_read_buf16 - [DEFAULT] read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 16bit buswith
+ */
+static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+ u16 *p = (u16 *) buf;
+ len >>= 1;
+
+ for (i=0; i<len; i++)
+ p[i] = readw(this->IO_ADDR_R);
+}
+
+/**
+ * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
+ * @mtd: MTD device structure
+ * @buf: buffer containing the data to compare
+ * @len: number of bytes to compare
+ *
+ * Default verify function for 16bit buswith
+ */
+static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+ u16 *p = (u16 *) buf;
+ len >>= 1;
+
+ for (i=0; i<len; i++)
+ if (p[i] != readw(this->IO_ADDR_R))
+ return -EFAULT;
+
+ return 0;
+}
+
+/**
+ * nand_block_bad - [DEFAULT] Read bad block marker from the chip
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ * @getchip: 0, if the chip is already selected
+ *
+ * Check, if the block is bad.
+ */
+static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+ int page, chipnr, res = 0;
+ struct nand_chip *this = mtd->priv;
+ u16 bad;
+
+ if (getchip) {
+ page = (int)(ofs >> this->page_shift);
+ chipnr = (int)(ofs >> this->chip_shift);
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_READING);
+
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+ } else
+ page = (int) ofs;
+
+ if (this->options & NAND_BUSWIDTH_16) {
+ this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
+ bad = cpu_to_le16(this->read_word(mtd));
+ if (this->badblockpos & 0x1)
+ bad >>= 1;
+ if ((bad & 0xFF) != 0xff)
+ res = 1;
+ } else {
+ this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
+ if (this->read_byte(mtd) != 0xff)
+ res = 1;
+ }
+
+ if (getchip) {
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+ }
+
+ return res;
+}
+
+/**
+ * nand_default_block_markbad - [DEFAULT] mark a block bad
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ *
+ * This is the default implementation, which can be overridden by
+ * a hardware specific driver.
+*/
+static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ struct nand_chip *this = mtd->priv;
+ u_char buf[2] = {0, 0};
+ size_t retlen;
+ int block;
+
+ /* Get block number */
+ block = ((int) ofs) >> this->bbt_erase_shift;
+ this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
+
+ /* Do we have a flash based bad block table ? */
+ if (this->options & NAND_USE_FLASH_BBT)
+ return nand_update_bbt (mtd, ofs);
+
+ /* We write two bytes, so we dont have to mess with 16 bit access */
+ ofs += mtd->oobsize + (this->badblockpos & ~0x01);
+ return nand_write_oob (mtd, ofs , 2, &retlen, buf);
+}
+
+/**
+ * nand_check_wp - [GENERIC] check if the chip is write protected
+ * @mtd: MTD device structure
+ * Check, if the device is write protected
+ *
+ * The function expects, that the device is already selected
+ */
+static int nand_check_wp (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ /* Check the WP bit */
+ this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
+ return (this->read_byte(mtd) & 0x80) ? 0 : 1;
+}
+
+/**
+ * nand_block_checkbad - [GENERIC] Check if a block is marked bad
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ * @getchip: 0, if the chip is already selected
+ * @allowbbt: 1, if its allowed to access the bbt area
+ *
+ * Check, if the block is bad. Either by reading the bad block table or
+ * calling of the scan function.
+ */
+static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
+{
+ struct nand_chip *this = mtd->priv;
+
+ if (!this->bbt)
+ return this->block_bad(mtd, ofs, getchip);
+
+ /* Return info from the table */
+ return nand_isbad_bbt (mtd, ofs, allowbbt);
+}
+
+/**
+ * nand_command - [DEFAULT] Send command to NAND device
+ * @mtd: MTD device structure
+ * @command: the command to be sent
+ * @column: the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This function is used for small page
+ * devices (256/512 Bytes per page)
+ */
+static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+ register struct nand_chip *this = mtd->priv;
+
+ /* Begin command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ /*
+ * Write out the command to the device.
+ */
+ if (command == NAND_CMD_SEQIN) {
+ int readcmd;
+
+ if (column >= mtd->oobblock) {
+ /* OOB area */
+ column -= mtd->oobblock;
+ readcmd = NAND_CMD_READOOB;
+ } else if (column < 256) {
+ /* First 256 bytes --> READ0 */
+ readcmd = NAND_CMD_READ0;
+ } else {
+ column -= 256;
+ readcmd = NAND_CMD_READ1;
+ }
+ this->write_byte(mtd, readcmd);
+ }
+ this->write_byte(mtd, command);
+
+ /* Set ALE and clear CLE to start address cycle */
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+
+ if (column != -1 || page_addr != -1) {
+ this->hwcontrol(mtd, NAND_CTL_SETALE);
+
+ /* Serially input address */
+ if (column != -1) {
+ /* Adjust columns for 16 bit buswidth */
+ if (this->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+ this->write_byte(mtd, column);
+ }
+ if (page_addr != -1) {
+ this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
+ /* One more address cycle for devices > 32MiB */
+ if (this->chipsize > (32 << 20))
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
+ }
+ /* Latch in address */
+ this->hwcontrol(mtd, NAND_CTL_CLRALE);
+ }
+
+ /*
+ * program and erase have their own busy handlers
+ * status and sequential in needs no delay
+ */
+ switch (command) {
+
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_SEQIN:
+ case NAND_CMD_STATUS:
+ return;
+
+ case NAND_CMD_RESET:
+ if (this->dev_ready)
+ break;
+ udelay(this->chip_delay);
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ this->write_byte(mtd, NAND_CMD_STATUS);
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+ while ( !(this->read_byte(mtd) & 0x40));
+ return;
+
+ /* This applies to read commands */
+ default:
+ /*
+ * If we don't have access to the busy pin, we apply the given
+ * command delay
+ */
+ if (!this->dev_ready) {
+ udelay (this->chip_delay);
+ return;
+ }
+ }
+
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay (100);
+ /* wait until command is processed */
+ while (!this->dev_ready(mtd));
+}
+
+/**
+ * nand_command_lp - [DEFAULT] Send command to NAND large page device
+ * @mtd: MTD device structure
+ * @command: the command to be sent
+ * @column: the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This is the version for the new large page devices
+ * We dont have the seperate regions as we have in the small page devices.
+ * We must emulate NAND_CMD_READOOB to keep the code compatible.
