diff options
Diffstat (limited to 'drivers/net/igb/e1000_mac.c')
-rw-r--r-- | drivers/net/igb/e1000_mac.c | 1421 |
1 files changed, 0 insertions, 1421 deletions
diff --git a/drivers/net/igb/e1000_mac.c b/drivers/net/igb/e1000_mac.c deleted file mode 100644 index 2b5ef761d2ab..000000000000 --- a/drivers/net/igb/e1000_mac.c +++ /dev/null @@ -1,1421 +0,0 @@ -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2011 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#include <linux/if_ether.h> -#include <linux/delay.h> -#include <linux/pci.h> -#include <linux/netdevice.h> -#include <linux/etherdevice.h> - -#include "e1000_mac.h" - -#include "igb.h" - -static s32 igb_set_default_fc(struct e1000_hw *hw); -static s32 igb_set_fc_watermarks(struct e1000_hw *hw); - -/** - * igb_get_bus_info_pcie - Get PCIe bus information - * @hw: pointer to the HW structure - * - * Determines and stores the system bus information for a particular - * network interface. The following bus information is determined and stored: - * bus speed, bus width, type (PCIe), and PCIe function. - **/ -s32 igb_get_bus_info_pcie(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - s32 ret_val; - u32 reg; - u16 pcie_link_status; - - bus->type = e1000_bus_type_pci_express; - - ret_val = igb_read_pcie_cap_reg(hw, - PCI_EXP_LNKSTA, - &pcie_link_status); - if (ret_val) { - bus->width = e1000_bus_width_unknown; - bus->speed = e1000_bus_speed_unknown; - } else { - switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) { - case PCI_EXP_LNKSTA_CLS_2_5GB: - bus->speed = e1000_bus_speed_2500; - break; - case PCI_EXP_LNKSTA_CLS_5_0GB: - bus->speed = e1000_bus_speed_5000; - break; - default: - bus->speed = e1000_bus_speed_unknown; - break; - } - - bus->width = (enum e1000_bus_width)((pcie_link_status & - PCI_EXP_LNKSTA_NLW) >> - PCI_EXP_LNKSTA_NLW_SHIFT); - } - - reg = rd32(E1000_STATUS); - bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; - - return 0; -} - -/** - * igb_clear_vfta - Clear VLAN filter table - * @hw: pointer to the HW structure - * - * Clears the register array which contains the VLAN filter table by - * setting all the values to 0. - **/ -void igb_clear_vfta(struct e1000_hw *hw) -{ - u32 offset; - - for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { - array_wr32(E1000_VFTA, offset, 0); - wrfl(); - } -} - -/** - * igb_write_vfta - Write value to VLAN filter table - * @hw: pointer to the HW structure - * @offset: register offset in VLAN filter table - * @value: register value written to VLAN filter table - * - * Writes value at the given offset in the register array which stores - * the VLAN filter table. - **/ -static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) -{ - array_wr32(E1000_VFTA, offset, value); - wrfl(); -} - -/** - * igb_init_rx_addrs - Initialize receive address's - * @hw: pointer to the HW structure - * @rar_count: receive address registers - * - * Setups the receive address registers by setting the base receive address - * register to the devices MAC address and clearing all the other receive - * address registers to 0. - **/ -void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) -{ - u32 i; - u8 mac_addr[ETH_ALEN] = {0}; - - /* Setup the receive address */ - hw_dbg("Programming MAC Address into RAR[0]\n"); - - hw->mac.ops.rar_set(hw, hw->mac.addr, 0); - - /* Zero out the other (rar_entry_count - 1) receive addresses */ - hw_dbg("Clearing RAR[1-%u]\n", rar_count-1); - for (i = 1; i < rar_count; i++) - hw->mac.ops.rar_set(hw, mac_addr, i); -} - -/** - * igb_vfta_set - enable or disable vlan in VLAN filter table - * @hw: pointer to the HW structure - * @vid: VLAN id to add or remove - * @add: if true add filter, if false remove - * - * Sets or clears a bit in the VLAN filter table array based on VLAN id - * and if we are adding or removing the filter - **/ -s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add) -{ - u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK; - u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK); - u32 vfta = array_rd32(E1000_VFTA, index); - s32 ret_val = 0; - - /* bit was set/cleared before we started */ - if ((!!