diff options
Diffstat (limited to 'drivers/mtd')
-rw-r--r-- | drivers/mtd/nand/raw/Kconfig | 7 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/Makefile | 1 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/brcmnand/brcmnand.c | 23 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/cadence-nand-controller.c | 3030 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/denali_dt.c | 55 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/mxic_nand.c | 4 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/nand_base.c | 8 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/nand_micron.c | 4 |
8 files changed, 3072 insertions, 60 deletions
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index e59de3f60cf6..74fb91adeb46 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -450,6 +450,13 @@ config MTD_NAND_PLATFORM devices. You will need to provide platform-specific functions via platform_data. +config MTD_NAND_CADENCE + tristate "Support Cadence NAND (HPNFC) controller" + depends on OF || COMPILE_TEST + help + Enable the driver for NAND flash on platforms using a Cadence NAND + controller. + comment "Misc" config MTD_SM_COMMON diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index a98721988e61..2d136b158fb7 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -57,6 +57,7 @@ obj-$(CONFIG_MTD_NAND_MXIC) += mxic_nand.o obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o +obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o nand-objs += nand_onfi.o diff --git a/drivers/mtd/nand/raw/brcmnand/brcmnand.c b/drivers/mtd/nand/raw/brcmnand/brcmnand.c index 15ef30b368a5..1a66b1cd51c0 100644 --- a/drivers/mtd/nand/raw/brcmnand/brcmnand.c +++ b/drivers/mtd/nand/raw/brcmnand/brcmnand.c @@ -117,6 +117,18 @@ enum flash_dma_reg { FLASH_DMA_CURRENT_DESC_EXT, }; +/* flash_dma registers v0*/ +static const u16 flash_dma_regs_v0[] = { + [FLASH_DMA_REVISION] = 0x00, + [FLASH_DMA_FIRST_DESC] = 0x04, + [FLASH_DMA_CTRL] = 0x08, + [FLASH_DMA_MODE] = 0x0c, + [FLASH_DMA_STATUS] = 0x10, + [FLASH_DMA_INTERRUPT_DESC] = 0x14, + [FLASH_DMA_ERROR_STATUS] = 0x18, + [FLASH_DMA_CURRENT_DESC] = 0x1c, +}; + /* flash_dma registers v1*/ static const u16 flash_dma_regs_v1[] = { [FLASH_DMA_REVISION] = 0x00, @@ -597,6 +609,8 @@ static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl) /* flash_dma register offsets */ if (ctrl->nand_version >= 0x0703) ctrl->flash_dma_offsets = flash_dma_regs_v4; + else if (ctrl->nand_version == 0x0602) + ctrl->flash_dma_offsets = flash_dma_regs_v0; else ctrl->flash_dma_offsets = flash_dma_regs_v1; } @@ -918,7 +932,7 @@ static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl) return; if (has_flash_dma(ctrl)) { - ctrl->flash_dma_base = 0; + ctrl->flash_dma_base = NULL; disable_irq(ctrl->dma_irq); } @@ -1673,8 +1687,11 @@ static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc) flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc)); (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC); - flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, upper_32_bits(desc)); - (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT); + if (ctrl->nand_version > 0x0602) { + flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, + upper_32_bits(desc)); + (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT); + } /* Start FLASH_DMA engine */ ctrl->dma_pending = true; diff --git a/drivers/mtd/nand/raw/cadence-nand-controller.c b/drivers/mtd/nand/raw/cadence-nand-controller.c new file mode 100644 index 000000000000..3a36285a8d8a --- /dev/null +++ b/drivers/mtd/nand/raw/cadence-nand-controller.c @@ -0,0 +1,3030 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Cadence NAND flash controller driver + * + * Copyright (C) 2019 Cadence + * + * Author: Piotr Sroka <piotrs@cadence.com> + */ + +#include <linux/bitfield.h> +#include <linux/clk.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/interrupt.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/of_device.h> +#include <linux/iopoll.h> + +/* + * HPNFC can work in 3 modes: + * - PIO - can work in master or slave DMA + * - CDMA - needs Master DMA for accessing command descriptors. + * - Generic mode - can use only slave DMA. + * CDMA and PIO modes can be used to execute only base commands. + * Generic mode can be used to execute any command + * on NAND flash memory. Driver uses CDMA mode for + * block erasing, page reading, page programing. + * Generic mode is used for executing rest of commands. + */ + +#define MAX_OOB_SIZE_PER_SECTOR 32 +#define MAX_ADDRESS_CYC 6 +#define MAX_ERASE_ADDRESS_CYC 3 +#define MAX_DATA_SIZE 0xFFFC +#define DMA_DATA_SIZE_ALIGN 8 + +/* Register definition. */ +/* + * Command register 0. + * Writing data to this register will initiate a new transaction + * of the NF controller. + */ +#define CMD_REG0 0x0000 +/* Command type field mask. */ +#define CMD_REG0_CT GENMASK(31, 30) +/* Command type CDMA. */ +#define CMD_REG0_CT_CDMA 0uL +/* Command type generic. */ +#define CMD_REG0_CT_GEN 3uL +/* Command thread number field mask. */ +#define CMD_REG0_TN GENMASK(27, 24) + +/* Command register 2. */ +#define CMD_REG2 0x0008 +/* Command register 3. */ +#define CMD_REG3 0x000C +/* Pointer register to select which thread status will be selected. */ +#define CMD_STATUS_PTR 0x0010 +/* Command status register for selected thread. */ +#define CMD_STATUS 0x0014 + +/* Interrupt status register. */ +#define INTR_STATUS 0x0110 +#define INTR_STATUS_SDMA_ERR BIT(22) +#define INTR_STATUS_SDMA_TRIGG BIT(21) +#define INTR_STATUS_UNSUPP_CMD BIT(19) +#define INTR_STATUS_DDMA_TERR BIT(18) +#define INTR_STATUS_CDMA_TERR BIT(17) +#define INTR_STATUS_CDMA_IDL BIT(16) + +/* Interrupt enable register. */ +#define INTR_ENABLE 0x0114 +#define INTR_ENABLE_INTR_EN BIT(31) +#define INTR_ENABLE_SDMA_ERR_EN BIT(22) +#define INTR_ENABLE_SDMA_TRIGG_EN BIT(21) +#define INTR_ENABLE_UNSUPP_CMD_EN BIT(19) +#define INTR_ENABLE_DDMA_TERR_EN BIT(18) +#define INTR_ENABLE_CDMA_TERR_EN BIT(17) +#define INTR_ENABLE_CDMA_IDLE_EN BIT(16) + +/* Controller internal state. */ +#define CTRL_STATUS 0x0118 +#define CTRL_STATUS_INIT_COMP BIT(9) +#define CTRL_STATUS_CTRL_BUSY BIT(8) + +/* Command Engine threads state. */ +#define TRD_STATUS 0x0120 + +/* Command Engine interrupt thread error status. */ +#define TRD_ERR_INT_STATUS 0x0128 +/* Command Engine interrupt thread error enable. */ +#define TRD_ERR_INT_STATUS_EN 0x0130 +/* Command Engine interrupt thread complete status. */ +#define TRD_COMP_INT_STATUS 0x0138 + +/* + * Transfer config 0 register. + * Configures data transfer parameters. + */ +#define TRAN_CFG_0 0x0400 +/* Offset value from the beginning of the page. */ +#define TRAN_CFG_0_OFFSET GENMASK(31, 16) +/* Numbers of sectors to transfer within singlNF device's page. */ +#define TRAN_CFG_0_SEC_CNT GENMASK(7, 0) + +/* + * Transfer config 1 register. + * Configures data transfer parameters. + */ +#define TRAN_CFG_1 0x0404 +/* Size of last data sector. */ +#define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16) +/* Size of not-last data sector. */ +#define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0) + +/* ECC engine configuration register 0. */ +#define ECC_CONFIG_0 0x0428 +/* Correction strength. */ +#define ECC_CONFIG_0_CORR_STR GENMASK(10, 8) +/* Enable erased pages detection mechanism. */ +#define ECC_CONFIG_0_ERASE_DET_EN BIT(1) +/* Enable controller ECC check bits generation and correction. */ +#define ECC_CONFIG_0_ECC_EN BIT(0) + +/* ECC engine configuration register 1. */ +#define ECC_CONFIG_1 0x042C + +/* Multiplane settings register. */ +#define MULTIPLANE_CFG 0x0434 +/* Cache operation settings. */ +#define CACHE_CFG 0x0438 + +/* DMA settings register. */ +#define DMA_SETINGS 0x043C +/* Enable SDMA error report on access unprepared slave DMA interface. */ +#define DMA_SETINGS_SDMA_ERR_RSP BIT(17) + +/* Transferred data block size for the slave DMA module. */ +#define SDMA_SIZE 0x0440 + +/* Thread number associated with transferred data block + * for the slave DMA module. + */ +#define SDMA_TRD_NUM 0x0444 +/* Thread number mask. */ +#define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0) + +#define CONTROL_DATA_CTRL 0x0494 +/* Thread number mask. */ +#define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0) + +#define CTRL_VERSION 0x800 +#define CTRL_VERSION_REV GENMASK(7, 0) + +/* Available hardware features of the controller. */ +#define CTRL_FEATURES 0x804 +/* Support for NV-DDR2/3 work mode. */ +#define CTRL_FEATURES_NVDDR_2_3 BIT(28) +/* Support for NV-DDR work mode. */ +#define CTRL_FEATURES_NVDDR BIT(27) +/* Support for asynchronous work mode. */ +#define CTRL_FEATURES_ASYNC BIT(26) +/* Support for asynchronous work mode. */ +#define CTRL_FEATURES_N_BANKS GENMASK(25, 24) +/* Slave and Master DMA data width. */ +#define CTRL_FEATURES_DMA_DWITH64 BIT(21) +/* Availability of Control Data feature.*/ +#define CTRL_FEATURES_CONTROL_DATA BIT(10) + +/* BCH Engine identification register 0 - correction strengths. */ +#define BCH_CFG_0 0x838 +#define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0) +#define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8) +#define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16) +#define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24) + +/* BCH Engine identification register 1 - correction strengths. */ +#define BCH_CFG_1 0x83C +#define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0) +#define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8) +#define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16) +#define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24) + +/* BCH Engine identification register 2 - sector sizes. */ +#define BCH_CFG_2 0x840 +#define BCH_CFG_2_SECT_0 GENMASK(15, 0) +#define BCH_CFG_2_SECT_1 GENMASK(31, 16) + +/* BCH Engine identification register 3. */ +#define BCH_CFG_3 0x844 + +/* Ready/Busy# line status. */ +#define RBN_SETINGS 0x1004 + +/* Common settings. */ +#define COMMON_SET 0x1008 +/* 16 bit device connected to the NAND Flash interface. */ +#define COMMON_SET_DEVICE_16BIT BIT(8) + +/* Skip_bytes registers. */ +#define SKIP_BYTES_CONF 0x100C +#define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16) +#define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0) + +#define SKIP_BYTES_OFFSET 0x1010 +#define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0) + +/* Timings configuration. */ +#define ASYNC_TOGGLE_TIMINGS 0x101c +#define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24) +#define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16) +#define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8) +#define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0) + +#define TIMINGS0 0x1024 +#define TIMINGS0_TADL GENMASK(31, 24) +#define TIMINGS0_TCCS GENMASK(23, 16) +#define TIMINGS0_TWHR GENMASK(15, 8) +#define TIMINGS0_TRHW GENMASK(7, 0) + +#define TIMINGS1 0x1028 +#define TIMINGS1_TRHZ GENMASK(31, 24) +#define TIMINGS1_TWB GENMASK(23, 16) +#define TIMINGS1_TVDLY GENMASK(7, 0) + +#define TIMINGS2 0x102c +#define TIMINGS2_TFEAT GENMASK(25, 