+ *
+ */
+static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+ register struct nand_chip *this = mtd->priv;
+
+ /* Emulate NAND_CMD_READOOB */
+ if (command == NAND_CMD_READOOB) {
+ column += mtd->oobblock;
+ command = NAND_CMD_READ0;
+ }
+
+
+ /* Begin command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ /* Write out the command to the device. */
+ this->write_byte(mtd, command);
+ /* End command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+
+ if (column != -1 || page_addr != -1) {
+ this->hwcontrol(mtd, NAND_CTL_SETALE);
+
+ /* Serially input address */
+ if (column != -1) {
+ /* Adjust columns for 16 bit buswidth */
+ if (this->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+ this->write_byte(mtd, column & 0xff);
+ this->write_byte(mtd, column >> 8);
+ }
+ if (page_addr != -1) {
+ this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
+ /* One more address cycle for devices > 128MiB */
+ if (this->chipsize > (128 << 20))
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff));
+ }
+ /* Latch in address */
+ this->hwcontrol(mtd, NAND_CTL_CLRALE);
+ }
+
+ /*
+ * program and erase have their own busy handlers
+ * status and sequential in needs no delay
+ */
+ switch (command) {
+
+ case NAND_CMD_CACHEDPROG:
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_SEQIN:
+ case NAND_CMD_STATUS:
+ return;
+
+
+ case NAND_CMD_RESET:
+ if (this->dev_ready)
+ break;
+ udelay(this->chip_delay);
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ this->write_byte(mtd, NAND_CMD_STATUS);
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+ while ( !(this->read_byte(mtd) & 0x40));
+ return;
+
+ case NAND_CMD_READ0:
+ /* Begin command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ /* Write out the start read command */
+ this->write_byte(mtd, NAND_CMD_READSTART);
+ /* End command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+ /* Fall through into ready check */
+
+ /* This applies to read commands */
+ default:
+ /*
+ * If we don't have access to the busy pin, we apply the given
+ * command delay
+ */
+ if (!this->dev_ready) {
+ udelay (this->chip_delay);
+ return;
+ }
+ }
+
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay (100);
+ /* wait until command is processed */
+ while (!this->dev_ready(mtd));
+}
+
+/**
+ * nand_get_device - [GENERIC] Get chip for selected access
+ * @this: the nand chip descriptor
+ * @mtd: MTD device structure
+ * @new_state: the state which is requested
+ *
+ * Get the device and lock it for exclusive access
+ */
+static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
+{
+ struct nand_chip *active = this;
+
+ DECLARE_WAITQUEUE (wait, current);
+
+ /*
+ * Grab the lock and see if the device is available
+ */
+retry:
+ /* Hardware controller shared among independend devices */
+ if (this->controller) {
+ spin_lock (&this->controller->lock);
+ if (this->controller->active)
+ active = this->controller->active;
+ else
+ this->controller->active = this;
+ spin_unlock (&this->controller->lock);
+ }
+
+ if (active == this) {
+ spin_lock (&this->chip_lock);
+ if (this->state == FL_READY) {
+ this->state = new_state;
+ spin_unlock (&this->chip_lock);
+ return;
+ }
+ }
+ set_current_state (TASK_UNINTERRUPTIBLE);
+ add_wait_queue (&active->wq, &wait);
+ spin_unlock (&active->chip_lock);
+ schedule ();
+ remove_wait_queue (&active->wq, &wait);
+ goto retry;
+}
+
+/**
+ * nand_wait - [DEFAULT] wait until the command is done
+ * @mtd: MTD device structure
+ * @this: NAND chip structure
+ * @state: state to select the max. timeout value
+ *
+ * Wait for command done. This applies to erase and program only
+ * Erase can take up to 400ms and program up to 20ms according to
+ * general NAND and SmartMedia specs
+ *
+*/
+static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+{
+
+ unsigned long timeo = jiffies;
+ int status;
+
+ if (state == FL_ERASING)
+ timeo += (HZ * 400) / 1000;
+ else
+ timeo += (HZ * 20) / 1000;
+
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay (100);
+
+ if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
+ this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1);
+ else
+ this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
+
+ while (time_before(jiffies, timeo)) {
+ /* Check, if we were interrupted */
+ if (this->state != state)
+ return 0;
+
+ if (this->dev_ready) {
+ if (this->dev_ready(mtd))
+ break;
+ } else {
+ if (this->read_byte(mtd) & NAND_STATUS_READY)
+ break;
+ }
+ yield ();
+ }
+ status = (int) this->read_byte(mtd);
+ return status;
+}
+
+/**
+ * nand_write_page - [GENERIC] write one page
+ * @mtd: MTD device structure
+ * @this: NAND chip structure
+ * @page: startpage inside the chip, must be called with (page & this->pagemask)
+ * @oob_buf: out of band data buffer
+ * @oobsel: out of band selecttion structre
+ * @cached: 1 = enable cached programming if supported by chip
+ *
+ * Nand_page_program function is used for write and writev !
+ * This function will always program a full page of data
+ * If you call it with a non page aligned buffer, you're lost :)
+ *
+ * Cached programming is not supported yet.
+ */
+static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page,
+ u_char *oob_buf, struct nand_oobinfo *oobsel, int cached)
+{
+ int i, status;
+ u_char ecc_code[32];
+ int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
+ int *oob_config = oobsel->eccpos;
+ int datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
+ int eccbytes = 0;
+
+ /* FIXME: Enable cached programming */
+ cached = 0;
+
+ /* Send command to begin auto page programming */
+ this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
+
+ /* Write out complete page of data, take care of eccmode */
+ switch (eccmode) {
+ /* No ecc, write all */
+ case NAND_ECC_NONE:
+ printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
+ this->write_buf(mtd, this->data_poi, mtd->oobblock);
+ break;
+
+ /* Software ecc 3/256, write all */
+ case NAND_ECC_SOFT:
+ for (; eccsteps; eccsteps--) {
+ this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
+ for (i = 0; i < 3; i++, eccidx++)
+ oob_buf[oob_config[eccidx]] = ecc_code[i];
+ datidx += this->eccsize;
+ }
+ this->write_buf(mtd, this->data_poi, mtd->oobblock);
+ break;
+ default:
+ eccbytes = this->eccbytes;
+ for (; eccsteps; eccsteps--) {
+ /* enable hardware ecc logic for write */
+ this->enable_hwecc(mtd, NAND_ECC_WRITE);
+ this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
+ this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
+ for (i = 0; i < eccbytes; i++, eccidx++)
+ oob_buf[oob_config[eccidx]] = ecc_code[i];
+ /* If the hardware ecc provides syndromes then
+ * the ecc code must be written immidiately after
+ * the data bytes (words) */
+ if (this->options & NAND_HWECC_SYNDROME)
+ this->write_buf(mtd, ecc_code, eccbytes);
+ datidx += this->eccsize;
+ }
+ break;
+ }
+
+ /* Write out OOB data */
+ if (this->options & NAND_HWECC_SYNDROME)
+ this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
+ else
+ this->write_buf(mtd, oob_buf, mtd->oobsize);
+
+ /* Send command to actually program the data */
+ this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
+
+ if (!cached) {
+ /* call wait ready function */
+ status = this->waitfunc (mtd, this, FL_WRITING);
+ /* See if device thinks it succeeded */
+ if (status & 0x01) {
+ DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
+ return -EIO;
+ }
+ } else {
+ /* FIXME: Implement cached programming ! */
+ /* wait until cache is ready*/
+ // status = this->waitfunc (mtd, this, FL_CACHEDRPG);
+ }
+ return 0;
+}
+
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+/**
+ * nand_verify_pages - [GENERIC] verify the chip contents after a write
+ * @mtd: MTD device structure
+ * @this: NAND chip structure
+ * @page: startpage inside the chip, must be called with (page & this->pagemask)
+ * @numpages: number of pages to verify
+ * @oob_buf: out of band data buffer
+ * @oobsel: out of band selecttion structre
+ * @chipnr: number of the current chip
+ * @oobmode: 1 = full buffer verify, 0 = ecc only
+ *
+ * The NAND device assumes that it is always writing to a cleanly erased page.
+ * Hence, it performs its internal write verification only on bits that
+ * transitioned from 1 to 0. The device does NOT verify the whole page on a
+ * byte by byte basis. It is possible that the page was not completely erased
+ * or the page is becoming unusable due to wear. The read with ECC would catch
+ * the error later when the ECC page check fails, but we would rather catch
+ * it early in the page write stage. Better to write no data than invalid data.
