summaryrefslogtreecommitdiffstats
path: root/drivers/mtd
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd')
-rw-r--r--drivers/mtd/Kconfig2
-rw-r--r--drivers/mtd/Makefile1
-rw-r--r--drivers/mtd/chips/Kconfig16
-rw-r--r--drivers/mtd/chips/cfi_cmdset_0020.c4
-rw-r--r--drivers/mtd/chips/cfi_util.c2
-rw-r--r--drivers/mtd/devices/Kconfig4
-rw-r--r--drivers/mtd/devices/docg3.c4
-rw-r--r--drivers/mtd/devices/elm.c38
-rw-r--r--drivers/mtd/devices/m25p80.c1305
-rw-r--r--drivers/mtd/devices/serial_flash_cmds.h44
-rw-r--r--drivers/mtd/devices/slram.c4
-rw-r--r--drivers/mtd/devices/st_spi_fsm.c340
-rw-r--r--drivers/mtd/lpddr/Kconfig13
-rw-r--r--drivers/mtd/lpddr/Makefile1
-rw-r--r--drivers/mtd/lpddr/lpddr2_nvm.c507
-rw-r--r--drivers/mtd/maps/Kconfig4
-rw-r--r--drivers/mtd/maps/sc520cdp.c6
-rw-r--r--drivers/mtd/maps/solutionengine.c25
-rw-r--r--drivers/mtd/mtd_blkdevs.c9
-rw-r--r--drivers/mtd/mtdchar.c20
-rw-r--r--drivers/mtd/nand/bf5xx_nand.c13
-rw-r--r--drivers/mtd/nand/denali.c7
-rw-r--r--drivers/mtd/nand/docg4.c6
-rw-r--r--drivers/mtd/nand/fsl_elbc_nand.c14
-rw-r--r--drivers/mtd/nand/fsl_ifc_nand.c21
-rw-r--r--drivers/mtd/nand/gpmi-nand/bch-regs.h12
-rw-r--r--drivers/mtd/nand/gpmi-nand/gpmi-lib.c11
-rw-r--r--drivers/mtd/nand/gpmi-nand/gpmi-nand.c72
-rw-r--r--drivers/mtd/nand/gpmi-nand/gpmi-nand.h32
-rw-r--r--drivers/mtd/nand/nand_base.c104
-rw-r--r--drivers/mtd/nand/nand_bbt.c13
-rw-r--r--drivers/mtd/nand/nand_ecc.c2
-rw-r--r--drivers/mtd/nand/nandsim.c4
-rw-r--r--drivers/mtd/nand/omap2.c108
-rw-r--r--drivers/mtd/nand/orion_nand.c2
-rw-r--r--drivers/mtd/nand/pxa3xx_nand.c44
-rw-r--r--drivers/mtd/nand/r852.c6
-rw-r--r--drivers/mtd/onenand/samsung.c8
-rw-r--r--drivers/mtd/spi-nor/Kconfig17
-rw-r--r--drivers/mtd/spi-nor/Makefile2
-rw-r--r--drivers/mtd/spi-nor/fsl-quadspi.c1009
-rw-r--r--drivers/mtd/spi-nor/spi-nor.c1107
-rw-r--r--drivers/mtd/tests/oobtest.c17
-rw-r--r--drivers/mtd/ubi/block.c6
-rw-r--r--drivers/mtd/ubi/cdev.c2
-rw-r--r--drivers/mtd/ubi/fastmap.c4
46 files changed, 3372 insertions, 1620 deletions
diff --git a/drivers/mtd/Kconfig b/drivers/mtd/Kconfig
index 5d49a2129618..94b821042d9d 100644
--- a/drivers/mtd/Kconfig
+++ b/drivers/mtd/Kconfig
@@ -321,6 +321,8 @@ source "drivers/mtd/onenand/Kconfig"
source "drivers/mtd/lpddr/Kconfig"
+source "drivers/mtd/spi-nor/Kconfig"
+
source "drivers/mtd/ubi/Kconfig"
endif # MTD
diff --git a/drivers/mtd/Makefile b/drivers/mtd/Makefile
index 4cfb31e6c966..99bb9a1f6e16 100644
--- a/drivers/mtd/Makefile
+++ b/drivers/mtd/Makefile
@@ -32,4 +32,5 @@ inftl-objs := inftlcore.o inftlmount.o
obj-y += chips/ lpddr/ maps/ devices/ nand/ onenand/ tests/
+obj-$(CONFIG_MTD_SPI_NOR) += spi-nor/
obj-$(CONFIG_MTD_UBI) += ubi/
diff --git a/drivers/mtd/chips/Kconfig b/drivers/mtd/chips/Kconfig
index e4696b37f3de..9f02c28c0204 100644
--- a/drivers/mtd/chips/Kconfig
+++ b/drivers/mtd/chips/Kconfig
@@ -169,33 +169,33 @@ config MTD_OTP
in the programming of OTP bits will waste them.
config MTD_CFI_INTELEXT
- tristate "Support for Intel/Sharp flash chips"
+ tristate "Support for CFI command set 0001 (Intel/Sharp chips)"
depends on MTD_GEN_PROBE
select MTD_CFI_UTIL
help
The Common Flash Interface defines a number of different command
sets which a CFI-compliant chip may claim to implement. This code
- provides support for one of those command sets, used on Intel
- StrataFlash and other parts.
+ provides support for command set 0001, used on Intel StrataFlash
+ and other parts.
config MTD_CFI_AMDSTD
- tristate "Support for AMD/Fujitsu/Spansion flash chips"
+ tristate "Support for CFI command set 0002 (AMD/Fujitsu/Spansion chips)"
depends on MTD_GEN_PROBE
select MTD_CFI_UTIL
help
The Common Flash Interface defines a number of different command
sets which a CFI-compliant chip may claim to implement. This code
- provides support for one of those command sets, used on chips
- including the AMD Am29LV320.
+ provides support for command set 0002, used on chips including
+ the AMD Am29LV320.
config MTD_CFI_STAA
- tristate "Support for ST (Advanced Architecture) flash chips"
+ tristate "Support for CFI command set 0020 (ST (Advanced Architecture) chips)"
depends on MTD_GEN_PROBE
select MTD_CFI_UTIL
help
The Common Flash Interface defines a number of different command
sets which a CFI-compliant chip may claim to implement. This code
- provides support for one of those command sets.
+ provides support for command set 0020.
config MTD_CFI_UTIL
tristate
diff --git a/drivers/mtd/chips/cfi_cmdset_0020.c b/drivers/mtd/chips/cfi_cmdset_0020.c
index 6293855fb5ee..423666b51efb 100644
--- a/drivers/mtd/chips/cfi_cmdset_0020.c
+++ b/drivers/mtd/chips/cfi_cmdset_0020.c
@@ -961,7 +961,7 @@ static int cfi_staa_erase_varsize(struct mtd_info *mtd,
chipnum++;
if (chipnum >= cfi->numchips)
- break;
+ break;
}
}
@@ -1170,7 +1170,7 @@ static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
chipnum++;
if (chipnum >= cfi->numchips)
- break;
+ break;
}
}
return 0;
diff --git a/drivers/mtd/chips/cfi_util.c b/drivers/mtd/chips/cfi_util.c
index 08049f6eea60..09c79bd0b4f4 100644
--- a/drivers/mtd/chips/cfi_util.c
+++ b/drivers/mtd/chips/cfi_util.c
@@ -239,7 +239,7 @@ int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob,
chipnum++;
if (chipnum >= cfi->numchips)
- break;
+ break;
}
}
diff --git a/drivers/mtd/devices/Kconfig b/drivers/mtd/devices/Kconfig
index 1210bc2923b7..c49d0b127fef 100644
--- a/drivers/mtd/devices/Kconfig
+++ b/drivers/mtd/devices/Kconfig
@@ -80,7 +80,7 @@ config MTD_DATAFLASH_OTP
config MTD_M25P80
tristate "Support most SPI Flash chips (AT26DF, M25P, W25X, ...)"
- depends on SPI_MASTER
+ depends on SPI_MASTER && MTD_SPI_NOR
help
This enables access to most modern SPI flash chips, used for
program and data storage. Series supported include Atmel AT26DF,
@@ -212,7 +212,7 @@ config MTD_DOCG3
config MTD_ST_SPI_FSM
tristate "ST Microelectronics SPI FSM Serial Flash Controller"
- depends on ARM || SH
+ depends on ARCH_STI
help
This provides an MTD device driver for the ST Microelectronics
SPI Fast Sequence Mode (FSM) Serial Flash Controller and support
diff --git a/drivers/mtd/devices/docg3.c b/drivers/mtd/devices/docg3.c
index dd5e1018d37b..91a169c44b39 100644
--- a/drivers/mtd/devices/docg3.c
+++ b/drivers/mtd/devices/docg3.c
@@ -1608,8 +1608,8 @@ static ssize_t dps1_insert_key(struct device *dev,
#define FLOOR_SYSFS(id) { \
__ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
__ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
- __ATTR(f##id##_dps0_protection_key, S_IWUGO, NULL, dps0_insert_key), \
- __ATTR(f##id##_dps1_protection_key, S_IWUGO, NULL, dps1_insert_key), \
+ __ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \
+ __ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \
}
static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
diff --git a/drivers/mtd/devices/elm.c b/drivers/mtd/devices/elm.c
index 1fd4a0f77967..7df86948e6d4 100644
--- a/drivers/mtd/devices/elm.c
+++ b/drivers/mtd/devices/elm.c
@@ -213,6 +213,28 @@ static void elm_load_syndrome(struct elm_info *info,
val = cpu_to_be32(*(u32 *) &ecc[0]) >> 12;
elm_write_reg(info, offset, val);
break;
+ case BCH16_ECC:
+ val = cpu_to_be32(*(u32 *) &ecc[22]);
+ elm_write_reg(info, offset, val);
+ offset += 4;
+ val = cpu_to_be32(*(u32 *) &ecc[18]);
+ elm_write_reg(info, offset, val);
+ offset += 4;
+ val = cpu_to_be32(*(u32 *) &ecc[14]);
+ elm_write_reg(info, offset, val);
+ offset += 4;
+ val = cpu_to_be32(*(u32 *) &ecc[10]);
+ elm_write_reg(info, offset, val);
+ offset += 4;
+ val = cpu_to_be32(*(u32 *) &ecc[6]);
+ elm_write_reg(info, offset, val);
+ offset += 4;
+ val = cpu_to_be32(*(u32 *) &ecc[2]);
+ elm_write_reg(info, offset, val);
+ offset += 4;
+ val = cpu_to_be32(*(u32 *) &ecc[0]) >> 16;
+ elm_write_reg(info, offset, val);
+ break;
default:
pr_err("invalid config bch_type\n");
}
@@ -418,6 +440,7 @@ static int elm_remove(struct platform_device *pdev)
return 0;
}
+#ifdef CONFIG_PM_SLEEP
/**
* elm_context_save
* saves ELM configurations to preserve them across Hardware powered-down
@@ -435,6 +458,13 @@ static int elm_context_save(struct elm_info *info)
for (i = 0; i < ERROR_VECTOR_MAX; i++) {
offset = i * SYNDROME_FRAGMENT_REG_SIZE;
switch (bch_type) {
+ case BCH16_ECC:
+ regs->elm_syndrome_fragment_6[i] = elm_read_reg(info,
+ ELM_SYNDROME_FRAGMENT_6 + offset);
+ regs->elm_syndrome_fragment_5[i] = elm_read_reg(info,
+ ELM_SYNDROME_FRAGMENT_5 + offset);
+ regs->elm_syndrome_fragment_4[i] = elm_read_reg(info,
+ ELM_SYNDROME_FRAGMENT_4 + offset);
case BCH8_ECC:
regs->elm_syndrome_fragment_3[i] = elm_read_reg(info,
ELM_SYNDROME_FRAGMENT_3 + offset);
@@ -473,6 +503,13 @@ static int elm_context_restore(struct elm_info *info)
for (i = 0; i < ERROR_VECTOR_MAX; i++) {
offset = i * SYNDROME_FRAGMENT_REG_SIZE;
switch (bch_type) {
+ case BCH16_ECC:
+ elm_write_reg(info, ELM_SYNDROME_FRAGMENT_6 + offset,
+ regs->elm_syndrome_fragment_6[i]);
+ elm_write_reg(info, ELM_SYNDROME_FRAGMENT_5 + offset,
+ regs->elm_syndrome_fragment_5[i]);
+ elm_write_reg(info, ELM_SYNDROME_FRAGMENT_4 + offset,
+ regs->elm_syndrome_fragment_4[i]);
case BCH8_ECC:
elm_write_reg(info, ELM_SYNDROME_FRAGMENT_3 + offset,
regs->elm_syndrome_fragment_3[i]);
@@ -509,6 +546,7 @@ static int elm_resume(struct device *dev)
elm_context_restore(info);
return 0;
}
+#endif
static SIMPLE_DEV_PM_OPS(elm_pm_ops, elm_suspend, elm_resume);
diff --git a/drivers/mtd/devices/m25p80.c b/drivers/mtd/devices/m25p80.c
index 524dab3ac938..ed7e0a1bed3c 100644
--- a/drivers/mtd/devices/m25p80.c
+++ b/drivers/mtd/devices/m25p80.c
@@ -19,485 +19,98 @@
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
-#include <linux/interrupt.h>
-#include <linux/mutex.h>
-#include <linux/math64.h>
-#include <linux/slab.h>
-#include <linux/sched.h>
-#include <linux/mod_devicetable.h>
-#include <linux/mtd/cfi.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
-#include <linux/of_platform.h>
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>
+#include <linux/mtd/spi-nor.h>
-/* Flash opcodes. */
-#define OPCODE_WREN 0x06 /* Write enable */
-#define OPCODE_RDSR 0x05 /* Read status register */
-#define OPCODE_WRSR 0x01 /* Write status register 1 byte */
-#define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
-#define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
-#define OPCODE_DUAL_READ 0x3b /* Read data bytes (Dual SPI) */
-#define OPCODE_QUAD_READ 0x6b /* Read data bytes (Quad SPI) */
-#define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
-#define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
-#define OPCODE_BE_4K_PMC 0xd7 /* Erase 4KiB block on PMC chips */
-#define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
-#define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
-#define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
-#define OPCODE_RDID 0x9f /* Read JEDEC ID */
-#define OPCODE_RDCR 0x35 /* Read configuration register */
-
-/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
-#define OPCODE_NORM_READ_4B 0x13 /* Read data bytes (low frequency) */
-#define OPCODE_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
-#define OPCODE_DUAL_READ_4B 0x3c /* Read data bytes (Dual SPI) */
-#define OPCODE_QUAD_READ_4B 0x6c /* Read data bytes (Quad SPI) */
-#define OPCODE_PP_4B 0x12 /* Page program (up to 256 bytes) */
-#define OPCODE_SE_4B 0xdc /* Sector erase (usually 64KiB) */
-
-/* Used for SST flashes only. */
-#define OPCODE_BP 0x02 /* Byte program */
-#define OPCODE_WRDI 0x04 /* Write disable */
-#define OPCODE_AAI_WP 0xad /* Auto address increment word program */
-
-/* Used for Macronix and Winbond flashes. */
-#define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
-#define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
-
-/* Used for Spansion flashes only. */
-#define OPCODE_BRWR 0x17 /* Bank register write */
-
-/* Status Register bits. */
-#define SR_WIP 1 /* Write in progress */
-#define SR_WEL 2 /* Write enable latch */
-/* meaning of other SR_* bits may differ between vendors */
-#define SR_BP0 4 /* Block protect 0 */
-#define SR_BP1 8 /* Block protect 1 */
-#define SR_BP2 0x10 /* Block protect 2 */
-#define SR_SRWD 0x80 /* SR write protect */
-
-#define SR_QUAD_EN_MX 0x40 /* Macronix Quad I/O */
-
-/* Configuration Register bits. */
-#define CR_QUAD_EN_SPAN 0x2 /* Spansion Quad I/O */
-
-/* Define max times to check status register before we give up. */
-#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
#define MAX_CMD_SIZE 6
-
-#define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
-
-/****************************************************************************/
-
-enum read_type {
- M25P80_NORMAL = 0,
- M25P80_FAST,
- M25P80_DUAL,
- M25P80_QUAD,
-};
-
struct m25p {
struct spi_device *spi;
- struct mutex lock;
+ struct spi_nor spi_nor;
struct mtd_info mtd;
- u16 page_size;
- u16 addr_width;
- u8 erase_opcode;
- u8 read_opcode;
- u8 program_opcode;
- u8 *command;
- enum read_type flash_read;
+ u8 command[MAX_CMD_SIZE];
};
-static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
-{
- return container_of(mtd, struct m25p, mtd);
-}
-
-/****************************************************************************/
-
-/*
- * Internal helper functions
- */
-
-/*
- * Read the status register, returning its value in the location
- * Return the status register value.
- * Returns negative if error occurred.
- */
-static int read_sr(struct m25p *flash)
-{
- ssize_t retval;
- u8 code = OPCODE_RDSR;
- u8 val;
-
- retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
-
- if (retval < 0) {
- dev_err(&flash->spi->dev, "error %d reading SR\n",
- (int) retval);
- return retval;
- }
-
- return val;
-}
-
-/*
- * Read configuration register, returning its value in the
- * location. Return the configuration register value.
- * Returns negative if error occured.
- */
-static int read_cr(struct m25p *flash)
-{
- u8 code = OPCODE_RDCR;
- int ret;
- u8 val;
-
- ret = spi_write_then_read(flash->spi, &code, 1, &val, 1);
- if (ret < 0) {
- dev_err(&flash->spi->dev, "error %d reading CR\n", ret);
- return ret;
- }
-
- return val;
-}
-
-/*
- * Write status register 1 byte
- * Returns negative if error occurred.
- */
-static int write_sr(struct m25p *flash, u8 val)
-{
- flash->command[0] = OPCODE_WRSR;
- flash->command[1] = val;
-
- return spi_write(flash->spi, flash->command, 2);
-}
-
-/*
- * Set write enable latch with Write Enable command.
- * Returns negative if error occurred.
- */
-static inline int write_enable(struct m25p *flash)
-{
- u8 code = OPCODE_WREN;
-
- return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
-}
-
-/*
- * Send write disble instruction to the chip.
- */
-static inline int write_disable(struct m25p *flash)
-{
- u8 code = OPCODE_WRDI;
-
- return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
-}
-
-/*
- * Enable/disable 4-byte addressing mode.
- */
-static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
-{
- int status;
- bool need_wren = false;
-
- switch (JEDEC_MFR(jedec_id)) {
- case CFI_MFR_ST: /* Micron, actually */
- /* Some Micron need WREN command; all will accept it */
- need_wren = true;
- case CFI_MFR_MACRONIX:
- case 0xEF /* winbond */:
- if (need_wren)
- write_enable(flash);
-
- flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
- status = spi_write(flash->spi, flash->command, 1);
-
- if (need_wren)
- write_disable(flash);
-
- return status;
- default:
- /* Spansion style */
- flash->command[0] = OPCODE_BRWR;
- flash->command[1] = enable << 7;
- return spi_write(flash->spi, flash->command, 2);
- }
-}
-
-/*
- * Service routine to read status register until ready, or timeout occurs.
- * Returns non-zero if error.
- */
-static int wait_till_ready(struct m25p *flash)
-{
- unsigned long deadline;
- int sr;
-
- deadline = jiffies + MAX_READY_WAIT_JIFFIES;
-
- do {
- if ((sr = read_sr(flash)) < 0)
- break;
- else if (!(sr & SR_WIP))
- return 0;
-
- cond_resched();
-
- } while (!time_after_eq(jiffies, deadline));
-
- return 1;
-}
-
-/*
- * Write status Register and configuration register with 2 bytes
- * The first byte will be written to the status register, while the
- * second byte will be written to the configuration register.
- * Return negative if error occured.
- */
-static int write_sr_cr(struct m25p *flash, u16 val)
-{
- flash->command[0] = OPCODE_WRSR;
- flash->command[1] = val & 0xff;
- flash->command[2] = (val >> 8);
-
- return spi_write(flash->spi, flash->command, 3);
-}
-
-static int macronix_quad_enable(struct m25p *flash)
-{
- int ret, val;
- u8 cmd[2];
- cmd[0] = OPCODE_WRSR;
-
- val = read_sr(flash);
- cmd[1] = val | SR_QUAD_EN_MX;
- write_enable(flash);
-
- spi_write(flash->spi, &cmd, 2);
-
- if (wait_till_ready(flash))
- return 1;
-
- ret = read_sr(flash);
- if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
- dev_err(&flash->spi->dev, "Macronix Quad bit not set\n");
- return -EINVAL;
- }
-
- return 0;
-}
-
-static int spansion_quad_enable(struct m25p *flash)
+static int m25p80_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len)
{
+ struct m25p *flash = nor->priv;
+ struct spi_device *spi = flash->spi;
int ret;
- int quad_en = CR_QUAD_EN_SPAN << 8;
-
- write_enable(flash);
- ret = write_sr_cr(flash, quad_en);
- if (ret < 0) {
- dev_err(&flash->spi->dev,
- "error while writing configuration register\n");
- return -EINVAL;
- }
-
- /* read back and check it */
- ret = read_cr(flash);
- if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
- dev_err(&flash->spi->dev, "Spansion Quad bit not set\n");
- return -EINVAL;
- }
-
- return 0;
-}
-
-static int set_quad_mode(struct m25p *flash, u32 jedec_id)
-{
- int status;
-
- switch (JEDEC_MFR(jedec_id)) {
- case CFI_MFR_MACRONIX:
- status = macronix_quad_enable(flash);
- if (status) {
- dev_err(&flash->spi->dev,
- "Macronix quad-read not enabled\n");
- return -EINVAL;
- }
- return status;
- default:
- status = spansion_quad_enable(flash);
- if (status) {
- dev_err(&flash->spi->dev,
- "Spansion quad-read not enabled\n");
- return -EINVAL;
- }
- return status;
- }
-}
-
-/*
- * Erase the whole flash memory
- *
- * Returns 0 if successful, non-zero otherwise.
- */
-static int erase_chip(struct m25p *flash)
-{
- pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
- (long long)(flash->mtd.size >> 10));
+ ret = spi_write_then_read(spi, &code, 1, val, len);
+ if (ret < 0)
+ dev_err(&spi->dev, "error %d reading %x\n", ret, code);
- /* Wait until finished previous write command. */
- if (wait_till_ready(flash))
- return 1;
-
- /* Send write enable, then erase commands. */
- write_enable(flash);
-
- /* Set up command buffer. */
- flash->command[0] = OPCODE_CHIP_ERASE;
-
- spi_write(flash->spi, flash->command, 1);
-
- return 0;
+ return ret;
}
-static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
+static void m25p_addr2cmd(struct spi_nor *nor, unsigned int addr, u8 *cmd)
{
/* opcode is in cmd[0] */
- cmd[1] = addr >> (flash->addr_width * 8 - 8);
- cmd[2] = addr >> (flash->addr_width * 8 - 16);
- cmd[3] = addr >> (flash->addr_width * 8 - 24);
- cmd[4] = addr >> (flash->addr_width * 8 - 32);
+ cmd[1] = addr >> (nor->addr_width * 8 - 8);
+ cmd[2] = addr >> (nor->addr_width * 8 - 16);
+ cmd[3] = addr >> (nor->addr_width * 8 - 24);
+ cmd[4] = addr >> (nor->addr_width * 8 - 32);
}
-static int m25p_cmdsz(struct m25p *flash)
+static int m25p_cmdsz(struct spi_nor *nor)
{
- return 1 + flash->addr_width;
+ return 1 + nor->addr_width;
}
-/*
- * Erase one sector of flash memory at offset ``offset'' which is any
- * address within the sector which should be erased.
- *
- * Returns 0 if successful, non-zero otherwise.
- */
-static int erase_sector(struct m25p *flash, u32 offset)
+static int m25p80_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len,
+ int wr_en)
{
- pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
- __func__, flash->mtd.erasesize / 1024, offset);
-
- /* Wait until finished previous write command. */
- if (wait_till_ready(flash))
- return 1;
+ struct m25p *flash = nor->priv;
+ struct spi_device *spi = flash->spi;
- /* Send write enable, then erase commands. */
- write_enable(flash);
-
- /* Set up command buffer. */
- flash->command[0] = flash->erase_opcode;
- m25p_addr2cmd(flash, offset, flash->command);
-
- spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
+ flash->command[0] = opcode;
+ if (buf)
+ memcpy(&flash->command[1], buf, len);
- return 0;
+ return spi_write(spi, flash->command, len + 1);
}
-/****************************************************************************/
-
-/*
- * MTD implementation
- */
-
-/*
- * Erase an address range on the flash chip. The address range may extend
- * one or more erase sectors. Return an error is there is a problem erasing.
- */
-static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
+static void m25p80_write(struct spi_nor *nor, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf)
{
- struct m25p *flash = mtd_to_m25p(mtd);
- u32 addr,len;
- uint32_t rem;
-
- pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
- __func__, (long long)instr->addr,
- (long long)instr->len);
-
- div_u64_rem(instr->len, mtd->erasesize, &rem);
- if (rem)
- return -EINVAL;
-
- addr = instr->addr;
- len = instr->len;
-
- mutex_lock(&flash->lock);
-
- /* whole-chip erase? */
- if (len == flash->mtd.size) {
- if (erase_chip(flash)) {
- instr->state = MTD_ERASE_FAILED;
- mutex_unlock(&flash->lock);
- return -EIO;
- }
+ struct m25p *flash = nor->priv;
+ struct spi_device *spi = flash->spi;
+ struct spi_transfer t[2] = {};
+ struct spi_message m;
+ int cmd_sz = m25p_cmdsz(nor);
- /* REVISIT in some cases we could speed up erasing large regions
- * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
- * to use "small sector erase", but that's not always optimal.
- */
+ spi_message_init(&m);
- /* "sector"-at-a-time erase */
- } else {
- while (len) {
- if (erase_sector(flash, addr)) {
- instr->state = MTD_ERASE_FAILED;
- mutex_unlock(&flash->lock);
- return -EIO;
- }
+ if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
+ cmd_sz = 1;
- addr += mtd->erasesize;
- len -= mtd->erasesize;
- }
- }
+ flash->command[0] = nor->program_opcode;
+ m25p_addr2cmd(nor, to, flash->command);
- mutex_unlock(&flash->lock);
+ t[0].tx_buf = flash->command;
+ t[0].len = cmd_sz;
+ spi_message_add_tail(&t[0], &m);
- instr->state = MTD_ERASE_DONE;
- mtd_erase_callback(instr);
+ t[1].tx_buf = buf;
+ t[1].len = len;
+ spi_message_add_tail(&t[1], &m);
- return 0;
-}
+ spi_sync(spi, &m);
-/*
- * Dummy Cycle calculation for different type of read.
- * It can be used to support more commands with
- * different dummy cycle requirements.
- */
-static inline int m25p80_dummy_cycles_read(struct m25p *flash)
-{
- switch (flash->flash_read) {
- case M25P80_FAST:
- case M25P80_DUAL:
- case M25P80_QUAD:
- return 1;
- case M25P80_NORMAL:
- return 0;
- default:
- dev_err(&flash->spi->dev, "No valid read type supported\n");
- return -1;
- }
+ *retlen += m.actual_length - cmd_sz;
}
-static inline unsigned int m25p80_rx_nbits(const struct m25p *flash)
+static inline unsigned int m25p80_rx_nbits(struct spi_nor *nor)
{
- switch (flash->flash_read) {
- case M25P80_DUAL:
+ switch (nor->flash_read) {
+ case SPI_NOR_DUAL:
return 2;
- case M25P80_QUAD:
+ case SPI_NOR_QUAD:
return 4;
default:
return 0;
@@ -505,590 +118,72 @@ static inline unsigned int m25p80_rx_nbits(const struct m25p *flash)
}
/*
- * Read an address range from the flash chip. The address range
+ * Read an address range from the nor chip. The address range
* may be any size provided it is within the physical boundaries.