16) +#define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8) +#define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0) + +/* Configuration of the resynchronization of slave DLL of PHY. */ +#define DLL_PHY_CTRL 0x1034 +#define DLL_PHY_CTRL_DLL_RST_N BIT(24) +#define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17) +#define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16) +#define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8) +#define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0) + +/* Register controlling DQ related timing. */ +#define PHY_DQ_TIMING 0x2000 +/* Register controlling DSQ related timing. */ +#define PHY_DQS_TIMING 0x2004 +#define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0) +#define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16) +#define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20) + +/* Register controlling the gate and loopback control related timing. */ +#define PHY_GATE_LPBK_CTRL 0x2008 +#define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19) + +/* Register holds the control for the master DLL logic. */ +#define PHY_DLL_MASTER_CTRL 0x200C +#define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23) + +/* Register holds the control for the slave DLL logic. */ +#define PHY_DLL_SLAVE_CTRL 0x2010 + +/* This register handles the global control settings for the PHY. */ +#define PHY_CTRL 0x2080 +#define PHY_CTRL_SDR_DQS BIT(14) +#define PHY_CTRL_PHONY_DQS GENMASK(9, 4) + +/* + * This register handles the global control settings + * for the termination selects for reads. + */ +#define PHY_TSEL 0x2084 + +/* Generic command layout. */ +#define GCMD_LAY_CS GENMASK_ULL(11, 8) +/* + * This bit informs the minicotroller if it has to wait for tWB + * after sending the last CMD/ADDR/DATA in the sequence. + */ +#define GCMD_LAY_TWB BIT_ULL(6) +/* Type of generic instruction. */ +#define GCMD_LAY_INSTR GENMASK_ULL(5, 0) + +/* Generic CMD sequence type. */ +#define GCMD_LAY_INSTR_CMD 0 +/* Generic ADDR sequence type. */ +#define GCMD_LAY_INSTR_ADDR 1 +/* Generic data transfer sequence type. */ +#define GCMD_LAY_INSTR_DATA 2 + +/* Input part of generic command type of input is command. */ +#define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16) + +/* Generic command address sequence - address fields. */ +#define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16) +/* Generic command address sequence - address size. */ +#define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11) + +/* Transfer direction field of generic command data sequence. */ +#define GCMD_DIR BIT_ULL(11) +/* Read transfer direction of generic command data sequence. */ +#define GCMD_DIR_READ 0 +/* Write transfer direction of generic command data sequence. */ +#define GCMD_DIR_WRITE 1 + +/* ECC enabled flag of generic command data sequence - ECC enabled. */ +#define GCMD_ECC_EN BIT_ULL(12) +/* Generic command data sequence - sector size. */ +#define GCMD_SECT_SIZE GENMASK_ULL(31, 16) +/* Generic command data sequence - sector count. */ +#define GCMD_SECT_CNT GENMASK_ULL(39, 32) +/* Generic command data sequence - last sector size. */ +#define GCMD_LAST_SIZE GENMASK_ULL(55, 40) + +/* CDMA descriptor fields. */ +/* Erase command type of CDMA descriptor. */ +#define CDMA_CT_ERASE 0x1000 +/* Program page command type of CDMA descriptor. */ +#define CDMA_CT_WR 0x2100 +/* Read page command type of CDMA descriptor. */ +#define CDMA_CT_RD 0x2200 + +/* Flash pointer memory shift. */ +#define CDMA_CFPTR_MEM_SHIFT 24 +/* Flash pointer memory mask. */ +#define CDMA_CFPTR_MEM GENMASK(26, 24) + +/* + * Command DMA descriptor flags. If set causes issue interrupt after + * the completion of descriptor processing. + */ +#define CDMA_CF_INT BIT(8) +/* + * Command DMA descriptor flags - the next descriptor + * address field is valid and descriptor processing should continue. + */ +#define CDMA_CF_CONT BIT(9) +/* DMA master flag of command DMA descriptor. */ +#define CDMA_CF_DMA_MASTER BIT(10) + +/* Operation complete status of command descriptor. */ +#define CDMA_CS_COMP BIT(15) +/* Operation complete status of command descriptor. */ +/* Command descriptor status - operation fail. */ +#define CDMA_CS_FAIL BIT(14) +/* Command descriptor status - page erased. */ +#define CDMA_CS_ERP BIT(11) +/* Command descriptor status - timeout occurred. */ +#define CDMA_CS_TOUT BIT(10) +/* + * Maximum amount of correction applied to one ECC sector. + * It is part of command descriptor status. + */ +#define CDMA_CS_MAXERR GENMASK(9, 2) +/* Command descriptor status - uncorrectable ECC error. */ +#define CDMA_CS_UNCE BIT(1) +/* Command descriptor status - descriptor error. */ +#define CDMA_CS_ERR BIT(0) + +/* Status of operation - OK. */ +#define STAT_OK 0 +/* Status of operation - FAIL. */ +#define STAT_FAIL 2 +/* Status of operation - uncorrectable ECC error. */ +#define STAT_ECC_UNCORR 3 +/* Status of operation - page erased. */ +#define STAT_ERASED 5 +/* Status of operation - correctable ECC error. */ +#define STAT_ECC_CORR 6 +/* Status of operation - unsuspected state. */ +#define STAT_UNKNOWN 7 +/* Status of operation - operation is not completed yet. */ +#define STAT_BUSY 0xFF + +#define BCH_MAX_NUM_CORR_CAPS 8 +#define BCH_MAX_NUM_SECTOR_SIZES 2 + +struct cadence_nand_timings { + u32 async_toggle_timings; + u32 timings0; + u32 timings1; + u32 timings2; + u32 dll_phy_ctrl; + u32 phy_ctrl; + u32 phy_dqs_timing; + u32 phy_gate_lpbk_ctrl; +}; + +/* Command DMA descriptor. */ +struct cadence_nand_cdma_desc { + /* Next descriptor address. */ + u64 next_pointer; + + /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */ + u32 flash_pointer; + /*field appears in HPNFC version 13*/ + u16 bank; + u16 rsvd0; + + /* Operation the controller needs to perform. */ + u16 command_type; + u16 rsvd1; + /* Flags for operation of this command. */ + u16 command_flags; + u16 rsvd2; + + /* System/host memory address required for data DMA commands. */ + u64 memory_pointer; + + /* Status of operation. */ + u32 status; + u32 rsvd3; + + /* Address pointer to sync buffer location. */ + u64 sync_flag_pointer; + + /* Controls the buffer sync mechanism. */ + u32 sync_arguments; + u32 rsvd4; + + /* Control data pointer. */ + u64 ctrl_data_ptr; +}; + +/* Interrupt status. */ +struct cadence_nand_irq_status { + /* Thread operation complete status. */ + u32 trd_status; + /* Thread operation error. */ + u32 trd_error; + /* Controller status. */ + u32 status; +}; + +/* Cadence NAND flash controller capabilities get from driver data. */ +struct cadence_nand_dt_devdata { + /* Skew value of the output signals of the NAND Flash interface. */ + u32 if_skew; + /* It informs if slave DMA interface is connected to DMA engine. */ + unsigned int has_dma:1; +}; + +/* Cadence NAND flash controller capabilities read from registers. */ +struct cdns_nand_caps { + /* Maximum number of banks supported by hardware. */ + u8 max_banks; + /* Slave and Master DMA data width in bytes (4 or 8). */ + u8 data_dma_width; + /* Control Data feature supported. */ + bool data_control_supp; + /* Is PHY type DLL. */ + bool is_phy_type_dll; +}; + +struct cdns_nand_ctrl { + struct device *dev; + struct nand_controller controller; + struct cadence_nand_cdma_desc *cdma_desc; + /* IP capability. */ + const struct cadence_nand_dt_devdata *caps1; + struct cdns_nand_caps caps2; + u8 ctrl_rev; + dma_addr_t dma_cdma_desc; + u8 *buf; + u32 buf_size; + u8 curr_corr_str_idx; + + /* Register interface. */ + void __iomem *reg; + + struct { + void __iomem *virt; + dma_addr_t dma; + } io; + + int irq; + /* Interrupts that have happened. */ + struct cadence_nand_irq_status irq_status; + /* Interrupts we are waiting for. */ + struct cadence_nand_irq_status irq_mask; + struct completion complete; + /* Protect irq_mask and irq_status. */ + spinlock_t irq_lock; + + int ecc_strengths[BCH_MAX_NUM_CORR_CAPS]; + struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES]; + struct nand_ecc_caps ecc_caps; + + int curr_trans_type; + + struct dma_chan *dmac; + + u32 nf_clk_rate; + /* + * Estimated Board delay. The value includes the total + * round trip delay for the signals and is used for deciding on values + * associated with data read capture. + */ + u32 board_delay; + + struct nand_chip *selected_chip; + + unsigned long assigned_cs; + struct list_head chips; +}; + +struct cdns_nand_chip { + struct cadence_nand_timings timings; + struct nand_chip chip; + u8 nsels; + struct list_head node; + + /* + * part of oob area of NAND flash memory page. + * This part is available for user to read or write. + */ + u32 avail_oob_size; + + /* Sector size. There are few sectors per mtd->writesize */ + u32 sector_size; + u32 sector_count; + + /* Offset of BBM. */ + u8 bbm_offs; + /* Number of bytes reserved for BBM. */ + u8 bbm_len; + /* ECC strength index. */ + u8 corr_str_idx; + + u8 cs[]; +}; + +struct ecc_info { + int (*calc_ecc_bytes)(int step_size, int strength); + int max_step_size; +}; + +static inline struct +cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip) +{ + return container_of(chip, struct cdns_nand_chip, chip); +} + +static inline struct +cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller) +{ + return container_of(controller, struct cdns_nand_ctrl, controller); +} + +static bool +cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf, + u32 buf_len) +{ + u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; + + return buf && virt_addr_valid(buf) && + likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) && + likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN)); +} + +static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl, + u32 reg_offset, u32 timeout_us, + u32 mask, bool is_clear) +{ + u32 val; + int ret; + + ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset, + val, !