+ */
+static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
+ u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
+{
+ int i, j, datidx = 0, oobofs = 0, res = -EIO;
+ int eccsteps = this->eccsteps;
+ int hweccbytes;
+ u_char oobdata[64];
+
+ hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
+
+ /* Send command to read back the first page */
+ this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);
+
+ for(;;) {
+ for (j = 0; j < eccsteps; j++) {
+ /* Loop through and verify the data */
+ if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+ goto out;
+ }
+ datidx += mtd->eccsize;
+ /* Have we a hw generator layout ? */
+ if (!hweccbytes)
+ continue;
+ if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+ goto out;
+ }
+ oobofs += hweccbytes;
+ }
+
+ /* check, if we must compare all data or if we just have to
+ * compare the ecc bytes
+ */
+ if (oobmode) {
+ if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+ goto out;
+ }
+ } else {
+ /* Read always, else autoincrement fails */
+ this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps);
+
+ if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) {
+ int ecccnt = oobsel->eccbytes;
+
+ for (i = 0; i < ecccnt; i++) {
+ int idx = oobsel->eccpos[i];
+ if (oobdata[idx] != oob_buf[oobofs + idx] ) {
+ DEBUG (MTD_DEBUG_LEVEL0,
+ "%s: Failed ECC write "
+ "verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
+ goto out;
+ }
+ }
+ }
+ }
+ oobofs += mtd->oobsize - hweccbytes * eccsteps;
+ page++;
+ numpages--;
+
+ /* Apply delay or wait for ready/busy pin
+ * Do this before the AUTOINCR check, so no problems
+ * arise if a chip which does auto increment
+ * is marked as NOAUTOINCR by the board driver.
+ * Do this also before returning, so the chip is
+ * ready for the next command.
+ */
+ if (!this->dev_ready)
+ udelay (this->chip_delay);
+ else
+ while (!this->dev_ready(mtd));
+
+ /* All done, return happy */
+ if (!numpages)
+ return 0;
+
+
+ /* Check, if the chip supports auto page increment */
+ if (!NAND_CANAUTOINCR(this))
+ this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
+ }
+ /*
+ * Terminate the read command. We come here in case of an error
+ * So we must issue a reset command.
+ */
+out:
+ this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1);
+ return res;
+}
+#endif
+
+/**
+ * nand_read - [MTD Interface] MTD compability function for nand_read_ecc
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @retlen: pointer to variable to store the number of read bytes
+ * @buf: the databuffer to put data
+ *
+ * This function simply calls nand_read_ecc with oob buffer and oobsel = NULL
+*/
+static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
+{
+ return nand_read_ecc (mtd, from, len, retlen, buf, NULL, NULL);
+}
+
+
+/**
+ * nand_read_ecc - [MTD Interface] Read data with ECC
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @retlen: pointer to variable to store the number of read bytes
+ * @buf: the databuffer to put data
+ * @oob_buf: filesystem supplied oob data buffer
+ * @oobsel: oob selection structure
+ *
+ * NAND read with ECC
+ */
+static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
+ size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
+{
+ int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
+ int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
+ struct nand_chip *this = mtd->priv;
+ u_char *data_poi, *oob_data = oob_buf;
+ u_char ecc_calc[32];
+ u_char ecc_code[32];
+ int eccmode, eccsteps;
+ int *oob_config, datidx;
+ int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+ int eccbytes;
+ int compareecc = 1;
+ int oobreadlen;
+
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
+
+ /* Do not allow reads past end of device */
+ if ((from + len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
+ *retlen = 0;
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd ,FL_READING);
+
+ /* use userspace supplied oobinfo, if zero */
+ if (oobsel == NULL)
+ oobsel = &mtd->oobinfo;
+
+ /* Autoplace of oob data ? Use the default placement scheme */
+ if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
+ oobsel = this->autooob;
+
+ eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
+ oob_config = oobsel->eccpos;
+
+ /* Select the NAND device */
+ chipnr = (int)(from >> this->chip_shift);
+ this->select_chip(mtd, chipnr);
+
+ /* First we calculate the starting page */
+ realpage = (int) (from >> this->page_shift);
+ page = realpage & this->pagemask;
+
+ /* Get raw starting column */
+ col = from & (mtd->oobblock - 1);
+
+ end = mtd->oobblock;
+ ecc = this->eccsize;
+ eccbytes = this->eccbytes;
+
+ if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
+ compareecc = 0;
+
+ oobreadlen = mtd->oobsize;
+ if (this->options & NAND_HWECC_SYNDROME)
+ oobreadlen -= oobsel->eccbytes;
+
+ /* Loop until all data read */
+ while (read < len) {
+
+ int aligned = (!col && (len - read) >= end);
+ /*
+ * If the read is not page aligned, we have to read into data buffer
+ * due to ecc, else we read into return buffer direct
+ */
+ if (aligned)
+ data_poi = &buf[read];
+ else
+ data_poi = this->data_buf;
+
+ /* Check, if we have this page in the buffer
+ *
+ * FIXME: Make it work when we must provide oob data too,
+ * check the usage of data_buf oob field
+ */
+ if (realpage == this->pagebuf && !oob_buf) {
+ /* aligned read ? */
+ if (aligned)
+ memcpy (data_poi, this->data_buf, end);
+ goto readdata;
+ }
+
+ /* Check, if we must send the read command */
+ if (sndcmd) {
+ this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
+ sndcmd = 0;
+ }
+
+ /* get oob area, if we have no oob buffer from fs-driver */
+ if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE)
+ oob_data = &this->data_buf[end];
+
+ eccsteps = this->eccsteps;
+
+ switch (eccmode) {
+ case NAND_ECC_NONE: { /* No ECC, Read in a page */
+ static unsigned long lastwhinge = 0;
+ if ((lastwhinge / HZ) != (jiffies / HZ)) {
+ printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
+ lastwhinge = jiffies;
+ }
+ this->read_buf(mtd, data_poi, end);
+ break;
+ }
+
+ case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */
+ this->read_buf(mtd, data_poi, end);
+ for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc)
+ this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
+ break;
+
+ default:
+ for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) {
+ this->enable_hwecc(mtd, NAND_ECC_READ);
+ this->read_buf(mtd, &data_poi[datidx], ecc);
+
+ /* HW ecc with syndrome calculation must read the
+ * syndrome from flash immidiately after the data */
+ if (!compareecc) {
+ /* Some hw ecc generators need to know when the
+ * syndrome is read from flash */
+ this->enable_hwecc(mtd, NAND_ECC_READSYN);
+ this->read_buf(mtd, &oob_data[i], eccbytes);
+ /* We calc error correction directly, it checks the hw
+ * generator for an error, reads back the syndrome and
+ * does the error correction on the fly */
+ if (this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]) == -1) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: "
+ "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
+ ecc_failed++;
+ }
+ } else {
+ this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
+ }
+ }
+ break;
+ }
+
+ /* read oobdata */
+ this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
+
+ /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
+ if (!compareecc)
+ goto readoob;
+
+ /* Pick the ECC bytes out of the oob data */
+ for (j = 0; j < oobsel->eccbytes; j++)
+ ecc_code[j] = oob_data[oob_config[j]];
+
+ /* correct data, if neccecary */
+ for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
+ ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
+
+ /* Get next chunk of ecc bytes */
+ j += eccbytes;
+
+ /* Check, if we have a fs supplied oob-buffer,
+ * This is the legacy mode. Used by YAFFS1
+ * Should go away some day
+ */
+ if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) {
+ int *p = (int *)(&oob_data[mtd->oobsize]);
+ p[i] = ecc_status;
+ }
+
+ if (ecc_status == -1) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
+ ecc_failed++;
+ }
+ }
+
+ readoob:
+ /* check, if we have a fs supplied oob-buffer */
+ if (oob_buf) {
+ /* without autoplace. Legacy mode used by YAFFS1 */
+ switch(oobsel->useecc) {
+ case MTD_NANDECC_AUTOPLACE:
+ /* Walk through the autoplace chunks */
+ for (i = 0, j = 0; j < mtd->oobavail; i++) {
+ int from = oobsel->oobfree[i][0];
+ int num = oobsel->oobfree[i][1];
+ memcpy(&oob_buf[oob], &oob_data[from], num);
+ j+= num;
+ }
+ oob += mtd->oobavail;
+ break;
+ case MTD_NANDECC_PLACE:
+ /* YAFFS1 legacy mode */
+ oob_data += this->eccsteps * sizeof (int);
+ default:
+ oob_data += mtd->oobsize;
+ }
+ }
+ readdata:
+ /* Partial page read, transfer data into fs buffer */
+ if (!aligned) {
+ for (j = col; j < end && read < len; j++)
+ buf[read++] = data_poi[j];
+ this->pagebuf = realpage;
+ } else
+ read += mtd->oobblock;
+
+ /* Apply delay or wait for ready/busy pin
+ * Do this before the AUTOINCR check, so no problems
+ * arise if a chip which does auto increment
+ * is marked as NOAUTOINCR by the board driver.