*/
-static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
- size_t *retlen, u_char *buf)
+static int m25p80_read(struct spi_nor *nor, loff_t from, size_t len,
+ size_t *retlen, u_char *buf)
{
- struct m25p *flash = mtd_to_m25p(mtd);
+ struct m25p *flash = nor->priv;
+ struct spi_device *spi = flash->spi;
struct spi_transfer t[2];
struct spi_message m;
- uint8_t opcode;
- int dummy;
+ int dummy = nor->read_dummy;
+ int ret;
- pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
- __func__, (u32)from, len);
+ /* Wait till previous write/erase is done. */
+ ret = nor->wait_till_ready(nor);
+ if (ret)
+ return ret;
spi_message_init(&m);
memset(t, 0, (sizeof t));
- dummy = m25p80_dummy_cycles_read(flash);
- if (dummy < 0) {
- dev_err(&flash->spi->dev, "No valid read command supported\n");
- return -EINVAL;
- }
+ flash->command[0] = nor->read_opcode;
+ m25p_addr2cmd(nor, from, flash->command);
t[0].tx_buf = flash->command;
- t[0].len = m25p_cmdsz(flash) + dummy;
+ t[0].len = m25p_cmdsz(nor) + dummy;
spi_message_add_tail(&t[0], &m);
t[1].rx_buf = buf;
- t[1].rx_nbits = m25p80_rx_nbits(flash);
+ t[1].rx_nbits = m25p80_rx_nbits(nor);
t[1].len = len;
spi_message_add_tail(&t[1], &m);
- mutex_lock(&flash->lock);
-
- /* Wait till previous write/erase is done. */
- if (wait_till_ready(flash)) {
- /* REVISIT status return?? */
- mutex_unlock(&flash->lock);
- return 1;
- }
-
- /* Set up the write data buffer. */
- opcode = flash->read_opcode;
- flash->command[0] = opcode;
- m25p_addr2cmd(flash, from, flash->command);
-
- spi_sync(flash->spi, &m);
-
- *retlen = m.actual_length - m25p_cmdsz(flash) - dummy;
-
- mutex_unlock(&flash->lock);
+ spi_sync(spi, &m);
+ *retlen = m.actual_length - m25p_cmdsz(nor) - dummy;
return 0;
}
-/*
- * Write an address range to the flash chip. Data must be written in
- * FLASH_PAGESIZE chunks. The address range may be any size provided
- * it is within the physical boundaries.
- */
-static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
- size_t *retlen, const u_char *buf)
+static int m25p80_erase(struct spi_nor *nor, loff_t offset)
{
- struct m25p *flash = mtd_to_m25p(mtd);
- u32 page_offset, page_size;
- struct spi_transfer t[2];
- struct spi_message m;
-
- pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
- __func__, (u32)to, len);
-
- spi_message_init(&m);
- memset(t, 0, (sizeof t));
-
- t[0].tx_buf = flash->command;
- t[0].len = m25p_cmdsz(flash);
- spi_message_add_tail(&t[0], &m);
-
- t[1].tx_buf = buf;
- spi_message_add_tail(&t[1], &m);
-
- mutex_lock(&flash->lock);
-
- /* Wait until finished previous write command. */
- if (wait_till_ready(flash)) {
- mutex_unlock(&flash->lock);
- return 1;
- }
-
- write_enable(flash);
-
- /* Set up the opcode in the write buffer. */
- flash->command[0] = flash->program_opcode;
- m25p_addr2cmd(flash, to, flash->command);
-
- page_offset = to & (flash->page_size - 1);
-
- /* do all the bytes fit onto one page? */
- if (page_offset + len <= flash->page_size) {
- t[1].len = len;
-
- spi_sync(flash->spi, &m);
-
- *retlen = m.actual_length - m25p_cmdsz(flash);
- } else {
- u32 i;
-
- /* the size of data remaining on the first page */
- page_size = flash->page_size - page_offset;
-
- t[1].len = page_size;
- spi_sync(flash->spi, &m);
-
- *retlen = m.actual_length - m25p_cmdsz(flash);
-
- /* write everything in flash->page_size chunks */
- for (i = page_size; i < len; i += page_size) {
- page_size = len - i;
- if (page_size > flash->page_size)
- page_size = flash->page_size;
-
- /* write the next page to flash */
- m25p_addr2cmd(flash, to + i, flash->command);
-
- t[1].tx_buf = buf + i;
- t[1].len = page_size;
-
- wait_till_ready(flash);
-
- write_enable(flash);
-
- spi_sync(flash->spi, &m);
-
- *retlen += m.actual_length - m25p_cmdsz(flash);
- }
- }
-
- mutex_unlock(&flash->lock);
-
- return 0;
-}
-
-static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
- size_t *retlen, const u_char *buf)
-{
- struct m25p *flash = mtd_to_m25p(mtd);
- struct spi_transfer t[2];
- struct spi_message m;
- size_t actual;
- int cmd_sz, ret;
-
- pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
- __func__, (u32)to, len);
-
- spi_message_init(&m);
- memset(t, 0, (sizeof t));
-
- t[0].tx_buf = flash->command;
- t[0].len = m25p_cmdsz(flash);
- spi_message_add_tail(&t[0], &m);
-
- t[1].tx_buf = buf;
- spi_message_add_tail(&t[1], &m);
+ struct m25p *flash = nor->priv;
+ int ret;
- mutex_lock(&flash->lock);
+ dev_dbg(nor->dev, "%dKiB at 0x%08x\n",
+ flash->mtd.erasesize / 1024, (u32)offset);
/* Wait until finished previous write command. */
- ret = wait_till_ready(flash);
+ ret = nor->wait_till_ready(nor);
if (ret)
- goto time_out;
-
- write_enable(flash);
-
- actual = to % 2;
- /* Start write from odd address. */
- if (actual) {
- flash->command[0] = OPCODE_BP;
- m25p_addr2cmd(flash, to, flash->command);
-
- /* write one byte. */
- t[1].len = 1;
- spi_sync(flash->spi, &m);
- ret = wait_till_ready(flash);
- if (ret)
- goto time_out;
- *retlen += m.actual_length - m25p_cmdsz(flash);
- }
- to += actual;
-
- flash->command[0] = OPCODE_AAI_WP;
- m25p_addr2cmd(flash, to, flash->command);
-
- /* Write out most of the data here. */
- cmd_sz = m25p_cmdsz(flash);
- for (; actual < len - 1; actual += 2) {
- t[0].len = cmd_sz;
- /* write two bytes. */
- t[1].len = 2;
- t[1].tx_buf = buf + actual;
+ return ret;
- spi_sync(flash->spi, &m);
- ret = wait_till_ready(flash);
- if (ret)
- goto time_out;
- *retlen += m.actual_length - cmd_sz;
- cmd_sz = 1;
- to += 2;
- }
- write_disable(flash);
- ret = wait_till_ready(flash);
+ /* Send write enable, then erase commands. */
+ ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
if (ret)
- goto time_out;
-
- /* Write out trailing byte if it exists. */
- if (actual != len) {
- write_enable(flash);
- flash->command[0] = OPCODE_BP;
- m25p_addr2cmd(flash, to, flash->command);
- t[0].len = m25p_cmdsz(flash);
- t[1].len = 1;
- t[1].tx_buf = buf + actual;
-
- spi_sync(flash->spi, &m);
- ret = wait_till_ready(flash);
- if (ret)
- goto time_out;
- *retlen += m.actual_length - m25p_cmdsz(flash);
- write_disable(flash);
- }
-
-time_out:
- mutex_unlock(&flash->lock);
- return ret;
-}
-
-static int m25p80_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
-{
- struct m25p *flash = mtd_to_m25p(mtd);
- uint32_t offset = ofs;
- uint8_t status_old, status_new;
- int res = 0;
-
- mutex_lock(&flash->lock);
- /* Wait until finished previous command */
- if (wait_till_ready(flash)) {
- res = 1;
- goto err;
- }
-
- status_old = read_sr(flash);
-
- if (offset < flash->mtd.size-(flash->mtd.size/2))
- status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
- else if (offset < flash->mtd.size-(flash->mtd.size/4))
- status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
- else if (offset < flash->mtd.size-(flash->mtd.size/8))
- status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
- else if (offset < flash->mtd.size-(flash->mtd.size/16))
- status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
- else if (offset < flash->mtd.size-(flash->mtd.size/32))
- status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
- else if (offset < flash->mtd.size-(flash->mtd.size/64))
- status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
- else
- status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
-
- /* Only modify protection if it will not unlock other areas */
- if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) >
- (status_old&(SR_BP2|SR_BP1|SR_BP0))) {
- write_enable(flash);
- if (write_sr(flash, status_new) < 0) {
- res = 1;
- goto err;
- }
- }
-
-err: mutex_unlock(&flash->lock);
- return res;
-}
-
-static int m25p80_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
-{
- struct m25p *flash = mtd_to_m25p(mtd);
- uint32_t offset = ofs;
- uint8_t status_old, status_new;
- int res = 0;
-
- mutex_lock(&flash->lock);
- /* Wait until finished previous command */
- if (wait_till_ready(flash)) {
- res = 1;
- goto err;
- }
-
- status_old = read_sr(flash);
-
- if (offset+len > flash->mtd.size-(flash->mtd.size/64))
- status_new = status_old & ~(SR_BP2|SR_BP1|SR_BP0);
- else if (offset+len > flash->mtd.size-(flash->mtd.size/32))
- status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
- else if (offset+len > flash->mtd.size-(flash->mtd.size/16))
- status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
- else if (offset+len > flash->mtd.size-(flash->mtd.size/8))
- status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
- else if (offset+len > flash->mtd.size-(flash->mtd.size/4))
- status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
- else if (offset+len > flash->mtd.size-(flash->mtd.size/2))
- status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
- else
- status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
-
- /* Only modify protection if it will not lock other areas */
- if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) <
- (status_old&(SR_BP2|SR_BP1|SR_BP0))) {
- write_enable(flash);
- if (write_sr(flash, status_new) < 0) {
- res = 1;
- goto err;
- }
- }
-
-err: mutex_unlock(&flash->lock);
- return res;
-}
-
-/****************************************************************************/
-
-/*
- * SPI device driver setup and teardown
- */
-
-struct flash_info {
- /* JEDEC id zero means "no ID" (most older chips); otherwise it has
- * a high byte of zero plus three data bytes: the manufacturer id,
- * then a two byte device id.
- */
- u32 jedec_id;
- u16 ext_id;
-
- /* The size listed here is what works with OPCODE_SE, which isn't
- * necessarily called a "sector" by the vendor.
- */
- unsigned sector_size;
- u16 n_sectors;
-
- u16 page_size;
- u16 addr_width;
-
- u16 flags;
-#define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
-#define M25P_NO_ERASE 0x02 /* No erase command needed */
-#define SST_WRITE 0x04 /* use SST byte programming */
-#define M25P_NO_FR 0x08 /* Can't do fastread */
-#define SECT_4K_PMC 0x10 /* OPCODE_BE_4K_PMC works uniformly */
-#define M25P80_DUAL_READ 0x20 /* Flash supports Dual Read */
-#define M25P80_QUAD_READ 0x40 /* Flash supports Quad Read */
-};
-
-#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
- ((kernel_ulong_t)&(struct flash_info) { \
- .jedec_id = (_jedec_id), \
- .ext_id = (_ext_id), \
- .sector_size = (_sector_size), \
- .n_sectors = (_n_sectors), \
- .page_size = 256, \
- .flags = (_flags), \
- })
-
-#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
- ((kernel_ulong_t)&(struct flash_info) { \
- .sector_size = (_sector_size), \
- .n_sectors = (_n_sectors), \
- .page_size = (_page_size), \
- .addr_width = (_addr_width), \
- .flags = (_flags), \
- })
-
-/* NOTE: double check command sets and memory organization when you add
- * more flash chips. This current list focusses on newer chips, which
- * have been converging on command sets which including JEDEC ID.
- */
-static const struct spi_device_id m25p_ids[] = {
- /* Atmel -- some are (confusingly) marketed as "DataFlash" */
- { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
- { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
-
- { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
- { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
- { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
-
- { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
- { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
- { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
- { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
-
- { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
-
- /* EON -- en25xxx */
- { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
- { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
- { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
- { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
- { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
- { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
-
- /* ESMT */
- { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
-
- /* Everspin */
- { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, M25P_NO_ERASE | M25P_NO_FR) },
- { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, M25P_NO_ERASE | M25P_NO_FR) },
-
- /* GigaDevice */
- { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
- { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
-
- /* Intel/Numonyx -- xxxs33b */
- { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
- { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
- { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
-
- /* Macronix */
- { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
- { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
- { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
- { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
- { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
- { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
- { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
- { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
- { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
- { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
- { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
- { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, M25P80_QUAD_READ) },
- { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, M25P80_QUAD_READ) },
-
- /* Micron */
- { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
- { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
- { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
- { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },
- { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
-
- /* PMC */
- { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
- { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
- { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
-
- /* Spansion -- single (large) sector size only, at least
- * for the chips listed here (without boot sectors).
- */
- { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, 0) },
- { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
- { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
- { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, M25P80_DUAL_READ | M25P80_QUAD_READ) },
- { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, M25P80_DUAL_READ | M25P80_QUAD_READ) },
- { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
- { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
- { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
- { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
- { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
- { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
- { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
- { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
- { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
- { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
- { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
- { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
- { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
-
- /* SST -- large erase sizes are "overlays", "sectors" are 4K */
- { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
- { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
- { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
- { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
- { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
- { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
- { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
- { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
- { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
-
- /* ST Microelectronics -- newer production may have feature updates */
- { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
- { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
- { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
- { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
- { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
- { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
- { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
- { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
- { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
- { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
-
- { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
- { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
- { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
- { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
- { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
- { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
- { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
- { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
- { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
-
- { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
- { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
- { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
-
- { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
- { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
- { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
-
- { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
- { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
- { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
- { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
- { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
-
- /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
- { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
- { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
- { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
- { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
- { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
- { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
- { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
- { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
- { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
- { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
- { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
- { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
- { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
- { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
- { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
-
- /* Catalyst / On Semiconductor -- non-JEDEC */
- { "cat25c11", CAT25_INFO( 16, 8, 16, 1, M25P_NO_ERASE | M25P_NO_FR) },
- { "cat25c03", CAT25_INFO( 32, 8, 16, 2, M25P_NO_ERASE | M25P_NO_FR) },
- { "cat25c09", CAT25_INFO( 128, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
- { "cat25c17", CAT25_INFO( 256, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
- { "cat25128", CAT25_INFO(2048, 8, 64, 2, M25P_NO_ERASE | M25P_NO_FR) },
- { },
-};
-MODULE_DEVICE_TABLE(spi, m25p_ids);
-
-static const struct spi_device_id *jedec_probe(struct spi_device *spi)
-{
- int tmp;
- u8 code = OPCODE_RDID;
- u8 id[5];
- u32 jedec;
- u16 ext_jedec;
- struct flash_info *info;
+ return ret;
- /* JEDEC also defines an optional "extended device information"
- * string for after vendor-specific data, after the three bytes
- * we use here. Supporting some chips might require using it.
- */
- tmp = spi_write_then_read(spi, &code, 1, id, 5);
- if (tmp < 0) {
- pr_debug("%s: error %d reading JEDEC ID\n",
- dev_name(&spi->dev), tmp);
- return ERR_PTR(tmp);
- }
- jedec = id[0];
- jedec = jedec << 8;
- jedec |= id[1];
- jedec = jedec << 8;
- jedec |= id[2];
+ /* Set up command buffer. */
+ flash->command[0] = nor->erase_opcode;
+ m25p_addr2cmd(nor, offset, flash->command);
- ext_jedec = id[3] << 8 | id[4];
+ spi_write(flash->spi, flash->command, m25p_cmdsz(nor));
- for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
- info = (void *)m25p_ids[tmp].driver_data;
- if (info->jedec_id == jedec) {
- if (info->ext_id == 0 || info->ext_id == ext_jedec)
- return &m25p_ids[tmp];
- }
- }
- dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
- return ERR_PTR(-ENODEV);
+ return 0;
}
-
/*
* board specific setup should have ensured the SPI clock used here
* matches what the READ command supports, at least until this driver
@@ -1096,231 +191,45 @@ static const struct spi_device_id *jedec_probe(struct spi_device *spi)
*/
static int m25p_probe(struct spi_device *spi)
{
- const struct spi_device_id *id = spi_get_device_id(spi);
- struct flash_platform_data *data;
- struct m25p *flash;
- struct flash_info *info;
- unsigned i;
struct mtd_part_parser_data ppdata;
- struct device_node *np = spi->dev.of_node;
+ struct flash_platform_data *data;
+ struct m25p *flash;
+ struct spi_nor *nor;
+ enum read_mode mode = SPI_NOR_NORMAL;
int ret;
- /* Platform data helps sort out which chip type we have, as
- * well as how this board partitions it. If we don't have
- * a chip ID, try the JEDEC id commands; they'll work for most
- * newer chips, even if we don't recognize the particular chip.
- */
- data = dev_get_platdata(&spi->dev);
- if (data && data->type) {
- const struct spi_device_id *plat_id;
-
- for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
- plat_id = &m25p_ids[i];
- if (strcmp(data->type, plat_id->name))
- continue;
- break;
- }
-
- if (i < ARRAY_SIZE(m25p_ids) - 1)
- id = plat_id;
- else
- dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
- }
-
- info = (void *)id->driver_data;
-
- if (info->jedec_id) {
- const struct spi_device_id *jid;
-
- jid = jedec_probe(spi);
- if (IS_ERR(jid)) {
- return PTR_ERR(jid);
- } else if (jid != id) {
- /*
- * JEDEC knows better, so overwrite platform ID. We
- * can't trust partitions any longer, but we'll let
- * mtd apply them anyway, since some partitions may be
- * marked read-only, and we don't want to lose that
- * information, even if it's not 100% accurate.
- */
- dev_warn(&spi->dev, "found %s, expected %s\n",
- jid->name, id->name);
- id = jid;
- info = (void *)jid->driver_data;
- }
- }
-
flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL);
if (!flash)
return -ENOMEM;
- flash->command = devm_kzalloc(&spi->dev, MAX_CMD_SIZE, GFP_KERNEL);
- if (!flash->command)
- return -ENOMEM;
-
- flash->spi = spi;
- mutex_init(&flash->lock);
- spi_set_drvdata(spi, flash);
-
- /*
- * Atmel, SST and Intel/Numonyx serial flash tend to power
- * up with the software protection bits set
- */
+ nor = &flash->spi_nor;
- if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
- JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
- JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
- write_enable(flash);
- write_sr(flash, 0);
- }
-
- if (data && data->name)
- flash->mtd.name = data->name;
- else
- flash->mtd.name = dev_name(&spi->dev);
-
- flash->mtd.type = MTD_NORFLASH;
- flash->mtd.writesize = 1;
- flash->mtd.flags = MTD_CAP_NORFLASH;
- flash->mtd.size = info->sector_size * info->n_sectors;
- flash->mtd._erase = m25p80_erase;
- flash->mtd._read = m25p80_read;
-
- /* flash protection support for STmicro chips */
- if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
- flash->mtd._lock = m25p80_lock;
- flash->mtd._unlock = m25p80_unlock;
- }
+ /* install the hooks */
+ nor->read = m25p80_read;
+ nor->write = m25p80_write;
+ nor->erase = m25p80_erase;
+ nor->write_reg = m25p80_write_reg;
+ nor->read_reg = m25p80_read_reg;
- /* sst flash chips use AAI word program */
- if (info->flags & SST_WRITE)
- flash->mtd._write = sst_write;
- else
- flash->mtd._write = m25p80_write;
+ nor->dev = &spi->dev;
+ nor->mtd = &flash->mtd;
+ nor->priv = flash;
- /* prefer "small sector" erase if possible */
- if (info->flags & SECT_4K) {
- flash->erase_opcode = OPCODE_BE_4K;
- flash->mtd.erasesize = 4096;
- } else if (info->flags & SECT_4K_PMC) {
- flash->erase_opcode = OPCODE_BE_4K_PMC;
- flash->mtd.erasesize = 4096;
- } else {
- flash->erase_opcode = OPCODE_SE;
- flash->mtd.erasesize = info->sector_size;
- }
+ spi_set_drvdata(spi, flash);
+ flash->mtd.priv = nor;
+ flash->spi = spi;
- if (info->flags & M25P_NO_ERASE)
- flash->mtd.flags |= MTD_NO_ERASE;
+ if (spi->mode & SPI_RX_QUAD)
+ mode = SPI_NOR_QUAD;
+ else if (spi->mode & SPI_RX_DUAL)
+ mode = SPI_NOR_DUAL;
+ ret = spi_nor_scan(nor, spi_get_device_id(spi), mode);
+ if (ret)
+ return ret;
+ data = dev_get_platdata(&spi->dev);
ppdata.of_node = spi->dev.of_node;
- flash->mtd.dev.parent = &spi->dev;
- flash->page_size = info->page_size;
- flash->mtd.writebufsize = flash->page_size;
-
- if (np) {
- /* If we were instantiated by DT, use it */
- if (of_property_read_bool(np, "m25p,fast-read"))
- flash->flash_read = M25P80_FAST;
- else
- flash->flash_read = M25P80_NORMAL;
- } else {
- /* If we weren't instantiated by DT, default to fast-read */
- flash->flash_read = M25P80_FAST;
- }
-
- /* Some devices cannot do fast-read, no matter what DT tells us */
- if (info->flags & M25P_NO_FR)
- flash->flash_read = M25P80_NORMAL;
-
- /* Quad/Dual-read mode takes precedence over fast/normal */
- if (spi->mode & SPI_RX_QUAD && info->flags & M25P80_QUAD_READ) {
- ret = set_quad_mode(flash, info->jedec_id);
- if (ret) {
- dev_err(&flash->spi->dev, "quad mode not supported\n");
- return ret;
- }
- flash->flash_read = M25P80_QUAD;
- } else if (spi->mode & SPI_RX_DUAL && info->flags & M25P80_DUAL_READ) {
- flash->flash_read = M25P80_DUAL;
- }
- /* Default commands */
- switch (flash->flash_read) {
- case M25P80_QUAD:
- flash->read_opcode = OPCODE_QUAD_READ;
- break;
- case M25P80_DUAL:
- flash->read_opcode = OPCODE_DUAL_READ;
- break;
- case M25P80_FAST:
- flash->read_opcode = OPCODE_FAST_READ;
- break;
- case M25P80_NORMAL:
- flash->read_opcode = OPCODE_NORM_READ;
- break;
- default:
- dev_err(&flash->spi->dev, "No Read opcode defined\n");
- return -EINVAL;
- }
-
- flash->program_opcode = OPCODE_PP;
-
- if (info->addr_width)
- flash->addr_width = info->addr_width;
- else if (flash->mtd.size > 0x1000000) {
- /* enable 4-byte addressing if the device exceeds 16MiB */
- flash->addr_width = 4;
- if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
- /* Dedicated 4-byte command set */
- switch (flash->flash_read) {
- case M25P80_QUAD:
- flash->read_opcode = OPCODE_QUAD_READ_4B;
- break;
- case M25P80_DUAL:
- flash->read_opcode = OPCODE_DUAL_READ_4B;
- break;
- case M25P80_FAST:
- flash->read_opcode = OPCODE_FAST_READ_4B;
- break;
- case M25P80_NORMAL:
- flash->read_opcode = OPCODE_NORM_READ_4B;
- break;
- }
- flash->program_opcode = OPCODE_PP_4B;
- /* No small sector erase for 4-byte command set */
- flash->erase_opcode = OPCODE_SE_4B;
- flash->mtd.erasesize = info->sector_size;
- } else
- set_4byte(flash, info->jedec_id, 1);
- } else {
- flash->addr_width = 3;
- }
-
- dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
- (long long)flash->mtd.size >> 10);
-
- pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
- ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
- flash->mtd.name,
- (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
- flash->mtd.erasesize, flash->mtd.erasesize / 1024,
- flash->mtd.numeraseregions);
-
- if (flash->mtd.numeraseregions)
- for (i = 0; i < flash->mtd.numeraseregions; i++)
- pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
- ".erasesize = 0x%.8x (%uKiB), "
- ".numblocks = %d }\n",
- i, (long long)flash->mtd.eraseregions[i].offset,
- flash->mtd.eraseregions[i].erasesize,
- flash->mtd.eraseregions[i].erasesize / 1024,
- flash->mtd.eraseregions[i].numblocks);
-
-
- /* partitions should match sector boundaries; and it may be good to
- * use readonly partitions for writeprotected sectors (BP2..BP0).