(val & mask) == is_clear, + 10, timeout_us); + + if (ret < 0) { + dev_err(cdns_ctrl->dev, + "Timeout while waiting for reg %x with mask %x is clear %d\n", + reg_offset, mask, is_clear); + } + + return ret; +} + +static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl, + bool enable) +{ + u32 reg; + + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, + 1000000, + CTRL_STATUS_CTRL_BUSY, true)) + return -ETIMEDOUT; + + reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); + + if (enable) + reg |= ECC_CONFIG_0_ECC_EN; + else + reg &= ~ECC_CONFIG_0_ECC_EN; + + writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); + + return 0; +} + +static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl, + u8 corr_str_idx) +{ + u32 reg; + + if (cdns_ctrl->curr_corr_str_idx == corr_str_idx) + return; + + reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); + reg &= ~ECC_CONFIG_0_CORR_STR; + reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx); + writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); + + cdns_ctrl->curr_corr_str_idx = corr_str_idx; +} + +static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl, + u8 strength) +{ + int i, corr_str_idx = -1; + + for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { + if (cdns_ctrl->ecc_strengths[i] == strength) { + corr_str_idx = i; + break; + } + } + + return corr_str_idx; +} + +static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl, + u16 marker_value) +{ + u32 reg; + + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, + 1000000, + CTRL_STATUS_CTRL_BUSY, true)) + return -ETIMEDOUT; + + reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); + reg &= ~SKIP_BYTES_MARKER_VALUE; + reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE, + marker_value); + + writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); + + return 0; +} + +static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl, + u8 num_of_bytes, + u32 offset_value, + int enable) +{ + u32 reg, skip_bytes_offset; + + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, + 1000000, + CTRL_STATUS_CTRL_BUSY, true)) + return -ETIMEDOUT; + + if (!enable) { + num_of_bytes = 0; + offset_value = 0; + } + + reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); + reg &= ~SKIP_BYTES_NUM_OF_BYTES; + reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES, + num_of_bytes); + skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE, + offset_value); + + writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); + writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET); + + return 0; +} + +/* Functions enables/disables hardware detection of erased data */ +static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl, + bool enable, + u8 bitflips_threshold) +{ + u32 reg; + + reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); + + if (enable) + reg |= ECC_CONFIG_0_ERASE_DET_EN; + else + reg &= ~ECC_CONFIG_0_ERASE_DET_EN; + + writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); + writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1); +} + +static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl, + bool bit_bus16) +{ + u32 reg; + + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, + 1000000, + CTRL_STATUS_CTRL_BUSY, true)) + return -ETIMEDOUT; + + reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET); + + if (!bit_bus16) + reg &= ~COMMON_SET_DEVICE_16BIT; + else + reg |= COMMON_SET_DEVICE_16BIT; + writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET); + + return 0; +} + +static void +cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl, + struct cadence_nand_irq_status *irq_status) +{ + writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS); + writel_relaxed(irq_status->trd_status, + cdns_ctrl->reg + TRD_COMP_INT_STATUS); + writel_relaxed(irq_status->trd_error, + cdns_ctrl->reg + TRD_ERR_INT_STATUS); +} + +static void +cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl, + struct cadence_nand_irq_status *irq_status) +{ + irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS); + irq_status->trd_status = readl_relaxed(cdns_ctrl->reg + + TRD_COMP_INT_STATUS); + irq_status->trd_error = readl_relaxed(cdns_ctrl->reg + + TRD_ERR_INT_STATUS); +} + +static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl, + struct cadence_nand_irq_status *irq_status) +{ + cadence_nand_read_int_status(cdns_ctrl, irq_status); + + return irq_status->status || irq_status->trd_status || + irq_status->trd_error; +} + +static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl) +{ + unsigned long flags; + + spin_lock_irqsave(&cdns_ctrl->irq_lock, flags); + memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status)); + memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask)); + spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags); +} + +/* + * This is the interrupt service routine. It handles all interrupts + * sent to this device. + */ +static irqreturn_t cadence_nand_isr(int irq, void *dev_id) +{ + struct cdns_nand_ctrl *cdns_ctrl = dev_id; + struct cadence_nand_irq_status irq_status; + irqreturn_t result = IRQ_NONE; + + spin_lock(&cdns_ctrl->irq_lock); + + if (irq_detected(cdns_ctrl, &irq_status)) { + /* Handle interrupt. */ + /* First acknowledge it. */ + cadence_nand_clear_interrupt(cdns_ctrl, &irq_status); + /* Status in the device context for someone to read. */ + cdns_ctrl->irq_status.status |= irq_status.status; + cdns_ctrl->irq_status.trd_status |= irq_status.trd_status; + cdns_ctrl->irq_status.trd_error |= irq_status.trd_error; + /* Notify anyone who cares that it happened. */ + complete(&cdns_ctrl->complete); + /* Tell the OS that we've handled this. */ + result = IRQ_HANDLED; + } + spin_unlock(&cdns_ctrl->irq_lock); + + return result; +} + +static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl, + struct cadence_nand_irq_status *irq_mask) +{ + writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status, + cdns_ctrl->reg + INTR_ENABLE); + + writel_relaxed(irq_mask->trd_error, + cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN); +} + +static void +cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl, + struct cadence_nand_irq_status *irq_mask, + struct cadence_nand_irq_status *irq_status) +{ + unsigned long timeout = msecs_to_jiffies(10000); + unsigned long time_left; + + time_left = wait_for_completion_timeout(&cdns_ctrl->complete, + timeout); + + *irq_status = cdns_ctrl->irq_status; + if (time_left == 0) { + /* Timeout error. */ + dev_err(cdns_ctrl->dev, "timeout occurred:\n"); + dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n", + irq_status->status, irq_mask->status); + dev_err(cdns_ctrl->dev, + "\ttrd_status = 0x%x, trd_status mask = 0x%x\n", + irq_status->trd_status, irq_mask->trd_status); + dev_err(cdns_ctrl->dev, + "\t trd_error = 0x%x, trd_error mask = 0x%x\n", + irq_status->trd_error, irq_mask->trd_error); + } +} + +/* Execute generic command on NAND controller. */ +static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl, + u8 chip_nr, + u64 mini_ctrl_cmd) +{ + u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg; + + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr); + mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF; + mini_ctrl_cmd_h = mini_ctrl_cmd >> 32; + + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, + 1000000, + CTRL_STATUS_CTRL_BUSY, true)) + return -ETIMEDOUT; + + cadence_nand_reset_irq(cdns_ctrl); + + writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2); + writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3); + + /* Select generic command. */ + reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN); + /* Thread number. */ + reg |= FIELD_PREP(CMD_REG0_TN, 0); + + /* Issue command. */ + writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); + + return 0; +} + +/* Wait for data on slave DMA interface. */ +static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl, + u8 *out_sdma_trd, + u32 *out_sdma_size) +{ + struct cadence_nand_irq_status irq_mask, irq_status; + + irq_mask.trd_status = 0; + irq_mask.trd_error = 0; + irq_mask.status = INTR_STATUS_SDMA_TRIGG + | INTR_STATUS_SDMA_ERR + | INTR_STATUS_UNSUPP_CMD; + + cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); + cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); + if (irq_status.status == 0) { + dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n"); + return -ETIMEDOUT; + } + + if (irq_status.status & INTR_STATUS_SDMA_TRIGG) { + *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE); + *out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM); + *out_sdma_trd = + FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd); + } else { + dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n", + irq_status.status); + return -EIO; + } + + return 0; +} + +static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl) +{ + u32 reg; + + reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES); + + cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg); + + if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg)) + cdns_ctrl->caps2.data_dma_width = 8; + else + cdns_ctrl->caps2.data_dma_width = 4; + + if (reg & CTRL_FEATURES_CONTROL_DATA) + cdns_ctrl->caps2.data_control_supp = true; + + if (reg & (CTRL_FEATURES_NVDDR_2_3 + | CTRL_FEATURES_NVDDR)) + cdns_ctrl->caps2.is_phy_type_dll = true; +} + +/* Prepare CDMA descriptor. */ +static void +cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl, + char nf_mem, u32 flash_ptr, char *mem_ptr, + char *ctrl_data_ptr, u16 ctype) +{ + struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc; + + memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc)); + + /* Set fields for one descriptor. */ + cdma_desc->flash_pointer = flash_ptr; + if (cdns_ctrl->ctrl_rev >= 13) + cdma_desc->bank = nf_mem; + else + cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT); + + cdma_desc->command_flags |= CDMA_CF_DMA_MASTER; + cdma_desc->command_flags |= CDMA_CF_INT; + + cdma_desc->memory_pointer = (uintptr_t)mem_ptr; + cdma_desc->status = 0; + cdma_desc->sync_flag_pointer = 0; + cdma_desc->sync_arguments = 0; + + cdma_desc->command_type = ctype; + cdma_desc->ctrl_data_ptr = (uintptr_t)ctrl_data_ptr; +} + +static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl, + u32 desc_status) +{ + if (desc_status & CDMA_CS_ERP) + return STAT_ERASED; + + if (desc_status & CDMA_CS_UNCE) + return STAT_ECC_UNCORR; + + if (desc_status & CDMA_CS_ERR) { + dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n"); + return STAT_FAIL; + } + + if (FIELD_GET(CDMA_CS_MAXERR, desc_status)) + return STAT_ECC_CORR; + + return STAT_FAIL; +} + +static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl) +{ + struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc; + u8 status = STAT_BUSY; + + if (desc_ptr->status & CDMA_CS_FAIL) { + status = cadence_nand_check_desc_error(cdns_ctrl, + desc_ptr->status); + dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status); + } else if (desc_ptr->status & CDMA_CS_COMP) { + /* Descriptor finished with no errors. */ + if (desc_ptr->command_flags & CDMA_CF_CONT) { + dev_info(cdns_ctrl->dev, "DMA unsupported flag is set"); + status = STAT_UNKNOWN; + } else { + /* Last descriptor. */ + status = STAT_OK; + } + } + + return status; +} + +static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl, + u8 thread) +{ + u32 reg; + int status; + + /* Wait for thread ready. */ + status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS, + 1000000, + BIT(thread), true); + if (status) + return status; + + cadence_nand_reset_irq(cdns_ctrl); + + writel_relaxed((u32)cdns_ctrl->dma_cdma_desc, + cdns_ctrl->reg + CMD_REG2); + writel_relaxed(0, cdns_ctrl->reg + CMD_REG3); + + /* Select CDMA mode. */ + reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA); + /* Thread number. */ + reg |= FIELD_PREP(CMD_REG0_TN, thread); + /* Issue command. */ + writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); + + return 0; +} + +/* Send SDMA command and wait for finish. */ +static u32 +cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl, + u8 thread) +{ + struct cadence_nand_irq_status irq_mask, irq_status = {0}; + int status; + + irq_mask.trd_status = BIT(thread); + irq_mask.trd_error = BIT(thread); + irq_mask.status = INTR_STATUS_CDMA_TERR; + + cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); + + status = cadence_nand_cdma_send(cdns_ctrl, thread); + if (status) + return status; + + cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); + + if (irq_status.status == 0 && irq_status.trd_status == 0 && + irq_status.trd_error == 0) { + dev_err(cdns_ctrl->dev, "CDMA command timeout\n"); + return -ETIMEDOUT; + } + if (irq_status.status & irq_mask.status) { + dev_err(cdns_ctrl->dev, "CDMA command failed\n"); + return -EIO; + } + + return 0; +} + +/* + * ECC size depends on configured ECC strength and on maximum supported + * ECC step size. + */ +static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength) +{ + int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8); + + return ALIGN(nbytes, 2); +} + +#define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \ + static int \ + cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \ + int strength)\ + {\ + return cadence_nand_calc_ecc_bytes(max_step_size, strength);\ + } + +CADENCE_NAND_CALC_ECC_BYTES(256) +CADENCE_NAND_CALC_ECC_BYTES(512) +CADENCE_NAND_CALC_ECC_BYTES(1024) +CADENCE_NAND_CALC_ECC_BYTES(2048) +CADENCE_NAND_CALC_ECC_BYTES(4096) + +/* Function reads BCH capabilities. */ +static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl) +{ + struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps; + int max_step_size = 0, nstrengths, i; + u32 reg; + + reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0); + cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg); + cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg); + cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg); + cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg); + + reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1); + cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg); + cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg); + cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg); + cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg); + + reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2); + cdns_ctrl->ecc_stepinfos[0].stepsize = + FIELD_GET(BCH_CFG_2_SECT_0, reg); + + cdns_ctrl->ecc_stepinfos[1].stepsize = + FIELD_GET(BCH_CFG_2_SECT_1, reg); + + nstrengths = 0; + for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { + if (cdns_ctrl->ecc_strengths[i] != 0) + nstrengths++; + } + + ecc_caps->nstepinfos = 0; + for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) { + /* ECC strengths are common for all step infos. */ + cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths; + cdns_ctrl->ecc_stepinfos[i].strengths = + cdns_ctrl->ecc_strengths; + + if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0) + ecc_caps->nstepinfos++; + + if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size) + max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize; + } + ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0]; + + switch (max_step_size) { + case 256: + ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256; + break; + case 512: + ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512; + break; + case 1024: + ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024; + break; + case 2048: + ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048; + break; + case 4096: + ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096; + break; + default: + dev_err(cdns_ctrl->dev, + "Unsupported sector size(ecc step size) %d\n", + max_step_size); + return -EIO; + } + + return 0; +} + +/* Hardware initialization. */ +static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl) +{ + int status; + u32 reg; + + status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, + 1000000, + CTRL_STATUS_INIT_COMP, false); + if (status) + return status; + + reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION); + cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg); + + dev_info(cdns_ctrl->dev, + "%s: cadence nand controller version reg %x\n", + __func__, reg); + + /* Disable cache and multiplane. */ + writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG); + writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG); + + /* Clear all interrupts. */ + writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS); + + cadence_nand_get_caps(cdns_ctrl); + cadence_nand_read_bch_caps(cdns_ctrl); + + /* + * Set IO width access to 8. + * It is because during SW device discovering width access + * is expected to be 8. + */ + status = cadence_nand_set_access_width16(cdns_ctrl, false); + + return status; +} + +#define TT_MAIN_OOB_AREAS 2 +#define TT_RAW_PAGE 3 +#define TT_BBM 4 +#define TT_MAIN_OOB_AREA_EXT 5 + +/* Prepare size of data to transfer. */ +static void +cadence_nand_prepare_data_size(struct nand_chip *chip, + int transfer_type) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + u32 sec_size = 0, offset = 0, sec_cnt = 1; + u32 last_sec_size = cdns_chip->sector_size; + u32 data_ctrl_size = 0; + u32 reg = 0; + + if (cdns_ctrl->curr_trans_type == transfer_type) + return; + + switch (transfer_type) { + case TT_MAIN_OOB_AREA_EXT: + sec_cnt = cdns_chip->sector_count; + sec_size = cdns_chip->sector_size; + data_ctrl_size = cdns_chip->avail_oob_size; + break; + case TT_MAIN_OOB_AREAS: + sec_cnt = cdns_chip->sector_count; + last_sec_size = cdns_chip->sector_size + + cdns_chip->avail_oob_size; + sec_size = cdns_chip->sector_size; + break; + case TT_RAW_PAGE: + last_sec_size = mtd->writesize + mtd->oobsize; + break; + case TT_BBM: + offset = mtd->writesize + cdns_chip->bbm_offs; + last_sec_size = 8; + break; + } + + reg = 0; + reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset); + reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt); + writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0); + + reg = 0; + reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size); + reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size); + writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1); + + if (cdns_ctrl->caps2.data_control_supp) { + reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL); + reg &= ~CONTROL_DATA_CTRL_SIZE; + reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size); + writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL); + } + + cdns_ctrl->curr_trans_type = transfer_type; +} + +static int +cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr, + int page, void *buf, void *ctrl_dat, u32 buf_size, + u32 ctrl_dat_size, enum dma_data_direction dir, + bool with_ecc) +{ + dma_addr_t dma_buf, dma_ctrl_dat = 0; + u8 thread_nr = chip_nr; + int status; + u16 ctype; + + if (dir == DMA_FROM_DEVICE) + ctype = CDMA_CT_RD; + else + ctype = CDMA_CT_WR; + + cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc); + + dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir); + if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) { + dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); + return -EIO; + } + + if (ctrl_dat && ctrl_dat_size) { + dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat, + ctrl_dat_size, dir); + if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) { + dma_unmap_single(cdns_ctrl->dev, dma_buf, + buf_size, dir); + dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); + return -EIO; + } + } + + cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page, + (void *)dma_buf, (void *)dma_ctrl_dat, + ctype); + + status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); + + dma_unmap_single(cdns_ctrl->dev, dma_buf, + buf_size, dir); + + if (ctrl_dat && ctrl_dat_size) + dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat, + ctrl_dat_size, dir); + if (status) + return status; + + return cadence_nand_cdma_finish(cdns_ctrl); +} + +static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl, + struct cadence_nand_timings *t) +{ + writel_relaxed(t->async_toggle_timings, + cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS); + writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0); + writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1); + writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2); + + if (cdns_ctrl->caps2.is_phy_type_dll) + writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL); + + writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL); + + if (cdns_ctrl->caps2.is_phy_type_dll) { + writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL); + writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING); + writel_relaxed(t->phy_dqs_timing, + cdns_ctrl->reg + PHY_DQS_TIMING); + writel_relaxed(t->phy_gate_lpbk_ctrl, + cdns_ctrl->reg + PHY_GATE_LPBK_CTRL); + writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE, + cdns_ctrl->reg + PHY_DLL_MASTER_CTRL); + writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL); + } +} + +static int cadence_nand_select_target(struct nand_chip *chip) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + + if (chip == cdns_ctrl->selected_chip) + return 0; + + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, + 1000000, + CTRL_STATUS_CTRL_BUSY, true)) + return -ETIMEDOUT; + + cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings); + + cadence_nand_set_ecc_strength(cdns_ctrl, + cdns_chip->corr_str_idx); + + cadence_nand_set_erase_detection(cdns_ctrl, true, + chip->ecc.strength); + + cdns_ctrl->curr_trans_type = -1; + cdns_ctrl->selected_chip = chip; + + return 0; +} + +static int cadence_nand_erase(struct nand_chip *chip, u32 page) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + int status; + u8 thread_nr = cdns_chip->cs[chip->cur_cs]; + + cadence_nand_cdma_desc_prepare(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + page, NULL, NULL, + CDMA_CT_ERASE); + status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); + if (status) { + dev_err(cdns_ctrl->dev, "erase operation failed\n"); + return -EIO; + } + + status = cadence_nand_cdma_finish(cdns_ctrl); + if (status) + return status; + + return 0; +} + +static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf) +{ + int status; + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + + cadence_nand_prepare_data_size(chip, TT_BBM); + + cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); + + /* + * Read only bad block marker from offset + * defined by a memory manufacturer. + */ + status = cadence_nand_cdma_transfer(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + page, cdns_ctrl->buf, NULL, + mtd->oobsize, + 0, DMA_FROM_DEVICE, false); + if (status) { + dev_err(cdns_ctrl->dev, "read BBM failed\n"); + return -EIO; + } + + memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len); + + return 0; +} + +static int cadence_nand_write_page(struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + int status; + u16 marker_val = 0xFFFF; + + status = cadence_nand_select_target(chip); + if (status) + return status; + + cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, + mtd->writesize + + cdns_chip->bbm_offs, + 1); + + if (oob_required) { + marker_val = *(u16 *)(chip->oob_poi + + cdns_chip->bbm_offs); + } else { + /* Set oob data to 0xFF. */ + memset(cdns_ctrl->buf + mtd->writesize, 0xFF, + cdns_chip->avail_oob_size); + } + + cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val); + + cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); + + if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && + cdns_ctrl->caps2.data_control_supp) { + u8 *oob; + + if (oob_required) + oob = chip->oob_poi; + else + oob = cdns_ctrl->buf + mtd->writesize; + + status = cadence_nand_cdma_transfer(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + page, (void *)buf, oob, + mtd->writesize, + cdns_chip->avail_oob_size, + DMA_TO_DEVICE, true); + if (status) { + dev_err(cdns_ctrl->dev, "write page failed\n"); + return -EIO; + } + + return 0; + } + + if (oob_required) { + /* Transfer the data to the oob area. */ + memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi, + cdns_chip->avail_oob_size); + } + + memcpy(cdns_ctrl->buf, buf, mtd->writesize); + + cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); + + return cadence_nand_cdma_transfer(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + page, cdns_ctrl->buf, NULL, + mtd->writesize + + cdns_chip->avail_oob_size, + 0, DMA_TO_DEVICE, true); +} + +static int cadence_nand_write_oob(struct nand_chip *chip, int page) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + + memset(cdns_ctrl->buf, 0xFF, mtd->writesize); + + return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page); +} + +static int cadence_nand_write_page_raw(struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + int writesize = mtd->writesize; + int oobsize = mtd->oobsize; + int ecc_steps = chip->ecc.steps; + int ecc_size = chip->ecc.size; + int ecc_bytes = chip->ecc.bytes; + void *tmp_buf = cdns_ctrl->buf; + int oob_skip = cdns_chip->bbm_len; + size_t size = writesize + oobsize; + int i, pos, len; + int status = 0; + + status = cadence_nand_select_target(chip); + if (status) + return status; + + /* + * Fill the buffer with 0xff first except the full page transfer. + * This simplifies the logic. + */ + if (!buf || !oob_required) + memset(tmp_buf, 0xff, size); + + cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); + + /* Arrange the buffer for syndrome payload/ecc layout. */ + if (buf) { + for (i = 0; i < ecc_steps; i++) { + pos = i * (ecc_size + ecc_bytes); + len = ecc_size; + + if (pos >= writesize) + pos += oob_skip; + else if (pos + len > writesize) + len = writesize - pos; + + memcpy(tmp_buf + pos, buf, len); + buf += len; + if (len < ecc_size) { + len = ecc_size - len; + memcpy(tmp_buf + writesize + oob_skip, buf, + len); + buf += len; + } + } + } + + if (oob_required) { + const u8 *oob = chip->oob_poi; + u32 oob_data_offset = (cdns_chip->sector_count - 1) * + (cdns_chip->sector_size + chip->ecc.bytes) + + cdns_chip->sector_size + oob_skip; + + /* BBM at the beginning of the OOB area. */ + memcpy(tmp_buf + writesize, oob, oob_skip); + + /* OOB free. */ + memcpy(tmp_buf + oob_data_offset, oob, + cdns_chip->avail_oob_size); + oob += cdns_chip->avail_oob_size; + + /* OOB ECC. */ + for (i = 0; i < ecc_steps; i++) { + pos = ecc_size + i * (ecc_size + ecc_bytes); + if (i == (ecc_steps - 1)) + pos += cdns_chip->avail_oob_size; + + len = ecc_bytes; + + if (pos >= writesize) + pos += oob_skip; + else if (pos + len > writesize) + len = writesize - pos; + + memcpy(tmp_buf + pos, oob, len); + oob += len; + if (len < ecc_bytes) { + len = ecc_bytes - len; + memcpy(tmp_buf + writesize + oob_skip, oob, + len); + oob += len; + } + } + } + + cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); + + return cadence_nand_cdma_transfer(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + page, cdns_ctrl->buf, NULL, + mtd->writesize + + mtd->oobsize, + 0, DMA_TO_DEVICE, false); +} + +static int cadence_nand_write_oob_raw(struct nand_chip *chip, + int page) +{ + return cadence_nand_write_page_raw(chip, NULL, true, page); +} + +static int cadence_nand_read_page(struct nand_chip *chip, + u8 *buf, int oob_required, int page) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + int status = 0; + int ecc_err_count = 0; + + status = cadence_nand_select_target(chip); + if (status) + return status; + + cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, + mtd->writesize + + cdns_chip->bbm_offs, 1); + + /* + * If data buffer can be accessed by DMA and data_control feature + * is supported then transfer data and oob directly. + */ + if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && + cdns_ctrl->caps2.data_control_supp) { + u8 *oob; + + if (oob_required) + oob = chip->oob_poi; + else + oob = cdns_ctrl->buf + mtd->writesize; + + cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); + status = cadence_nand_cdma_transfer(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + page, buf, oob, + mtd->writesize, + cdns_chip->avail_oob_size, + DMA_FROM_DEVICE, true); + /* Otherwise use bounce buffer. */ + } else { + cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); + status = cadence_nand_cdma_transfer(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + page, cdns_ctrl->buf, + NULL, mtd->writesize + + cdns_chip->avail_oob_size, + 0, DMA_FROM_DEVICE, true); + + memcpy(buf, cdns_ctrl->buf, mtd->writesize); + if (oob_required) + memcpy(chip->oob_poi, + cdns_ctrl->buf + mtd->writesize, + mtd->oobsize); + } + + switch (status) { + case STAT_ECC_UNCORR: + mtd->ecc_stats.failed++; + ecc_err_count++; + break; + case STAT_ECC_CORR: + ecc_err_count = FIELD_GET(CDMA_CS_MAXERR, + cdns_ctrl->cdma_desc->status); + mtd->ecc_stats.corrected += ecc_err_count; + break; + case STAT_ERASED: + case STAT_OK: + break; + default: + dev_err(cdns_ctrl->dev, "read page failed\n"); + return -EIO; + } + + if (oob_required) + if (cadence_nand_read_bbm(chip, page, chip->oob_poi)) + return -EIO; + + return ecc_err_count; +} + +/* Reads OOB data from the device. */ +static int cadence_nand_read_oob(struct nand_chip *chip, int page) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + + return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page); +} + +static int cadence_nand_read_page_raw(struct nand_chip *chip, + u8 *buf, int oob_required, int page) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + int oob_skip = cdns_chip->bbm_len; + int writesize = mtd->writesize; + int ecc_steps = chip->ecc.steps; + int ecc_size = chip->ecc.size; + int ecc_bytes = chip->ecc.bytes; + void *tmp_buf = cdns_ctrl->buf; + int i, pos, len; + int status = 0; + + status = cadence_nand_select_target(chip); + if (status) + return status; + + cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); + + cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); + status = cadence_nand_cdma_transfer(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + page, cdns_ctrl->buf, NULL, + mtd->writesize + + mtd->oobsize, + 0, DMA_FROM_DEVICE, false); + + switch (status) { + case STAT_ERASED: + case STAT_OK: + break; + default: + dev_err(cdns_ctrl->dev, "read raw page failed\n"); + return -EIO; + } + + /* Arrange the buffer for syndrome payload/ecc layout. */ + if (buf) { + for (i = 0; i < ecc_steps; i++) { + pos = i * (ecc_size + ecc_bytes); + len = ecc_size; + + if (pos >= writesize) + pos += oob_skip; + else if (pos + len > writesize) + len = writesize - pos; + + memcpy(buf, tmp_buf + pos, len); + buf += len; + if (len < ecc_size) { + len = ecc_size - len; + memcpy(buf, tmp_buf + writesize + oob_skip, + len); + buf += len; + } + } + } + + if (oob_required) { + u8 *oob = chip->oob_poi; + u32 oob_data_offset = (cdns_chip->sector_count - 1) * + (cdns_chip->sector_size + chip->ecc.bytes) + + cdns_chip->sector_size + oob_skip; + + /* OOB free. */ + memcpy(oob, tmp_buf + oob_data_offset, + cdns_chip->avail_oob_size); + + /* BBM at the beginning of the OOB area. */ + memcpy(oob, tmp_buf + writesize, oob_skip); + + oob += cdns_chip->avail_oob_size; + + /* OOB ECC */ + for (i = 0; i < ecc_steps; i++) { + pos = ecc_size + i * (ecc_size + ecc_bytes); + len = ecc_bytes; + + if (i == (ecc_steps - 1)) + pos += cdns_chip->avail_oob_size; + + if (pos >= writesize) + pos += oob_skip; + else if (pos + len > writesize) + len = writesize - pos; + + memcpy(oob, tmp_buf + pos, len); + oob += len; + if (len < ecc_bytes) { + len = ecc_bytes - len; + memcpy(oob, tmp_buf + writesize + oob_skip, + len); + oob += len; + } + } + } + + return 0; +} + +static int cadence_nand_read_oob_raw(struct nand_chip *chip, + int page) +{ + return cadence_nand_read_page_raw(chip, NULL, true, page); +} + +static void cadence_nand_slave_dma_transfer_finished(void *data) +{ + struct completion *finished = data; + + complete(finished); +} + +static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl, + void *buf, + dma_addr_t dev_dma, size_t len, + enum dma_data_direction dir) +{ + DECLARE_COMPLETION_ONSTACK(finished); + struct dma_chan *chan; + struct dma_device *dma_dev; + dma_addr_t src_dma, dst_dma, buf_dma; + struct dma_async_tx_descriptor *tx; + dma_cookie_t cookie; + + chan = cdns_ctrl->dmac; + dma_dev = chan->device; + + buf_dma = dma_map_single(dma_dev->dev, buf, len, dir); + if (dma_mapping_error(dma_dev->dev, buf_dma)) { + dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); + goto err; + } + + if (dir == DMA_FROM_DEVICE) { + src_dma = cdns_ctrl->io.dma; + dst_dma = buf_dma; + } else { + src_dma = buf_dma; + dst_dma = cdns_ctrl->io.dma; + } + + tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len, + DMA_CTRL_ACK | DMA_PREP_INTERRUPT); + if (!tx) { + dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n"); + goto err_unmap; + } + + tx->callback = cadence_nand_slave_dma_transfer_finished; + tx->callback_param = &finished; + + cookie = dmaengine_submit(tx); + if (dma_submit_error(cookie)) { + dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n"); + goto err_unmap; + } + + dma_async_issue_pending(cdns_ctrl->dmac); + wait_for_completion(&finished); + + dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); + + return 0; + +err_unmap: + dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); + +err: + dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n"); + + return -EIO; +} + +static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl, + u8 *buf, int len) +{ + u8 thread_nr = 0; + u32 sdma_size; + int status; + + /* Wait until slave DMA interface is ready to data transfer. */ + status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); + if (status) + return status; + + if (!cdns_ctrl->caps1->has_dma) { + int len_in_words = len >> 2; + + /* read alingment data */ + ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words); + if (sdma_size > len) { + /* read rest data from slave DMA interface if any */ + ioread32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf, + sdma_size / 4 - len_in_words); + /* copy rest of data */ + memcpy(buf + (len_in_words << 2), cdns_ctrl->buf, + len - (len_in_words << 2)); + } + return 0; + } + + if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { + status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf, + cdns_ctrl->io.dma, + len, DMA_FROM_DEVICE); + if (status == 0) + return 0; + + dev_warn(cdns_ctrl->dev, + "Slave DMA transfer failed. Try again using bounce buffer."); + } + + /* If DMA transfer is not possible or failed then use bounce buffer. */ + status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, + cdns_ctrl->io.dma, + sdma_size, DMA_FROM_DEVICE); + + if (status) { + dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); + return status; + } + + memcpy(buf, cdns_ctrl->buf, len); + + return 