+ */
+ if (!this->dev_ready)
+ udelay (this->chip_delay);
+ else
+ while (!this->dev_ready(mtd));
+
+ if (read == len)
+ break;
+
+ /* For subsequent reads align to page boundary. */
+ col = 0;
+ /* Increment page address */
+ realpage++;
+
+ page = realpage & this->pagemask;
+ /* Check, if we cross a chip boundary */
+ if (!page) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+ /* Check, if the chip supports auto page increment
+ * or if we have hit a block boundary.
+ */
+ if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
+ sndcmd = 1;
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ /*
+ * Return success, if no ECC failures, else -EBADMSG
+ * fs driver will take care of that, because
+ * retlen == desired len and result == -EBADMSG
+ */
+ *retlen = read;
+ return ecc_failed ? -EBADMSG : 0;
+}
+
+/**
+ * nand_read_oob - [MTD Interface] NAND read out-of-band
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @retlen: pointer to variable to store the number of read bytes
+ * @buf: the databuffer to put data
+ *
+ * NAND read out-of-band data from the spare area
+ */
+static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
+{
+ int i, col, page, chipnr;
+ struct nand_chip *this = mtd->priv;
+ int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
+
+ /* Shift to get page */
+ page = (int)(from >> this->page_shift);
+ chipnr = (int)(from >> this->chip_shift);
+
+ /* Mask to get column */
+ col = from & (mtd->oobsize - 1);
+
+ /* Initialize return length value */
+ *retlen = 0;
+
+ /* Do not allow reads past end of device */
+ if ((from + len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
+ *retlen = 0;
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd , FL_READING);
+
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Send the read command */
+ this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
+ /*
+ * Read the data, if we read more than one page
+ * oob data, let the device transfer the data !
+ */
+ i = 0;
+ while (i < len) {
+ int thislen = mtd->oobsize - col;
+ thislen = min_t(int, thislen, len);
+ this->read_buf(mtd, &buf[i], thislen);
+ i += thislen;
+
+ /* Apply delay or wait for ready/busy pin
+ * Do this before the AUTOINCR check, so no problems
+ * arise if a chip which does auto increment
+ * is marked as NOAUTOINCR by the board driver.
+ */
+ if (!this->dev_ready)
+ udelay (this->chip_delay);
+ else
+ while (!this->dev_ready(mtd));
+
+ /* Read more ? */
+ if (i < len) {
+ page++;
+ col = 0;
+
+ /* Check, if we cross a chip boundary */
+ if (!(page & this->pagemask)) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+
+ /* Check, if the chip supports auto page increment
+ * or if we have hit a block boundary.
+ */
+ if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
+ /* For subsequent page reads set offset to 0 */
+ this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
+ }
+ }
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ /* Return happy */
+ *retlen = len;
+ return 0;
+}
+
+/**
+ * nand_read_raw - [GENERIC] Read raw data including oob into buffer
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @ooblen: number of oob data bytes to read
+ *
+ * Read raw data including oob into buffer
+ */
+int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
+{
+ struct nand_chip *this = mtd->priv;
+ int page = (int) (from >> this->page_shift);
+ int chip = (int) (from >> this->chip_shift);
+ int sndcmd = 1;
+ int cnt = 0;
+ int pagesize = mtd->oobblock + mtd->oobsize;
+ int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+
+ /* Do not allow reads past end of device */
+ if ((from + len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd , FL_READING);
+
+ this->select_chip (mtd, chip);
+
+ /* Add requested oob length */
+ len += ooblen;
+
+ while (len) {
+ if (sndcmd)
+ this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask);
+ sndcmd = 0;
+
+ this->read_buf (mtd, &buf[cnt], pagesize);
+
+ len -= pagesize;
+ cnt += pagesize;
+ page++;
+
+ if (!this->dev_ready)
+ udelay (this->chip_delay);
+ else
+ while (!this->dev_ready(mtd));
+
+ /* Check, if the chip supports auto page increment */
+ if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
+ sndcmd = 1;
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+ return 0;
+}
+
+
+/**
+ * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer
+ * @mtd: MTD device structure
+ * @fsbuf: buffer given by fs driver
+ * @oobsel: out of band selection structre
+ * @autoplace: 1 = place given buffer into the oob bytes
+ * @numpages: number of pages to prepare
+ *
+ * Return:
+ * 1. Filesystem buffer available and autoplacement is off,
+ * return filesystem buffer
+ * 2. No filesystem buffer or autoplace is off, return internal
+ * buffer
+ * 3. Filesystem buffer is given and autoplace selected
+ * put data from fs buffer into internal buffer and
+ * retrun internal buffer
+ *
+ * Note: The internal buffer is filled with 0xff. This must
+ * be done only once, when no autoplacement happens
+ * Autoplacement sets the buffer dirty flag, which
+ * forces the 0xff fill before using the buffer again.