- */
return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
data ? data->parts : NULL,
data ? data->nr_parts : 0);
@@ -1341,7 +250,7 @@ static struct spi_driver m25p80_driver = {
.name = "m25p80",
.owner = THIS_MODULE,
},
- .id_table = m25p_ids,
+ .id_table = spi_nor_ids,
.probe = m25p_probe,
.remove = m25p_remove,
diff --git a/drivers/mtd/devices/serial_flash_cmds.h b/drivers/mtd/devices/serial_flash_cmds.h
index 4f0c2c7c898e..f59a125295d0 100644
--- a/drivers/mtd/devices/serial_flash_cmds.h
+++ b/drivers/mtd/devices/serial_flash_cmds.h
@@ -13,43 +13,23 @@
#define _MTD_SERIAL_FLASH_CMDS_H
/* Generic Flash Commands/OPCODEs */
-#define FLASH_CMD_WREN 0x06
-#define FLASH_CMD_WRDI 0x04
-#define FLASH_CMD_RDID 0x9f
-#define FLASH_CMD_RDSR 0x05
-#define FLASH_CMD_RDSR2 0x35
-#define FLASH_CMD_WRSR 0x01
-#define FLASH_CMD_SE_4K 0x20
-#define FLASH_CMD_SE_32K 0x52
-#define FLASH_CMD_SE 0xd8
-#define FLASH_CMD_CHIPERASE 0xc7
-#define FLASH_CMD_WRVCR 0x81
-#define FLASH_CMD_RDVCR 0x85
+#define SPINOR_OP_RDSR2 0x35
+#define SPINOR_OP_WRVCR 0x81
+#define SPINOR_OP_RDVCR 0x85
/* JEDEC Standard - Serial Flash Discoverable Parmeters (SFDP) Commands */
-#define FLASH_CMD_READ 0x03 /* READ */
-#define FLASH_CMD_READ_FAST 0x0b /* FAST READ */
-#define FLASH_CMD_READ_1_1_2 0x3b /* DUAL OUTPUT READ */
-#define FLASH_CMD_READ_1_2_2 0xbb /* DUAL I/O READ */
-#define FLASH_CMD_READ_1_1_4 0x6b /* QUAD OUTPUT READ */
-#define FLASH_CMD_READ_1_4_4 0xeb /* QUAD I/O READ */
+#define SPINOR_OP_READ_1_2_2 0xbb /* DUAL I/O READ */
+#define SPINOR_OP_READ_1_4_4 0xeb /* QUAD I/O READ */
-#define FLASH_CMD_WRITE 0x02 /* PAGE PROGRAM */
-#define FLASH_CMD_WRITE_1_1_2 0xa2 /* DUAL INPUT PROGRAM */
-#define FLASH_CMD_WRITE_1_2_2 0xd2 /* DUAL INPUT EXT PROGRAM */
-#define FLASH_CMD_WRITE_1_1_4 0x32 /* QUAD INPUT PROGRAM */
-#define FLASH_CMD_WRITE_1_4_4 0x12 /* QUAD INPUT EXT PROGRAM */
-
-#define FLASH_CMD_EN4B_ADDR 0xb7 /* Enter 4-byte address mode */
-#define FLASH_CMD_EX4B_ADDR 0xe9 /* Exit 4-byte address mode */
+#define SPINOR_OP_WRITE 0x02 /* PAGE PROGRAM */
+#define SPINOR_OP_WRITE_1_1_2 0xa2 /* DUAL INPUT PROGRAM */
+#define SPINOR_OP_WRITE_1_2_2 0xd2 /* DUAL INPUT EXT PROGRAM */
+#define SPINOR_OP_WRITE_1_1_4 0x32 /* QUAD INPUT PROGRAM */
+#define SPINOR_OP_WRITE_1_4_4 0x12 /* QUAD INPUT EXT PROGRAM */
/* READ commands with 32-bit addressing */
-#define FLASH_CMD_READ4 0x13
-#define FLASH_CMD_READ4_FAST 0x0c
-#define FLASH_CMD_READ4_1_1_2 0x3c
-#define FLASH_CMD_READ4_1_2_2 0xbc
-#define FLASH_CMD_READ4_1_1_4 0x6c
-#define FLASH_CMD_READ4_1_4_4 0xec
+#define SPINOR_OP_READ4_1_2_2 0xbc
+#define SPINOR_OP_READ4_1_4_4 0xec
/* Configuration flags */
#define FLASH_FLAG_SINGLE 0x000000ff
diff --git a/drivers/mtd/devices/slram.c b/drivers/mtd/devices/slram.c
index 5a5cd2ace4a6..2fc4957cbe7f 100644
--- a/drivers/mtd/devices/slram.c
+++ b/drivers/mtd/devices/slram.c
@@ -280,14 +280,11 @@ __setup("slram=", mtd_slram_setup);
static int __init init_slram(void)
{
char *devname;
- int i;
#ifndef MODULE
char *devstart;
char *devlength;
- i = 0;
-
if (!map) {
E("slram: not enough parameters.\n");
return(-EINVAL);
@@ -314,6 +311,7 @@ static int __init init_slram(void)
}
#else
int count;
+ int i;
for (count = 0; count < SLRAM_MAX_DEVICES_PARAMS && map[count];
count++) {
diff --git a/drivers/mtd/devices/st_spi_fsm.c b/drivers/mtd/devices/st_spi_fsm.c
index 1957d7c8e185..d252514d3e98 100644
--- a/drivers/mtd/devices/st_spi_fsm.c
+++ b/drivers/mtd/devices/st_spi_fsm.c
@@ -19,6 +19,7 @@
#include <linux/mfd/syscon.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
+#include <linux/mtd/spi-nor.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/io.h>
@@ -201,44 +202,6 @@
#define STFSM_MAX_WAIT_SEQ_MS 1000 /* FSM execution time */
-/* Flash Commands */
-#define FLASH_CMD_WREN 0x06
-#define FLASH_CMD_WRDI 0x04
-#define FLASH_CMD_RDID 0x9f
-#define FLASH_CMD_RDSR 0x05
-#define FLASH_CMD_RDSR2 0x35
-#define FLASH_CMD_WRSR 0x01
-#define FLASH_CMD_SE_4K 0x20
-#define FLASH_CMD_SE_32K 0x52
-#define FLASH_CMD_SE 0xd8
-#define FLASH_CMD_CHIPERASE 0xc7
-#define FLASH_CMD_WRVCR 0x81
-#define FLASH_CMD_RDVCR 0x85
-
-#define FLASH_CMD_READ 0x03 /* READ */
-#define FLASH_CMD_READ_FAST 0x0b /* FAST READ */
-#define FLASH_CMD_READ_1_1_2 0x3b /* DUAL OUTPUT READ */
-#define FLASH_CMD_READ_1_2_2 0xbb /* DUAL I/O READ */
-#define FLASH_CMD_READ_1_1_4 0x6b /* QUAD OUTPUT READ */
-#define FLASH_CMD_READ_1_4_4 0xeb /* QUAD I/O READ */
-
-#define FLASH_CMD_WRITE 0x02 /* PAGE PROGRAM */
-#define FLASH_CMD_WRITE_1_1_2 0xa2 /* DUAL INPUT PROGRAM */
-#define FLASH_CMD_WRITE_1_2_2 0xd2 /* DUAL INPUT EXT PROGRAM */
-#define FLASH_CMD_WRITE_1_1_4 0x32 /* QUAD INPUT PROGRAM */
-#define FLASH_CMD_WRITE_1_4_4 0x12 /* QUAD INPUT EXT PROGRAM */
-
-#define FLASH_CMD_EN4B_ADDR 0xb7 /* Enter 4-byte address mode */
-#define FLASH_CMD_EX4B_ADDR 0xe9 /* Exit 4-byte address mode */
-
-/* READ commands with 32-bit addressing (N25Q256 and S25FLxxxS) */
-#define FLASH_CMD_READ4 0x13
-#define FLASH_CMD_READ4_FAST 0x0c
-#define FLASH_CMD_READ4_1_1_2 0x3c
-#define FLASH_CMD_READ4_1_2_2 0xbc
-#define FLASH_CMD_READ4_1_1_4 0x6c
-#define FLASH_CMD_READ4_1_4_4 0xec
-
/* S25FLxxxS commands */
#define S25FL_CMD_WRITE4_1_1_4 0x34
#define S25FL_CMD_SE4 0xdc
@@ -246,7 +209,7 @@
#define S25FL_CMD_DYBWR 0xe1
#define S25FL_CMD_DYBRD 0xe0
#define S25FL_CMD_WRITE4 0x12 /* Note, opcode clashes with
- * 'FLASH_CMD_WRITE_1_4_4'
+ * 'SPINOR_OP_WRITE_1_4_4'
* as found on N25Qxxx devices! */
/* Status register */
@@ -261,6 +224,12 @@
#define S25FL_STATUS_E_ERR 0x20
#define S25FL_STATUS_P_ERR 0x40
+#define N25Q_CMD_WRVCR 0x81
+#define N25Q_CMD_RDVCR 0x85
+#define N25Q_CMD_RDVECR 0x65
+#define N25Q_CMD_RDNVCR 0xb5
+#define N25Q_CMD_WRNVCR 0xb1
+
#define FLASH_PAGESIZE 256 /* In Bytes */
#define FLASH_PAGESIZE_32 (FLASH_PAGESIZE / 4) /* In uint32_t */
#define FLASH_MAX_BUSY_WAIT (300 * HZ) /* Maximum 'CHIPERASE' time */
@@ -270,7 +239,6 @@
*/
#define CFG_READ_TOGGLE_32BIT_ADDR 0x00000001
#define CFG_WRITE_TOGGLE_32BIT_ADDR 0x00000002
-#define CFG_WRITE_EX_32BIT_ADDR_DELAY 0x00000004
#define CFG_ERASESEC_TOGGLE_32BIT_ADDR 0x00000008
#define CFG_S25FL_CHECK_ERROR_FLAGS 0x00000010
@@ -329,7 +297,7 @@ struct flash_info {
u32 jedec_id;
u16 ext_id;
/*
- * The size listed here is what works with FLASH_CMD_SE, which isn't
+ * The size listed here is what works with SPINOR_OP_SE, which isn't
* necessarily called a "sector" by the vendor.
*/
unsigned sector_size;
@@ -369,17 +337,26 @@ static struct flash_info flash_types[] = {
{ "m25px32", 0x207116, 0, 64 * 1024, 64, M25PX_FLAG, 75, NULL },
{ "m25px64", 0x207117, 0, 64 * 1024, 128, M25PX_FLAG, 75, NULL },
+ /* Macronix MX25xxx
+ * - Support for 'FLASH_FLAG_WRITE_1_4_4' is omitted for devices
+ * where operating frequency must be reduced.
+ */
#define MX25_FLAG (FLASH_FLAG_READ_WRITE | \
FLASH_FLAG_READ_FAST | \
FLASH_FLAG_READ_1_1_2 | \
FLASH_FLAG_READ_1_2_2 | \
FLASH_FLAG_READ_1_1_4 | \
- FLASH_FLAG_READ_1_4_4 | \
FLASH_FLAG_SE_4K | \
FLASH_FLAG_SE_32K)
+ { "mx25l3255e", 0xc29e16, 0, 64 * 1024, 64,
+ (MX25_FLAG | FLASH_FLAG_WRITE_1_4_4), 86,
+ stfsm_mx25_config},
{ "mx25l25635e", 0xc22019, 0, 64*1024, 512,
(MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70,
stfsm_mx25_config },
+ { "mx25l25655e", 0xc22619, 0, 64*1024, 512,
+ (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70,
+ stfsm_mx25_config},
#define N25Q_FLAG (FLASH_FLAG_READ_WRITE | \
FLASH_FLAG_READ_FAST | \
@@ -407,6 +384,8 @@ static struct flash_info flash_types[] = {
FLASH_FLAG_READ_1_4_4 | \
FLASH_FLAG_WRITE_1_1_4 | \
FLASH_FLAG_READ_FAST)
+ { "s25fl032p", 0x010215, 0x4d00, 64 * 1024, 64, S25FLXXXP_FLAG, 80,
+ stfsm_s25fl_config},
{ "s25fl129p0", 0x012018, 0x4d00, 256 * 1024, 64, S25FLXXXP_FLAG, 80,
stfsm_s25fl_config },
{ "s25fl129p1", 0x012018, 0x4d01, 64 * 1024, 256, S25FLXXXP_FLAG, 80,
@@ -473,22 +452,22 @@ static struct flash_info flash_types[] = {
/* Default READ configurations, in order of preference */
static struct seq_rw_config default_read_configs[] = {
- {FLASH_FLAG_READ_1_4_4, FLASH_CMD_READ_1_4_4, 0, 4, 4, 0x00, 2, 4},
- {FLASH_FLAG_READ_1_1_4, FLASH_CMD_READ_1_1_4, 0, 1, 4, 0x00, 4, 0},
- {FLASH_FLAG_READ_1_2_2, FLASH_CMD_READ_1_2_2, 0, 2, 2, 0x00, 4, 0},
- {FLASH_FLAG_READ_1_1_2, FLASH_CMD_READ_1_1_2, 0, 1, 2, 0x00, 0, 8},
- {FLASH_FLAG_READ_FAST, FLASH_CMD_READ_FAST, 0, 1, 1, 0x00, 0, 8},
- {FLASH_FLAG_READ_WRITE, FLASH_CMD_READ, 0, 1, 1, 0x00, 0, 0},
+ {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 2, 4},
+ {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 4, 0},
+ {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 4, 0},
+ {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8},
+ {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8},
+ {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0},
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
};
/* Default WRITE configurations */
static struct seq_rw_config default_write_configs[] = {
- {FLASH_FLAG_WRITE_1_4_4, FLASH_CMD_WRITE_1_4_4, 1, 4, 4, 0x00, 0, 0},
- {FLASH_FLAG_WRITE_1_1_4, FLASH_CMD_WRITE_1_1_4, 1, 1, 4, 0x00, 0, 0},
- {FLASH_FLAG_WRITE_1_2_2, FLASH_CMD_WRITE_1_2_2, 1, 2, 2, 0x00, 0, 0},
- {FLASH_FLAG_WRITE_1_1_2, FLASH_CMD_WRITE_1_1_2, 1, 1, 2, 0x00, 0, 0},
- {FLASH_FLAG_READ_WRITE, FLASH_CMD_WRITE, 1, 1, 1, 0x00, 0, 0},
+ {FLASH_FLAG_WRITE_1_4_4, SPINOR_OP_WRITE_1_4_4, 1, 4, 4, 0x00, 0, 0},
+ {FLASH_FLAG_WRITE_1_1_4, SPINOR_OP_WRITE_1_1_4, 1, 1, 4, 0x00, 0, 0},
+ {FLASH_FLAG_WRITE_1_2_2, SPINOR_OP_WRITE_1_2_2, 1, 2, 2, 0x00, 0, 0},
+ {FLASH_FLAG_WRITE_1_1_2, SPINOR_OP_WRITE_1_1_2, 1, 1, 2, 0x00, 0, 0},
+ {FLASH_FLAG_READ_WRITE, SPINOR_OP_WRITE, 1, 1, 1, 0x00, 0, 0},
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
};
@@ -511,12 +490,12 @@ static struct seq_rw_config default_write_configs[] = {
* cycles.
*/
static struct seq_rw_config n25q_read3_configs[] = {
- {FLASH_FLAG_READ_1_4_4, FLASH_CMD_READ_1_4_4, 0, 4, 4, 0x00, 0, 8},
- {FLASH_FLAG_READ_1_1_4, FLASH_CMD_READ_1_1_4, 0, 1, 4, 0x00, 0, 8},
- {FLASH_FLAG_READ_1_2_2, FLASH_CMD_READ_1_2_2, 0, 2, 2, 0x00, 0, 8},
- {FLASH_FLAG_READ_1_1_2, FLASH_CMD_READ_1_1_2, 0, 1, 2, 0x00, 0, 8},
- {FLASH_FLAG_READ_FAST, FLASH_CMD_READ_FAST, 0, 1, 1, 0x00, 0, 8},
- {FLASH_FLAG_READ_WRITE, FLASH_CMD_READ, 0, 1, 1, 0x00, 0, 0},
+ {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 0, 8},
+ {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 0, 8},
+ {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 0, 8},
+ {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8},
+ {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8},
+ {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0},
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
};
@@ -526,12 +505,12 @@ static struct seq_rw_config n25q_read3_configs[] = {
* - 'FAST' variants configured for 8 dummy cycles (see note above.)
*/
static struct seq_rw_config n25q_read4_configs[] = {
- {FLASH_FLAG_READ_1_4_4, FLASH_CMD_READ4_1_4_4, 0, 4, 4, 0x00, 0, 8},
- {FLASH_FLAG_READ_1_1_4, FLASH_CMD_READ4_1_1_4, 0, 1, 4, 0x00, 0, 8},
- {FLASH_FLAG_READ_1_2_2, FLASH_CMD_READ4_1_2_2, 0, 2, 2, 0x00, 0, 8},
- {FLASH_FLAG_READ_1_1_2, FLASH_CMD_READ4_1_1_2, 0, 1, 2, 0x00, 0, 8},
- {FLASH_FLAG_READ_FAST, FLASH_CMD_READ4_FAST, 0, 1, 1, 0x00, 0, 8},
- {FLASH_FLAG_READ_WRITE, FLASH_CMD_READ4, 0, 1, 1, 0x00, 0, 0},
+ {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ4_1_4_4, 0, 4, 4, 0x00, 0, 8},
+ {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ4_1_1_4, 0, 1, 4, 0x00, 0, 8},
+ {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ4_1_2_2, 0, 2, 2, 0x00, 0, 8},
+ {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ4_1_1_2, 0, 1, 2, 0x00, 0, 8},
+ {FLASH_FLAG_READ_FAST, SPINOR_OP_READ4_FAST, 0, 1, 1, 0x00, 0, 8},
+ {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ4, 0, 1, 1, 0x00, 0, 0},
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
};
@@ -544,7 +523,7 @@ static int stfsm_mx25_en_32bit_addr_seq(struct stfsm_seq *seq)
{
seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
- SEQ_OPC_OPCODE(FLASH_CMD_EN4B_ADDR) |
+ SEQ_OPC_OPCODE(SPINOR_OP_EN4B) |
SEQ_OPC_CSDEASSERT);
seq->seq[0] = STFSM_INST_CMD1;
@@ -572,12 +551,12 @@ static int stfsm_mx25_en_32bit_addr_seq(struct stfsm_seq *seq)
* entering a state that is incompatible with the SPIBoot Controller.
*/
static struct seq_rw_config stfsm_s25fl_read4_configs[] = {
- {FLASH_FLAG_READ_1_4_4, FLASH_CMD_READ4_1_4_4, 0, 4, 4, 0x00, 2, 4},
- {FLASH_FLAG_READ_1_1_4, FLASH_CMD_READ4_1_1_4, 0, 1, 4, 0x00, 0, 8},
- {FLASH_FLAG_READ_1_2_2, FLASH_CMD_READ4_1_2_2, 0, 2, 2, 0x00, 4, 0},
- {FLASH_FLAG_READ_1_1_2, FLASH_CMD_READ4_1_1_2, 0, 1, 2, 0x00, 0, 8},
- {FLASH_FLAG_READ_FAST, FLASH_CMD_READ4_FAST, 0, 1, 1, 0x00, 0, 8},
- {FLASH_FLAG_READ_WRITE, FLASH_CMD_READ4, 0, 1, 1, 0x00, 0, 0},
+ {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ4_1_4_4, 0, 4, 4, 0x00, 2, 4},
+ {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ4_1_1_4, 0, 1, 4, 0x00, 0, 8},
+ {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ4_1_2_2, 0, 2, 2, 0x00, 4, 0},
+ {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ4_1_1_2, 0, 1, 2, 0x00, 0, 8},
+ {FLASH_FLAG_READ_FAST, SPINOR_OP_READ4_FAST, 0, 1, 1, 0x00, 0, 8},
+ {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ4, 0, 1, 1, 0x00, 0, 0},
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
};
@@ -590,13 +569,13 @@ static struct seq_rw_config stfsm_s25fl_write4_configs[] = {
/*
* [W25Qxxx] Configuration
*/
-#define W25Q_STATUS_QE (0x1 << 9)
+#define W25Q_STATUS_QE (0x1 << 1)
static struct stfsm_seq stfsm_seq_read_jedec = {
.data_size = TRANSFER_SIZE(8),
.seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
- SEQ_OPC_OPCODE(FLASH_CMD_RDID)),
+ SEQ_OPC_OPCODE(SPINOR_OP_RDID)),
.seq = {
STFSM_INST_CMD1,
STFSM_INST_DATA_READ,
@@ -612,7 +591,7 @@ static struct stfsm_seq stfsm_seq_read_status_fifo = {
.data_size = TRANSFER_SIZE(4),
.seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
- SEQ_OPC_OPCODE(FLASH_CMD_RDSR)),
+ SEQ_OPC_OPCODE(SPINOR_OP_RDSR)),
.seq = {
STFSM_INST_CMD1,
STFSM_INST_DATA_READ,
@@ -628,10 +607,10 @@ static struct stfsm_seq stfsm_seq_erase_sector = {
/* 'addr_cfg' configured during initialisation */
.seq_opc = {
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
- SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),
+ SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
- SEQ_OPC_OPCODE(FLASH_CMD_SE)),
+ SEQ_OPC_OPCODE(SPINOR_OP_SE)),
},
.seq = {
STFSM_INST_CMD1,
@@ -649,10 +628,10 @@ static struct stfsm_seq stfsm_seq_erase_sector = {
static struct stfsm_seq stfsm_seq_erase_chip = {
.seq_opc = {
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
- SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),
+ SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
- SEQ_OPC_OPCODE(FLASH_CMD_CHIPERASE) | SEQ_OPC_CSDEASSERT),
+ SEQ_OPC_OPCODE(SPINOR_OP_CHIP_ERASE) | SEQ_OPC_CSDEASSERT),
},
.seq = {
STFSM_INST_CMD1,
@@ -669,26 +648,9 @@ static struct stfsm_seq stfsm_seq_erase_chip = {
static struct stfsm_seq stfsm_seq_write_status = {
.seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
- SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),
- .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
- SEQ_OPC_OPCODE(FLASH_CMD_WRSR)),
- .seq = {
- STFSM_INST_CMD1,
- STFSM_INST_CMD2,
- STFSM_INST_STA_WR1,
- STFSM_INST_STOP,
- },
- .seq_cfg = (SEQ_CFG_PADS_1 |
- SEQ_CFG_READNOTWRITE |
- SEQ_CFG_CSDEASSERT |
- SEQ_CFG_STARTSEQ),
-};
-
-static struct stfsm_seq stfsm_seq_wrvcr = {
- .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
- SEQ_OPC_OPCODE(FLASH_CMD_WREN) | SEQ_OPC_CSDEASSERT),
+ SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
.seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
- SEQ_OPC_OPCODE(FLASH_CMD_WRVCR)),
+ SEQ_OPC_OPCODE(SPINOR_OP_WRSR)),
.seq = {
STFSM_INST_CMD1,
STFSM_INST_CMD2,
@@ -704,9 +666,9 @@ static struct stfsm_seq stfsm_seq_wrvcr = {
static int stfsm_n25q_en_32bit_addr_seq(struct stfsm_seq *seq)
{
seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
- SEQ_OPC_OPCODE(FLASH_CMD_EN4B_ADDR));
+ SEQ_OPC_OPCODE(SPINOR_OP_EN4B));
seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
- SEQ_OPC_OPCODE(FLASH_CMD_WREN) |
+ SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
SEQ_OPC_CSDEASSERT);
seq->seq[0] = STFSM_INST_CMD2;
@@ -793,7 +755,7 @@ static void stfsm_read_fifo(struct stfsm *fsm, uint32_t *buf, uint32_t size)
dev_dbg(fsm->dev, "Reading %d bytes from FIFO\n", size);
- BUG_ON((((uint32_t)buf) & 0x3) || (size & 0x3));
+ BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3));
while (remaining) {
for (;;) {
@@ -817,7 +779,7 @@ static int stfsm_write_fifo(struct stfsm *fsm, const uint32_t *buf,
dev_dbg(fsm->dev, "writing %d bytes to FIFO\n", size);
- BUG_ON((((uint32_t)buf) & 0x3) || (size & 0x3));
+ BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3));
writesl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
@@ -827,7 +789,7 @@ static int stfsm_write_fifo(struct stfsm *fsm, const uint32_t *buf,
static int stfsm_enter_32bit_addr(struct stfsm *fsm, int enter)
{
struct stfsm_seq *seq = &fsm->stfsm_seq_en_32bit_addr;
- uint32_t cmd = enter ? FLASH_CMD_EN4B_ADDR : FLASH_CMD_EX4B_ADDR;
+ uint32_t cmd = enter ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
@@ -851,7 +813,7 @@ static uint8_t stfsm_wait_busy(struct stfsm *fsm)
/* Use RDRS1 */
seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
- SEQ_OPC_OPCODE(FLASH_CMD_RDSR));
+ SEQ_OPC_OPCODE(SPINOR_OP_RDSR));
/* Load read_status sequence */
stfsm_load_seq(fsm, seq);
@@ -889,60 +851,57 @@ static uint8_t stfsm_wait_busy(struct stfsm *fsm)
}
static int stfsm_read_status(struct stfsm *fsm, uint8_t cmd,
- uint8_t *status)
+ uint8_t *data, int bytes)
{
struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
uint32_t tmp;
+ uint8_t *t = (uint8_t *)&tmp;
+ int i;
- dev_dbg(fsm->dev, "reading STA[%s]\n",
- (cmd == FLASH_CMD_RDSR) ? "1" : "2");
+ dev_dbg(fsm->dev, "read 'status' register [0x%02x], %d byte(s)\n",
+ cmd, bytes);
- seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
- SEQ_OPC_CYCLES(8) |
+ BUG_ON(bytes != 1 && bytes != 2);
+
+ seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(cmd)),
stfsm_load_seq(fsm, seq);
stfsm_read_fifo(fsm, &tmp, 4);
- *status = (uint8_t)(tmp >> 24);
+ for (i = 0; i < bytes; i++)
+ data[i] = t[i];
stfsm_wait_seq(fsm);
return 0;
}
-static int stfsm_write_status(struct stfsm *fsm, uint16_t status,
- int sta_bytes)
+static int stfsm_write_status(struct stfsm *fsm, uint8_t cmd,
+ uint16_t data, int bytes, int wait_busy)
{
struct stfsm_seq *seq = &stfsm_seq_write_status;
- dev_dbg(fsm->dev, "writing STA[%s] 0x%04x\n",
- (sta_bytes == 1) ? "1" : "1+2", status);
-
- seq->status = (uint32_t)status | STA_PADS_1 | STA_CSDEASSERT;
- seq->seq[2] = (sta_bytes == 1) ?
- STFSM_INST_STA_WR1 : STFSM_INST_STA_WR1_2;
-
- stfsm_load_seq(fsm, seq);
-
- stfsm_wait_seq(fsm);
+ dev_dbg(fsm->dev,
+ "write 'status' register [0x%02x], %d byte(s), 0x%04x\n"
+ " %s wait-busy\n", cmd, bytes, data, wait_busy ? "with" : "no");
- return 0;
-};
+ BUG_ON(bytes != 1 && bytes != 2);
-static int stfsm_wrvcr(struct stfsm *fsm, uint8_t data)
-{
- struct stfsm_seq *seq = &stfsm_seq_wrvcr;
-
- dev_dbg(fsm->dev, "writing VCR 0x%02x\n", data);
+ seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
+ SEQ_OPC_OPCODE(cmd));
- seq->status = (STA_DATA_BYTE1(data) | STA_PADS_1 | STA_CSDEASSERT);
+ seq->status = (uint32_t)data | STA_PADS_1 | STA_CSDEASSERT;
+ seq->seq[2] = (bytes == 1) ? STFSM_INST_STA_WR1 : STFSM_INST_STA_WR1_2;
stfsm_load_seq(fsm, seq);
stfsm_wait_seq(fsm);
+ if (wait_busy)
+ stfsm_wait_busy(fsm);
+
return 0;
}
@@ -1027,7 +986,7 @@ static void stfsm_prepare_rw_seq(struct stfsm *fsm,
if (cfg->write)
seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
- SEQ_OPC_OPCODE(FLASH_CMD_WREN) |
+ SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
SEQ_OPC_CSDEASSERT);
/* Address configuration (24 or 32-bit addresses) */
@@ -1149,31 +1108,36 @@ static int stfsm_mx25_config(struct stfsm *fsm)
stfsm_mx25_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr);
soc_reset = stfsm_can_handle_soc_reset(fsm);
- if (soc_reset || !fsm->booted_from_spi) {
+ if (soc_reset || !fsm->booted_from_spi)
/* If we can handle SoC resets, we enable 32-bit address
* mode pervasively */
stfsm_enter_32bit_addr(fsm, 1);
- } else {
+ else
/* Else, enable/disable 32-bit addressing before/after
* each operation */
fsm->configuration = (CFG_READ_TOGGLE_32BIT_ADDR |
CFG_WRITE_TOGGLE_32BIT_ADDR |
CFG_ERASESEC_TOGGLE_32BIT_ADDR);
- /* It seems a small delay is required after exiting
- * 32-bit mode following a write operation. The issue
- * is under investigation.
- */
- fsm->configuration |= CFG_WRITE_EX_32BIT_ADDR_DELAY;
- }
}
- /* For QUAD mode, set 'QE' STATUS bit */
+ /* Check status of 'QE' bit, update if required. */
+ stfsm_read_status(fsm, SPINOR_OP_RDSR, &sta, 1);
data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
if (data_pads == 4) {
- stfsm_read_status(fsm, FLASH_CMD_RDSR, &sta);
- sta |= MX25_STATUS_QE;
- stfsm_write_status(fsm, sta, 1);
+ if (!(sta & MX25_STATUS_QE)) {
+ /* Set 'QE' */
+ sta |= MX25_STATUS_QE;
+
+ stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1);
+ }
+ } else {
+ if (sta & MX25_STATUS_QE) {
+ /* Clear 'QE' */
+ sta &= ~MX25_STATUS_QE;
+
+ stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1);
+ }
}
return 0;
@@ -1239,7 +1203,7 @@ static int stfsm_n25q_config(struct stfsm *fsm)
*/
vcr = (N25Q_VCR_DUMMY_CYCLES(8) | N25Q_VCR_XIP_DISABLED |
N25Q_VCR_WRAP_CONT);
- stfsm_wrvcr(fsm, vcr);
+ stfsm_write_status(fsm, N25Q_CMD_WRVCR, vcr, 1, 0);
return 0;
}
@@ -1297,7 +1261,7 @@ static void stfsm_s25fl_write_dyb(struct stfsm *fsm, uint32_t offs, uint8_t dby)
{
struct stfsm_seq seq = {
.seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
- SEQ_OPC_OPCODE(FLASH_CMD_WREN) |
+ SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
SEQ_OPC_CSDEASSERT),
.seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(S25FL_CMD_DYBWR)),
@@ -1337,7 +1301,7 @@ static int stfsm_s25fl_clear_status_reg(struct stfsm *fsm)
SEQ_OPC_CSDEASSERT),
.seq_opc[1] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
- SEQ_OPC_OPCODE(FLASH_CMD_WRDI) |
+ SEQ_OPC_OPCODE(SPINOR_OP_WRDI) |
SEQ_OPC_CSDEASSERT),
.seq = {
STFSM_INST_CMD1,
@@ -1367,6 +1331,7 @@ static int stfsm_s25fl_config(struct stfsm *fsm)
uint32_t offs;
uint16_t sta_wr;
uint8_t sr1, cr1, dyb;
+ int update_sr = 0;
int ret;
if (flags & FLASH_FLAG_32BIT_ADDR) {
@@ -1414,34 +1379,28 @@ static int stfsm_s25fl_config(struct stfsm *fsm)
}
}
- /* Check status of 'QE' bit */
+ /* Check status of 'QE' bit, update if required. */
+ stfsm_read_status(fsm, SPINOR_OP_RDSR2, &cr1, 1);
data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
- stfsm_read_status(fsm, FLASH_CMD_RDSR2, &cr1);
if (data_pads == 4) {
if (!(cr1 & STFSM_S25FL_CONFIG_QE)) {
/* Set 'QE' */
cr1 |= STFSM_S25FL_CONFIG_QE;
- stfsm_read_status(fsm, FLASH_CMD_RDSR, &sr1);
- sta_wr = ((uint16_t)cr1 << 8) | sr1;
-
- stfsm_write_status(fsm, sta_wr, 2);
-
- stfsm_wait_busy(fsm);
+ update_sr = 1;
}
} else {
- if ((cr1 & STFSM_S25FL_CONFIG_QE)) {
+ if (cr1 & STFSM_S25FL_CONFIG_QE) {
/* Clear 'QE' */
cr1 &= ~STFSM_S25FL_CONFIG_QE;
- stfsm_read_status(fsm, FLASH_CMD_RDSR, &sr1);
- sta_wr = ((uint16_t)cr1 << 8) | sr1;
-
- stfsm_write_status(fsm, sta_wr, 2);
-
- stfsm_wait_busy(fsm);
+ update_sr = 1;
}
-
+ }
+ if (update_sr) {
+ stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1);
+ sta_wr = ((uint16_t)cr1 << 8) | sr1;
+ stfsm_write_status(fsm, SPINOR_OP_WRSR, sta_wr, 2, 1);
}
/*
@@ -1456,27 +1415,36 @@ static int stfsm_s25fl_config(struct stfsm *fsm)
static int stfsm_w25q_config(struct stfsm *fsm)
{
uint32_t data_pads;
- uint16_t sta_wr;
- uint8_t sta1, sta2;
+ uint8_t sr1, sr2;
+ uint16_t sr_wr;
+ int update_sr = 0;
int ret;
ret = stfsm_prepare_rwe_seqs_default(fsm);
if (ret)
return ret;
- /* If using QUAD mode, set QE STATUS bit */
+ /* Check status of 'QE' bit, update if required. */
+ stfsm_read_status(fsm, SPINOR_OP_RDSR2, &sr2, 1);
data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
if (data_pads == 4) {
- stfsm_read_status(fsm, FLASH_CMD_RDSR, &sta1);
- stfsm_read_status(fsm, FLASH_CMD_RDSR2, &sta2);
-
- sta_wr = ((uint16_t)sta2 << 8) | sta1;
-
- sta_wr |= W25Q_STATUS_QE;
-
- stfsm_write_status(fsm, sta_wr, 2);
-
- stfsm_wait_busy(fsm);
+ if (!(sr2 & W25Q_STATUS_QE)) {
+ /* Set 'QE' */
+ sr2 |= W25Q_STATUS_QE;
+ update_sr = 1;
+ }
+ } else {
+ if (sr2 & W25Q_STATUS_QE) {
+ /* Clear 'QE' */
+ sr2 &= ~W25Q_STATUS_QE;
+ update_sr = 1;
+ }
+ }
+ if (update_sr) {
+ /* Write status register */
+ stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1);
+ sr_wr = ((uint16_t)sr2 << 8) | sr1;
+ stfsm_write_status(fsm, SPINOR_OP_WRSR, sr_wr, 2, 1);
}
return 0;
@@ -1506,7 +1474,7 @@ static int stfsm_read(struct stfsm *fsm, uint8_t *buf, uint32_t size,
read_mask = (data_pads << 2) - 1;
/* Handle non-aligned buf */
- p = ((uint32_t)buf & 0x3) ? (uint8_t *)page_buf : buf;
+ p = ((uintptr_t)buf & 0x3) ? (uint8_t *)page_buf : buf;
/* Handle non-aligned size */
size_ub = (size + read_mask) & ~read_mask;
@@ -1528,7 +1496,7 @@ static int stfsm_read(struct stfsm *fsm, uint8_t *buf, uint32_t size,
}
/* Handle non-aligned buf */
- if ((uint32_t)buf & 0x3)
+ if ((uintptr_t)buf & 0x3)
memcpy(buf, page_buf, size);
/* Wait for sequence to finish */
@@ -1570,7 +1538,7 @@ static int stfsm_write(struct stfsm *fsm, const uint8_t *buf,
write_mask = (data_pads << 2) - 1;
/* Handle non-aligned buf */
- if ((uint32_t)buf & 0x3) {
+ if ((uintptr_t)buf & 0x3) {
memcpy(page_buf, buf, size);
p = (uint8_t *)page_buf;
} else {
@@ -1628,11 +1596,8 @@ static int stfsm_write(struct stfsm *fsm, const uint8_t *buf,
stfsm_s25fl_clear_status_reg(fsm);
/* Exit 32-bit address mode, if required */
- if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR) {
+ if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR)
stfsm_enter_32bit_addr(fsm, 0);
- if (fsm->configuration & CFG_WRITE_EX_32BIT_ADDR_DELAY)
- udelay(1);
- }
return 0;
}
@@ -1736,7 +1701,7 @@ static int stfsm_mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
while (len) {
/* Write up to page boundary */
- bytes = min(FLASH_PAGESIZE - page_offs, len);
+ bytes = min_t(size_t, FLASH_PAGESIZE - page_offs, len);
ret = stfsm_write(fsm, b, bytes, to);
if (ret)
@@ -1935,6 +1900,13 @@ static int stfsm_init(struct stfsm *fsm)
fsm->base + SPI_CONFIGDATA);
writel(STFSM_DEFAULT_WR_TIME, fsm->base + SPI_STATUS_WR_TIME_REG);
+ /*
+ * Set the FSM 'WAIT' delay to the minimum workable value. Note, for
+ * our purposes, the WAIT instruction is used purely to achieve
+ * "sequence validity" rather than actually implement a delay.