0; +} + +static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl, + const u8 *buf, int len) +{ + u8 thread_nr = 0; + u32 sdma_size; + int status; + + /* Wait until slave DMA interface is ready to data transfer. */ + status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); + if (status) + return status; + + if (!cdns_ctrl->caps1->has_dma) { + int len_in_words = len >> 2; + + iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words); + if (sdma_size > len) { + /* copy rest of data */ + memcpy(cdns_ctrl->buf, buf + (len_in_words << 2), + len - (len_in_words << 2)); + /* write all expected by nand controller data */ + iowrite32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf, + sdma_size / 4 - len_in_words); + } + + return 0; + } + + if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { + status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf, + cdns_ctrl->io.dma, + len, DMA_TO_DEVICE); + if (status == 0) + return 0; + + dev_warn(cdns_ctrl->dev, + "Slave DMA transfer failed. Try again using bounce buffer."); + } + + /* If DMA transfer is not possible or failed then use bounce buffer. */ + memcpy(cdns_ctrl->buf, buf, len); + + status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, + cdns_ctrl->io.dma, + sdma_size, DMA_TO_DEVICE); + + if (status) + dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); + + return status; +} + +static int cadence_nand_force_byte_access(struct nand_chip *chip, + bool force_8bit) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + int status; + + /* + * Callers of this function do not verify if the NAND is using a 16-bit + * an 8-bit bus for normal operations, so we need to take care of that + * here by leaving the configuration unchanged if the NAND does not have + * the NAND_BUSWIDTH_16 flag set. + */ + if (!(chip->options & NAND_BUSWIDTH_16)) + return 0; + + status = cadence_nand_set_access_width16(cdns_ctrl, !force_8bit); + + return status; +} + +static int cadence_nand_cmd_opcode(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + const struct nand_op_instr *instr; + unsigned int op_id = 0; + u64 mini_ctrl_cmd = 0; + int ret; + + instr = &subop->instrs[op_id]; + + if (instr->delay_ns > 0) + mini_ctrl_cmd |= GCMD_LAY_TWB; + + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, + GCMD_LAY_INSTR_CMD); + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD, + instr->ctx.cmd.opcode); + + ret = cadence_nand_generic_cmd_send(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + mini_ctrl_cmd); + if (ret) + dev_err(cdns_ctrl->dev, "send cmd %x failed\n", + instr->ctx.cmd.opcode); + + return ret; +} + +static int cadence_nand_cmd_address(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + const struct nand_op_instr *instr; + unsigned int op_id = 0; + u64 mini_ctrl_cmd = 0; + unsigned int offset, naddrs; + u64 address = 0; + const u8 *addrs; + int ret; + int i; + + instr = &subop->instrs[op_id]; + + if (instr->delay_ns > 0) + mini_ctrl_cmd |= GCMD_LAY_TWB; + + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, + GCMD_LAY_INSTR_ADDR); + + offset = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + addrs = &instr->ctx.addr.addrs[offset]; + + for (i = 0; i < naddrs; i++) + address |= (u64)addrs[i] << (8 * i); + + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR, + address); + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE, + naddrs - 1); + + ret = cadence_nand_generic_cmd_send(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + mini_ctrl_cmd); + if (ret) + dev_err(cdns_ctrl->dev, "send address %llx failed\n", address); + + return ret; +} + +static int cadence_nand_cmd_erase(struct nand_chip *chip, + const struct nand_subop *subop) +{ + unsigned int op_id; + + if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) { + int i; + const struct nand_op_instr *instr = NULL; + unsigned int offset, naddrs; + const u8 *addrs; + u32 page = 0; + + instr = &subop->instrs[1]; + offset = nand_subop_get_addr_start_off(subop, 1); + naddrs = nand_subop_get_num_addr_cyc(subop, 1); + addrs = &instr->ctx.addr.addrs[offset]; + + for (i = 0; i < naddrs; i++) + page |= (u32)addrs[i] << (8 * i); + + return cadence_nand_erase(chip, page); + } + + /* + * If it is not an erase operation then handle operation + * by calling exec_op function. + */ + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + int ret; + const struct nand_operation nand_op = { + .cs = chip->cur_cs, + .instrs = &subop->instrs[op_id], + .ninstrs = 1}; + ret = chip->controller->ops->exec_op(chip, &nand_op, false); + if (ret) + return ret; + } + + return 0; +} + +static int cadence_nand_cmd_data(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + const struct nand_op_instr *instr; + unsigned int offset, op_id = 0; + u64 mini_ctrl_cmd = 0; + int len = 0; + int ret; + + instr = &subop->instrs[op_id]; + + if (instr->delay_ns > 0) + mini_ctrl_cmd |= GCMD_LAY_TWB; + + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, + GCMD_LAY_INSTR_DATA); + + if (instr->type == NAND_OP_DATA_OUT_INSTR) + mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR, + GCMD_DIR_WRITE); + + len = nand_subop_get_data_len(subop, op_id); + offset = nand_subop_get_data_start_off(subop, op_id); + mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1); + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len); + if (instr->ctx.data.force_8bit) { + ret = cadence_nand_force_byte_access(chip, true); + if (ret) { + dev_err(cdns_ctrl->dev, + "cannot change byte access generic data cmd failed\n"); + return ret; + } + } + + ret = cadence_nand_generic_cmd_send(cdns_ctrl, + cdns_chip->cs[chip->cur_cs], + mini_ctrl_cmd); + if (ret) { + dev_err(cdns_ctrl->dev, "send generic data cmd failed\n"); + return ret; + } + + if (instr->type == NAND_OP_DATA_IN_INSTR) { + void *buf = instr->ctx.data.buf.in + offset; + + ret = cadence_nand_read_buf(cdns_ctrl, buf, len); + } else { + const void *buf = instr->ctx.data.buf.out + offset; + + ret = cadence_nand_write_buf(cdns_ctrl, buf, len); + } + + if (ret) { + dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n"); + return ret; + } + + if (instr->ctx.data.force_8bit) { + ret = cadence_nand_force_byte_access(chip, false); + if (ret) { + dev_err(cdns_ctrl->dev, + "cannot change byte access generic data cmd failed\n"); + } + } + + return ret; +} + +static int cadence_nand_cmd_waitrdy(struct nand_chip *chip, + const struct nand_subop *subop) +{ + int status; + unsigned int op_id = 0; + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + const struct nand_op_instr *instr = &subop->instrs[op_id]; + u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000; + + status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS, + timeout_us, + BIT(cdns_chip->cs[chip->cur_cs]), + false); + return status; +} + +static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN( + cadence_nand_cmd_erase, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + cadence_nand_cmd_opcode, + NAND_OP_PARSER_PAT_CMD_ELEM(false)), + NAND_OP_PARSER_PATTERN( + cadence_nand_cmd_address, + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)), + NAND_OP_PARSER_PATTERN( + cadence_nand_cmd_data, + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)), + NAND_OP_PARSER_PATTERN( + cadence_nand_cmd_data, + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)), + NAND_OP_PARSER_PATTERN( + cadence_nand_cmd_waitrdy, + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)) + ); + +static int cadence_nand_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + int status = cadence_nand_select_target(chip); + + if (status) + return status; + + return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op, + check_only); +} + +static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + + if (section) + return -ERANGE; + + oobregion->offset = cdns_chip->bbm_len; + oobregion->length = cdns_chip->avail_oob_size + - cdns_chip->bbm_len; + + return 0; +} + +static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + + if (section) + return -ERANGE; + + oobregion->offset = cdns_chip->avail_oob_size; + oobregion->length = chip->ecc.total; + + return 0; +} + +static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = { + .free = cadence_nand_ooblayout_free, + .ecc = cadence_nand_ooblayout_ecc, +}; + +static int calc_cycl(u32 timing, u32 clock) +{ + if (timing == 0 || clock == 0) + return 0; + + if ((timing % clock) > 0) + return timing / clock; + else + return timing / clock - 1; +} + +/* Calculate max data valid window. */ +static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min, + u32 board_delay_skew_min, u32 ext_mode) +{ + if (ext_mode == 0) + clk_period /= 2; + + return (trp_cnt + 1) * clk_period + trhoh_min + + board_delay_skew_min; +} + +/* Calculate data valid window. */ +static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min, + u32 trea_max, u32 ext_mode) +{ + if (ext_mode == 0) + clk_period /= 2; + + return (trp_cnt + 1) * clk_period + trhoh_min - trea_max; +} + +static int +cadence_nand_setup_data_interface(struct nand_chip *chip, int chipnr, + const struct nand_data_interface *conf) +{ + const struct nand_sdr_timings *sdr; + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + struct cadence_nand_timings *t = &cdns_chip->timings; + u32 reg; + u32 board_delay = cdns_ctrl->board_delay; + u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL, + cdns_ctrl->nf_clk_rate); + u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt; + u32 tfeat_cnt, trhz_cnt, tvdly_cnt; + u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt; + u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0; + u32 if_skew = cdns_ctrl->caps1->if_skew; + u32 board_delay_skew_min = board_delay - if_skew; + u32 board_delay_skew_max = board_delay + if_skew; + u32 dqs_sampl_res, phony_dqs_mod; + u32 tdvw, tdvw_min, tdvw_max; + u32 ext_rd_mode, ext_wr_mode; + u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0; + u32 sampling_point; + + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + memset(t, 0, sizeof(*t)); + /* Sampling point calculation. */ + + if (cdns_ctrl->caps2.is_phy_type_dll) + phony_dqs_mod = 2; + else + phony_dqs_mod = 1; + + dqs_sampl_res = clk_period / phony_dqs_mod; + + tdvw_min = sdr->tREA_max + board_delay_skew_max; + /* + * The idea of those calculation is to get the optimum value + * for tRP and tRH timings. If it is NOT possible to sample data + * with optimal tRP/tRH settings, the parameters will be extended. + * If clk_period is 50ns (the lowest value) this condition is met + * for asynchronous timing modes 1, 2, 3, 4 and 5. + * If clk_period is 20ns the condition is met only + * for asynchronous timing mode 5. + */ + if (sdr->tRC_min <= clk_period && + sdr->tRP_min <= (clk_period / 2) && + sdr->tREH_min <= (clk_period / 2)) { + /* Performance mode. */ + ext_rd_mode = 0; + tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, + sdr->tREA_max, ext_rd_mode); + tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min, + board_delay_skew_min, + ext_rd_mode); + /* + * Check if data valid window and sampling point can be found + * and is not on the edge (ie. we have hold margin). + * If not extend the tRP timings. + */ + if (tdvw > 0) { + if (tdvw_max <= tdvw_min || + (tdvw_max % dqs_sampl_res) == 0) { + /* + * No valid sampling point so the RE pulse need + * to be widen widening by half clock cycle. + */ + ext_rd_mode = 1; + } + } else { + /* + * There is no valid window + * to be able to sample data the tRP need to be widen. + * Very safe calculations are performed here. + */ + trp_cnt = (sdr->tREA_max + board_delay_skew_max + + dqs_sampl_res) / clk_period; + ext_rd_mode = 1; + } + + } else { + /* Extended read mode. */ + u32 trh; + + ext_rd_mode = 1; + trp_cnt = calc_cycl(sdr->tRP_min, clk_period); + trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period); + if (sdr->tREH_min >= trh) + trh_cnt = calc_cycl(sdr->tREH_min, clk_period); + else + trh_cnt = calc_cycl(trh, clk_period); + + tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, + sdr->tREA_max, ext_rd_mode); + /* + * Check if data valid window and sampling point can be found + * or if it is at the edge check if previous is valid + * - if not extend the tRP timings. + */ + if (tdvw > 0) { + tdvw_max = calc_tdvw_max(trp_cnt, clk_period, + sdr->tRHOH_min, + board_delay_skew_min, + ext_rd_mode); + + if ((((tdvw_max / dqs_sampl_res) + * dqs_sampl_res) <= tdvw_min) || + (((tdvw_max % dqs_sampl_res) == 0) && + (((tdvw_max / dqs_sampl_res - 1) + * dqs_sampl_res) <= tdvw_min))) { + /* + * Data valid window width is lower than + * sampling resolution and do not hit any + * sampling point to be sure the sampling point + * will be found the RE low pulse width will be + * extended by one clock cycle. + */ + trp_cnt = trp_cnt + 1; + } + } else { + /* + * There is no valid window to be able to sample data. + * The tRP need to be widen. + * Very safe calculations are performed here. + */ + trp_cnt = (sdr->tREA_max + board_delay_skew_max + + dqs_sampl_res) / clk_period; + } + } + + tdvw_max = calc_tdvw_max(trp_cnt, clk_period, + sdr->tRHOH_min, + board_delay_skew_min, ext_rd_mode); + + if (sdr->tWC_min <= clk_period && + (sdr->tWP_min + if_skew) <= (clk_period / 2) && + (sdr->tWH_min + if_skew) <= (clk_period / 2)) { + ext_wr_mode = 0; + } else { + u32 twh; + + ext_wr_mode = 1; + twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period); + if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew)) + twp_cnt = calc_cycl(sdr->tALS_min + if_skew, + clk_period); + + twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period); + if (sdr->tWH_min >= twh) + twh = sdr->tWH_min; + + twh_cnt = calc_cycl(twh + if_skew, clk_period); + } + + reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt); + reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt); + reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt); + reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt); + t->async_toggle_timings = reg; + dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg); + + tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period); + tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period); + twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period); + trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period); + reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt); + + /* + * If timing exceeds delay field in timing register + * then use maximum value. + */ + if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt)) + reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt); + else + reg |= TIMINGS0_TCCS; + + reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt); + reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt); + t->timings0 = reg; + dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg); + + /* The following is related to single signal so skew is not needed. */ + trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period); + trhz_cnt = trhz_cnt + 1; + twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period); + /* + * Because of the two stage syncflop the value must be increased by 3 + * first value is related with sync, second value is related + * with output if delay. + */ + twb_cnt = twb_cnt + 3 + 5; + /* + * The following is related to the we edge of the random data input + * sequence so skew is not needed. + */ + tvdly_cnt = calc_cycl(500000 + if_skew, clk_period); + reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt); + reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt); + reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt); + t->timings1 = reg; + dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg); + + tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period); + if (tfeat_cnt < twb_cnt) + tfeat_cnt = twb_cnt; + + tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period); + tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period); + + reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt); + reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt); + reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt); + t->timings2 = reg; + dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg); + + if (cdns_ctrl->caps2.is_phy_type_dll) { + reg = DLL_PHY_CTRL_DLL_RST_N; + if (ext_wr_mode) + reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE; + if (ext_rd_mode) + reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE; + + reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7); + reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7); + t->dll_phy_ctrl = reg; + dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg); + } + + /* Sampling point calculation. */ + if ((tdvw_max % dqs_sampl_res) > 0) + sampling_point = tdvw_max / dqs_sampl_res; + else + sampling_point = (tdvw_max / dqs_sampl_res - 1); + + if (sampling_point * dqs_sampl_res > tdvw_min) { + dll_phy_dqs_timing = + FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4); + dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS; + phony_dqs_timing = sampling_point / phony_dqs_mod; + + if ((sampling_point % 2) > 0) { + dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL; + if ((tdvw_max % dqs_sampl_res) == 0) + /* + * Calculation for sampling point at the edge + * of data and being odd number. + */ + phony_dqs_timing = (tdvw_max / dqs_sampl_res) + / phony_dqs_mod - 1; + + if (!cdns_ctrl->caps2.is_phy_type_dll) + phony_dqs_timing--; + + } else { + phony_dqs_timing--; + } + rd_del_sel = phony_dqs_timing + 3; + } else { + dev_warn(cdns_ctrl->dev, + "ERROR : cannot find valid sampling point\n"); + } + + reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing); + if (cdns_ctrl->caps2.is_phy_type_dll) + reg |= PHY_CTRL_SDR_DQS; + t->phy_ctrl = reg; + dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg); + + if (cdns_ctrl->caps2.is_phy_type_dll) { + dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0); + dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2); + dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n", + dll_phy_dqs_timing); + t->phy_dqs_timing = dll_phy_dqs_timing; + + reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel); + dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n", + reg); + t->phy_gate_lpbk_ctrl = reg; + + dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n", + PHY_DLL_MASTER_CTRL_BYPASS_MODE); + dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0); + } + + return 0; +} + +int cadence_nand_attach_chip(struct nand_chip *chip) +{ + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); + u32 ecc_size = cdns_chip->sector_count * chip->ecc.bytes; + struct mtd_info *mtd = nand_to_mtd(chip); + u32 max_oob_data_size; + int ret; + + if (chip->options & NAND_BUSWIDTH_16) { + ret = cadence_nand_set_access_width16(cdns_ctrl, true); + if (ret) + return ret; + } + + chip->bbt_options |= NAND_BBT_USE_FLASH; + chip->bbt_options |= NAND_BBT_NO_OOB; + chip->ecc.mode = NAND_ECC_HW; + + chip->options |= NAND_NO_SUBPAGE_WRITE; + + cdns_chip->bbm_offs = chip->badblockpos; + if (chip->options & NAND_BUSWIDTH_16) { + cdns_chip->bbm_offs &= ~0x01; + cdns_chip->bbm_len = 2; + } else { + cdns_chip->bbm_len = 1; + } + + ret = nand_ecc_choose_conf(chip, + &cdns_ctrl->ecc_caps, + mtd->oobsize - cdns_chip->bbm_len); + if (ret) { + dev_err(cdns_ctrl->dev, "ECC configuration failed\n"); + return ret; + } + + dev_dbg(cdns_ctrl->dev, + "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", + chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); + + /* Error correction configuration. */ + cdns_chip->sector_size = chip->ecc.size; + cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size; + + cdns_chip->avail_oob_size = mtd->oobsize - ecc_size; + + max_oob_data_size = MAX_OOB_SIZE_PER_SECTOR; + + if (cdns_chip->avail_oob_size > max_oob_data_size) + cdns_chip->avail_oob_size = max_oob_data_size; + + if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size) + > mtd->oobsize) + cdns_chip->avail_oob_size -= 4; + + ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength); + if (ret < 0) + return -EINVAL; + + cdns_chip->corr_str_idx = (u8)ret; + + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, + 1000000, + CTRL_STATUS_CTRL_BUSY, true)) + return -ETIMEDOUT; + + cadence_nand_set_ecc_strength(cdns_ctrl, + cdns_chip->corr_str_idx); + + cadence_nand_set_erase_detection(cdns_ctrl, true, + chip->ecc.strength); + + /* Override the default read operations. */ + chip->ecc.read_page = cadence_nand_read_page; + chip->ecc.read_page_raw = cadence_nand_read_page_raw; + chip->ecc.write_page = cadence_nand_write_page; + chip->ecc.write_page_raw = cadence_nand_write_page_raw; + chip->ecc.read_oob = cadence_nand_read_oob; + chip->ecc.write_oob = cadence_nand_write_oob; + chip->ecc.read_oob_raw = cadence_nand_read_oob_raw; + chip->ecc.write_oob_raw = cadence_nand_write_oob_raw; + + if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size) + cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize; + + /* Is 32-bit DMA supported? */ + ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32)); + if (ret) { + dev_err(cdns_ctrl->dev, "no usable DMA configuration\n"); + return ret; + } + + mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops); + + return 0; +} + +static const struct nand_controller_ops cadence_nand_controller_ops = { + .attach_chip = cadence_nand_attach_chip, + .exec_op = cadence_nand_exec_op, + .setup_data_interface = cadence_nand_setup_data_interface, +}; + +static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl, + struct device_node *np) +{ + struct cdns_nand_chip *cdns_chip; + struct mtd_info *mtd; + struct nand_chip *chip; + int nsels, ret, i; + u32 cs; + + nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); + if (nsels <= 0) { + dev_err(cdns_ctrl->dev, "missing/invalid reg property\n"); + return -EINVAL; + } + + /* Allocate the nand chip structure. */ + cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) + + (nsels * sizeof(u8)), + GFP_KERNEL); + if (!cdns_chip) { + dev_err(cdns_ctrl->dev, "could not allocate chip structure\n"); + return -ENOMEM; + } + + cdns_chip->nsels = nsels; + + for (i = 0; i < nsels; i++) { + /* Retrieve CS id. */ + ret = of_property_read_u32_index(np, "reg", i, &cs); + if (ret) { + dev_err(cdns_ctrl->dev, + "could not retrieve reg property: %d\n", + ret); + return ret; + } + + if (cs >= cdns_ctrl->caps2.max_banks) { + dev_err(cdns_ctrl->dev, + "invalid reg value: %u (max CS = %d)\n", + cs, cdns_ctrl->caps2.max_banks); + return -EINVAL; + } + + if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) { + dev_err(cdns_ctrl->dev, + "CS %d already assigned\n", cs); + return -EINVAL; + } + + cdns_chip->cs[i] = cs; + } + + chip = &cdns_chip->chip; + chip->controller = &cdns_ctrl->controller; + nand_set_flash_node(chip, np); + + mtd = nand_to_mtd(chip); + mtd->dev.parent = cdns_ctrl->dev; + + /* + * Default to HW ECC engine mode. If the nand-ecc-mode property is given + * in the DT node, this entry will be overwritten in nand_scan_ident(). + */ + chip->ecc.mode = NAND_ECC_HW; + + ret = nand_scan(chip, cdns_chip->nsels); + if (ret) { + dev_err(cdns_ctrl->dev, "could not scan the nand chip\n"); + return ret; + } + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(cdns_ctrl->dev, + "failed to register mtd device: %d\n", ret); + nand_cleanup(chip); + return ret; + } + + list_add_tail(&cdns_chip->node, &cdns_ctrl->chips); + + return 0; +} + +static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl) +{ + struct cdns_nand_chip *entry, *temp; + + list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) { + nand_release(&entry->chip); + list_del(&entry->node); + } +} + +static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl) +{ + struct device_node *np = cdns_ctrl->dev->of_node; + struct device_node *nand_np; + int max_cs = cdns_ctrl->caps2.max_banks; + int nchips, ret; + + nchips = of_get_child_count(np); + + if (nchips > max_cs) { + dev_err(cdns_ctrl->dev, + "too many NAND chips: %d (max = %d CS)\n", + nchips, max_cs); + return -EINVAL; + } + + for_each_child_of_node(np, nand_np) { + ret = cadence_nand_chip_init(cdns_ctrl, nand_np); + if (ret) { + of_node_put(nand_np); + cadence_nand_chips_cleanup(cdns_ctrl); + return ret; + } + } + + return 0; +} + +static void +cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl) +{ + /* Disable interrupts. */ + writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE); +} + +static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl) +{ + dma_cap_mask_t mask; + int ret; + + cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev, + sizeof(*cdns_ctrl->cdma_desc), + &cdns_ctrl->dma_cdma_desc, + GFP_KERNEL); + if (!cdns_ctrl->dma_cdma_desc) + return -ENOMEM; + + cdns_ctrl->buf_size = SZ_16K; + cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL); + if (!cdns_ctrl->buf) { + ret = -ENOMEM; + goto free_buf_desc; + } + + if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr, + IRQF_SHARED, "cadence-nand-controller", + cdns_ctrl)) { + dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n"); + ret = -ENODEV; + goto free_buf; + } + + spin_lock_init(&cdns_ctrl->irq_lock); + init_completion(&cdns_ctrl->complete); + + ret = cadence_nand_hw_init(cdns_ctrl); + if (ret) + goto disable_irq; + + dma_cap_zero(mask); + dma_cap_set(DMA_MEMCPY, mask); + + if (cdns_ctrl->caps1->has_dma) { + cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL); + if (!cdns_ctrl->dmac) { + dev_err(cdns_ctrl->dev, + "Unable to get a DMA channel\n"); + ret = -EBUSY; + goto disable_irq; + } + } + + nand_controller_init(&cdns_ctrl->controller); + INIT_LIST_HEAD(&cdns_ctrl->chips); + + cdns_ctrl->controller.ops = &cadence_nand_controller_ops; + cdns_ctrl->curr_corr_str_idx = 0xFF; + + ret = cadence_nand_chips_init(cdns_ctrl); + if (ret) { + dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n", + ret); + goto dma_release_chnl; + } + + kfree(cdns_ctrl->buf); + cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL); + if (!cdns_ctrl->buf) { + ret = -ENOMEM; + goto dma_release_chnl; + } + + return 0; + +dma_release_chnl: + if (cdns_ctrl->dmac) + dma_release_channel(cdns_ctrl->dmac); + +disable_irq: + cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); + +free_buf: + kfree(cdns_ctrl->buf); + +free_buf_desc: + dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), + cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); + + return ret; +} + +/* Driver exit point. */ +static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl) +{ + cadence_nand_chips_cleanup(cdns_ctrl); + cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); + kfree(cdns_ctrl->buf); + dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), + cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); + + if (cdns_ctrl->dmac) + dma_release_channel(cdns_ctrl->dmac); +} + +struct cadence_nand_dt { + struct cdns_nand_ctrl cdns_ctrl; + struct clk *clk; +}; + +static const struct cadence_nand_dt_devdata cadence_nand_default = { + .if_skew = 0, + .has_dma = 1, +}; + +static const struct of_device_id cadence_nand_dt_ids[] = { + { + .compatible = "cdns,hp-nfc", + .data = &cadence_nand_default + }, {} +}; + +MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids); + +static int cadence_nand_dt_probe(struct platform_device *ofdev) +{ + struct resource *res; + struct cadence_nand_dt *dt; + struct cdns_nand_ctrl *cdns_ctrl; + int ret; + const struct of_device_id *of_id; + const struct cadence_nand_dt_devdata *devdata; + u32 val; + + of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev); + if (of_id) { + ofdev->id_entry = of_id->data; + devdata = of_id->data; + } else { + pr_err("Failed to find the right device id.\n"); + return -ENOMEM; + } + + dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL); + if (!dt) + return -ENOMEM; + + cdns_ctrl = &dt->cdns_ctrl; + cdns_ctrl->caps1 = devdata; + + cdns_ctrl->dev = &ofdev->dev; + cdns_ctrl->irq = platform_get_irq(ofdev, 0); + if (cdns_ctrl->irq < 0) + return cdns_ctrl->irq; + + dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq); + + cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0); + if (IS_ERR(cdns_ctrl->reg)) { + dev_err(&ofdev->dev, "devm_ioremap_resource res 0 failed\n"); + return PTR_ERR(cdns_ctrl->reg); + } + + res = platform_get_resource(ofdev, IORESOURCE_MEM, 1); + cdns_ctrl->io.dma = res->start; + cdns_ctrl->io.virt = devm_ioremap_resource(&ofdev->dev, res); + if (IS_ERR(cdns_ctrl->io.virt)) { + dev_err(cdns_ctrl->dev, "devm_ioremap_resource res 1 failed\n"); + return PTR_ERR(cdns_ctrl->io.virt); + } + + dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk"); + if (IS_ERR(dt->clk)) + return PTR_ERR(dt->clk); + + cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk); + + ret = of_property_read_u32(ofdev->dev.of_node, + "cdns,board-delay-ps", &val); + if (ret) { + val = 4830; + dev_info(cdns_ctrl->dev, + "missing cdns,board-delay-ps property, %d was set\n", + val); + } + cdns_ctrl->board_delay = val; + + ret = cadence_nand_init(cdns_ctrl); + if (ret) + return ret; + + platform_set_drvdata(ofdev, dt); + return 0; +} + +static int cadence_nand_dt_remove(struct platform_device *ofdev) +{ + struct cadence_nand_dt *dt = platform_get_drvdata(ofdev); + + cadence_nand_remove(&dt->cdns_ctrl); + + return 0; +} + +static struct platform_driver cadence_nand_dt_driver = { + .probe = cadence_nand_dt_probe, + .remove = cadence_nand_dt_remove, + .driver = { + .name = "cadence-nand-controller", + .of_match_table = cadence_nand_dt_ids, + }, +}; + +module_platform_driver(cadence_nand_dt_driver); + +MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>"); +MODULE_LICENSE("GPL v2"); +MODULE_DESCRIPTION("Driver for Cadence NAND flash controller"); + diff --git a/drivers/mtd/nand/raw/denali_dt.c b/drivers/mtd/nand/raw/denali_dt.c index df992554a66f..8b779a899dcf 100644 --- a/drivers/mtd/nand/raw/denali_dt.c +++ b/drivers/mtd/nand/raw/denali_dt.c @@ -102,47 +102,6 @@ static int denali_dt_chip_init(struct denali_controller *denali, return denali_chip_init(denali, dchip); } -/* Backward compatibility for old platforms */ -static int denali_dt_legacy_chip_init(struct denali_controller *denali) -{ - struct denali_chip *dchip; - int nsels, i; - - nsels = denali->nbanks; - - dchip = devm_kzalloc(denali->dev, struct_size(dchip, sels, nsels), - GFP_KERNEL); - if (!dchip) - return -ENOMEM; - - dchip->nsels = nsels; - - for (i = 0; i < nsels; i++) - dchip->sels[i].bank = i; - - nand_set_flash_node(&dchip->chip, denali->dev->of_node); - - return denali_chip_init(denali, dchip); -} - -/* - * Check the DT binding. - * The new binding expects chip subnodes in the controller node. - * So, #address-cells = <1>; #size-cells = <0>; are required. - * Check the #size-cells to distinguish the binding. - */ -static bool denali_dt_is_legacy_binding(struct device_node *np) -{ - u32 cells; - int ret; - - ret = of_property_read_u32(np, "#size-cells", &cells); - if (ret) - return true; - - return cells != 0; -} - static int denali_dt_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; @@ -211,17 +170,11 @@ static int denali_dt_probe(struct platform_device *pdev) if (ret) goto out_disable_clk_ecc; - if (denali_dt_is_legacy_binding(dev->of_node)) { - ret = denali_dt_legacy_chip_init(denali); - if (ret) + for_each_child_of_node(dev->of_node, np) { + ret = denali_dt_chip_init(denali, np); + if (ret) { + of_node_put(np); goto out_remove_denali; - } else { - for_each_child_of_node(dev->of_node, np) { - ret = denali_dt_chip_init(denali, np); - if (ret) { - of_node_put(np); - goto out_remove_denali; - } } } diff --git a/drivers/mtd/nand/raw/mxic_nand.c b/drivers/mtd/nand/raw/mxic_nand.c index 9d49e6c845e1..ed7a4e021bf5 100644 --- a/drivers/mtd/nand/raw/mxic_nand.c +++ b/drivers/mtd/nand/raw/mxic_nand.c @@ -524,10 +524,8 @@ static int mxic_nfc_probe(struct platform_device *pdev) nand_chip->controller = &nfc->controller; irq = platform_get_irq(pdev, 0); - if (irq < 0) { - dev_err(&pdev->dev, "failed to retrieve irq\n"); + if (irq < 0) return irq; - } mxic_nfc_hw_init(nfc); diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c index 5c2c30a7dffa..f64e3b6605c6 100644 --- a/drivers/mtd/nand/raw/nand_base.c +++ b/drivers/mtd/nand/raw/nand_base.c @@ -292,12 +292,16 @@ int nand_bbm_get_next_page(struct nand_chip *chip, int page) struct mtd_info *mtd = nand_to_mtd(chip); int last_page = ((mtd->erasesize - mtd->writesize) >> chip->page_shift) & chip->pagemask; + unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE + | NAND_BBM_LASTPAGE; + if (page == 0 && !(chip->options & bbm_flags)) + return 0; if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE) return 0; - else if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE) + if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE) return 1; - else if (page <= last_page && chip->options & NAND_BBM_LASTPAGE) + if (page <= last_page && chip->options & NAND_BBM_LASTPAGE) return last_page; return -EINVAL; diff --git a/drivers/mtd/nand/raw/nand_micron.c b/drivers/mtd/nand/raw/nand_micron.c index 8ca9fad6e6ad..56654030ec7f 100644 --- a/drivers/mtd/nand/raw/nand_micron.c +++ b/drivers/mtd/nand/raw/nand_micron.c @@ -446,8 +446,10 @@ static int micron_nand_init(struct nand_chip *chip) if (ret) goto err_free_manuf_data; + chip->options |= NAND_BBM_FIRSTPAGE; + if (mtd->writesize == 2048) - chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE; + chip->options |= NAND_BBM_SECONDPAGE; ondie = micron_supports_on_die_ecc(chip); |