+ *
+*/
+static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
+ int autoplace, int numpages)
+{
+ struct nand_chip *this = mtd->priv;
+ int i, len, ofs;
+
+ /* Zero copy fs supplied buffer */
+ if (fsbuf && !autoplace)
+ return fsbuf;
+
+ /* Check, if the buffer must be filled with ff again */
+ if (this->oobdirty) {
+ memset (this->oob_buf, 0xff,
+ mtd->oobsize << (this->phys_erase_shift - this->page_shift));
+ this->oobdirty = 0;
+ }
+
+ /* If we have no autoplacement or no fs buffer use the internal one */
+ if (!autoplace || !fsbuf)
+ return this->oob_buf;
+
+ /* Walk through the pages and place the data */
+ this->oobdirty = 1;
+ ofs = 0;
+ while (numpages--) {
+ for (i = 0, len = 0; len < mtd->oobavail; i++) {
+ int to = ofs + oobsel->oobfree[i][0];
+ int num = oobsel->oobfree[i][1];
+ memcpy (&this->oob_buf[to], fsbuf, num);
+ len += num;
+ fsbuf += num;
+ }
+ ofs += mtd->oobavail;
+ }
+ return this->oob_buf;
+}
+
+#define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
+
+/**
+ * nand_write - [MTD Interface] compability function for nand_write_ecc
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @retlen: pointer to variable to store the number of written bytes
+ * @buf: the data to write
+ *
+ * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
+ *
+*/
+static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
+{
+ return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
+}
+
+/**
+ * nand_write_ecc - [MTD Interface] NAND write with ECC
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @retlen: pointer to variable to store the number of written bytes
+ * @buf: the data to write
+ * @eccbuf: filesystem supplied oob data buffer
+ * @oobsel: oob selection structure
+ *
+ * NAND write with ECC
+ */
+static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
+ size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
+{
+ int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
+ int autoplace = 0, numpages, totalpages;
+ struct nand_chip *this = mtd->priv;
+ u_char *oobbuf, *bufstart;
+ int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
+
+ /* Initialize retlen, in case of early exit */
+ *retlen = 0;
+
+ /* Do not allow write past end of device */
+ if ((to + len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
+ return -EINVAL;
+ }
+
+ /* reject writes, which are not page aligned */
+ if (NOTALIGNED (to) || NOTALIGNED(len)) {
+ printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_WRITING);
+
+ /* Calculate chipnr */
+ chipnr = (int)(to >> this->chip_shift);
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd))
+ goto out;
+
+ /* if oobsel is NULL, use chip defaults */
+ if (oobsel == NULL)
+ oobsel = &mtd->oobinfo;
+
+ /* Autoplace of oob data ? Use the default placement scheme */
+ if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
+ oobsel = this->autooob;
+ autoplace = 1;
+ }
+
+ /* Setup variables and oob buffer */
+ totalpages = len >> this->page_shift;
+ page = (int) (to >> this->page_shift);
+ /* Invalidate the page cache, if we write to the cached page */
+ if (page <= this->pagebuf && this->pagebuf < (page + totalpages))
+ this->pagebuf = -1;
+
+ /* Set it relative to chip */
+ page &= this->pagemask;
+ startpage = page;
+ /* Calc number of pages we can write in one go */
+ numpages = min (ppblock - (startpage & (ppblock - 1)), totalpages);
+ oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages);
+ bufstart = (u_char *)buf;
+
+ /* Loop until all data is written */
+ while (written < len) {
+
+ this->data_poi = (u_char*) &buf[written];
+ /* Write one page. If this is the last page to write
+ * or the last page in this block, then use the
+ * real pageprogram command, else select cached programming
+ * if supported by the chip.
+ */
+ ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
+ if (ret) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
+ goto out;
+ }
+ /* Next oob page */
+ oob += mtd->oobsize;
+ /* Update written bytes count */
+ written += mtd->oobblock;
+ if (written == len)
+ goto cmp;
+
+ /* Increment page address */
+ page++;
+
+ /* Have we hit a block boundary ? Then we have to verify and
+ * if verify is ok, we have to setup the oob buffer for
+ * the next pages.
+ */
+ if (!(page & (ppblock - 1))){
+ int ofs;
+ this->data_poi = bufstart;
+ ret = nand_verify_pages (mtd, this, startpage,
+ page - startpage,
+ oobbuf, oobsel, chipnr, (eccbuf != NULL));
+ if (ret) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
+ goto out;
+ }
+ *retlen = written;
+
+ ofs = autoplace ? mtd->oobavail : mtd->oobsize;
+ if (eccbuf)
+ eccbuf += (page - startpage) * ofs;
+ totalpages -= page - startpage;
+ numpages = min (totalpages, ppblock);
+ page &= this->pagemask;
+ startpage = page;
+ oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel,
+ autoplace, numpages);
+ /* Check, if we cross a chip boundary */
+ if (!page) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+ }
+ }
+ /* Verify the remaining pages */
+cmp:
+ this->data_poi = bufstart;
+ ret = nand_verify_pages (mtd, this, startpage, totalpages,
+ oobbuf, oobsel, chipnr, (eccbuf != NULL));
+ if (!ret)
+ *retlen = written;
+ else
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
+
+out:
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ return ret;
+}
+
+
+/**
+ * nand_write_oob - [MTD Interface] NAND write out-of-band
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @retlen: pointer to variable to store the number of written bytes
+ * @buf: the data to write
+ *
+ * NAND write out-of-band
+ */
+static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
+{
+ int column, page, status, ret = -EIO, chipnr;
+ struct nand_chip *this = mtd->priv;
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
+
+ /* Shift to get page */
+ page = (int) (to >> this->page_shift);
+ chipnr = (int) (to >> this->chip_shift);
+
+ /* Mask to get column */
+ column = to & (mtd->oobsize - 1);
+
+ /* Initialize return length value */
+ *retlen = 0;
+
+ /* Do not allow write past end of page */
+ if ((column + len) > mtd->oobsize) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_WRITING);
+
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Reset the chip. Some chips (like the Toshiba TC5832DC found
+ in one of my DiskOnChip 2000 test units) will clear the whole
+ data page too if we don't do this. I have no clue why, but
+ I seem to have 'fixed' it in the doc2000 driver in
+ August 1999. dwmw2. */
+ this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd))
+ goto out;
+
+ /* Invalidate the page cache, if we write to the cached page */
+ if (page == this->pagebuf)
+ this->pagebuf = -1;
+
+ if (NAND_MUST_PAD(this)) {
+ /* Write out desired data */
+ this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
+ /* prepad 0xff for partial programming */
+ this->write_buf(mtd, ffchars, column);
+ /* write data */
+ this->write_buf(mtd, buf, len);
+ /* postpad 0xff for partial programming */
+ this->write_buf(mtd, ffchars, mtd->oobsize - (len+column));
+ } else {
+ /* Write out desired data */
+ this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
+ /* write data */
+ this->write_buf(mtd, buf, len);
+ }
+ /* Send command to program the OOB data */
+ this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ status = this->waitfunc (mtd, this, FL_WRITING);
+
+ /* See if device thinks it succeeded */
+ if (status & 0x01) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
+ ret = -EIO;
+ goto out;
+ }
+ /* Return happy */
+ *retlen = len;
+
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+ /* Send command to read back the data */
+ this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask);
+
+ if (this->verify_buf(mtd, buf, len)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
+ ret = -EIO;
+ goto out;
+ }
+#endif
+ ret = 0;
+out:
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ return ret;
+}
+
+
+/**
+ * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
+ * @mtd: MTD device structure
+ * @vecs: the iovectors to write
+ * @count: number of vectors
+ * @to: offset to write to
+ * @retlen: pointer to variable to store the number of written bytes
+ *
+ * NAND write with kvec. This just calls the ecc function
+ */
+static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
+ loff_t to, size_t * retlen)
+{
+ return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL));
+}
+
+/**
+ * nand_writev_ecc - [MTD Interface] write with iovec with ecc
+ * @mtd: MTD device structure
+ * @vecs: the iovectors to write
+ * @count: number of vectors
+ * @to: offset to write to
+ * @retlen: pointer to variable to store the number of written bytes
+ * @eccbuf: filesystem supplied oob data buffer
+ * @oobsel: oob selection structure
+ *
+ * NAND write with iovec with ecc
+ */
+static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
+ loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
+{
+ int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
+ int oob, numpages, autoplace = 0, startpage;