+ */
+ writel(0x00000001, fsm->base + SPI_PROGRAM_ERASE_TIME);
+
/* Clear FIFO, just in case */
stfsm_clear_fifo(fsm);
@@ -2086,7 +2058,7 @@ static int stfsm_remove(struct platform_device *pdev)
return mtd_device_unregister(&fsm->mtd);
}
-static struct of_device_id stfsm_match[] = {
+static const struct of_device_id stfsm_match[] = {
{ .compatible = "st,spi-fsm", },
{},
};
diff --git a/drivers/mtd/lpddr/Kconfig b/drivers/mtd/lpddr/Kconfig
index 265f969817e3..3a19cbee24d7 100644
--- a/drivers/mtd/lpddr/Kconfig
+++ b/drivers/mtd/lpddr/Kconfig
@@ -1,5 +1,5 @@
-menu "LPDDR flash memory drivers"
- depends on MTD!=n
+menu "LPDDR & LPDDR2 PCM memory drivers"
+ depends on MTD
config MTD_LPDDR
tristate "Support for LPDDR flash chips"
@@ -17,4 +17,13 @@ config MTD_QINFO_PROBE
Window QINFO interface, permits software to be used for entire
families of devices. This serves similar purpose of CFI on legacy
Flash products
+
+config MTD_LPDDR2_NVM
+ # ARM dependency is only for writel_relaxed()
+ depends on MTD && ARM
+ tristate "Support for LPDDR2-NVM flash chips"
+ help
+ This option enables support of PCM memories with a LPDDR2-NVM
+ (Low power double data rate 2) interface.
+
endmenu
diff --git a/drivers/mtd/lpddr/Makefile b/drivers/mtd/lpddr/Makefile
index da48e46b5812..881d440d483e 100644
--- a/drivers/mtd/lpddr/Makefile
+++ b/drivers/mtd/lpddr/Makefile
@@ -4,3 +4,4 @@
obj-$(CONFIG_MTD_QINFO_PROBE) += qinfo_probe.o
obj-$(CONFIG_MTD_LPDDR) += lpddr_cmds.o
+obj-$(CONFIG_MTD_LPDDR2_NVM) += lpddr2_nvm.o
diff --git a/drivers/mtd/lpddr/lpddr2_nvm.c b/drivers/mtd/lpddr/lpddr2_nvm.c
new file mode 100644
index 000000000000..063cec40d0ae
--- /dev/null
+++ b/drivers/mtd/lpddr/lpddr2_nvm.c
@@ -0,0 +1,507 @@
+/*
+ * LPDDR2-NVM MTD driver. This module provides read, write, erase, lock/unlock
+ * support for LPDDR2-NVM PCM memories
+ *
+ * Copyright © 2012 Micron Technology, Inc.
+ *
+ * Vincenzo Aliberti <vincenzo.aliberti@gmail.com>
+ * Domenico Manna <domenico.manna@gmail.com>
+ * Many thanks to Andrea Vigilante for initial enabling
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": %s: " fmt, __func__
+
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/mtd/map.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/partitions.h>
+#include <linux/slab.h>
+#include <linux/platform_device.h>
+#include <linux/ioport.h>
+#include <linux/err.h>
+
+/* Parameters */
+#define ERASE_BLOCKSIZE (0x00020000/2) /* in Word */
+#define WRITE_BUFFSIZE (0x00000400/2) /* in Word */
+#define OW_BASE_ADDRESS 0x00000000 /* OW offset */
+#define BUS_WIDTH 0x00000020 /* x32 devices */
+
+/* PFOW symbols address offset */
+#define PFOW_QUERY_STRING_P (0x0000/2) /* in Word */
+#define PFOW_QUERY_STRING_F (0x0002/2) /* in Word */
+#define PFOW_QUERY_STRING_O (0x0004/2) /* in Word */
+#define PFOW_QUERY_STRING_W (0x0006/2) /* in Word */
+
+/* OW registers address */
+#define CMD_CODE_OFS (0x0080/2) /* in Word */
+#define CMD_DATA_OFS (0x0084/2) /* in Word */
+#define CMD_ADD_L_OFS (0x0088/2) /* in Word */
+#define CMD_ADD_H_OFS (0x008A/2) /* in Word */
+#define MPR_L_OFS (0x0090/2) /* in Word */
+#define MPR_H_OFS (0x0092/2) /* in Word */
+#define CMD_EXEC_OFS (0x00C0/2) /* in Word */
+#define STATUS_REG_OFS (0x00CC/2) /* in Word */
+#define PRG_BUFFER_OFS (0x0010/2) /* in Word */
+
+/* Datamask */
+#define MR_CFGMASK 0x8000
+#define SR_OK_DATAMASK 0x0080
+
+/* LPDDR2-NVM Commands */
+#define LPDDR2_NVM_LOCK 0x0061
+#define LPDDR2_NVM_UNLOCK 0x0062
+#define LPDDR2_NVM_SW_PROGRAM 0x0041
+#define LPDDR2_NVM_SW_OVERWRITE 0x0042
+#define LPDDR2_NVM_BUF_PROGRAM 0x00E9
+#define LPDDR2_NVM_BUF_OVERWRITE 0x00EA
+#define LPDDR2_NVM_ERASE 0x0020
+
+/* LPDDR2-NVM Registers offset */
+#define LPDDR2_MODE_REG_DATA 0x0040
+#define LPDDR2_MODE_REG_CFG 0x0050
+
+/*
+ * Internal Type Definitions
+ * pcm_int_data contains memory controller details:
+ * @reg_data : LPDDR2_MODE_REG_DATA register address after remapping
+ * @reg_cfg : LPDDR2_MODE_REG_CFG register address after remapping
+ * &bus_width: memory bus-width (eg: x16 2 Bytes, x32 4 Bytes)
+ */
+struct pcm_int_data {
+ void __iomem *ctl_regs;
+ int bus_width;
+};
+
+static DEFINE_MUTEX(lpdd2_nvm_mutex);
+
+/*
+ * Build a map_word starting from an u_long
+ */
+static inline map_word build_map_word(u_long myword)
+{
+ map_word val = { {0} };
+ val.x[0] = myword;
+ return val;
+}
+
+/*
+ * Build Mode Register Configuration DataMask based on device bus-width
+ */
+static inline u_int build_mr_cfgmask(u_int bus_width)
+{
+ u_int val = MR_CFGMASK;
+
+ if (bus_width == 0x0004) /* x32 device */
+ val = val << 16;
+
+ return val;
+}
+
+/*
+ * Build Status Register OK DataMask based on device bus-width
+ */
+static inline u_int build_sr_ok_datamask(u_int bus_width)
+{
+ u_int val = SR_OK_DATAMASK;
+
+ if (bus_width == 0x0004) /* x32 device */
+ val = (val << 16)+val;
+
+ return val;
+}
+
+/*
+ * Evaluates Overlay Window Control Registers address
+ */
+static inline u_long ow_reg_add(struct map_info *map, u_long offset)
+{
+ u_long val = 0;
+ struct pcm_int_data *pcm_data = map->fldrv_priv;
+
+ val = map->pfow_base + offset*pcm_data->bus_width;
+
+ return val;
+}
+
+/*
+ * Enable lpddr2-nvm Overlay Window
+ * Overlay Window is a memory mapped area containing all LPDDR2-NVM registers
+ * used by device commands as well as uservisible resources like Device Status
+ * Register, Device ID, etc
+ */
+static inline void ow_enable(struct map_info *map)
+{
+ struct pcm_int_data *pcm_data = map->fldrv_priv;
+
+ writel_relaxed(build_mr_cfgmask(pcm_data->bus_width) | 0x18,
+ pcm_data->ctl_regs + LPDDR2_MODE_REG_CFG);
+ writel_relaxed(0x01, pcm_data->ctl_regs + LPDDR2_MODE_REG_DATA);
+}
+
+/*
+ * Disable lpddr2-nvm Overlay Window
+ * Overlay Window is a memory mapped area containing all LPDDR2-NVM registers
+ * used by device commands as well as uservisible resources like Device Status
+ * Register, Device ID, etc
+ */
+static inline void ow_disable(struct map_info *map)
+{
+ struct pcm_int_data *pcm_data = map->fldrv_priv;
+
+ writel_relaxed(build_mr_cfgmask(pcm_data->bus_width) | 0x18,
+ pcm_data->ctl_regs + LPDDR2_MODE_REG_CFG);
+ writel_relaxed(0x02, pcm_data->ctl_regs + LPDDR2_MODE_REG_DATA);
+}
+
+/*
+ * Execute lpddr2-nvm operations
+ */
+static int lpddr2_nvm_do_op(struct map_info *map, u_long cmd_code,
+ u_long cmd_data, u_long cmd_add, u_long cmd_mpr, u_char *buf)
+{
+ map_word add_l = { {0} }, add_h = { {0} }, mpr_l = { {0} },
+ mpr_h = { {0} }, data_l = { {0} }, cmd = { {0} },
+ exec_cmd = { {0} }, sr;
+ map_word data_h = { {0} }; /* only for 2x x16 devices stacked */
+ u_long i, status_reg, prg_buff_ofs;
+ struct pcm_int_data *pcm_data = map->fldrv_priv;
+ u_int sr_ok_datamask = build_sr_ok_datamask(pcm_data->bus_width);
+
+ /* Builds low and high words for OW Control Registers */
+ add_l.x[0] = cmd_add & 0x0000FFFF;
+ add_h.x[0] = (cmd_add >> 16) & 0x0000FFFF;
+ mpr_l.x[0] = cmd_mpr & 0x0000FFFF;
+ mpr_h.x[0] = (cmd_mpr >> 16) & 0x0000FFFF;
+ cmd.x[0] = cmd_code & 0x0000FFFF;
+ exec_cmd.x[0] = 0x0001;
+ data_l.x[0] = cmd_data & 0x0000FFFF;
+ data_h.x[0] = (cmd_data >> 16) & 0x0000FFFF; /* only for 2x x16 */
+
+ /* Set Overlay Window Control Registers */
+ map_write(map, cmd, ow_reg_add(map, CMD_CODE_OFS));
+ map_write(map, data_l, ow_reg_add(map, CMD_DATA_OFS));
+ map_write(map, add_l, ow_reg_add(map, CMD_ADD_L_OFS));
+ map_write(map, add_h, ow_reg_add(map, CMD_ADD_H_OFS));
+ map_write(map, mpr_l, ow_reg_add(map, MPR_L_OFS));
+ map_write(map, mpr_h, ow_reg_add(map, MPR_H_OFS));
+ if (pcm_data->bus_width == 0x0004) { /* 2x16 devices stacked */
+ map_write(map, cmd, ow_reg_add(map, CMD_CODE_OFS) + 2);
+ map_write(map, data_h, ow_reg_add(map, CMD_DATA_OFS) + 2);
+ map_write(map, add_l, ow_reg_add(map, CMD_ADD_L_OFS) + 2);
+ map_write(map, add_h, ow_reg_add(map, CMD_ADD_H_OFS) + 2);
+ map_write(map, mpr_l, ow_reg_add(map, MPR_L_OFS) + 2);
+ map_write(map, mpr_h, ow_reg_add(map, MPR_H_OFS) + 2);
+ }
+
+ /* Fill Program Buffer */
+ if ((cmd_code == LPDDR2_NVM_BUF_PROGRAM) ||
+ (cmd_code == LPDDR2_NVM_BUF_OVERWRITE)) {
+ prg_buff_ofs = (map_read(map,
+ ow_reg_add(map, PRG_BUFFER_OFS))).x[0];
+ for (i = 0; i < cmd_mpr; i++) {
+ map_write(map, build_map_word(buf[i]), map->pfow_base +
+ prg_buff_ofs + i);
+ }
+ }
+
+ /* Command Execute */
+ map_write(map, exec_cmd, ow_reg_add(map, CMD_EXEC_OFS));
+ if (pcm_data->bus_width == 0x0004) /* 2x16 devices stacked */
+ map_write(map, exec_cmd, ow_reg_add(map, CMD_EXEC_OFS) + 2);
+
+ /* Status Register Check */
+ do {
+ sr = map_read(map, ow_reg_add(map, STATUS_REG_OFS));
+ status_reg = sr.x[0];
+ if (pcm_data->bus_width == 0x0004) {/* 2x16 devices stacked */
+ sr = map_read(map, ow_reg_add(map,
+ STATUS_REG_OFS) + 2);
+ status_reg += sr.x[0] << 16;
+ }
+ } while ((status_reg & sr_ok_datamask) != sr_ok_datamask);
+
+ return (((status_reg & sr_ok_datamask) == sr_ok_datamask) ? 0 : -EIO);
+}
+
+/*
+ * Execute lpddr2-nvm operations @ block level
+ */
+static int lpddr2_nvm_do_block_op(struct mtd_info *mtd, loff_t start_add,
+ uint64_t len, u_char block_op)
+{
+ struct map_info *map = mtd->priv;
+ u_long add, end_add;
+ int ret = 0;
+
+ mutex_lock(&lpdd2_nvm_mutex);
+
+ ow_enable(map);
+
+ add = start_add;
+ end_add = add + len;
+
+ do {
+ ret = lpddr2_nvm_do_op(map, block_op, 0x00, add, add, NULL);
+ if (ret)
+ goto out;
+ add += mtd->erasesize;
+ } while (add < end_add);
+
+out:
+ ow_disable(map);
+ mutex_unlock(&lpdd2_nvm_mutex);
+ return ret;
+}
+
+/*
+ * verify presence of PFOW string
+ */
+static int lpddr2_nvm_pfow_present(struct map_info *map)
+{
+ map_word pfow_val[4];
+ unsigned int found = 1;
+
+ mutex_lock(&lpdd2_nvm_mutex);
+
+ ow_enable(map);
+
+ /* Load string from array */
+ pfow_val[0] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_P));
+ pfow_val[1] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_F));
+ pfow_val[2] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_O));
+ pfow_val[3] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_W));
+
+ /* Verify the string loaded vs expected */
+ if (!map_word_equal(map, build_map_word('P'), pfow_val[0]))
+ found = 0;
+ if (!map_word_equal(map, build_map_word('F'), pfow_val[1]))
+ found = 0;
+ if (!map_word_equal(map, build_map_word('O'), pfow_val[2]))
+ found = 0;
+ if (!map_word_equal(map, build_map_word('W'), pfow_val[3]))
+ found = 0;
+
+ ow_disable(map);
+
+ mutex_unlock(&lpdd2_nvm_mutex);
+
+ return found;
+}
+
+/*
+ * lpddr2_nvm driver read method
+ */
+static int lpddr2_nvm_read(struct mtd_info *mtd, loff_t start_add,
+ size_t len, size_t *retlen, u_char *buf)
+{
+ struct map_info *map = mtd->priv;
+
+ mutex_lock(&lpdd2_nvm_mutex);
+
+ *retlen = len;
+
+ map_copy_from(map, buf, start_add, *retlen);
+
+ mutex_unlock(&lpdd2_nvm_mutex);
+ return 0;
+}
+
+/*
+ * lpddr2_nvm driver write method
+ */
+static int lpddr2_nvm_write(struct mtd_info *mtd, loff_t start_add,
+ size_t len, size_t *retlen, const u_char *buf)
+{
+ struct map_info *map = mtd->priv;
+ struct pcm_int_data *pcm_data = map->fldrv_priv;
+ u_long add, current_len, tot_len, target_len, my_data;
+ u_char *write_buf = (u_char *)buf;
+ int ret = 0;
+
+ mutex_lock(&lpdd2_nvm_mutex);
+
+ ow_enable(map);
+
+ /* Set start value for the variables */
+ add = start_add;
+ target_len = len;
+ tot_len = 0;
+
+ while (tot_len < target_len) {
+ if (!(IS_ALIGNED(add, mtd->writesize))) { /* do sw program */
+ my_data = write_buf[tot_len];
+ my_data += (write_buf[tot_len+1]) << 8;
+ if (pcm_data->bus_width == 0x0004) {/* 2x16 devices */
+ my_data += (write_buf[tot_len+2]) << 16;
+ my_data += (write_buf[tot_len+3]) << 24;
+ }
+ ret = lpddr2_nvm_do_op(map, LPDDR2_NVM_SW_OVERWRITE,
+ my_data, add, 0x00, NULL);
+ if (ret)
+ goto out;
+
+ add += pcm_data->bus_width;
+ tot_len += pcm_data->bus_width;
+ } else { /* do buffer program */
+ current_len = min(target_len - tot_len,
+ (u_long) mtd->writesize);
+ ret = lpddr2_nvm_do_op(map, LPDDR2_NVM_BUF_OVERWRITE,
+ 0x00, add, current_len, write_buf + tot_len);
+ if (ret)
+ goto out;
+
+ add += current_len;
+ tot_len += current_len;
+ }
+ }
+
+out:
+ *retlen = tot_len;
+ ow_disable(map);
+ mutex_unlock(&lpdd2_nvm_mutex);
+ return ret;
+}
+
+/*
+ * lpddr2_nvm driver erase method
+ */
+static int lpddr2_nvm_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+ int ret = lpddr2_nvm_do_block_op(mtd, instr->addr, instr->len,
+ LPDDR2_NVM_ERASE);
+ if (!ret) {
+ instr->state = MTD_ERASE_DONE;
+ mtd_erase_callback(instr);
+ }
+
+ return ret;
+}
+
+/*
+ * lpddr2_nvm driver unlock method
+ */
+static int lpddr2_nvm_unlock(struct mtd_info *mtd, loff_t start_add,
+ uint64_t len)
+{
+ return lpddr2_nvm_do_block_op(mtd, start_add, len, LPDDR2_NVM_UNLOCK);
+}
+
+/*
+ * lpddr2_nvm driver lock method
+ */
+static int lpddr2_nvm_lock(struct mtd_info *mtd, loff_t start_add,
+ uint64_t len)
+{
+ return lpddr2_nvm_do_block_op(mtd, start_add, len, LPDDR2_NVM_LOCK);
+}
+
+/*
+ * lpddr2_nvm driver probe method
+ */
+static int lpddr2_nvm_probe(struct platform_device *pdev)
+{
+ struct map_info *map;
+ struct mtd_info *mtd;
+ struct resource *add_range;
+ struct resource *control_regs;
+ struct pcm_int_data *pcm_data;
+
+ /* Allocate memory control_regs data structures */
+ pcm_data = devm_kzalloc(&pdev->dev, sizeof(*pcm_data), GFP_KERNEL);
+ if (!pcm_data)
+ return -ENOMEM;
+
+ pcm_data->bus_width = BUS_WIDTH;
+
+ /* Allocate memory for map_info & mtd_info data structures */
+ map = devm_kzalloc(&pdev->dev, sizeof(*map), GFP_KERNEL);
+ if (!map)
+ return -ENOMEM;
+
+ mtd = devm_kzalloc(&pdev->dev, sizeof(*mtd), GFP_KERNEL);
+ if (!mtd)
+ return -ENOMEM;
+
+ /* lpddr2_nvm address range */
+ add_range = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+
+ /* Populate map_info data structure */
+ *map = (struct map_info) {
+ .virt = devm_ioremap_resource(&pdev->dev, add_range),
+ .name = pdev->dev.init_name,
+ .phys = add_range->start,
+ .size = resource_size(add_range),
+ .bankwidth = pcm_data->bus_width / 2,
+ .pfow_base = OW_BASE_ADDRESS,
+ .fldrv_priv = pcm_data,
+ };
+ if (IS_ERR(map->virt))
+ return PTR_ERR(map->virt);
+
+ simple_map_init(map); /* fill with default methods */
+
+ control_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+ pcm_data->ctl_regs = devm_ioremap_resource(&pdev->dev, control_regs);
+ if (IS_ERR(pcm_data->ctl_regs))
+ return PTR_ERR(pcm_data->ctl_regs);
+
+ /* Populate mtd_info data structure */
+ *mtd = (struct mtd_info) {
+ .name = pdev->dev.init_name,
+ .type = MTD_RAM,
+ .priv = map,
+ .size = resource_size(add_range),
+ .erasesize = ERASE_BLOCKSIZE * pcm_data->bus_width,
+ .writesize = 1,
+ .writebufsize = WRITE_BUFFSIZE * pcm_data->bus_width,
+ .flags = (MTD_CAP_NVRAM | MTD_POWERUP_LOCK),
+ ._read = lpddr2_nvm_read,
+ ._write = lpddr2_nvm_write,
+ ._erase = lpddr2_nvm_erase,
+ ._unlock = lpddr2_nvm_unlock,
+ ._lock = lpddr2_nvm_lock,
+ };
+
+ /* Verify the presence of the device looking for PFOW string */
+ if (!lpddr2_nvm_pfow_present(map)) {
+ pr_err("device not recognized\n");
+ return -EINVAL;
+ }
+ /* Parse partitions and register the MTD device */
+ return mtd_device_parse_register(mtd, NULL, NULL, NULL, 0);
+}
+
+/*
+ * lpddr2_nvm driver remove method
+ */
+static int lpddr2_nvm_remove(struct platform_device *pdev)
+{
+ return mtd_device_unregister(dev_get_drvdata(&pdev->dev));
+}
+
+/* Initialize platform_driver data structure for lpddr2_nvm */
+static struct platform_driver lpddr2_nvm_drv = {
+ .driver = {
+ .name = "lpddr2_nvm",
+ },
+ .probe = lpddr2_nvm_probe,
+ .remove = lpddr2_nvm_remove,
+};
+
+module_platform_driver(lpddr2_nvm_drv);
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Vincenzo Aliberti <vincenzo.aliberti@gmail.com>");
+MODULE_DESCRIPTION("MTD driver for LPDDR2-NVM PCM memories");
diff --git a/drivers/mtd/maps/Kconfig b/drivers/mtd/maps/Kconfig
index fce23fe043f7..21b2874a303b 100644
--- a/drivers/mtd/maps/Kconfig
+++ b/drivers/mtd/maps/Kconfig
@@ -108,7 +108,7 @@ config MTD_SUN_UFLASH
config MTD_SC520CDP
tristate "CFI Flash device mapped on AMD SC520 CDP"
- depends on X86 && MTD_CFI
+ depends on (MELAN || COMPILE_TEST) && MTD_CFI
help
The SC520 CDP board has two banks of CFI-compliant chips and one
Dual-in-line JEDEC chip. This 'mapping' driver supports that
@@ -116,7 +116,7 @@ config MTD_SC520CDP
config MTD_NETSC520
tristate "CFI Flash device mapped on AMD NetSc520"
- depends on X86 && MTD_CFI
+ depends on (MELAN || COMPILE_TEST) && MTD_CFI
help
This enables access routines for the flash chips on the AMD NetSc520
demonstration board. If you have one of these boards and would like
diff --git a/drivers/mtd/maps/sc520cdp.c b/drivers/mtd/maps/sc520cdp.c
index 8fead8e46bce..093edd51bdc7 100644
--- a/drivers/mtd/maps/sc520cdp.c
+++ b/drivers/mtd/maps/sc520cdp.c
@@ -183,7 +183,7 @@ static const struct sc520_par_table par_table[NUM_FLASH_BANKS] =
static void sc520cdp_setup_par(void)
{
- volatile unsigned long __iomem *mmcr;
+ unsigned long __iomem *mmcr;
unsigned long mmcr_val;
int i, j;
@@ -203,11 +203,11 @@ static void sc520cdp_setup_par(void)
*/
for(i = 0; i < NUM_FLASH_BANKS; i++) { /* for each par_table entry */
for(j = 0; j < NUM_SC520_PAR; j++) { /* for each PAR register */
- mmcr_val = mmcr[SC520_PAR(j)];
+ mmcr_val = readl(&mmcr[SC520_PAR(j)]);
/* if target device field matches, reprogram the PAR */
if((mmcr_val & SC520_PAR_TRGDEV) == par_table[i].trgdev)
{
- mmcr[SC520_PAR(j)] = par_table[i].new_par;
+ writel(par_table[i].new_par, &mmcr[SC520_PAR(j)]);
break;
}
}
diff --git a/drivers/mtd/maps/solutionengine.c b/drivers/mtd/maps/solutionengine.c
index 83a7a7091562..bb580bc16445 100644
--- a/drivers/mtd/maps/solutionengine.c
+++ b/drivers/mtd/maps/solutionengine.c
@@ -33,28 +33,6 @@ struct map_info soleng_flash_map = {
static const char * const probes[] = { "RedBoot", "cmdlinepart", NULL };
-#ifdef CONFIG_MTD_SUPERH_RESERVE
-static struct mtd_partition superh_se_partitions[] = {
- /* Reserved for boot code, read-only */
- {
- .name = "flash_boot",
- .offset = 0x00000000,
- .size = CONFIG_MTD_SUPERH_RESERVE,
- .mask_flags = MTD_WRITEABLE,
- },
- /* All else is writable (e.g. JFFS) */
- {
- .name = "Flash FS",
- .offset = MTDPART_OFS_NXTBLK,
- .size = MTDPART_SIZ_FULL,
- }
-};
-#define NUM_PARTITIONS ARRAY_SIZE(superh_se_partitions)
-#else
-#define superh_se_partitions NULL
-#define NUM_PARTITIONS 0
-#endif /* CONFIG_MTD_SUPERH_RESERVE */
-
static int __init init_soleng_maps(void)
{
/* First probe at offset 0 */
@@ -92,8 +70,7 @@ static int __init init_soleng_maps(void)
mtd_device_register(eprom_mtd, NULL, 0);
}
- mtd_device_parse_register(flash_mtd, probes, NULL,
- superh_se_partitions, NUM_PARTITIONS);
+ mtd_device_parse_register(flash_mtd, probes, NULL, NULL, 0);
return 0;
}
diff --git a/drivers/mtd/mtd_blkdevs.c b/drivers/mtd/mtd_blkdevs.c
index 0b2ccb68c0d0..43e30992a369 100644
--- a/drivers/mtd/mtd_blkdevs.c
+++ b/drivers/mtd/mtd_blkdevs.c
@@ -82,12 +82,14 @@ static int do_blktrans_request(struct mtd_blktrans_ops *tr,
block = blk_rq_pos(req) << 9 >> tr->blkshift;
nsect = blk_rq_cur_bytes(req) >> tr->blkshift;
-
- buf = req->buffer;
+ buf = bio_data(req->bio);
if (req->cmd_type != REQ_TYPE_FS)
return -EIO;
+ if (req->cmd_flags & REQ_FLUSH)
+ return tr->flush(dev);
+
if (blk_rq_pos(req) + blk_rq_cur_sectors(req) >
get_capacity(req->rq_disk))
return -EIO;
@@ -408,6 +410,9 @@ int add_mtd_blktrans_dev(struct mtd_blktrans_dev *new)
if (!new->rq)
goto error3;
+ if (tr->flush)
+ blk_queue_flush(new->rq, REQ_FLUSH);
+
new->rq->queuedata = new;
blk_queue_logical_block_size(new->rq, tr->blksize);
diff --git a/drivers/mtd/mtdchar.c b/drivers/mtd/mtdchar.c
index 7d4e7b9da3a1..a0f54e80670c 100644
--- a/drivers/mtd/mtdchar.c
+++ b/drivers/mtd/mtdchar.c
@@ -568,13 +568,18 @@ static int mtdchar_write_ioctl(struct mtd_info *mtd,
{
struct mtd_write_req req;
struct mtd_oob_ops ops;
- void __user *usr_data, *usr_oob;
+ const void __user *usr_data, *usr_oob;
int ret;
- if (copy_from_user(&req, argp, sizeof(req)) ||
- !access_ok(VERIFY_READ, req.usr_data, req.len) ||
- !access_ok(VERIFY_READ, req.usr_oob, req.ooblen))
+ if (copy_from_user(&req, argp, sizeof(req)))
return -EFAULT;
+
+ usr_data = (const void __user *)(uintptr_t)req.usr_data;
+ usr_oob = (const void __user *)(uintptr_t)req.usr_oob;
+ if (!access_ok(VERIFY_READ, usr_data, req.len) ||
+ !access_ok(VERIFY_READ, usr_oob, req.ooblen))
+ return -EFAULT;
+
if (!mtd->_write_oob)
return -EOPNOTSUPP;
@@ -583,10 +588,7 @@ static int mtdchar_write_ioctl(struct mtd_info *mtd,
ops.ooblen = (size_t)req.ooblen;
ops.ooboffs = 0;
- usr_data = (void __user *)(uintptr_t)req.usr_data;
- usr_oob = (void __user *)(uintptr_t)req.usr_oob;
-
- if (req.usr_data) {
+ if (usr_data) {
ops.datbuf = memdup_user(usr_data, ops.len);
if (IS_ERR(ops.datbuf))
return PTR_ERR(ops.datbuf);
@@ -594,7 +596,7 @@ static int mtdchar_write_ioctl(struct mtd_info *mtd,
ops.datbuf = NULL;
}
- if (req.usr_oob) {
+ if (usr_oob) {
ops.oobbuf = memdup_user(usr_oob, ops.ooblen);
if (IS_ERR(ops.oobbuf)) {
kfree(ops.datbuf);
diff --git a/drivers/mtd/nand/bf5xx_nand.c b/drivers/mtd/nand/bf5xx_nand.c
index b7a24946ca26..722898aea7a6 100644
--- a/drivers/mtd/nand/bf5xx_nand.c
+++ b/drivers/mtd/nand/bf5xx_nand.c
@@ -679,9 +679,6 @@ static int bf5xx_nand_remove(struct platform_device *pdev)
peripheral_free_list(bfin_nfc_pin_req);
bf5xx_nand_dma_remove(info);
- /* free the common resources */
- kfree(info);
-
return 0;
}
@@ -742,10 +739,10 @@ static int bf5xx_nand_probe(struct platform_device *pdev)
return -EFAULT;
}
- info = kzalloc(sizeof(*info), GFP_KERNEL);
+ info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
if (info == NULL) {
err = -ENOMEM;
- goto out_err_kzalloc;
+ goto out_err;
}
platform_set_drvdata(pdev, info);
@@ -790,7 +787,7 @@ static int bf5xx_nand_probe(struct platform_device *pdev)
/* initialise the hardware */
err = bf5xx_nand_hw_init(info);
if (err)
- goto out_err_hw_init;
+ goto out_err;
/* setup hardware ECC data struct */
if (hardware_ecc) {
@@ -827,9 +824,7 @@ static int bf5xx_nand_probe(struct platform_device *pdev)
out_err_nand_scan:
bf5xx_nand_dma_remove(info);
-out_err_hw_init:
- kfree(info);
-out_err_kzalloc:
+out_err:
peripheral_free_list(bfin_nfc_pin_req);
return err;
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c
index c07cd573ad3a..9f2012a3e764 100644
--- a/drivers/mtd/nand/denali.c
+++ b/drivers/mtd/nand/denali.c
@@ -1233,7 +1233,7 @@ static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
return status;
}
-static void denali_erase(struct mtd_info *mtd, int page)
+static int denali_erase(struct mtd_info *mtd, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
@@ -1250,8 +1250,7 @@ static void denali_erase(struct mtd_info *mtd, int page)
irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
INTR_STATUS__ERASE_FAIL);
- denali->status = (irq_status & INTR_STATUS__ERASE_FAIL) ?
- NAND_STATUS_FAIL : PASS;
+ return (irq_status & INTR_STATUS__ERASE_FAIL) ? NAND_STATUS_FAIL : PASS;
}
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
@@ -1584,7 +1583,7 @@ int denali_init(struct denali_nand_info *denali)
denali->nand.ecc.write_page_raw = denali_write_page_raw;
denali->nand.ecc.read_oob = denali_read_oob;
denali->nand.ecc.write_oob = denali_write_oob;
- denali->nand.erase_cmd = denali_erase;
+ denali->nand.erase = denali_erase;
if (nand_scan_tail(&denali->mtd)) {
ret = -ENXIO;
diff --git a/drivers/mtd/nand/docg4.c b/drivers/mtd/nand/docg4.c
index 1b0265e85a06..ce24637e14f1 100644
--- a/drivers/mtd/nand/docg4.c
+++ b/drivers/mtd/nand/docg4.c
@@ -872,7 +872,7 @@ static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
return 0;
}
-static void docg4_erase_block(struct mtd_info *mtd, int page)
+static int docg4_erase_block(struct mtd_info *mtd, int page)
{
struct nand_chip *nand = mtd->priv;
struct docg4_priv *doc = nand->priv;
@@ -916,6 +916,8 @@ static void docg4_erase_block(struct mtd_info *mtd, int page)
write_nop(docptr);
poll_status(doc);
write_nop(docptr);
+
+ return nand->waitfunc(mtd, nand);
}
static int write_page(struct mtd_info *mtd, struct nand_chip *nand,
@@ -1236,7 +1238,7 @@ static void __init init_mtd_structs(struct mtd_info *mtd)
nand->block_markbad = docg4_block_markbad;
nand->read_buf = docg4_read_buf;
nand->write_buf = docg4_write_buf16;
- nand->erase_cmd = docg4_erase_block;
+ nand->erase = docg4_erase_block;
nand->ecc.read_page = docg4_read_page;
nand->ecc.write_page = docg4_write_page;
nand->ecc.read_page_raw = docg4_read_page_raw;
diff --git a/drivers/mtd/nand/fsl_elbc_nand.c b/drivers/mtd/nand/fsl_elbc_nand.c
index ec549cd9849f..545a5c002f09 100644
--- a/drivers/mtd/nand/fsl_elbc_nand.c
+++ b/drivers/mtd/nand/fsl_elbc_nand.c
@@ -723,6 +723,19 @@ static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
return 0;
}
+/* ECC will be calculated automatically, and errors will be detected in
+ * waitfunc.
+ */
+static int fsl_elbc_write_subpage(struct mtd_info *mtd, struct nand_chip *chip,
+ uint32_t offset, uint32_t data_len,
+ const uint8_t *buf, int oob_required)
+{
+ fsl_elbc_write_buf(mtd, buf, mtd->writesize);
+ fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ return 0;
+}
+
static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
{
struct fsl_lbc_ctrl *ctrl = priv->ctrl;
@@ -761,6 +774,7 @@ static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
chip->ecc.read_page = fsl_elbc_read_page;
chip->ecc.write_page = fsl_elbc_write_page;
+ chip->ecc.write_subpage = fsl_elbc_write_subpage;
/* If CS Base Register selects full hardware ECC then use it */
if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
diff --git a/drivers/mtd/nand/fsl_ifc_nand.c b/drivers/mtd/nand/fsl_ifc_nand.c
index cb45d2f8e208..2338124dd05f 100644
--- a/drivers/mtd/nand/fsl_ifc_nand.c
+++ b/drivers/mtd/nand/fsl_ifc_nand.c
@@ -56,7 +56,7 @@ struct fsl_ifc_nand_ctrl {
struct nand_hw_control controller;
struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT];
- u8 __iomem *addr; /* Address of assigned IFC buffer */
+ void __iomem *addr; /* Address of assigned IFC buffer */
unsigned int page; /* Last page written to / read from */
unsigned int read_bytes;/* Number of bytes read during command */
unsigned int column; /* Saved column from SEQIN */
@@ -591,7 +591,10 @@ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
* The chip always seems to report that it is
* write-protected, even when it is not.
*/
- setbits8(ifc_nand_ctrl->addr, NAND_STATUS_WP);
+ if (chip->options & NAND_BUSWIDTH_16)
+ setbits16(ifc_nand_ctrl->addr, NAND_STATUS_WP);
+ else
+ setbits8(ifc_nand_ctrl->addr, NAND_STATUS_WP);
return;
case NAND_CMD_RESET:
@@ -636,7 +639,7 @@ static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
len = bufsize - ifc_nand_ctrl->index;
}
- memcpy_toio(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index], buf, len);
+ memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len);
ifc_nand_ctrl->index += len;
}
@@ -648,13 +651,16 @@ static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct fsl_ifc_mtd *priv = chip->priv;
+ unsigned int offset;
/*
* If there are still bytes in the IFC buffer, then use the
* next byte.
*/
- if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes)
- return in_8(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index++]);
+ if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
+ offset = ifc_nand_ctrl->index++;
+ return in_8(ifc_nand_ctrl->addr + offset);
+ }
dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
return ERR_BYTE;
@@ -675,8 +681,7 @@ static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd)
* next byte.
*/
if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
- data = in_be16((uint16_t __iomem *)&ifc_nand_ctrl->
- addr[ifc_nand_ctrl->index]);
+ data = in_be16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index);
ifc_nand_ctrl->index += 2;
return (uint8_t) data;
}
@@ -701,7 +706,7 @@ static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
avail = min((unsigned int)len,
ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index);
- memcpy_fromio(buf, &ifc_nand_ctrl->addr[ifc_nand_ctrl->index], avail);
+ memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail);
ifc_nand_ctrl->index += avail;
if (len > avail)
diff --git a/drivers/mtd/nand/gpmi-nand/bch-regs.h b/drivers/mtd/nand/gpmi-nand/bch-regs.h
index 588f5374047c..05bb91f2f4c4 100644
--- a/drivers/mtd/nand/gpmi-nand/bch-regs.h
+++ b/drivers/mtd/nand/gpmi-nand/bch-regs.h
@@ -54,7 +54,7 @@
#define MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0 11
#define MX6Q_BM_BCH_FLASH0LAYOUT0_ECC0 (0x1f << MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0)
#define BF_BCH_FLASH0LAYOUT0_ECC0(v, x) \
- (GPMI_IS_MX6Q(x) \
+ (GPMI_IS_MX6(x) \
? (((v) << MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0) \
& MX6Q_BM_BCH_FLASH0LAYOUT0_ECC0) \
: (((v) << BP_BCH_FLASH0LAYOUT0_ECC0) \
@@ -65,7 +65,7 @@
#define MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14 \
(0x1 << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14)
#define BF_BCH_FLASH0LAYOUT0_GF(v, x) \
- ((GPMI_IS_MX6Q(x) && ((v) == 14)) \
+ ((GPMI_IS_MX6(x) && ((v) == 14)) \
? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14) \
& MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14) \
: 0 \
@@ -77,7 +77,7 @@
#define MX6Q_BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \
(0x3ff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE)
#define BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(v, x) \
- (GPMI_IS_MX6Q(x) \
+ (GPMI_IS_MX6(x) \
? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) \
: ((v) & BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) \
)
@@ -96,7 +96,7 @@
#define MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN 11
#define MX6Q_BM_BCH_FLASH0LAYOUT1_ECCN (0x1f << MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN)
#define BF_BCH_FLASH0LAYOUT1_ECCN(v, x) \
- (GPMI_IS_MX6Q(x) \
+ (GPMI_IS_MX6(x) \
? (((v) << MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN) \
& MX6Q_BM_BCH_FLASH0LAYOUT1_ECCN) \
: (((v) << BP_BCH_FLASH0LAYOUT1_ECCN) \
@@ -107,7 +107,7 @@
#define MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14 \
(0x1 << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14)
#define BF_BCH_FLASH0LAYOUT1_GF(v, x) \
- ((GPMI_IS_MX6Q(x) && ((v) == 14)) \
+ ((GPMI_IS_MX6(x) && ((v) == 14)) \
? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14) \
& MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14) \
: 0 \
@@ -119,7 +119,7 @@
#define MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \
(0x3ff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE)
#define BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(v, x) \
- (GPMI_IS_MX6Q(x) \
+ (GPMI_IS_MX6(x) \
? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \
: ((v) & BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \
)
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/gpmi-nand/gpmi-lib.c
index dd1df605a1d6..87e658ce23ef 100644
--- a/drivers/mtd/nand/gpmi-nand/gpmi-lib.c
+++ b/drivers/mtd/nand/gpmi-nand/gpmi-lib.c
@@ -861,7 +861,7 @@ static void gpmi_compute_edo_timing(struct gpmi_nand_data *this,
struct resources *r = &this->resources;
unsigned long rate = clk_get_rate(r->clock[0]);
int mode = this->timing_mode;
- int dll_threshold = 16; /* in ns */
+ int dll_threshold = this->devdata->max_chain_delay;
unsigned long delay;
unsigned long clk_period;
int t_rea;
@@ -886,9 +886,6 @@ static void gpmi_compute_edo_timing(struct gpmi_nand_data *this,
/* [3] for GPMI_HW_GPMI_CTRL1 */
hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
- if (GPMI_IS_MX6Q(this))
- dll_threshold = 12;
-
/*
* Enlarge 10 times for the numerator and denominator in {3}.
* This make us to get more accurate result.
@@ -974,7 +971,7 @@ int gpmi_extra_init(struct gpmi_nand_data *this)
struct nand_chip *chip = &this->nand;
/* Enable the asynchronous EDO feature. */
- if (GPMI_IS_MX6Q(this) && chip->onfi_version) {
+ if (GPMI_IS_MX6(this) && chip->onfi_version) {
int mode = onfi_get_async_timing_mode(chip);
/* We only support the timing mode 4 and mode 5. */
@@ -1096,12 +1093,12 @@ int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
if (GPMI_IS_MX23(this)) {
mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
- } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6Q(this)) {
+ } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) {
/*
* In the imx6, all the ready/busy pins are bound
* together. So we only need to check chip 0.
*/
- if (GPMI_IS_MX6Q(this))
+ if (GPMI_IS_MX6(this))
chip = 0;
/* MX28 shares the same R/B register as MX6Q. */
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c
index bb77f750e75a..f638cd8077ca 100644
--- a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c
+++ b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c
@@ -53,6 +53,30 @@ static struct nand_ecclayout gpmi_hw_ecclayout = {
.oobfree = { {.offset = 0, .length = 0} }
};
+static const struct gpmi_devdata gpmi_devdata_imx23 = {
+ .type = IS_MX23,
+ .bch_max_ecc_strength = 20,
+ .max_chain_delay = 16,
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx28 = {
+ .type = IS_MX28,
+ .bch_max_ecc_strength = 20,
+ .max_chain_delay = 16,
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx6q = {
+ .type = IS_MX6Q,
+ .bch_max_ecc_strength = 40,
+ .max_chain_delay = 12,
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx6sx = {
+ .type = IS_MX6SX,
+ .bch_max_ecc_strength = 62,
+ .max_chain_delay = 12,
+};
+
static irqreturn_t bch_irq(int irq, void *cookie)
{
struct gpmi_nand_data *this = cookie;
@@ -102,14 +126,8 @@ static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
/* The mx23/mx28 only support the GF13. */
if (geo->gf_len == 14)
return false;
-
- if (geo->ecc_strength > MXS_ECC_STRENGTH_MAX)
- return false;
- } else if (GPMI_IS_MX6Q(this)) {
- if (geo->ecc_strength > MX6_ECC_STRENGTH_MAX)
- return false;
}
- return true;
+ return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
}
/*
@@ -270,8 +288,7 @@ static int legacy_set_geometry(struct gpmi_nand_data *this)
"We can not support this nand chip."
" Its required ecc strength(%d) is beyond our"
" capability(%d).\n", geo->ecc_strength,
- (GPMI_IS_MX6Q(this) ? MX6_ECC_STRENGTH_MAX
- : MXS_ECC_STRENGTH_MAX));
+ this->devdata->bch_max_ecc_strength);
return -EINVAL;
}
@@ -572,7 +589,7 @@ static int gpmi_get_clks(struct gpmi_nand_data *this)
}
/* Get extra clocks */
- if (GPMI_IS_MX6Q(this))
+ if (GPMI_IS_MX6(this))
extra_clks = extra_clks_for_mx6q;
if (!extra_clks)
return 0;
@@ -590,9 +607,9 @@ static int gpmi_get_clks(struct gpmi_nand_data *this)
r->clock[i] = clk;
}
- if (GPMI_IS_MX6Q(this))
+ if (GPMI_IS_MX6(this))
/*
- * Set the default value for the gpmi clock in mx6q:
+ * Set the default value for the gpmi clock.
*
* If you want to use the ONFI nand which is in the
* Synchronous Mode, you should change the clock as you need.
@@ -1655,7 +1672,7 @@ static int gpmi_init_last(struct gpmi_nand_data *this)
* (1) the chip is imx6, and
* (2) the size of the ECC parity is byte aligned.
*/
- if (GPMI_IS_MX6Q(this) &&
+ if (GPMI_IS_MX6(this) &&
((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
ecc->read_subpage = gpmi_ecc_read_subpage;
chip->options |= NAND_SUBPAGE_READ;
@@ -1711,7 +1728,7 @@ static int gpmi_nand_init(struct gpmi_nand_data *this)
if (ret)
goto err_out;
- ret = nand_scan_ident(mtd, GPMI_IS_MX6Q(this) ? 2 : 1, NULL);
+ ret = nand_scan_ident(mtd, GPMI_IS_MX6(this) ? 2 : 1, NULL);
if (ret)
goto err_out;
@@ -1740,23 +1757,19 @@ err_out:
return ret;
}
-static const struct platform_device_id gpmi_ids[] = {
- { .name = "imx23-gpmi-nand", .driver_data = IS_MX23, },
- { .name = "imx28-gpmi-nand", .driver_data = IS_MX28, },
- { .name = "imx6q-gpmi-nand", .driver_data = IS_MX6Q, },
- {}
-};
-
static const struct of_device_id gpmi_nand_id_table[] = {
{
.compatible = "fsl,imx23-gpmi-nand",
- .data = (void *)&gpmi_ids[IS_MX23],
+ .data = (void *)&gpmi_devdata_imx23,
}, {
.compatible = "fsl,imx28-gpmi-nand",
- .data = (void *)&gpmi_ids[IS_MX28],
+ .data = (void *)&gpmi_devdata_imx28,
}, {
.compatible = "fsl,imx6q-gpmi-nand",
- .data = (void *)&gpmi_ids[IS_MX6Q],
+ .data = (void *)&gpmi_devdata_imx6q,
+ }, {
+ .compatible = "fsl,imx6sx-gpmi-nand",
+ .data = (void *)&gpmi_devdata_imx6sx,
}, {}
};
MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
@@ -1767,18 +1780,18 @@ static int gpmi_nand_probe(struct platform_device *pdev)
const struct of_device_id *of_id;
int ret;
+ this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
+ if (!this)
+ return -ENOMEM;
+
of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
if (of_id) {
- pdev->id_entry = of_id->data;
+ this->devdata = of_id->data;
} else {
dev_err(&pdev->dev, "Failed to find the right device id.\n");
return -ENODEV;
}
- this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
- if (!this)
- return -ENOMEM;
-
platform_set_drvdata(pdev, this);
this->pdev = pdev;
this->dev = &pdev->dev;
@@ -1823,7 +1836,6 @@ static struct platform_driver gpmi_nand_driver = {
},
.probe = gpmi_nand_probe,
.remove = gpmi_nand_remove,
- .id_table = gpmi_ids,
};
module_platform_driver(gpmi_nand_driver);
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/gpmi-nand/gpmi-nand.h
index 4c801fa18725..32c6ba49f986 100644
--- a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h
+++ b/drivers/mtd/nand/gpmi-nand/gpmi-nand.h
@@ -119,11 +119,25 @@ struct nand_timing {
int8_t tRHOH_in_ns;
};
+enum gpmi_type {
+ IS_MX23,
+ IS_MX28,
+ IS_MX6Q,
+ IS_MX6SX
+};
+
+struct gpmi_devdata {
+ enum gpmi_type type;
+ int bch_max_ecc_strength;
+ int max_chain_delay; /* See the async EDO mode */
+};
+
struct gpmi_nand_data {
/* flags */
#define GPMI_ASYNC_EDO_ENABLED (1 << 0)
#define GPMI_TIMING_INIT_OK (1 << 1)
int flags;
+ const struct gpmi_devdata *devdata;
/* System Interface */
struct device *dev;
@@ -281,15 +295,11 @@ extern int gpmi_read_page(struct gpmi_nand_data *,
#define STATUS_ERASED 0xff
#define STATUS_UNCORRECTABLE 0xfe
-/* BCH's bit correction capability. */
-#define MXS_ECC_STRENGTH_MAX 20 /* mx23 and mx28 */
-#define MX6_ECC_STRENGTH_MAX 40
-
-/* Use the platform_id to distinguish different Archs. */
-#define IS_MX23 0x0
-#define IS_MX28 0x1
-#define IS_MX6Q 0x2
-#define GPMI_IS_MX23(x) ((x)->pdev->id_entry->driver_data == IS_MX23)
-#define GPMI_IS_MX28(x) ((x)->pdev->id_entry->driver_data == IS_MX28)
-#define GPMI_IS_MX6Q(x) ((x)->pdev->id_entry->driver_data == IS_MX6Q)
+/* Use the devdata to distinguish different Archs. */
+#define GPMI_IS_MX23(x) ((x)->devdata->type == IS_MX23)
+#define GPMI_IS_MX28(x) ((x)->devdata->type == IS_MX28)
+#define GPMI_IS_MX6Q(x) ((x)->devdata->type == IS_MX6Q)
+#define GPMI_IS_MX6SX(x) ((x)->devdata->type == IS_MX6SX)
+
+#define GPMI_IS_MX6(x) (GPMI_IS_MX6Q(x) || GPMI_IS_MX6SX(x))
#endif
diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c
index 9d01c4df838c..41167e9e991e 100644
--- a/drivers/mtd/nand/nand_base.c
+++ b/drivers/mtd/nand/nand_base.c
@@ -37,6 +37,7 @@
#include <linux/err.h>
#include <linux/sched.h>
#include <linux/slab.h>
+#include <linux/mm.h>
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
@@ -1204,8 +1205,7 @@ static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
* ecc.pos. Let's make sure that there are no gaps in ECC positions.
*/
for (i = 0; i < eccfrag_len - 1; i++) {
- if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
- eccpos[i + start_step * chip->ecc.bytes + 1]) {
+ if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
gaps = 1;
break;
}
@@ -1501,6 +1501,7 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
mtd->oobavail : mtd->oobsize;
uint8_t *bufpoi, *oob, *buf;
+ int use_bufpoi;
unsigned int max_bitflips = 0;
int retry_mode = 0;
bool ecc_fail = false;
@@ -1523,9 +1524,20 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
bytes = min(mtd->writesize - col, readlen);
aligned = (bytes == mtd->writesize);
+ if (!aligned)
+ use_bufpoi = 1;
+ else if (chip->options & NAND_USE_BOUNCE_BUFFER)
+ use_bufpoi = !virt_addr_valid(buf);
+ else
+ use_bufpoi = 0;
+
/* Is the current page in the buffer? */
if (realpage != chip->pagebuf || oob) {
- bufpoi = aligned ? buf : chip->buffers->databuf;
+ bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
+
+ if (use_bufpoi && aligned)
+ pr_debug("%s: using read bounce buffer for buf@%p\n",
+ __func__, buf);
read_retry:
chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
@@ -1547,7 +1559,7 @@ read_retry:
ret = chip->ecc.read_page(mtd, chip, bufpoi,
oob_required, page);
if (ret < 0) {
- if (!aligned)
+ if (use_bufpoi)
/* Invalidate page cache */
chip->pagebuf = -1;
break;
@@ -1556,7 +1568,7 @@ read_retry:
max_bitflips = max_t(unsigned int, max_bitflips, ret);
/* Transfer not aligned data */
- if (!aligned) {
+ if (use_bufpoi) {
if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
!(mtd->ecc_stats.failed - ecc_failures) &&
(ops->mode != MTD_OPS_RAW)) {
@@ -2376,11 +2388,23 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
int bytes = mtd->writesize;
int cached = writelen > bytes && page != blockmask;
uint8_t *wbuf = buf;
+ int use_bufpoi;
+ int part_pagewr = (column || writelen < (mtd->writesize - 1));
+
+ if (part_pagewr)
+ use_bufpoi = 1;
+ else if (chip->options & NAND_USE_BOUNCE_BUFFER)
+ use_bufpoi = !virt_addr_valid(buf);
+ else
+ use_bufpoi = 0;
- /* Partial page write? */
- if (unlikely(column || writelen < (mtd->writesize - 1))) {
+ /* Partial page write?, or need to use bounce buffer */
+ if (use_bufpoi) {
+ pr_debug("%s: using write bounce buffer for buf@%p\n",
+ __func__, buf);
cached = 0;
- bytes = min_t(int, bytes - column, (int) writelen);
+ if (part_pagewr)
+ bytes = min_t(int, bytes - column, writelen);
chip->pagebuf = -1;
memset(chip->buffers->databuf, 0xff, mtd->writesize);
memcpy(&chip->buffers->databuf[column], buf, bytes);
@@ -2618,18 +2642,20 @@ out:
}
/**
- * single_erase_cmd - [GENERIC] NAND standard block erase command function
+ * single_erase - [GENERIC] NAND standard block erase command function
* @mtd: MTD device structure
* @page: the page address of the block which will be erased
*
- * Standard erase command for NAND chips.
+ * Standard erase command for NAND chips. Returns NAND status.
*/
-static void single_erase_cmd(struct mtd_info *mtd, int page)
+static int single_erase(struct mtd_info *mtd, int page)
{
struct nand_chip *chip = mtd->priv;
/* Send commands to erase a block */
chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
+
+ return chip->waitfunc(mtd, chip);
}
/**
@@ -2710,9 +2736,7 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
(page + pages_per_block))
chip->pagebuf = -1;
- chip->erase_cmd(mtd, page & chip->pagemask);
-
- status = chip->waitfunc(mtd, chip);
+ status = chip->erase(mtd, page & chip->pagemask);
/*
* See if operation failed and additional status checks are
@@ -3607,7 +3631,7 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
chip->onfi_version = 0;
if (!type->name || !type->pagesize) {
- /* Check is chip is ONFI compliant */
+ /* Check if the chip is ONFI compliant */
if (nand_flash_detect_onfi(mtd, chip, &busw))
goto ident_done;
@@ -3685,7 +3709,7 @@ ident_done:
}
chip->badblockbits = 8;
- chip->erase_cmd = single_erase_cmd;
+ chip->erase = single_erase;
/* Do not replace user supplied command function! */
if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
@@ -3770,6 +3794,39 @@ int nand_scan_ident(struct mtd_info *mtd, int maxchips,
}
EXPORT_SYMBOL(nand_scan_ident);
+/*
+ * Check if the chip configuration meet the datasheet requirements.