+ struct nand_chip *this = mtd->priv;
+ int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
+ u_char *oobbuf, *bufstart;
+
+ /* Preset written len for early exit */
+ *retlen = 0;
+
+ /* Calculate total length of data */
+ total_len = 0;
+ for (i = 0; i < count; i++)
+ total_len += (int) vecs[i].iov_len;
+
+ DEBUG (MTD_DEBUG_LEVEL3,
+ "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
+
+ /* Do not allow write past end of page */
+ if ((to + total_len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
+ return -EINVAL;
+ }
+
+ /* reject writes, which are not page aligned */
+ if (NOTALIGNED (to) || NOTALIGNED(total_len)) {
+ printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_WRITING);
+
+ /* Get the current chip-nr */
+ chipnr = (int) (to >> this->chip_shift);
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd))
+ goto out;
+
+ /* if oobsel is NULL, use chip defaults */
+ if (oobsel == NULL)
+ oobsel = &mtd->oobinfo;
+
+ /* Autoplace of oob data ? Use the default placement scheme */
+ if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
+ oobsel = this->autooob;
+ autoplace = 1;
+ }
+
+ /* Setup start page */
+ page = (int) (to >> this->page_shift);
+ /* Invalidate the page cache, if we write to the cached page */
+ if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))
+ this->pagebuf = -1;
+
+ startpage = page & this->pagemask;
+
+ /* Loop until all kvec' data has been written */
+ len = 0;
+ while (count) {
+ /* If the given tuple is >= pagesize then
+ * write it out from the iov
+ */
+ if ((vecs->iov_len - len) >= mtd->oobblock) {
+ /* Calc number of pages we can write
+ * out of this iov in one go */
+ numpages = (vecs->iov_len - len) >> this->page_shift;
+ /* Do not cross block boundaries */
+ numpages = min (ppblock - (startpage & (ppblock - 1)), numpages);
+ oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
+ bufstart = (u_char *)vecs->iov_base;
+ bufstart += len;
+ this->data_poi = bufstart;
+ oob = 0;
+ for (i = 1; i <= numpages; i++) {
+ /* Write one page. If this is the last page to write
+ * then use the real pageprogram command, else select
+ * cached programming if supported by the chip.
+ */
+ ret = nand_write_page (mtd, this, page & this->pagemask,
+ &oobbuf[oob], oobsel, i != numpages);
+ if (ret)
+ goto out;
+ this->data_poi += mtd->oobblock;
+ len += mtd->oobblock;
+ oob += mtd->oobsize;
+ page++;
+ }
+ /* Check, if we have to switch to the next tuple */
+ if (len >= (int) vecs->iov_len) {
+ vecs++;
+ len = 0;
+ count--;
+ }
+ } else {
+ /* We must use the internal buffer, read data out of each
+ * tuple until we have a full page to write
+ */
+ int cnt = 0;
+ while (cnt < mtd->oobblock) {
+ if (vecs->iov_base != NULL && vecs->iov_len)
+ this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
+ /* Check, if we have to switch to the next tuple */
+ if (len >= (int) vecs->iov_len) {
+ vecs++;
+ len = 0;
+ count--;
+ }
+ }
+ this->pagebuf = page;
+ this->data_poi = this->data_buf;
+ bufstart = this->data_poi;
+ numpages = 1;
+ oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
+ ret = nand_write_page (mtd, this, page & this->pagemask,
+ oobbuf, oobsel, 0);
+ if (ret)
+ goto out;
+ page++;
+ }
+
+ this->data_poi = bufstart;
+ ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
+ if (ret)
+ goto out;
+
+ written += mtd->oobblock * numpages;
+ /* All done ? */
+ if (!count)
+ break;
+
+ startpage = page & this->pagemask;
+ /* Check, if we cross a chip boundary */
+ if (!startpage) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+ }
+ ret = 0;
+out:
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ *retlen = written;
+ return ret;
+}
+
+/**
+ * single_erease_cmd - [GENERIC] NAND standard block erase command function
+ * @mtd: MTD device structure
+ * @page: the page address of the block which will be erased
+ *
+ * Standard erase command for NAND chips
+ */
+static void single_erase_cmd (struct mtd_info *mtd, int page)
+{
+ struct nand_chip *this = mtd->priv;
+ /* Send commands to erase a block */
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
+ this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
+}
+
+/**
+ * multi_erease_cmd - [GENERIC] AND specific block erase command function
+ * @mtd: MTD device structure
+ * @page: the page address of the block which will be erased
+ *
+ * AND multi block erase command function
+ * Erase 4 consecutive blocks
+ */
+static void multi_erase_cmd (struct mtd_info *mtd, int page)
+{
+ struct nand_chip *this = mtd->priv;
+ /* Send commands to erase a block */
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
+ this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
+}
+
+/**
+ * nand_erase - [MTD Interface] erase block(s)
+ * @mtd: MTD device structure
+ * @instr: erase instruction
+ *
+ * Erase one ore more blocks
+ */
+static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
+{
+ return nand_erase_nand (mtd, instr, 0);
+}
+
+/**
+ * nand_erase_intern - [NAND Interface] erase block(s)
+ * @mtd: MTD device structure
+ * @instr: erase instruction
+ * @allowbbt: allow erasing the bbt area
+ *
+ * Erase one ore more blocks
+ */
+int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
+{
+ int page, len, status, pages_per_block, ret, chipnr;
+ struct nand_chip *this = mtd->priv;
+
+ DEBUG (MTD_DEBUG_LEVEL3,
+ "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
+
+ /* Start address must align on block boundary */
+ if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
+ return -EINVAL;
+ }
+
+ /* Length must align on block boundary */
+ if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
+ return -EINVAL;
+ }
+
+ /* Do not allow erase past end of device */
+ if ((instr->len + instr->addr) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
+ return -EINVAL;
+ }
+
+ instr->fail_addr = 0xffffffff;
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_ERASING);
+
+ /* Shift to get first page */
+ page = (int) (instr->addr >> this->page_shift);
+ chipnr = (int) (instr->addr >> this->chip_shift);
+
+ /* Calculate pages in each block */
+ pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);
+
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Check the WP bit */
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
+ instr->state = MTD_ERASE_FAILED;
+ goto erase_exit;
+ }
+
+ /* Loop through the pages */
+ len = instr->len;
+
+ instr->state = MTD_ERASING;
+
+ while (len) {
+ /* Check if we have a bad block, we do not erase bad blocks ! */
+ if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
+ printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
+ instr->state = MTD_ERASE_FAILED;
+ goto erase_exit;
+ }
+
+ /* Invalidate the page cache, if we erase the block which contains
+ the current cached page */
+ if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
+ this->pagebuf = -1;
+
+ this->erase_cmd (mtd, page & this->pagemask);
+
+ status = this->waitfunc (mtd, this, FL_ERASING);
+
+ /* See if block erase succeeded */
+ if (status & 0x01) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
+ instr->state = MTD_ERASE_FAILED;
+ instr->fail_addr = (page << this->page_shift);
+ goto erase_exit;
+ }
+
+ /* Increment page address and decrement length */
+ len -= (1 << this->phys_erase_shift);
+ page += pages_per_block;
+
+ /* Check, if we cross a chip boundary */
+ if (len && !(page & this->pagemask)) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+ }
+ instr->state = MTD_ERASE_DONE;
+
+erase_exit:
+
+ ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
+ /* Do call back function */
+ if (!ret)
+ mtd_erase_callback(instr);
+
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ /* Return more or less happy */
+ return ret;
+}
+
+/**
+ * nand_sync - [MTD Interface] sync
+ * @mtd: MTD device structure
+ *
+ * Sync is actually a wait for chip ready function
+ */
+static void nand_sync (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_SYNCING);
+ /* Release it and go back */
+ nand_release_device (mtd);
+}
+
+
+/**
+ * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
+ * @mtd: MTD device structure
+ * @ofs: offset relative to mtd start
+ */
+static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs)
+{
+ /* Check for invalid offset */
+ if (ofs > mtd->size)
+ return -EINVAL;
+
+ return nand_block_checkbad (mtd, ofs, 1, 0);
+}
+
+/**
+ * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
+ * @mtd: MTD device structure
+ * @ofs: offset relative to mtd start
+ */
+static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs)
+{
+ struct nand_chip *this = mtd->priv;
+ int ret;
+
+ if ((ret = nand_block_isbad(mtd, ofs))) {
+ /* If it was bad already, return success and do nothing. */
+ if (ret > 0)
+ return 0;
+ return ret;
+ }
+
+ return this->block_markbad(mtd, ofs);
+}
+
+/**
+ * nand_scan - [NAND Interface] Scan for the NAND device
+ * @mtd: MTD device structure
+ * @maxchips: Number of chips to scan for
+ *
+ * This fills out all the not initialized function pointers
+ * with the defaults.