+
+ * If our configuration corrects A bits per B bytes and the minimum
+ * required correction level is X bits per Y bytes, then we must ensure
+ * both of the following are true:
+ *
+ * (1) A / B >= X / Y
+ * (2) A >= X
+ *
+ * Requirement (1) ensures we can correct for the required bitflip density.
+ * Requirement (2) ensures we can correct even when all bitflips are clumped
+ * in the same sector.
+ */
+static bool nand_ecc_strength_good(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int corr, ds_corr;
+
+ if (ecc->size == 0 || chip->ecc_step_ds == 0)
+ /* Not enough information */
+ return true;
+
+ /*
+ * We get the number of corrected bits per page to compare
+ * the correction density.
+ */
+ corr = (mtd->writesize * ecc->strength) / ecc->size;
+ ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
+
+ return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
+}
/**
* nand_scan_tail - [NAND Interface] Scan for the NAND device
@@ -3990,6 +4047,9 @@ int nand_scan_tail(struct mtd_info *mtd)
ecc->layout->oobavail += ecc->layout->oobfree[i].length;
mtd->oobavail = ecc->layout->oobavail;
+ /* ECC sanity check: warn noisily if it's too weak */
+ WARN_ON(!nand_ecc_strength_good(mtd));
+
/*
* Set the number of read / write steps for one page depending on ECC
* mode.
@@ -4023,8 +4083,16 @@ int nand_scan_tail(struct mtd_info *mtd)
chip->pagebuf = -1;
/* Large page NAND with SOFT_ECC should support subpage reads */
- if ((ecc->mode == NAND_ECC_SOFT) && (chip->page_shift > 9))
- chip->options |= NAND_SUBPAGE_READ;
+ switch (ecc->mode) {
+ case NAND_ECC_SOFT:
+ case NAND_ECC_SOFT_BCH:
+ if (chip->page_shift > 9)
+ chip->options |= NAND_SUBPAGE_READ;
+ break;
+
+ default:
+ break;
+ }
/* Fill in remaining MTD driver data */
mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
diff --git a/drivers/mtd/nand/nand_bbt.c b/drivers/mtd/nand/nand_bbt.c
index c0615d1526f9..7f0c3b4c2a4f 100644
--- a/drivers/mtd/nand/nand_bbt.c
+++ b/drivers/mtd/nand/nand_bbt.c
@@ -528,7 +528,7 @@ static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr
{
struct nand_chip *this = mtd->priv;
int i, chips;
- int bits, startblock, block, dir;
+ int startblock, block, dir;
int scanlen = mtd->writesize + mtd->oobsize;
int bbtblocks;
int blocktopage = this->bbt_erase_shift - this->page_shift;
@@ -552,9 +552,6 @@ static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr
bbtblocks = mtd->size >> this->bbt_erase_shift;
}
- /* Number of bits for each erase block in the bbt */
- bits = td->options & NAND_BBT_NRBITS_MSK;
-
for (i = 0; i < chips; i++) {
/* Reset version information */
td->version[i] = 0;
@@ -1285,6 +1282,7 @@ static int nand_create_badblock_pattern(struct nand_chip *this)
int nand_default_bbt(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
+ int ret;
/* Is a flash based bad block table requested? */
if (this->bbt_options & NAND_BBT_USE_FLASH) {
@@ -1303,8 +1301,11 @@ int nand_default_bbt(struct mtd_info *mtd)
this->bbt_md = NULL;
}
- if (!this->badblock_pattern)
- nand_create_badblock_pattern(this);
+ if (!this->badblock_pattern) {
+ ret = nand_create_badblock_pattern(this);
+ if (ret)
+ return ret;
+ }
return nand_scan_bbt(mtd, this->badblock_pattern);
}
diff --git a/drivers/mtd/nand/nand_ecc.c b/drivers/mtd/nand/nand_ecc.c
index 053c9a2d47c3..97c4c0216c90 100644
--- a/drivers/mtd/nand/nand_ecc.c
+++ b/drivers/mtd/nand/nand_ecc.c
@@ -506,7 +506,7 @@ int __nand_correct_data(unsigned char *buf,
if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1)
return 1; /* error in ECC data; no action needed */
- pr_err("%s: uncorrectable ECC error", __func__);
+ pr_err("%s: uncorrectable ECC error\n", __func__);
return -1;
}
EXPORT_SYMBOL(__nand_correct_data);
diff --git a/drivers/mtd/nand/nandsim.c b/drivers/mtd/nand/nandsim.c
index 42e8a770e631..4f0d83648e5a 100644
--- a/drivers/mtd/nand/nandsim.c
+++ b/drivers/mtd/nand/nandsim.c
@@ -575,12 +575,12 @@ static int alloc_device(struct nandsim *ns)
cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
if (IS_ERR(cfile))
return PTR_ERR(cfile);
- if (!cfile->f_op->read && !cfile->f_op->aio_read) {
+ if (!(cfile->f_mode & FMODE_CAN_READ)) {
NS_ERR("alloc_device: cache file not readable\n");
err = -EINVAL;
goto err_close;
}
- if (!cfile->f_op->write && !cfile->f_op->aio_write) {
+ if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
NS_ERR("alloc_device: cache file not writeable\n");
err = -EINVAL;
goto err_close;
diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c
index 1ff49b80bdaf..f0ed92e210a1 100644
--- a/drivers/mtd/nand/omap2.c
+++ b/drivers/mtd/nand/omap2.c
@@ -137,6 +137,10 @@
#define BADBLOCK_MARKER_LENGTH 2
#ifdef CONFIG_MTD_NAND_OMAP_BCH
+static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
+ 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
+ 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
+ 0x07, 0x0e};
static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
0xac, 0x6b, 0xff, 0x99, 0x7b};
static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
@@ -1114,6 +1118,19 @@ static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
ecc_size1 = BCH_ECC_SIZE1;
}
break;
+ case OMAP_ECC_BCH16_CODE_HW:
+ bch_type = 0x2;
+ nsectors = chip->ecc.steps;
+ if (mode == NAND_ECC_READ) {
+ wr_mode = 0x01;
+ ecc_size0 = 52; /* ECC bits in nibbles per sector */
+ ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
+ } else {
+ wr_mode = 0x01;
+ ecc_size0 = 0; /* extra bits in nibbles per sector */
+ ecc_size1 = 52; /* OOB bits in nibbles per sector */
+ }
+ break;
default:
return;
}
@@ -1162,7 +1179,8 @@ static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
struct gpmc_nand_regs *gpmc_regs = &info->reg;
u8 *ecc_code;
unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
- int i;
+ u32 val;
+ int i, j;
nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
for (i = 0; i < nsectors; i++) {
@@ -1201,6 +1219,41 @@ static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
*ecc_code++ = ((bch_val1 & 0xF) << 4);
break;
+ case OMAP_ECC_BCH16_CODE_HW:
+ val = readl(gpmc_regs->gpmc_bch_result6[i]);
+ ecc_code[0] = ((val >> 8) & 0xFF);
+ ecc_code[1] = ((val >> 0) & 0xFF);
+ val = readl(gpmc_regs->gpmc_bch_result5[i]);
+ ecc_code[2] = ((val >> 24) & 0xFF);
+ ecc_code[3] = ((val >> 16) & 0xFF);
+ ecc_code[4] = ((val >> 8) & 0xFF);
+ ecc_code[5] = ((val >> 0) & 0xFF);
+ val = readl(gpmc_regs->gpmc_bch_result4[i]);
+ ecc_code[6] = ((val >> 24) & 0xFF);
+ ecc_code[7] = ((val >> 16) & 0xFF);
+ ecc_code[8] = ((val >> 8) & 0xFF);
+ ecc_code[9] = ((val >> 0) & 0xFF);
+ val = readl(gpmc_regs->gpmc_bch_result3[i]);
+ ecc_code[10] = ((val >> 24) & 0xFF);
+ ecc_code[11] = ((val >> 16) & 0xFF);
+ ecc_code[12] = ((val >> 8) & 0xFF);
+ ecc_code[13] = ((val >> 0) & 0xFF);
+ val = readl(gpmc_regs->gpmc_bch_result2[i]);
+ ecc_code[14] = ((val >> 24) & 0xFF);
+ ecc_code[15] = ((val >> 16) & 0xFF);
+ ecc_code[16] = ((val >> 8) & 0xFF);
+ ecc_code[17] = ((val >> 0) & 0xFF);
+ val = readl(gpmc_regs->gpmc_bch_result1[i]);
+ ecc_code[18] = ((val >> 24) & 0xFF);
+ ecc_code[19] = ((val >> 16) & 0xFF);
+ ecc_code[20] = ((val >> 8) & 0xFF);
+ ecc_code[21] = ((val >> 0) & 0xFF);
+ val = readl(gpmc_regs->gpmc_bch_result0[i]);
+ ecc_code[22] = ((val >> 24) & 0xFF);
+ ecc_code[23] = ((val >> 16) & 0xFF);
+ ecc_code[24] = ((val >> 8) & 0xFF);
+ ecc_code[25] = ((val >> 0) & 0xFF);
+ break;
default:
return -EINVAL;
}
@@ -1210,8 +1263,8 @@ static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
/* Add constant polynomial to remainder, so that
* ECC of blank pages results in 0x0 on reading back */
- for (i = 0; i < eccbytes; i++)
- ecc_calc[i] ^= bch4_polynomial[i];
+ for (j = 0; j < eccbytes; j++)
+ ecc_calc[j] ^= bch4_polynomial[j];
break;
case OMAP_ECC_BCH4_CODE_HW:
/* Set 8th ECC byte as 0x0 for ROM compatibility */
@@ -1220,13 +1273,15 @@ static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
/* Add constant polynomial to remainder, so that
* ECC of blank pages results in 0x0 on reading back */
- for (i = 0; i < eccbytes; i++)
- ecc_calc[i] ^= bch8_polynomial[i];
+ for (j = 0; j < eccbytes; j++)
+ ecc_calc[j] ^= bch8_polynomial[j];
break;
case OMAP_ECC_BCH8_CODE_HW:
/* Set 14th ECC byte as 0x0 for ROM compatibility */
ecc_calc[eccbytes - 1] = 0x0;
break;
+ case OMAP_ECC_BCH16_CODE_HW:
+ break;
default:
return -EINVAL;
}
@@ -1237,6 +1292,7 @@ static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
return 0;
}
+#ifdef CONFIG_MTD_NAND_OMAP_BCH
/**
* erased_sector_bitflips - count bit flips
* @data: data sector buffer
@@ -1276,7 +1332,6 @@ static int erased_sector_bitflips(u_char *data, u_char *oob,
return flip_bits;
}
-#ifdef CONFIG_MTD_NAND_OMAP_BCH
/**
* omap_elm_correct_data - corrects page data area in case error reported
* @mtd: MTD device structure
@@ -1318,6 +1373,10 @@ static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
actual_eccbytes = ecc->bytes - 1;
erased_ecc_vec = bch8_vector;
break;
+ case OMAP_ECC_BCH16_CODE_HW:
+ actual_eccbytes = ecc->bytes;
+ erased_ecc_vec = bch16_vector;
+ break;
default:
pr_err("invalid driver configuration\n");
return -EINVAL;
@@ -1382,7 +1441,7 @@ static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
/* Check if any error reported */
if (!is_error_reported)
- return 0;
+ return stat;
/* Decode BCH error using ELM module */
elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
@@ -1401,6 +1460,7 @@ static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
BCH4_BIT_PAD;
break;
case OMAP_ECC_BCH8_CODE_HW:
+ case OMAP_ECC_BCH16_CODE_HW:
pos = err_vec[i].error_loc[j];
break;
default:
@@ -1912,6 +1972,40 @@ static int omap_nand_probe(struct platform_device *pdev)
goto return_error;
#endif
+ case OMAP_ECC_BCH16_CODE_HW:
+#ifdef CONFIG_MTD_NAND_OMAP_BCH
+ pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
+ nand_chip->ecc.mode = NAND_ECC_HW;
+ nand_chip->ecc.size = 512;
+ nand_chip->ecc.bytes = 26;
+ nand_chip->ecc.strength = 16;
+ nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
+ nand_chip->ecc.correct = omap_elm_correct_data;
+ nand_chip->ecc.calculate = omap_calculate_ecc_bch;
+ nand_chip->ecc.read_page = omap_read_page_bch;
+ nand_chip->ecc.write_page = omap_write_page_bch;
+ /* This ECC scheme requires ELM H/W block */
+ err = is_elm_present(info, pdata->elm_of_node, BCH16_ECC);
+ if (err < 0) {
+ pr_err("ELM is required for this ECC scheme\n");
+ goto return_error;
+ }
+ /* define ECC layout */
+ ecclayout->eccbytes = nand_chip->ecc.bytes *
+ (mtd->writesize /
+ nand_chip->ecc.size);
+ oob_index = BADBLOCK_MARKER_LENGTH;
+ for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
+ ecclayout->eccpos[i] = oob_index;
+ /* reserved marker already included in ecclayout->eccbytes */
+ ecclayout->oobfree->offset =
+ ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
+ break;
+#else
+ pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
+ err = -EINVAL;
+ goto return_error;
+#endif
default:
pr_err("nand: error: invalid or unsupported ECC scheme\n");
err = -EINVAL;
diff --git a/drivers/mtd/nand/orion_nand.c b/drivers/mtd/nand/orion_nand.c
index dd7fe817eafb..471b4df3a5ac 100644
--- a/drivers/mtd/nand/orion_nand.c
+++ b/drivers/mtd/nand/orion_nand.c
@@ -214,7 +214,7 @@ static int orion_nand_remove(struct platform_device *pdev)
}
#ifdef CONFIG_OF
-static struct of_device_id orion_nand_of_match_table[] = {
+static const struct of_device_id orion_nand_of_match_table[] = {
{ .compatible = "marvell,orion-nand", },
{},
};
diff --git a/drivers/mtd/nand/pxa3xx_nand.c b/drivers/mtd/nand/pxa3xx_nand.c
index 7588fe2c127f..96b0b1d27df1 100644
--- a/drivers/mtd/nand/pxa3xx_nand.c
+++ b/drivers/mtd/nand/pxa3xx_nand.c
@@ -127,10 +127,10 @@
/* macros for registers read/write */
#define nand_writel(info, off, val) \
- __raw_writel((val), (info)->mmio_base + (off))
+ writel_relaxed((val), (info)->mmio_base + (off))
#define nand_readl(info, off) \
- __raw_readl((info)->mmio_base + (off))
+ readl_relaxed((info)->mmio_base + (off))
/* error code and state */
enum {
@@ -337,7 +337,7 @@ static struct nand_ecclayout ecc_layout_4KB_bch8bit = {
/* convert nano-seconds to nand flash controller clock cycles */
#define ns2cycle(ns, clk) (int)((ns) * (clk / 1000000) / 1000)
-static struct of_device_id pxa3xx_nand_dt_ids[] = {
+static const struct of_device_id pxa3xx_nand_dt_ids[] = {
{
.compatible = "marvell,pxa3xx-nand",
.data = (void *)PXA3XX_NAND_VARIANT_PXA,
@@ -1354,7 +1354,6 @@ static int pxa_ecc_init(struct pxa3xx_nand_info *info,
ecc->mode = NAND_ECC_HW;
ecc->size = 512;
ecc->strength = 1;
- return 1;
} else if (strength == 1 && ecc_stepsize == 512 && page_size == 512) {
info->chunk_size = 512;
@@ -1363,7 +1362,6 @@ static int pxa_ecc_init(struct pxa3xx_nand_info *info,
ecc->mode = NAND_ECC_HW;
ecc->size = 512;
ecc->strength = 1;
- return 1;
/*
* Required ECC: 4-bit correction per 512 bytes
@@ -1378,7 +1376,6 @@ static int pxa_ecc_init(struct pxa3xx_nand_info *info,
ecc->size = info->chunk_size;
ecc->layout = &ecc_layout_2KB_bch4bit;
ecc->strength = 16;
- return 1;
} else if (strength == 4 && ecc_stepsize == 512 && page_size == 4096) {
info->ecc_bch = 1;
@@ -1389,7 +1386,6 @@ static int pxa_ecc_init(struct pxa3xx_nand_info *info,
ecc->size = info->chunk_size;
ecc->layout = &ecc_layout_4KB_bch4bit;
ecc->strength = 16;
- return 1;
/*
* Required ECC: 8-bit correction per 512 bytes
@@ -1404,8 +1400,15 @@ static int pxa_ecc_init(struct pxa3xx_nand_info *info,
ecc->size = info->chunk_size;
ecc->layout = &ecc_layout_4KB_bch8bit;
ecc->strength = 16;
- return 1;
+ } else {
+ dev_err(&info->pdev->dev,
+ "ECC strength %d at page size %d is not supported\n",
+ strength, page_size);
+ return -ENODEV;
}
+
+ dev_info(&info->pdev->dev, "ECC strength %d, ECC step size %d\n",
+ ecc->strength, ecc->size);
return 0;
}
@@ -1516,8 +1519,13 @@ KEEP_CONFIG:
}
}
- ecc_strength = chip->ecc_strength_ds;
- ecc_step = chip->ecc_step_ds;
+ if (pdata->ecc_strength && pdata->ecc_step_size) {
+ ecc_strength = pdata->ecc_strength;
+ ecc_step = pdata->ecc_step_size;
+ } else {
+ ecc_strength = chip->ecc_strength_ds;
+ ecc_step = chip->ecc_step_ds;
+ }
/* Set default ECC strength requirements on non-ONFI devices */
if (ecc_strength < 1 && ecc_step < 1) {
@@ -1527,12 +1535,8 @@ KEEP_CONFIG:
ret = pxa_ecc_init(info, &chip->ecc, ecc_strength,
ecc_step, mtd->writesize);
- if (!ret) {
- dev_err(&info->pdev->dev,
- "ECC strength %d at page size %d is not supported\n",
- ecc_strength, mtd->writesize);
- return -ENODEV;
- }
+ if (ret)
+ return ret;
/* calculate addressing information */
if (mtd->writesize >= 2048)
@@ -1730,6 +1734,14 @@ static int pxa3xx_nand_probe_dt(struct platform_device *pdev)
of_property_read_u32(np, "num-cs", &pdata->num_cs);
pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
+ pdata->ecc_strength = of_get_nand_ecc_strength(np);
+ if (pdata->ecc_strength < 0)
+ pdata->ecc_strength = 0;
+
+ pdata->ecc_step_size = of_get_nand_ecc_step_size(np);
+ if (pdata->ecc_step_size < 0)
+ pdata->ecc_step_size = 0;
+
pdev->dev.platform_data = pdata;
return 0;
diff --git a/drivers/mtd/nand/r852.c b/drivers/mtd/nand/r852.c
index 325930db3f04..baea83f4dea8 100644
--- a/drivers/mtd/nand/r852.c
+++ b/drivers/mtd/nand/r852.c
@@ -245,7 +245,7 @@ static void r852_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
}
/* write DWORD chinks - faster */
- while (len) {
+ while (len >= 4) {
reg = buf[0] | buf[1] << 8 | buf[2] << 16 | buf[3] << 24;
r852_write_reg_dword(dev, R852_DATALINE, reg);
buf += 4;
@@ -254,8 +254,10 @@ static void r852_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
}
/* write rest */
- while (len)
+ while (len > 0) {
r852_write_reg(dev, R852_DATALINE, *buf++);
+ len--;
+ }
}
/*
diff --git a/drivers/mtd/onenand/samsung.c b/drivers/mtd/onenand/samsung.c
index b1a792fd1c23..efb819c3df2f 100644
--- a/drivers/mtd/onenand/samsung.c
+++ b/drivers/mtd/onenand/samsung.c
@@ -537,9 +537,9 @@ static int onenand_write_bufferram(struct mtd_info *mtd, int area,
return 0;
}
-static int (*s5pc110_dma_ops)(void *dst, void *src, size_t count, int direction);
+static int (*s5pc110_dma_ops)(dma_addr_t dst, dma_addr_t src, size_t count, int direction);
-static int s5pc110_dma_poll(void *dst, void *src, size_t count, int direction)
+static int s5pc110_dma_poll(dma_addr_t dst, dma_addr_t src, size_t count, int direction)
{
void __iomem *base = onenand->dma_addr;
int status;
@@ -605,7 +605,7 @@ static irqreturn_t s5pc110_onenand_irq(int irq, void *data)
return IRQ_HANDLED;
}
-static int s5pc110_dma_irq(void *dst, void *src, size_t count, int direction)
+static int s5pc110_dma_irq(dma_addr_t dst, dma_addr_t src, size_t count, int direction)
{
void __iomem *base = onenand->dma_addr;
int status;
@@ -686,7 +686,7 @@ static int s5pc110_read_bufferram(struct mtd_info *mtd, int area,
dev_err(dev, "Couldn't map a %d byte buffer for DMA\n", count);
goto normal;
}
- err = s5pc110_dma_ops((void *) dma_dst, (void *) dma_src,
+ err = s5pc110_dma_ops(dma_dst, dma_src,
count, S5PC110_DMA_DIR_READ);
if (page_dma)
diff --git a/drivers/mtd/spi-nor/Kconfig b/drivers/mtd/spi-nor/Kconfig
new file mode 100644
index 000000000000..f8acfa4310ef
--- /dev/null
+++ b/drivers/mtd/spi-nor/Kconfig
@@ -0,0 +1,17 @@
+menuconfig MTD_SPI_NOR
+ tristate "SPI-NOR device support"
+ depends on MTD
+ help
+ This is the framework for the SPI NOR which can be used by the SPI
+ device drivers and the SPI-NOR device driver.
+
+if MTD_SPI_NOR
+
+config SPI_FSL_QUADSPI
+ tristate "Freescale Quad SPI controller"
+ depends on ARCH_MXC
+ help
+ This enables support for the Quad SPI controller in master mode.
+ We only connect the NOR to this controller now.
+
+endif # MTD_SPI_NOR
diff --git a/drivers/mtd/spi-nor/Makefile b/drivers/mtd/spi-nor/Makefile
new file mode 100644
index 000000000000..6a7ce1462247
--- /dev/null
+++ b/drivers/mtd/spi-nor/Makefile
@@ -0,0 +1,2 @@
+obj-$(CONFIG_MTD_SPI_NOR) += spi-nor.o
+obj-$(CONFIG_SPI_FSL_QUADSPI) += fsl-quadspi.o
diff --git a/drivers/mtd/spi-nor/fsl-quadspi.c b/drivers/mtd/spi-nor/fsl-quadspi.c
new file mode 100644
index 000000000000..8d659a2888d5
--- /dev/null
+++ b/drivers/mtd/spi-nor/fsl-quadspi.c
@@ -0,0 +1,1009 @@
+/*
+ * Freescale QuadSPI driver.
+ *
+ * Copyright (C) 2013 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ */
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/errno.h>
+#include <linux/platform_device.h>
+#include <linux/sched.h>
+#include <linux/delay.h>
+#include <linux/io.h>
+#include <linux/clk.h>
+#include <linux/err.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/timer.h>
+#include <linux/jiffies.h>
+#include <linux/completion.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/spi-nor.h>
+
+/* The registers */
+#define QUADSPI_MCR 0x00
+#define QUADSPI_MCR_RESERVED_SHIFT 16
+#define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT)
+#define QUADSPI_MCR_MDIS_SHIFT 14
+#define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT)
+#define QUADSPI_MCR_CLR_TXF_SHIFT 11
+#define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT)
+#define QUADSPI_MCR_CLR_RXF_SHIFT 10
+#define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT)
+#define QUADSPI_MCR_DDR_EN_SHIFT 7
+#define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT)
+#define QUADSPI_MCR_END_CFG_SHIFT 2
+#define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT)
+#define QUADSPI_MCR_SWRSTHD_SHIFT 1
+#define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT)
+#define QUADSPI_MCR_SWRSTSD_SHIFT 0
+#define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT)
+
+#define QUADSPI_IPCR 0x08
+#define QUADSPI_IPCR_SEQID_SHIFT 24
+#define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT)
+
+#define QUADSPI_BUF0CR 0x10
+#define QUADSPI_BUF1CR 0x14
+#define QUADSPI_BUF2CR 0x18
+#define QUADSPI_BUFXCR_INVALID_MSTRID 0xe
+
+#define QUADSPI_BUF3CR 0x1c
+#define QUADSPI_BUF3CR_ALLMST_SHIFT 31
+#define QUADSPI_BUF3CR_ALLMST (1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
+
+#define QUADSPI_BFGENCR 0x20
+#define QUADSPI_BFGENCR_PAR_EN_SHIFT 16
+#define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
+#define QUADSPI_BFGENCR_SEQID_SHIFT 12
+#define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
+
+#define QUADSPI_BUF0IND 0x30
+#define QUADSPI_BUF1IND 0x34
+#define QUADSPI_BUF2IND 0x38
+#define QUADSPI_SFAR 0x100
+
+#define QUADSPI_SMPR 0x108
+#define QUADSPI_SMPR_DDRSMP_SHIFT 16
+#define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT)
+#define QUADSPI_SMPR_FSDLY_SHIFT 6
+#define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT)
+#define QUADSPI_SMPR_FSPHS_SHIFT 5
+#define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT)
+#define QUADSPI_SMPR_HSENA_SHIFT 0
+#define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT)
+
+#define QUADSPI_RBSR 0x10c
+#define QUADSPI_RBSR_RDBFL_SHIFT 8
+#define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
+
+#define QUADSPI_RBCT 0x110
+#define QUADSPI_RBCT_WMRK_MASK 0x1F
+#define QUADSPI_RBCT_RXBRD_SHIFT 8
+#define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
+
+#define QUADSPI_TBSR 0x150
+#define QUADSPI_TBDR 0x154
+#define QUADSPI_SR 0x15c
+#define QUADSPI_SR_IP_ACC_SHIFT 1
+#define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT)
+#define QUADSPI_SR_AHB_ACC_SHIFT 2
+#define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
+
+#define QUADSPI_FR 0x160
+#define QUADSPI_FR_TFF_MASK 0x1
+
+#define QUADSPI_SFA1AD 0x180
+#define QUADSPI_SFA2AD 0x184
+#define QUADSPI_SFB1AD 0x188
+#define QUADSPI_SFB2AD 0x18c
+#define QUADSPI_RBDR 0x200
+
+#define QUADSPI_LUTKEY 0x300
+#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
+
+#define QUADSPI_LCKCR 0x304
+#define QUADSPI_LCKER_LOCK 0x1
+#define QUADSPI_LCKER_UNLOCK 0x2
+
+#define QUADSPI_RSER 0x164
+#define QUADSPI_RSER_TFIE (0x1 << 0)
+
+#define QUADSPI_LUT_BASE 0x310
+
+/*
+ * The definition of the LUT register shows below:
+ *
+ * ---------------------------------------------------
+ * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
+ * ---------------------------------------------------
+ */
+#define OPRND0_SHIFT 0
+#define PAD0_SHIFT 8
+#define INSTR0_SHIFT 10
+#define OPRND1_SHIFT 16
+
+/* Instruction set for the LUT register. */
+#define LUT_STOP 0
+#define LUT_CMD 1
+#define LUT_ADDR 2
+#define LUT_DUMMY 3
+#define LUT_MODE 4
+#define LUT_MODE2 5
+#define LUT_MODE4 6
+#define LUT_READ 7
+#define LUT_WRITE 8
+#define LUT_JMP_ON_CS 9
+#define LUT_ADDR_DDR 10
+#define LUT_MODE_DDR 11
+#define LUT_MODE2_DDR 12
+#define LUT_MODE4_DDR 13
+#define LUT_READ_DDR 14
+#define LUT_WRITE_DDR 15
+#define LUT_DATA_LEARN 16
+
+/*
+ * The PAD definitions for LUT register.
+ *
+ * The pad stands for the lines number of IO[0:3].
+ * For example, the Quad read need four IO lines, so you should
+ * set LUT_PAD4 which means we use four IO lines.