+ * The flash ID is read and the mtd/chip structures are
+ * filled with the appropriate values. Buffers are allocated if
+ * they are not provided by the board driver
+ *
+ */
+int nand_scan (struct mtd_info *mtd, int maxchips)
+{
+ int i, j, nand_maf_id, nand_dev_id, busw;
+ struct nand_chip *this = mtd->priv;
+
+ /* Get buswidth to select the correct functions*/
+ busw = this->options & NAND_BUSWIDTH_16;
+
+ /* check for proper chip_delay setup, set 20us if not */
+ if (!this->chip_delay)
+ this->chip_delay = 20;
+
+ /* check, if a user supplied command function given */
+ if (this->cmdfunc == NULL)
+ this->cmdfunc = nand_command;
+
+ /* check, if a user supplied wait function given */
+ if (this->waitfunc == NULL)
+ this->waitfunc = nand_wait;
+
+ if (!this->select_chip)
+ this->select_chip = nand_select_chip;
+ if (!this->write_byte)
+ this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
+ if (!this->read_byte)
+ this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
+ if (!this->write_word)
+ this->write_word = nand_write_word;
+ if (!this->read_word)
+ this->read_word = nand_read_word;
+ if (!this->block_bad)
+ this->block_bad = nand_block_bad;
+ if (!this->block_markbad)
+ this->block_markbad = nand_default_block_markbad;
+ if (!this->write_buf)
+ this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
+ if (!this->read_buf)
+ this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
+ if (!this->verify_buf)
+ this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
+ if (!this->scan_bbt)
+ this->scan_bbt = nand_default_bbt;
+
+ /* Select the device */
+ this->select_chip(mtd, 0);
+
+ /* Send the command for reading device ID */
+ this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
+
+ /* Read manufacturer and device IDs */
+ nand_maf_id = this->read_byte(mtd);
+ nand_dev_id = this->read_byte(mtd);
+
+ /* Print and store flash device information */
+ for (i = 0; nand_flash_ids[i].name != NULL; i++) {
+
+ if (nand_dev_id != nand_flash_ids[i].id)
+ continue;
+
+ if (!mtd->name) mtd->name = nand_flash_ids[i].name;
+ this->chipsize = nand_flash_ids[i].chipsize << 20;
+
+ /* New devices have all the information in additional id bytes */
+ if (!nand_flash_ids[i].pagesize) {
+ int extid;
+ /* The 3rd id byte contains non relevant data ATM */
+ extid = this->read_byte(mtd);
+ /* The 4th id byte is the important one */
+ extid = this->read_byte(mtd);
+ /* Calc pagesize */
+ mtd->oobblock = 1024 << (extid & 0x3);
+ extid >>= 2;
+ /* Calc oobsize */
+ mtd->oobsize = (8 << (extid & 0x03)) * (mtd->oobblock / 512);
+ extid >>= 2;
+ /* Calc blocksize. Blocksize is multiples of 64KiB */
+ mtd->erasesize = (64 * 1024) << (extid & 0x03);
+ extid >>= 2;
+ /* Get buswidth information */
+ busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
+
+ } else {
+ /* Old devices have this data hardcoded in the
+ * device id table */
+ mtd->erasesize = nand_flash_ids[i].erasesize;
+ mtd->oobblock = nand_flash_ids[i].pagesize;
+ mtd->oobsize = mtd->oobblock / 32;
+ busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
+ }
+
+ /* Check, if buswidth is correct. Hardware drivers should set
+ * this correct ! */
+ if (busw != (this->options & NAND_BUSWIDTH_16)) {
+ printk (KERN_INFO "NAND device: Manufacturer ID:"
+ " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
+ nand_manuf_ids[i].name , mtd->name);
+ printk (KERN_WARNING
+ "NAND bus width %d instead %d bit\n",
+ (this->options & NAND_BUSWIDTH_16) ? 16 : 8,
+ busw ? 16 : 8);
+ this->select_chip(mtd, -1);
+ return 1;
+ }
+
+ /* Calculate the address shift from the page size */
+ this->page_shift = ffs(mtd->oobblock) - 1;
+ this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
+ this->chip_shift = ffs(this->chipsize) - 1;
+
+ /* Set the bad block position */
+ this->badblockpos = mtd->oobblock > 512 ?
+ NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
+
+ /* Get chip options, preserve non chip based options */
+ this->options &= ~NAND_CHIPOPTIONS_MSK;
+ this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
+ /* Set this as a default. Board drivers can override it, if neccecary */
+ this->options |= NAND_NO_AUTOINCR;
+ /* Check if this is a not a samsung device. Do not clear the options
+ * for chips which are not having an extended id.