+ */
+#define LUT_PAD1 0
+#define LUT_PAD2 1
+#define LUT_PAD4 2
+
+/* Oprands for the LUT register. */
+#define ADDR24BIT 0x18
+#define ADDR32BIT 0x20
+
+/* Macros for constructing the LUT register. */
+#define LUT0(ins, pad, opr) \
+ (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
+ ((LUT_##ins) << INSTR0_SHIFT))
+
+#define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT)
+
+/* other macros for LUT register. */
+#define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4)
+#define QUADSPI_LUT_NUM 64
+
+/* SEQID -- we can have 16 seqids at most. */
+#define SEQID_QUAD_READ 0
+#define SEQID_WREN 1
+#define SEQID_WRDI 2
+#define SEQID_RDSR 3
+#define SEQID_SE 4
+#define SEQID_CHIP_ERASE 5
+#define SEQID_PP 6
+#define SEQID_RDID 7
+#define SEQID_WRSR 8
+#define SEQID_RDCR 9
+#define SEQID_EN4B 10
+#define SEQID_BRWR 11
+
+enum fsl_qspi_devtype {
+ FSL_QUADSPI_VYBRID,
+ FSL_QUADSPI_IMX6SX,
+};
+
+struct fsl_qspi_devtype_data {
+ enum fsl_qspi_devtype devtype;
+ int rxfifo;
+ int txfifo;
+};
+
+static struct fsl_qspi_devtype_data vybrid_data = {
+ .devtype = FSL_QUADSPI_VYBRID,
+ .rxfifo = 128,
+ .txfifo = 64
+};
+
+static struct fsl_qspi_devtype_data imx6sx_data = {
+ .devtype = FSL_QUADSPI_IMX6SX,
+ .rxfifo = 128,
+ .txfifo = 512
+};
+
+#define FSL_QSPI_MAX_CHIP 4
+struct fsl_qspi {
+ struct mtd_info mtd[FSL_QSPI_MAX_CHIP];
+ struct spi_nor nor[FSL_QSPI_MAX_CHIP];
+ void __iomem *iobase;
+ void __iomem *ahb_base; /* Used when read from AHB bus */
+ u32 memmap_phy;
+ struct clk *clk, *clk_en;
+ struct device *dev;
+ struct completion c;
+ struct fsl_qspi_devtype_data *devtype_data;
+ u32 nor_size;
+ u32 nor_num;
+ u32 clk_rate;
+ unsigned int chip_base_addr; /* We may support two chips. */
+};
+
+static inline int is_vybrid_qspi(struct fsl_qspi *q)
+{
+ return q->devtype_data->devtype == FSL_QUADSPI_VYBRID;
+}
+
+static inline int is_imx6sx_qspi(struct fsl_qspi *q)
+{
+ return q->devtype_data->devtype == FSL_QUADSPI_IMX6SX;
+}
+
+/*
+ * An IC bug makes us to re-arrange the 32-bit data.
+ * The following chips, such as IMX6SLX, have fixed this bug.
+ */
+static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
+{
+ return is_vybrid_qspi(q) ? __swab32(a) : a;
+}
+
+static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
+{
+ writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
+ writel(QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
+}
+
+static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
+{
+ writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
+ writel(QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
+}
+
+static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
+{
+ struct fsl_qspi *q = dev_id;
+ u32 reg;
+
+ /* clear interrupt */
+ reg = readl(q->iobase + QUADSPI_FR);
+ writel(reg, q->iobase + QUADSPI_FR);
+
+ if (reg & QUADSPI_FR_TFF_MASK)
+ complete(&q->c);
+
+ dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
+ return IRQ_HANDLED;
+}
+
+static void fsl_qspi_init_lut(struct fsl_qspi *q)
+{
+ void __iomem *base = q->iobase;
+ int rxfifo = q->devtype_data->rxfifo;
+ u32 lut_base;
+ u8 cmd, addrlen, dummy;
+ int i;
+
+ fsl_qspi_unlock_lut(q);
+
+ /* Clear all the LUT table */
+ for (i = 0; i < QUADSPI_LUT_NUM; i++)
+ writel(0, base + QUADSPI_LUT_BASE + i * 4);
+
+ /* Quad Read */
+ lut_base = SEQID_QUAD_READ * 4;
+
+ if (q->nor_size <= SZ_16M) {
+ cmd = SPINOR_OP_READ_1_1_4;
+ addrlen = ADDR24BIT;
+ dummy = 8;
+ } else {
+ /* use the 4-byte address */
+ cmd = SPINOR_OP_READ_1_1_4;
+ addrlen = ADDR32BIT;
+ dummy = 8;
+ }
+
+ writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
+ base + QUADSPI_LUT(lut_base));
+ writel(LUT0(DUMMY, PAD1, dummy) | LUT1(READ, PAD4, rxfifo),
+ base + QUADSPI_LUT(lut_base + 1));
+
+ /* Write enable */
+ lut_base = SEQID_WREN * 4;
+ writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + QUADSPI_LUT(lut_base));
+
+ /* Page Program */
+ lut_base = SEQID_PP * 4;
+
+ if (q->nor_size <= SZ_16M) {
+ cmd = SPINOR_OP_PP;
+ addrlen = ADDR24BIT;
+ } else {
+ /* use the 4-byte address */
+ cmd = SPINOR_OP_PP;
+ addrlen = ADDR32BIT;
+ }
+
+ writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
+ base + QUADSPI_LUT(lut_base));
+ writel(LUT0(WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1));
+
+ /* Read Status */
+ lut_base = SEQID_RDSR * 4;
+ writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(READ, PAD1, 0x1),
+ base + QUADSPI_LUT(lut_base));
+
+ /* Erase a sector */
+ lut_base = SEQID_SE * 4;
+
+ if (q->nor_size <= SZ_16M) {
+ cmd = SPINOR_OP_SE;
+ addrlen = ADDR24BIT;
+ } else {
+ /* use the 4-byte address */
+ cmd = SPINOR_OP_SE;
+ addrlen = ADDR32BIT;
+ }
+
+ writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
+ base + QUADSPI_LUT(lut_base));
+
+ /* Erase the whole chip */
+ lut_base = SEQID_CHIP_ERASE * 4;
+ writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
+ base + QUADSPI_LUT(lut_base));
+
+ /* READ ID */
+ lut_base = SEQID_RDID * 4;
+ writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(READ, PAD1, 0x8),
+ base + QUADSPI_LUT(lut_base));
+
+ /* Write Register */
+ lut_base = SEQID_WRSR * 4;
+ writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(WRITE, PAD1, 0x2),
+ base + QUADSPI_LUT(lut_base));
+
+ /* Read Configuration Register */
+ lut_base = SEQID_RDCR * 4;
+ writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(READ, PAD1, 0x1),
+ base + QUADSPI_LUT(lut_base));
+
+ /* Write disable */
+ lut_base = SEQID_WRDI * 4;
+ writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + QUADSPI_LUT(lut_base));
+
+ /* Enter 4 Byte Mode (Micron) */
+ lut_base = SEQID_EN4B * 4;
+ writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + QUADSPI_LUT(lut_base));
+
+ /* Enter 4 Byte Mode (Spansion) */
+ lut_base = SEQID_BRWR * 4;
+ writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + QUADSPI_LUT(lut_base));
+
+ fsl_qspi_lock_lut(q);
+}
+
+/* Get the SEQID for the command */
+static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
+{
+ switch (cmd) {
+ case SPINOR_OP_READ_1_1_4:
+ return SEQID_QUAD_READ;
+ case SPINOR_OP_WREN:
+ return SEQID_WREN;
+ case SPINOR_OP_WRDI:
+ return SEQID_WRDI;
+ case SPINOR_OP_RDSR:
+ return SEQID_RDSR;
+ case SPINOR_OP_SE:
+ return SEQID_SE;
+ case SPINOR_OP_CHIP_ERASE:
+ return SEQID_CHIP_ERASE;
+ case SPINOR_OP_PP:
+ return SEQID_PP;
+ case SPINOR_OP_RDID:
+ return SEQID_RDID;
+ case SPINOR_OP_WRSR:
+ return SEQID_WRSR;
+ case SPINOR_OP_RDCR:
+ return SEQID_RDCR;
+ case SPINOR_OP_EN4B:
+ return SEQID_EN4B;
+ case SPINOR_OP_BRWR:
+ return SEQID_BRWR;
+ default:
+ dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
+ break;
+ }
+ return -EINVAL;
+}
+
+static int
+fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
+{
+ void __iomem *base = q->iobase;
+ int seqid;
+ u32 reg, reg2;
+ int err;
+
+ init_completion(&q->c);
+ dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
+ q->chip_base_addr, addr, len, cmd);
+
+ /* save the reg */
+ reg = readl(base + QUADSPI_MCR);
+
+ writel(q->memmap_phy + q->chip_base_addr + addr, base + QUADSPI_SFAR);
+ writel(QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
+ base + QUADSPI_RBCT);
+ writel(reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
+
+ do {
+ reg2 = readl(base + QUADSPI_SR);
+ if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
+ udelay(1);
+ dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
+ continue;
+ }
+ break;
+ } while (1);
+
+ /* trigger the LUT now */
+ seqid = fsl_qspi_get_seqid(q, cmd);
+ writel((seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, base + QUADSPI_IPCR);
+
+ /* Wait for the interrupt. */
+ err = wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000));
+ if (!err) {
+ dev_err(q->dev,
+ "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
+ cmd, addr, readl(base + QUADSPI_FR),
+ readl(base + QUADSPI_SR));
+ err = -ETIMEDOUT;
+ } else {
+ err = 0;
+ }
+
+ /* restore the MCR */
+ writel(reg, base + QUADSPI_MCR);
+
+ return err;
+}
+
+/* Read out the data from the QUADSPI_RBDR buffer registers. */
+static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
+{
+ u32 tmp;
+ int i = 0;
+
+ while (len > 0) {
+ tmp = readl(q->iobase + QUADSPI_RBDR + i * 4);
+ tmp = fsl_qspi_endian_xchg(q, tmp);
+ dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
+ q->chip_base_addr, tmp);
+
+ if (len >= 4) {
+ *((u32 *)rxbuf) = tmp;
+ rxbuf += 4;
+ } else {
+ memcpy(rxbuf, &tmp, len);
+ break;
+ }
+
+ len -= 4;
+ i++;
+ }
+}
+
+/*
+ * If we have changed the content of the flash by writing or erasing,
+ * we need to invalidate the AHB buffer. If we do not do so, we may read out
+ * the wrong data. The spec tells us reset the AHB domain and Serial Flash
+ * domain at the same time.
+ */
+static inline void fsl_qspi_invalid(struct fsl_qspi *q)
+{
+ u32 reg;
+
+ reg = readl(q->iobase + QUADSPI_MCR);
+ reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
+ writel(reg, q->iobase + QUADSPI_MCR);
+
+ /*
+ * The minimum delay : 1 AHB + 2 SFCK clocks.
+ * Delay 1 us is enough.
+ */
+ udelay(1);
+
+ reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
+ writel(reg, q->iobase + QUADSPI_MCR);
+}
+
+static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
+ u8 opcode, unsigned int to, u32 *txbuf,
+ unsigned count, size_t *retlen)
+{
+ int ret, i, j;
+ u32 tmp;
+
+ dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
+ q->chip_base_addr, to, count);
+
+ /* clear the TX FIFO. */
+ tmp = readl(q->iobase + QUADSPI_MCR);
+ writel(tmp | QUADSPI_MCR_CLR_RXF_MASK, q->iobase + QUADSPI_MCR);
+
+ /* fill the TX data to the FIFO */
+ for (j = 0, i = ((count + 3) / 4); j < i; j++) {
+ tmp = fsl_qspi_endian_xchg(q, *txbuf);
+ writel(tmp, q->iobase + QUADSPI_TBDR);
+ txbuf++;
+ }
+
+ /* Trigger it */
+ ret = fsl_qspi_runcmd(q, opcode, to, count);
+
+ if (ret == 0 && retlen)
+ *retlen += count;
+
+ return ret;
+}
+
+static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
+{
+ int nor_size = q->nor_size;
+ void __iomem *base = q->iobase;
+
+ writel(nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
+ writel(nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
+ writel(nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
+ writel(nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
+}
+
+/*
+ * There are two different ways to read out the data from the flash:
+ * the "IP Command Read" and the "AHB Command Read".
+ *
+ * The IC guy suggests we use the "AHB Command Read" which is faster
+ * then the "IP Command Read". (What's more is that there is a bug in
+ * the "IP Command Read" in the Vybrid.)
+ *
+ * After we set up the registers for the "AHB Command Read", we can use
+ * the memcpy to read the data directly. A "missed" access to the buffer
+ * causes the controller to clear the buffer, and use the sequence pointed
+ * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
+ */
+static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
+{
+ void __iomem *base = q->iobase;
+ int seqid;
+
+ /* AHB configuration for access buffer 0/1/2 .*/
+ writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
+ writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
+ writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
+ writel(QUADSPI_BUF3CR_ALLMST, base + QUADSPI_BUF3CR);
+
+ /* We only use the buffer3 */
+ writel(0, base + QUADSPI_BUF0IND);
+ writel(0, base + QUADSPI_BUF1IND);
+ writel(0, base + QUADSPI_BUF2IND);
+
+ /* Set the default lut sequence for AHB Read. */
+ seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
+ writel(seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
+ q->iobase + QUADSPI_BFGENCR);
+}
+
+/* We use this function to do some basic init for spi_nor_scan(). */
+static int fsl_qspi_nor_setup(struct fsl_qspi *q)
+{
+ void __iomem *base = q->iobase;
+ u32 reg;
+ int ret;
+
+ /* the default frequency, we will change it in the future.*/
+ ret = clk_set_rate(q->clk, 66000000);
+ if (ret)
+ return ret;
+
+ /* Init the LUT table. */
+ fsl_qspi_init_lut(q);
+
+ /* Disable the module */
+ writel(QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
+ base + QUADSPI_MCR);
+
+ reg = readl(base + QUADSPI_SMPR);
+ writel(reg & ~(QUADSPI_SMPR_FSDLY_MASK
+ | QUADSPI_SMPR_FSPHS_MASK
+ | QUADSPI_SMPR_HSENA_MASK
+ | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
+
+ /* Enable the module */
+ writel(QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
+ base + QUADSPI_MCR);
+
+ /* enable the interrupt */
+ writel(QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
+
+ return 0;
+}
+
+static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
+{
+ unsigned long rate = q->clk_rate;
+ int ret;
+
+ if (is_imx6sx_qspi(q))
+ rate *= 4;
+
+ ret = clk_set_rate(q->clk, rate);
+ if (ret)
+ return ret;
+
+ /* Init the LUT table again. */
+ fsl_qspi_init_lut(q);
+
+ /* Init for AHB read */
+ fsl_qspi_init_abh_read(q);
+
+ return 0;
+}
+
+static struct of_device_id fsl_qspi_dt_ids[] = {
+ { .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, },
+ { .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
+
+static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
+{
+ q->chip_base_addr = q->nor_size * (nor - q->nor);
+}
+
+static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
+{
+ int ret;
+ struct fsl_qspi *q = nor->priv;
+
+ ret = fsl_qspi_runcmd(q, opcode, 0, len);
+ if (ret)
+ return ret;
+
+ fsl_qspi_read_data(q, len, buf);
+ return 0;
+}
+
+static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len,
+ int write_enable)
+{
+ struct fsl_qspi *q = nor->priv;
+ int ret;
+
+ if (!buf) {
+ ret = fsl_qspi_runcmd(q, opcode, 0, 1);
+ if (ret)
+ return ret;
+
+ if (opcode == SPINOR_OP_CHIP_ERASE)
+ fsl_qspi_invalid(q);
+
+ } else if (len > 0) {
+ ret = fsl_qspi_nor_write(q, nor, opcode, 0,
+ (u32 *)buf, len, NULL);
+ } else {
+ dev_err(q->dev, "invalid cmd %d\n", opcode);
+ ret = -EINVAL;
+ }
+
+ return ret;
+}
+
+static void fsl_qspi_write(struct spi_nor *nor, loff_t to,
+ size_t len, size_t *retlen, const u_char *buf)
+{
+ struct fsl_qspi *q = nor->priv;
+
+ fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
+ (u32 *)buf, len, retlen);
+
+ /* invalid the data in the AHB buffer. */
+ fsl_qspi_invalid(q);
+}
+
+static int fsl_qspi_read(struct spi_nor *nor, loff_t from,
+ size_t len, size_t *retlen, u_char *buf)
+{
+ struct fsl_qspi *q = nor->priv;
+ u8 cmd = nor->read_opcode;
+ int ret;
+
+ dev_dbg(q->dev, "cmd [%x],read from (0x%p, 0x%.8x, 0x%.8x),len:%d\n",
+ cmd, q->ahb_base, q->chip_base_addr, (unsigned int)from, len);
+
+ /* Wait until the previous command is finished. */
+ ret = nor->wait_till_ready(nor);
+ if (ret)
+ return ret;
+
+ /* Read out the data directly from the AHB buffer.*/
+ memcpy(buf, q->ahb_base + q->chip_base_addr + from, len);
+
+ *retlen += len;
+ return 0;
+}
+
+static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
+{
+ struct fsl_qspi *q = nor->priv;
+ int ret;
+
+ dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
+ nor->mtd->erasesize / 1024, q->chip_base_addr, (u32)offs);
+
+ /* Wait until finished previous write command. */
+ ret = nor->wait_till_ready(nor);
+ if (ret)
+ return ret;
+
+ /* Send write enable, then erase commands. */
+ ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
+ if (ret)
+ return ret;
+
+ ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
+ if (ret)
+ return ret;
+
+ fsl_qspi_invalid(q);
+ return 0;
+}
+
+static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
+{
+ struct fsl_qspi *q = nor->priv;
+ int ret;
+
+ ret = clk_enable(q->clk_en);
+ if (ret)
+ return ret;
+
+ ret = clk_enable(q->clk);
+ if (ret) {
+ clk_disable(q->clk_en);
+ return ret;
+ }
+
+ fsl_qspi_set_base_addr(q, nor);
+ return 0;
+}
+
+static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
+{
+ struct fsl_qspi *q = nor->priv;
+
+ clk_disable(q->clk);
+ clk_disable(q->clk_en);
+}
+
+static int fsl_qspi_probe(struct platform_device *pdev)
+{
+ struct device_node *np = pdev->dev.of_node;
+ struct mtd_part_parser_data ppdata;
+ struct device *dev = &pdev->dev;
+ struct fsl_qspi *q;
+ struct resource *res;
+ struct spi_nor *nor;
+ struct mtd_info *mtd;
+ int ret, i = 0;
+ bool has_second_chip = false;
+ const struct of_device_id *of_id =
+ of_match_device(fsl_qspi_dt_ids, &pdev->dev);
+
+ q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
+ if (!q)
+ return -ENOMEM;
+
+ q->nor_num = of_get_child_count(dev->of_node);
+ if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
+ return -ENODEV;
+
+ /* find the resources */
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
+ q->iobase = devm_ioremap_resource(dev, res);
+ if (IS_ERR(q->iobase)) {
+ ret = PTR_ERR(q->iobase);
+ goto map_failed;
+ }
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+ "QuadSPI-memory");
+ q->ahb_base = devm_ioremap_resource(dev, res);
+ if (IS_ERR(q->ahb_base)) {
+ ret = PTR_ERR(q->ahb_base);
+ goto map_failed;
+ }
+ q->memmap_phy = res->start;
+
+ /* find the clocks */
+ q->clk_en = devm_clk_get(dev, "qspi_en");
+ if (IS_ERR(q->clk_en)) {
+ ret = PTR_ERR(q->clk_en);
+ goto map_failed;
+ }
+
+ q->clk = devm_clk_get(dev, "qspi");
+ if (IS_ERR(q->clk)) {
+ ret = PTR_ERR(q->clk);
+ goto map_failed;
+ }
+
+ ret = clk_prepare_enable(q->clk_en);
+ if (ret) {
+ dev_err(dev, "can not enable the qspi_en clock\n");
+ goto map_failed;
+ }
+
+ ret = clk_prepare_enable(q->clk);
+ if (ret) {
+ clk_disable_unprepare(q->clk_en);
+ dev_err(dev, "can not enable the qspi clock\n");
+ goto map_failed;
+ }
+
+ /* find the irq */
+ ret = platform_get_irq(pdev, 0);
+ if (ret < 0) {
+ dev_err(dev, "failed to get the irq\n");
+ goto irq_failed;
+ }
+
+ ret = devm_request_irq(dev, ret,
+ fsl_qspi_irq_handler, 0, pdev->name, q);
+ if (ret) {
+ dev_err(dev, "failed to request irq.\n");
+ goto irq_failed;
+ }
+
+ q->dev = dev;
+ q->devtype_data = (struct fsl_qspi_devtype_data *)of_id->data;
+ platform_set_drvdata(pdev, q);
+
+ ret = fsl_qspi_nor_setup(q);
+ if (ret)
+ goto irq_failed;
+
+ if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
+ has_second_chip = true;
+
+ /* iterate the subnodes. */
+ for_each_available_child_of_node(dev->of_node, np) {
+ const struct spi_device_id *id;
+ char modalias[40];
+
+ /* skip the holes */
+ if (!has_second_chip)
+ i *= 2;
+
+ nor = &q->nor[i];
+ mtd = &q->mtd[i];
+
+ nor->mtd = mtd;
+ nor->dev = dev;
+ nor->priv = q;
+ mtd->priv = nor;
+
+ /* fill the hooks */
+ nor->read_reg = fsl_qspi_read_reg;
+ nor->write_reg = fsl_qspi_write_reg;
+ nor->read = fsl_qspi_read;
+ nor->write = fsl_qspi_write;
+ nor->erase = fsl_qspi_erase;
+
+ nor->prepare = fsl_qspi_prep;
+ nor->unprepare = fsl_qspi_unprep;
+
+ if (of_modalias_node(np, modalias, sizeof(modalias)) < 0)
+ goto map_failed;
+
+ id = spi_nor_match_id(modalias);
+ if (!id)
+ goto map_failed;
+
+ ret = of_property_read_u32(np, "spi-max-frequency",
+ &q->clk_rate);
+ if (ret < 0)
+ goto map_failed;
+
+ /* set the chip address for READID */
+ fsl_qspi_set_base_addr(q, nor);
+
+ ret = spi_nor_scan(nor, id, SPI_NOR_QUAD);
+ if (ret)
+ goto map_failed;
+
+ ppdata.of_node = np;
+ ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
+ if (ret)
+ goto map_failed;
+
+ /* Set the correct NOR size now. */
+ if (q->nor_size == 0) {
+ q->nor_size = mtd->size;
+
+ /* Map the SPI NOR to accessiable address */
+ fsl_qspi_set_map_addr(q);
+ }
+
+ /*
+ * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
+ * may writes 265 bytes per time. The write is working in the
+ * unit of the TX FIFO, not in the unit of the SPI NOR's page
+ * size.
+ *
+ * So shrink the spi_nor->page_size if it is larger then the
+ * TX FIFO.
+ */
+ if (nor->page_size > q->devtype_data->txfifo)
+ nor->page_size = q->devtype_data->txfifo;
+
+ i++;
+ }
+
+ /* finish the rest init. */
+ ret = fsl_qspi_nor_setup_last(q);
+ if (ret)
+ goto last_init_failed;
+
+ clk_disable(q->clk);
+ clk_disable(q->clk_en);
+ dev_info(dev, "QuadSPI SPI NOR flash driver\n");
+ return 0;
+
+last_init_failed:
+ for (i = 0; i < q->nor_num; i++)
+ mtd_device_unregister(&q->mtd[i]);
+
+irq_failed:
+ clk_disable_unprepare(q->clk);
+ clk_disable_unprepare(q->clk_en);
+map_failed:
+ dev_err(dev, "Freescale QuadSPI probe failed\n");
+ return ret;
+}
+
+static int fsl_qspi_remove(struct platform_device *pdev)
+{
+ struct fsl_qspi *q = platform_get_drvdata(pdev);
+ int i;
+
+ for (i = 0; i < q->nor_num; i++)
+ mtd_device_unregister(&q->mtd[i]);
+
+ /* disable the hardware */
+ writel(QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
+ writel(0x0, q->iobase + QUADSPI_RSER);
+
+ clk_unprepare(q->clk);
+ clk_unprepare(q->clk_en);
+ return 0;
+}
+
+static struct platform_driver fsl_qspi_driver = {
+ .driver = {
+ .name = "fsl-quadspi",
+ .bus = &platform_bus_type,
+ .owner = THIS_MODULE,
+ .of_match_table = fsl_qspi_dt_ids,
+ },
+ .probe = fsl_qspi_probe,
+ .remove = fsl_qspi_remove,
+};
+module_platform_driver(fsl_qspi_driver);
+
+MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
+MODULE_AUTHOR("Freescale Semiconductor Inc.");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/spi-nor/spi-nor.c b/drivers/mtd/spi-nor/spi-nor.c
new file mode 100644
index 000000000000..c713c8656710
--- /dev/null
+++ b/drivers/mtd/spi-nor/spi-nor.c
@@ -0,0 +1,1107 @@
+/*
+ * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
+ * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
+ *
+ * Copyright (C) 2005, Intec Automation Inc.
+ * Copyright (C) 2014, Freescale Semiconductor, Inc.
+ *
+ * This code is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/err.h>
+#include <linux/errno.h>
+#include <linux/module.h>
+#include <linux/device.h>
+#include <linux/mutex.h>
+#include <linux/math64.h>
+
+#include <linux/mtd/cfi.h>
+#include <linux/mtd/mtd.h>
+#include <linux/of_platform.h>
+#include <linux/spi/flash.h>
+#include <linux/mtd/spi-nor.h>
+
+/* Define max times to check status register before we give up. */
+#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
+
+#define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
+
+/*
+ * Read the status register, returning its value in the location
+ * Return the status register value.
+ * Returns negative if error occurred.
+ */
+static int read_sr(struct spi_nor *nor)
+{
+ int ret;
+ u8 val;
+
+ ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
+ if (ret < 0) {
+ pr_err("error %d reading SR\n", (int) ret);
+ return ret;
+ }
+
+ return val;
+}
+
+/*
+ * Read configuration register, returning its value in the
+ * location. Return the configuration register value.
+ * Returns negative if error occured.
+ */
+static int read_cr(struct spi_nor *nor)
+{
+ int ret;
+ u8 val;
+
+ ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
+ if (ret < 0) {
+ dev_err(nor->dev, "error %d reading CR\n", ret);
+ return ret;
+ }
+
+ return val;
+}
+
+/*
+ * Dummy Cycle calculation for different type of read.
+ * It can be used to support more commands with
+ * different dummy cycle requirements.
+ */
+static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
+{
+ switch (nor->flash_read) {
+ case SPI_NOR_FAST:
+ case SPI_NOR_DUAL:
+ case SPI_NOR_QUAD:
+ return 1;
+ case SPI_NOR_NORMAL:
+ return 0;
+ }
+ return 0;
+}
+
+/*
+ * Write status register 1 byte
+ * Returns negative if error occurred.
+ */
+static inline int write_sr(struct spi_nor *nor, u8 val)
+{
+ nor->cmd_buf[0] = val;
+ return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
+}
+
+/*
+ * Set write enable latch with Write Enable command.
+ * Returns negative if error occurred.
+ */
+static inline int write_enable(struct spi_nor *nor)
+{
+ return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
+}
+
+/*
+ * Send write disble instruction to the chip.
+ */
+static inline int write_disable(struct spi_nor *nor)
+{
+ return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0);
+}
+
+static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
+{
+ return mtd->priv;
+}
+
+/* Enable/disable 4-byte addressing mode. */
+static inline int set_4byte(struct spi_nor *nor, u32 jedec_id, int enable)
+{
+ int status;
+ bool need_wren = false;
+ u8 cmd;
+
+ switch (JEDEC_MFR(jedec_id)) {
+ case CFI_MFR_ST: /* Micron, actually */
+ /* Some Micron need WREN command; all will accept it */
+ need_wren = true;
+ case CFI_MFR_MACRONIX:
+ case 0xEF /* winbond */:
+ if (need_wren)
+ write_enable(nor);
+
+ cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
+ status = nor->write_reg(nor, cmd, NULL, 0, 0);
+ if (need_wren)
+ write_disable(nor);
+
+ return status;
+ default:
+ /* Spansion style */
+ nor->cmd_buf[0] = enable << 7;
+ return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0);
+ }
+}
+
+static int spi_nor_wait_till_ready(struct spi_nor *nor)
+{
+ unsigned long deadline;
+ int sr;
+
+ deadline = jiffies + MAX_READY_WAIT_JIFFIES;
+
+ do {
+ cond_resched();
+
+ sr = read_sr(nor);
+ if (sr < 0)
+ break;
+ else if (!(sr & SR_WIP))
+ return 0;
+ } while (!time_after_eq(jiffies, deadline));
+
+ return -ETIMEDOUT;
+}
+
+/*
+ * Service routine to read status register until ready, or timeout occurs.
+ * Returns non-zero if error.