+ */
+ if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
+ this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
+
+ /* Check for AND chips with 4 page planes */
+ if (this->options & NAND_4PAGE_ARRAY)
+ this->erase_cmd = multi_erase_cmd;
+ else
+ this->erase_cmd = single_erase_cmd;
+
+ /* Do not replace user supplied command function ! */
+ if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
+ this->cmdfunc = nand_command_lp;
+
+ /* Try to identify manufacturer */
+ for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
+ if (nand_manuf_ids[j].id == nand_maf_id)
+ break;
+ }
+ printk (KERN_INFO "NAND device: Manufacturer ID:"
+ " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
+ nand_manuf_ids[j].name , nand_flash_ids[i].name);
+ break;
+ }
+
+ if (!nand_flash_ids[i].name) {
+ printk (KERN_WARNING "No NAND device found!!!\n");
+ this->select_chip(mtd, -1);
+ return 1;
+ }
+
+ for (i=1; i < maxchips; i++) {
+ this->select_chip(mtd, i);
+
+ /* Send the command for reading device ID */
+ this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
+
+ /* Read manufacturer and device IDs */
+ if (nand_maf_id != this->read_byte(mtd) ||
+ nand_dev_id != this->read_byte(mtd))
+ break;
+ }
+ if (i > 1)
+ printk(KERN_INFO "%d NAND chips detected\n", i);
+
+ /* Allocate buffers, if neccecary */
+ if (!this->oob_buf) {
+ size_t len;
+ len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
+ this->oob_buf = kmalloc (len, GFP_KERNEL);
+ if (!this->oob_buf) {
+ printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
+ return -ENOMEM;
+ }
+ this->options |= NAND_OOBBUF_ALLOC;
+ }
+
+ if (!this->data_buf) {
+ size_t len;
+ len = mtd->oobblock + mtd->oobsize;
+ this->data_buf = kmalloc (len, GFP_KERNEL);
+ if (!this->data_buf) {
+ if (this->options & NAND_OOBBUF_ALLOC)
+ kfree (this->oob_buf);
+ printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
+ return -ENOMEM;
+ }
+ this->options |= NAND_DATABUF_ALLOC;
+ }
+
+ /* Store the number of chips and calc total size for mtd */
+ this->numchips = i;
+ mtd->size = i * this->chipsize;
+ /* Convert chipsize to number of pages per chip -1. */
+ this->pagemask = (this->chipsize >> this->page_shift) - 1;
+ /* Preset the internal oob buffer */
+ memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
+
+ /* If no default placement scheme is given, select an
+ * appropriate one */
+ if (!this->autooob) {
+ /* Select the appropriate default oob placement scheme for
+ * placement agnostic filesystems */
+ switch (mtd->oobsize) {
+ case 8:
+ this->autooob = &nand_oob_8;
+ break;
+ case 16:
+ this->autooob = &nand_oob_16;
+ break;
+ case 64:
+ this->autooob = &nand_oob_64;
+ break;
+ default:
+ printk (KERN_WARNING "No oob scheme defined for oobsize %d\n",
+ mtd->oobsize);
+ BUG();
+ }
+ }
+
+ /* The number of bytes available for the filesystem to place fs dependend
+ * oob data */
+ if (this->options & NAND_BUSWIDTH_16) {
+ mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 2);
+ if (this->autooob->eccbytes & 0x01)
+ mtd->oobavail--;
+ } else
+ mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 1);
+
+ /*
+ * check ECC mode, default to software
+ * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
+ * fallback to software ECC
+ */
+ this->eccsize = 256; /* set default eccsize */
+ this->eccbytes = 3;
+
+ switch (this->eccmode) {
+ case NAND_ECC_HW12_2048:
+ if (mtd->oobblock < 2048) {
+ printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
+ mtd->oobblock);
+ this->eccmode = NAND_ECC_SOFT;
+ this->calculate_ecc = nand_calculate_ecc;
+ this->correct_data = nand_correct_data;
+ } else
+ this->eccsize = 2048;
+ break;
+
+ case NAND_ECC_HW3_512:
+ case NAND_ECC_HW6_512:
+ case NAND_ECC_HW8_512:
+ if (mtd->oobblock == 256) {
+ printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
+ this->eccmode = NAND_ECC_SOFT;
+ this->calculate_ecc = nand_calculate_ecc;
+ this->correct_data = nand_correct_data;
+ } else
+ this->eccsize = 512; /* set eccsize to 512 */
+ break;
+
+ case NAND_ECC_HW3_256:
+ break;
+
+ case NAND_ECC_NONE:
+ printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
+ this->eccmode = NAND_ECC_NONE;
+ break;
+
+ case NAND_ECC_SOFT:
+ this->calculate_ecc = nand_calculate_ecc;
+ this->correct_data = nand_correct_data;
+ break;
+
+ default:
+ printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
+ BUG();
+ }
+
+ /* Check hardware ecc function availability and adjust number of ecc bytes per
+ * calculation step
+ */
+ switch (this->eccmode) {
+ case NAND_ECC_HW12_2048:
+ this->eccbytes += 4;
+ case NAND_ECC_HW8_512:
+ this->eccbytes += 2;
+ case NAND_ECC_HW6_512:
+ this->eccbytes += 3;
+ case NAND_ECC_HW3_512:
+ case NAND_ECC_HW3_256:
+ if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
+ break;
+ printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
+ BUG();
+ }
+
+ mtd->eccsize = this->eccsize;
+
+ /* Set the number of read / write steps for one page to ensure ECC generation */
+ switch (this->eccmode) {
+ case NAND_ECC_HW12_2048:
+ this->eccsteps = mtd->oobblock / 2048;
+ break;
+ case NAND_ECC_HW3_512:
+ case NAND_ECC_HW6_512:
+ case NAND_ECC_HW8_512:
+ this->eccsteps = mtd->oobblock / 512;
+ break;
+ case NAND_ECC_HW3_256:
+ case NAND_ECC_SOFT:
+ this->eccsteps = mtd->oobblock / 256;
+ break;
+
+ case NAND_ECC_NONE:
+ this->eccsteps = 1;
+ break;
+ }
+
+ /* Initialize state, waitqueue and spinlock */
+ this->state = FL_READY;
+ init_waitqueue_head (&this->wq);
+ spin_lock_init (&this->chip_lock);
+
+ /* De-select the device */
+ this->select_chip(mtd, -1);
+
+ /* Invalidate the pagebuffer reference */
+ this->pagebuf = -1;
+
+ /* Fill in remaining MTD driver data */
+ mtd->type = MTD_NANDFLASH;
+ mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
+ mtd->ecctype = MTD_ECC_SW;
+ mtd->erase = nand_erase;
+ mtd->point = NULL;
+ mtd->unpoint = NULL;
+ mtd->read = nand_read;
+ mtd->write = nand_write;
+ mtd->read_ecc = nand_read_ecc;
+ mtd->write_ecc = nand_write_ecc;
+ mtd->read_oob = nand_read_oob;
+ mtd->write_oob = nand_write_oob;
+ mtd->readv = NULL;
+ mtd->writev = nand_writev;
+ mtd->writev_ecc = nand_writev_ecc;
+ mtd->sync = nand_sync;
+ mtd->lock = NULL;
+ mtd->unlock = NULL;
+ mtd->suspend = NULL;
+ mtd->resume = NULL;
+ mtd->block_isbad = nand_block_isbad;
+ mtd->block_markbad = nand_block_markbad;
+
+ /* and make the autooob the default one */
+ memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
+
+ mtd->owner = THIS_MODULE;
+
+ /* Build bad block table */
+ return this->scan_bbt (mtd);
+}
+
+/**
+ * nand_release - [NAND Interface] Free resources held by the NAND device
+ * @mtd: MTD device structure
+*/
+void nand_release (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+
+#ifdef CONFIG_MTD_PARTITIONS
+ /* Deregister partitions */
+ del_mtd_partitions (mtd);
+#endif
+ /* Deregister the device */
+ del_mtd_device (mtd);
+
+ /* Free bad block table memory, if allocated */
+ if (this->bbt)
+ kfree (this->bbt);
+ /* Buffer allocated by nand_scan ? */
+ if (this->options & NAND_OOBBUF_ALLOC)
+ kfree (this->oob_buf);
+ /* Buffer allocated by nand_scan ? */
+ if (this->options & NAND_DATABUF_ALLOC)
+ kfree (this->data_buf);
+}
+
+EXPORT_SYMBOL (nand_scan);
+EXPORT_SYMBOL (nand_release);
+
+MODULE_LICENSE ("GPL");
+MODULE_AUTHOR ("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
+MODULE_DESCRIPTION ("Generic NAND flash driver code");