+ */
+static int wait_till_ready(struct spi_nor *nor)
+{
+ return nor->wait_till_ready(nor);
+}
+
+/*
+ * Erase the whole flash memory
+ *
+ * Returns 0 if successful, non-zero otherwise.
+ */
+static int erase_chip(struct spi_nor *nor)
+{
+ int ret;
+
+ dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));
+
+ /* Wait until finished previous write command. */
+ ret = wait_till_ready(nor);
+ if (ret)
+ return ret;
+
+ /* Send write enable, then erase commands. */
+ write_enable(nor);
+
+ return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0);
+}
+
+static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
+{
+ int ret = 0;
+
+ mutex_lock(&nor->lock);
+
+ if (nor->prepare) {
+ ret = nor->prepare(nor, ops);
+ if (ret) {
+ dev_err(nor->dev, "failed in the preparation.\n");
+ mutex_unlock(&nor->lock);
+ return ret;
+ }
+ }
+ return ret;
+}
+
+static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
+{
+ if (nor->unprepare)
+ nor->unprepare(nor, ops);
+ mutex_unlock(&nor->lock);
+}
+
+/*
+ * Erase an address range on the nor chip. The address range may extend
+ * one or more erase sectors. Return an error is there is a problem erasing.
+ */
+static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
+ u32 addr, len;
+ uint32_t rem;
+ int ret;
+
+ dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
+ (long long)instr->len);
+
+ div_u64_rem(instr->len, mtd->erasesize, &rem);
+ if (rem)
+ return -EINVAL;
+
+ addr = instr->addr;
+ len = instr->len;
+
+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
+ if (ret)
+ return ret;
+
+ /* whole-chip erase? */
+ if (len == mtd->size) {
+ if (erase_chip(nor)) {
+ ret = -EIO;
+ goto erase_err;
+ }
+
+ /* REVISIT in some cases we could speed up erasing large regions
+ * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
+ * to use "small sector erase", but that's not always optimal.
+ */
+
+ /* "sector"-at-a-time erase */
+ } else {
+ while (len) {
+ if (nor->erase(nor, addr)) {
+ ret = -EIO;
+ goto erase_err;
+ }
+
+ addr += mtd->erasesize;
+ len -= mtd->erasesize;
+ }
+ }
+
+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
+
+ instr->state = MTD_ERASE_DONE;
+ mtd_erase_callback(instr);
+
+ return ret;
+
+erase_err:
+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
+ instr->state = MTD_ERASE_FAILED;
+ return ret;
+}
+
+static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
+ uint32_t offset = ofs;
+ uint8_t status_old, status_new;
+ int ret = 0;
+
+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
+ if (ret)
+ return ret;
+
+ /* Wait until finished previous command */
+ ret = wait_till_ready(nor);
+ if (ret)
+ goto err;
+
+ status_old = read_sr(nor);
+
+ if (offset < mtd->size - (mtd->size / 2))
+ status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
+ else if (offset < mtd->size - (mtd->size / 4))
+ status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
+ else if (offset < mtd->size - (mtd->size / 8))
+ status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
+ else if (offset < mtd->size - (mtd->size / 16))
+ status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
+ else if (offset < mtd->size - (mtd->size / 32))
+ status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
+ else if (offset < mtd->size - (mtd->size / 64))
+ status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
+ else
+ status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
+
+ /* Only modify protection if it will not unlock other areas */
+ if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
+ (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
+ write_enable(nor);
+ ret = write_sr(nor, status_new);
+ if (ret)
+ goto err;
+ }
+
+err:
+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
+ return ret;
+}
+
+static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
+ uint32_t offset = ofs;
+ uint8_t status_old, status_new;
+ int ret = 0;
+
+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
+ if (ret)
+ return ret;
+
+ /* Wait until finished previous command */
+ ret = wait_till_ready(nor);
+ if (ret)
+ goto err;
+
+ status_old = read_sr(nor);
+
+ if (offset+len > mtd->size - (mtd->size / 64))
+ status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
+ else if (offset+len > mtd->size - (mtd->size / 32))
+ status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
+ else if (offset+len > mtd->size - (mtd->size / 16))
+ status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
+ else if (offset+len > mtd->size - (mtd->size / 8))
+ status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
+ else if (offset+len > mtd->size - (mtd->size / 4))
+ status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
+ else if (offset+len > mtd->size - (mtd->size / 2))
+ status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
+ else
+ status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
+
+ /* Only modify protection if it will not lock other areas */
+ if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
+ (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
+ write_enable(nor);
+ ret = write_sr(nor, status_new);
+ if (ret)
+ goto err;
+ }
+
+err:
+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
+ return ret;
+}
+
+struct flash_info {
+ /* JEDEC id zero means "no ID" (most older chips); otherwise it has
+ * a high byte of zero plus three data bytes: the manufacturer id,
+ * then a two byte device id.
+ */
+ u32 jedec_id;
+ u16 ext_id;
+
+ /* The size listed here is what works with SPINOR_OP_SE, which isn't
+ * necessarily called a "sector" by the vendor.
+ */
+ unsigned sector_size;
+ u16 n_sectors;
+
+ u16 page_size;
+ u16 addr_width;
+
+ u16 flags;
+#define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */
+#define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */
+#define SST_WRITE 0x04 /* use SST byte programming */
+#define SPI_NOR_NO_FR 0x08 /* Can't do fastread */
+#define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */
+#define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */
+#define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */
+};
+
+#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
+ ((kernel_ulong_t)&(struct flash_info) { \
+ .jedec_id = (_jedec_id), \
+ .ext_id = (_ext_id), \
+ .sector_size = (_sector_size), \
+ .n_sectors = (_n_sectors), \
+ .page_size = 256, \
+ .flags = (_flags), \
+ })
+
+#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
+ ((kernel_ulong_t)&(struct flash_info) { \
+ .sector_size = (_sector_size), \
+ .n_sectors = (_n_sectors), \
+ .page_size = (_page_size), \
+ .addr_width = (_addr_width), \
+ .flags = (_flags), \
+ })
+
+/* NOTE: double check command sets and memory organization when you add
+ * more nor chips. This current list focusses on newer chips, which
+ * have been converging on command sets which including JEDEC ID.
+ */
+const struct spi_device_id spi_nor_ids[] = {
+ /* Atmel -- some are (confusingly) marketed as "DataFlash" */
+ { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
+ { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
+
+ { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
+ { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
+ { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
+
+ { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
+ { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
+ { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
+ { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
+
+ { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
+
+ /* EON -- en25xxx */
+ { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
+ { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
+ { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
+ { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
+ { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
+ { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
+
+ /* ESMT */
+ { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
+
+ /* Everspin */
+ { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
+ { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
+
+ /* GigaDevice */
+ { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
+ { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
+
+ /* Intel/Numonyx -- xxxs33b */
+ { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
+ { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
+ { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
+
+ /* Macronix */
+ { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
+ { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
+ { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
+ { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
+ { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
+ { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
+ { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
+ { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
+ { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
+ { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
+ { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
+ { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
+ { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
+
+ /* Micron */
+ { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
+ { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
+ { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
+ { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },
+ { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
+
+ /* PMC */
+ { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
+ { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
+ { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
+
+ /* Spansion -- single (large) sector size only, at least
+ * for the chips listed here (without boot sectors).
+ */
+ { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
+ { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
+ { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
+ { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
+ { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
+ { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
+ { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
+ { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
+ { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
+ { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
+ { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
+ { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
+ { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
+ { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
+ { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
+ { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
+ { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
+ { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
+
+ /* SST -- large erase sizes are "overlays", "sectors" are 4K */
+ { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
+ { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
+ { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
+ { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
+ { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
+ { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
+ { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
+ { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
+ { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
+
+ /* ST Microelectronics -- newer production may have feature updates */
+ { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
+ { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
+ { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
+ { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
+ { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
+ { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
+ { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
+ { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
+ { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
+ { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
+
+ { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
+ { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
+ { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
+ { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
+ { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
+ { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
+ { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
+ { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
+ { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
+
+ { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
+ { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
+ { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
+
+ { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
+ { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
+ { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
+
+ { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
+ { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
+ { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
+ { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
+ { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
+
+ /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
+ { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
+ { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
+ { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
+ { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
+ { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
+ { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
+ { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
+ { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
+ { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
+ { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
+ { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
+ { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
+ { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
+ { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
+ { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
+
+ /* Catalyst / On Semiconductor -- non-JEDEC */
+ { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
+ { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
+ { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
+ { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
+ { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
+ { },
+};
+EXPORT_SYMBOL_GPL(spi_nor_ids);
+
+static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
+{
+ int tmp;
+ u8 id[5];
+ u32 jedec;
+ u16 ext_jedec;
+ struct flash_info *info;
+
+ tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, 5);
+ if (tmp < 0) {
+ dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
+ return ERR_PTR(tmp);
+ }
+ jedec = id[0];
+ jedec = jedec << 8;
+ jedec |= id[1];
+ jedec = jedec << 8;
+ jedec |= id[2];
+
+ ext_jedec = id[3] << 8 | id[4];
+
+ for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
+ info = (void *)spi_nor_ids[tmp].driver_data;
+ if (info->jedec_id == jedec) {
+ if (info->ext_id == 0 || info->ext_id == ext_jedec)
+ return &spi_nor_ids[tmp];
+ }
+ }
+ dev_err(nor->dev, "unrecognized JEDEC id %06x\n", jedec);
+ return ERR_PTR(-ENODEV);
+}
+
+static const struct spi_device_id *jedec_probe(struct spi_nor *nor)
+{
+ return nor->read_id(nor);
+}
+
+static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
+ int ret;
+
+ dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
+
+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
+ if (ret)
+ return ret;
+
+ ret = nor->read(nor, from, len, retlen, buf);
+
+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
+ return ret;
+}
+
+static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf)
+{
+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
+ size_t actual;
+ int ret;
+
+ dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
+
+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
+ if (ret)
+ return ret;
+
+ /* Wait until finished previous write command. */
+ ret = wait_till_ready(nor);
+ if (ret)
+ goto time_out;
+
+ write_enable(nor);
+
+ nor->sst_write_second = false;
+
+ actual = to % 2;
+ /* Start write from odd address. */
+ if (actual) {
+ nor->program_opcode = SPINOR_OP_BP;
+
+ /* write one byte. */
+ nor->write(nor, to, 1, retlen, buf);
+ ret = wait_till_ready(nor);
+ if (ret)
+ goto time_out;
+ }
+ to += actual;
+
+ /* Write out most of the data here. */
+ for (; actual < len - 1; actual += 2) {
+ nor->program_opcode = SPINOR_OP_AAI_WP;
+
+ /* write two bytes. */
+ nor->write(nor, to, 2, retlen, buf + actual);
+ ret = wait_till_ready(nor);
+ if (ret)
+ goto time_out;
+ to += 2;
+ nor->sst_write_second = true;
+ }
+ nor->sst_write_second = false;
+
+ write_disable(nor);
+ ret = wait_till_ready(nor);
+ if (ret)
+ goto time_out;
+
+ /* Write out trailing byte if it exists. */
+ if (actual != len) {
+ write_enable(nor);
+
+ nor->program_opcode = SPINOR_OP_BP;
+ nor->write(nor, to, 1, retlen, buf + actual);
+
+ ret = wait_till_ready(nor);
+ if (ret)
+ goto time_out;
+ write_disable(nor);
+ }
+time_out:
+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
+ return ret;
+}
+
+/*
+ * Write an address range to the nor chip. Data must be written in
+ * FLASH_PAGESIZE chunks. The address range may be any size provided
+ * it is within the physical boundaries.
+ */
+static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf)
+{
+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
+ u32 page_offset, page_size, i;
+ int ret;
+
+ dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
+
+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
+ if (ret)
+ return ret;
+
+ /* Wait until finished previous write command. */
+ ret = wait_till_ready(nor);
+ if (ret)
+ goto write_err;
+
+ write_enable(nor);
+
+ page_offset = to & (nor->page_size - 1);
+
+ /* do all the bytes fit onto one page? */
+ if (page_offset + len <= nor->page_size) {
+ nor->write(nor, to, len, retlen, buf);
+ } else {
+ /* the size of data remaining on the first page */
+ page_size = nor->page_size - page_offset;
+ nor->write(nor, to, page_size, retlen, buf);
+
+ /* write everything in nor->page_size chunks */
+ for (i = page_size; i < len; i += page_size) {
+ page_size = len - i;
+ if (page_size > nor->page_size)
+ page_size = nor->page_size;
+
+ wait_till_ready(nor);
+ write_enable(nor);
+
+ nor->write(nor, to + i, page_size, retlen, buf + i);
+ }
+ }
+
+write_err:
+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
+ return 0;
+}
+
+static int macronix_quad_enable(struct spi_nor *nor)
+{
+ int ret, val;
+
+ val = read_sr(nor);
+ write_enable(nor);
+
+ nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
+ nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
+
+ if (wait_till_ready(nor))
+ return 1;
+
+ ret = read_sr(nor);
+ if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
+ dev_err(nor->dev, "Macronix Quad bit not set\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/*
+ * Write status Register and configuration register with 2 bytes
+ * The first byte will be written to the status register, while the
+ * second byte will be written to the configuration register.
+ * Return negative if error occured.
+ */
+static int write_sr_cr(struct spi_nor *nor, u16 val)
+{
+ nor->cmd_buf[0] = val & 0xff;
+ nor->cmd_buf[1] = (val >> 8);
+
+ return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0);
+}
+
+static int spansion_quad_enable(struct spi_nor *nor)
+{
+ int ret;
+ int quad_en = CR_QUAD_EN_SPAN << 8;
+
+ write_enable(nor);
+
+ ret = write_sr_cr(nor, quad_en);
+ if (ret < 0) {
+ dev_err(nor->dev,
+ "error while writing configuration register\n");
+ return -EINVAL;
+ }
+
+ /* read back and check it */
+ ret = read_cr(nor);
+ if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
+ dev_err(nor->dev, "Spansion Quad bit not set\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int set_quad_mode(struct spi_nor *nor, u32 jedec_id)
+{
+ int status;
+
+ switch (JEDEC_MFR(jedec_id)) {
+ case CFI_MFR_MACRONIX:
+ status = macronix_quad_enable(nor);
+ if (status) {
+ dev_err(nor->dev, "Macronix quad-read not enabled\n");
+ return -EINVAL;
+ }
+ return status;
+ default:
+ status = spansion_quad_enable(nor);
+ if (status) {
+ dev_err(nor->dev, "Spansion quad-read not enabled\n");
+ return -EINVAL;
+ }
+ return status;
+ }
+}
+
+static int spi_nor_check(struct spi_nor *nor)
+{
+ if (!nor->dev || !nor->read || !nor->write ||
+ !nor->read_reg || !nor->write_reg || !nor->erase) {
+ pr_err("spi-nor: please fill all the necessary fields!\n");
+ return -EINVAL;
+ }
+
+ if (!nor->read_id)
+ nor->read_id = spi_nor_read_id;
+ if (!nor->wait_till_ready)
+ nor->wait_till_ready = spi_nor_wait_till_ready;
+
+ return 0;
+}
+
+int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id,
+ enum read_mode mode)
+{
+ struct flash_info *info;
+ struct flash_platform_data *data;
+ struct device *dev = nor->dev;
+ struct mtd_info *mtd = nor->mtd;
+ struct device_node *np = dev->of_node;
+ int ret;
+ int i;
+
+ ret = spi_nor_check(nor);
+ if (ret)
+ return ret;
+
+ /* Platform data helps sort out which chip type we have, as
+ * well as how this board partitions it. If we don't have
+ * a chip ID, try the JEDEC id commands; they'll work for most
+ * newer chips, even if we don't recognize the particular chip.
+ */
+ data = dev_get_platdata(dev);
+ if (data && data->type) {
+ const struct spi_device_id *plat_id;
+
+ for (i = 0; i < ARRAY_SIZE(spi_nor_ids) - 1; i++) {
+ plat_id = &spi_nor_ids[i];
+ if (strcmp(data->type, plat_id->name))
+ continue;
+ break;
+ }
+
+ if (i < ARRAY_SIZE(spi_nor_ids) - 1)
+ id = plat_id;
+ else
+ dev_warn(dev, "unrecognized id %s\n", data->type);
+ }
+
+ info = (void *)id->driver_data;
+
+ if (info->jedec_id) {
+ const struct spi_device_id *jid;
+
+ jid = jedec_probe(nor);
+ if (IS_ERR(jid)) {
+ return PTR_ERR(jid);
+ } else if (jid != id) {
+ /*
+ * JEDEC knows better, so overwrite platform ID. We
+ * can't trust partitions any longer, but we'll let
+ * mtd apply them anyway, since some partitions may be
+ * marked read-only, and we don't want to lose that
+ * information, even if it's not 100% accurate.
+ */
+ dev_warn(dev, "found %s, expected %s\n",
+ jid->name, id->name);
+ id = jid;
+ info = (void *)jid->driver_data;
+ }
+ }
+
+ mutex_init(&nor->lock);
+
+ /*
+ * Atmel, SST and Intel/Numonyx serial nor tend to power
+ * up with the software protection bits set
+ */
+
+ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
+ JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
+ JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
+ write_enable(nor);
+ write_sr(nor, 0);
+ }
+
+ if (data && data->name)
+ mtd->name = data->name;
+ else
+ mtd->name = dev_name(dev);
+
+ mtd->type = MTD_NORFLASH;
+ mtd->writesize = 1;
+ mtd->flags = MTD_CAP_NORFLASH;
+ mtd->size = info->sector_size * info->n_sectors;
+ mtd->_erase = spi_nor_erase;
+ mtd->_read = spi_nor_read;
+
+ /* nor protection support for STmicro chips */
+ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
+ mtd->_lock = spi_nor_lock;
+ mtd->_unlock = spi_nor_unlock;
+ }
+
+ /* sst nor chips use AAI word program */
+ if (info->flags & SST_WRITE)
+ mtd->_write = sst_write;
+ else
+ mtd->_write = spi_nor_write;
+
+ /* prefer "small sector" erase if possible */
+ if (info->flags & SECT_4K) {
+ nor->erase_opcode = SPINOR_OP_BE_4K;
+ mtd->erasesize = 4096;
+ } else if (info->flags & SECT_4K_PMC) {
+ nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
+ mtd->erasesize = 4096;
+ } else {
+ nor->erase_opcode = SPINOR_OP_SE;
+ mtd->erasesize = info->sector_size;
+ }
+
+ if (info->flags & SPI_NOR_NO_ERASE)
+ mtd->flags |= MTD_NO_ERASE;
+
+ mtd->dev.parent = dev;
+ nor->page_size = info->page_size;
+ mtd->writebufsize = nor->page_size;
+
+ if (np) {
+ /* If we were instantiated by DT, use it */
+ if (of_property_read_bool(np, "m25p,fast-read"))
+ nor->flash_read = SPI_NOR_FAST;
+ else
+ nor->flash_read = SPI_NOR_NORMAL;
+ } else {
+ /* If we weren't instantiated by DT, default to fast-read */
+ nor->flash_read = SPI_NOR_FAST;
+ }
+
+ /* Some devices cannot do fast-read, no matter what DT tells us */
+ if (info->flags & SPI_NOR_NO_FR)
+ nor->flash_read = SPI_NOR_NORMAL;
+
+ /* Quad/Dual-read mode takes precedence over fast/normal */
+ if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
+ ret = set_quad_mode(nor, info->jedec_id);
+ if (ret) {
+ dev_err(dev, "quad mode not supported\n");
+ return ret;
+ }
+ nor->flash_read = SPI_NOR_QUAD;
+ } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
+ nor->flash_read = SPI_NOR_DUAL;
+ }
+
+ /* Default commands */
+ switch (nor->flash_read) {
+ case SPI_NOR_QUAD:
+ nor->read_opcode = SPINOR_OP_READ_1_1_4;
+ break;
+ case SPI_NOR_DUAL:
+ nor->read_opcode = SPINOR_OP_READ_1_1_2;
+ break;
+ case SPI_NOR_FAST:
+ nor->read_opcode = SPINOR_OP_READ_FAST;
+ break;
+ case SPI_NOR_NORMAL:
+ nor->read_opcode = SPINOR_OP_READ;
+ break;
+ default:
+ dev_err(dev, "No Read opcode defined\n");
+ return -EINVAL;
+ }
+
+ nor->program_opcode = SPINOR_OP_PP;
+
+ if (info->addr_width)
+ nor->addr_width = info->addr_width;
+ else if (mtd->size > 0x1000000) {
+ /* enable 4-byte addressing if the device exceeds 16MiB */
+ nor->addr_width = 4;
+ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
+ /* Dedicated 4-byte command set */
+ switch (nor->flash_read) {
+ case SPI_NOR_QUAD:
+ nor->read_opcode = SPINOR_OP_READ4_1_1_4;
+ break;
+ case SPI_NOR_DUAL:
+ nor->read_opcode = SPINOR_OP_READ4_1_1_2;
+ break;
+ case SPI_NOR_FAST:
+ nor->read_opcode = SPINOR_OP_READ4_FAST;
+ break;
+ case SPI_NOR_NORMAL:
+ nor->read_opcode = SPINOR_OP_READ4;
+ break;
+ }
+ nor->program_opcode = SPINOR_OP_PP_4B;
+ /* No small sector erase for 4-byte command set */
+ nor->erase_opcode = SPINOR_OP_SE_4B;
+ mtd->erasesize = info->sector_size;
+ } else
+ set_4byte(nor, info->jedec_id, 1);
+ } else {
+ nor->addr_width = 3;
+ }
+
+ nor->read_dummy = spi_nor_read_dummy_cycles(nor);
+
+ dev_info(dev, "%s (%lld Kbytes)\n", id->name,
+ (long long)mtd->size >> 10);
+
+ dev_dbg(dev,
+ "mtd .name = %s, .size = 0x%llx (%lldMiB), "
+ ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
+ mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
+ mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
+
+ if (mtd->numeraseregions)
+ for (i = 0; i < mtd->numeraseregions; i++)
+ dev_dbg(dev,
+ "mtd.eraseregions[%d] = { .offset = 0x%llx, "
+ ".erasesize = 0x%.8x (%uKiB), "
+ ".numblocks = %d }\n",
+ i, (long long)mtd->eraseregions[i].offset,
+ mtd->eraseregions[i].erasesize,
+ mtd->eraseregions[i].erasesize / 1024,
+ mtd->eraseregions[i].numblocks);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(spi_nor_scan);
+
+const struct spi_device_id *spi_nor_match_id(char *name)
+{
+ const struct spi_device_id *id = spi_nor_ids;
+
+ while (id->name[0]) {
+ if (!strcmp(name, id->name))
+ return id;
+ id++;
+ }
+ return NULL;
+}
+EXPORT_SYMBOL_GPL(spi_nor_match_id);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
+MODULE_AUTHOR("Mike Lavender");
+MODULE_DESCRIPTION("framework for SPI NOR");
diff --git a/drivers/mtd/tests/oobtest.c b/drivers/mtd/tests/oobtest.c
index 2e9e2d11f204..f19ab1acde1f 100644
--- a/drivers/mtd/tests/oobtest.c
+++ b/drivers/mtd/tests/oobtest.c
@@ -69,8 +69,8 @@ static int write_eraseblock(int ebnum)
int err = 0;
loff_t addr = ebnum * mtd->erasesize;
+ prandom_bytes_state(&rnd_state, writebuf, use_len_max * pgcnt);
for (i = 0; i < pgcnt; ++i, addr += mtd->writesize) {
- prandom_bytes_state(&rnd_state, writebuf, use_len);
ops.mode = MTD_OPS_AUTO_OOB;
ops.len = 0;
ops.retlen = 0;
@@ -78,7 +78,7 @@ static int write_eraseblock(int ebnum)
ops.oobretlen = 0;
ops.ooboffs = use_offset;
ops.datbuf = NULL;
- ops.oobbuf = writebuf;
+ ops.oobbuf = writebuf + (use_len_max * i) + use_offset;
err = mtd_write_oob(mtd, addr, &ops);
if (err || ops.oobretlen != use_len) {
pr_err("error: writeoob failed at %#llx\n",
@@ -122,8 +122,8 @@ static int verify_eraseblock(int ebnum)
int err = 0;
loff_t addr = ebnum * mtd->erasesize;
+ prandom_bytes_state(&rnd_state, writebuf, use_len_max * pgcnt);
for (i = 0; i < pgcnt; ++i, addr += mtd->writesize) {
- prandom_bytes_state(&rnd_state, writebuf, use_len);
ops.mode = MTD_OPS_AUTO_OOB;
ops.len = 0;
ops.retlen = 0;
@@ -139,7 +139,8 @@ static int verify_eraseblock(int ebnum)
errcnt += 1;
return err ? err : -1;
}
- if (memcmp(readbuf, writebuf, use_len)) {
+ if (memcmp(readbuf, writebuf + (use_len_max * i) + use_offset,
+ use_len)) {
pr_err("error: verify failed at %#llx\n",
(long long)addr);
errcnt += 1;
@@ -166,7 +167,9 @@ static int verify_eraseblock(int ebnum)
errcnt += 1;
return err ? err : -1;
}
- if (memcmp(readbuf + use_offset, writebuf, use_len)) {
+ if (memcmp(readbuf + use_offset,
+ writebuf + (use_len_max * i) + use_offset,
+ use_len)) {
pr_err("error: verify failed at %#llx\n",
(long long)addr);
errcnt += 1;
@@ -566,8 +569,8 @@ static int __init mtd_oobtest_init(void)
if (bbt[i] || bbt[i + 1])
continue;
addr = (i + 1) * mtd->erasesize - mtd->writesize;
+ prandom_bytes_state(&rnd_state, writebuf, sz * cnt);
for (pg = 0; pg < cnt; ++pg) {
- prandom_bytes_state(&rnd_state, writebuf, sz);
ops.mode = MTD_OPS_AUTO_OOB;
ops.len = 0;
ops.retlen = 0;
@@ -575,7 +578,7 @@ static int __init mtd_oobtest_init(void)
ops.oobretlen = 0;
ops.ooboffs = 0;
ops.datbuf = NULL;
- ops.oobbuf = writebuf;
+ ops.oobbuf = writebuf + pg * sz;
err = mtd_write_oob(mtd, addr, &ops);
if (err)
goto out;
diff --git a/drivers/mtd/ubi/block.c b/drivers/mtd/ubi/block.c
index 8d659e6a1b4c..8457df7ec5af 100644
--- a/drivers/mtd/ubi/block.c
+++ b/drivers/mtd/ubi/block.c
@@ -253,7 +253,7 @@ static int do_ubiblock_request(struct ubiblock *dev, struct request *req)
* flash access anyway.
*/
mutex_lock(&dev->dev_mutex);
- ret = ubiblock_read(dev, req->buffer, sec, len);
+ ret = ubiblock_read(dev, bio_data(req->bio), sec, len);
mutex_unlock(&dev->dev_mutex);
return ret;
@@ -432,8 +432,10 @@ int ubiblock_create(struct ubi_volume_info *vi)
* Rembember workqueues are cheap, they're not threads.
*/
dev->wq = alloc_workqueue("%s", 0, 0, gd->disk_name);
- if (!dev->wq)
+ if (!dev->wq) {
+ ret = -ENOMEM;
goto out_free_queue;
+ }
INIT_WORK(&dev->work, ubiblock_do_work);
mutex_lock(&devices_mutex);
diff --git a/drivers/mtd/ubi/cdev.c b/drivers/mtd/ubi/cdev.c
index f54562a5998e..7646220ca6e2 100644
--- a/drivers/mtd/ubi/cdev.c
+++ b/drivers/mtd/ubi/cdev.c
@@ -731,7 +731,7 @@ static int rename_volumes(struct ubi_device *ubi,
goto out_free;
}
- re->desc = ubi_open_volume(ubi->ubi_num, vol_id, UBI_EXCLUSIVE);
+ re->desc = ubi_open_volume(ubi->ubi_num, vol_id, UBI_READWRITE);
if (IS_ERR(re->desc)) {
err = PTR_ERR(re->desc);
ubi_err("cannot open volume %d, error %d", vol_id, err);
diff --git a/drivers/mtd/ubi/fastmap.c b/drivers/mtd/ubi/fastmap.c
index c5dad652614d..b04e7d059888 100644
--- a/drivers/mtd/ubi/fastmap.c
+++ b/drivers/mtd/ubi/fastmap.c
@@ -125,9 +125,9 @@ static struct ubi_ainf_volume *add_vol(struct ubi_attach_info *ai, int vol_id,
parent = *p;
av = rb_entry(parent, struct ubi_ainf_volume, rb);
- if (vol_id > av->vol_id)
+ if (vol_id < av->vol_id)
p = &(*p)->rb_left;
- else if (vol_id > av->vol_id)
+ else
p = &(*p)->rb_right;
}