(vfta & mask)) == add) { - ret_val = -E1000_ERR_CONFIG; - } else { - if (add) - vfta |= mask; - else - vfta &= ~mask; - } - - igb_write_vfta(hw, index, vfta); - - return ret_val; -} - -/** - * igb_check_alt_mac_addr - Check for alternate MAC addr - * @hw: pointer to the HW structure - * - * Checks the nvm for an alternate MAC address. An alternate MAC address - * can be setup by pre-boot software and must be treated like a permanent - * address and must override the actual permanent MAC address. If an - * alternate MAC address is fopund it is saved in the hw struct and - * prgrammed into RAR0 and the cuntion returns success, otherwise the - * function returns an error. - **/ -s32 igb_check_alt_mac_addr(struct e1000_hw *hw) -{ - u32 i; - s32 ret_val = 0; - u16 offset, nvm_alt_mac_addr_offset, nvm_data; - u8 alt_mac_addr[ETH_ALEN]; - - ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, - &nvm_alt_mac_addr_offset); - if (ret_val) { - hw_dbg("NVM Read Error\n"); - goto out; - } - - if (nvm_alt_mac_addr_offset == 0xFFFF) { - /* There is no Alternate MAC Address */ - goto out; - } - - if (hw->bus.func == E1000_FUNC_1) - nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; - for (i = 0; i < ETH_ALEN; i += 2) { - offset = nvm_alt_mac_addr_offset + (i >> 1); - ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); - if (ret_val) { - hw_dbg("NVM Read Error\n"); - goto out; - } - - alt_mac_addr[i] = (u8)(nvm_data & 0xFF); - alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); - } - - /* if multicast bit is set, the alternate address will not be used */ - if (is_multicast_ether_addr(alt_mac_addr)) { - hw_dbg("Ignoring Alternate Mac Address with MC bit set\n"); - goto out; - } - - /* - * We have a valid alternate MAC address, and we want to treat it the - * same as the normal permanent MAC address stored by the HW into the - * RAR. Do this by mapping this address into RAR0. - */ - hw->mac.ops.rar_set(hw, alt_mac_addr, 0); - -out: - return ret_val; -} - -/** - * igb_rar_set - Set receive address register - * @hw: pointer to the HW structure - * @addr: pointer to the receive address - * @index: receive address array register - * - * Sets the receive address array register at index to the address passed - * in by addr. - **/ -void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) -{ - u32 rar_low, rar_high; - - /* - * HW expects these in little endian so we reverse the byte order - * from network order (big endian) to little endian - */ - rar_low = ((u32) addr[0] | - ((u32) addr[1] << 8) | - ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); - - rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); - - /* If MAC address zero, no need to set the AV bit */ - if (rar_low || rar_high) - rar_high |= E1000_RAH_AV; - - /* - * Some bridges will combine consecutive 32-bit writes into - * a single burst write, which will malfunction on some parts. - * The flushes avoid this. - */ - wr32(E1000_RAL(index), rar_low); - wrfl(); - wr32(E1000_RAH(index), rar_high); - wrfl(); -} - -/** - * igb_mta_set - Set multicast filter table address - * @hw: pointer to the HW structure - * @hash_value: determines the MTA register and bit to set - * - * The multicast table address is a register array of 32-bit registers. - * The hash_value is used to determine what register the bit is in, the - * current value is read, the new bit is OR'd in and the new value is - * written back into the register. - **/ -void igb_mta_set(struct e1000_hw *hw, u32 hash_value) -{ - u32 hash_bit, hash_reg, mta; - - /* - * The MTA is a register array of 32-bit registers. It is - * treated like an array of (32*mta_reg_count) bits. We want to - * set bit BitArray[hash_value]. So we figure out what register - * the bit is in, read it, OR in the new bit, then write - * back the new value. The (hw->mac.mta_reg_count - 1) serves as a - * mask to bits 31:5 of the hash value which gives us the - * register we're modifying. The hash bit within that register - * is determined by the lower 5 bits of the hash value. - */ - hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); - hash_bit = hash_value & 0x1F; - - mta = array_rd32(E1000_MTA, hash_reg); - - mta |= (1 << hash_bit); - - array_wr32(E1000_MTA, hash_reg, mta); - wrfl(); -} - -/** - * igb_hash_mc_addr - Generate a multicast hash value - * @hw: pointer to the HW structure - * @mc_addr: pointer to a multicast address - * - * Generates a multicast address hash value which is used to determine - * the multicast filter table array address and new table value. See - * igb_mta_set() - **/ -static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) -{ - u32 hash_value, hash_mask; - u8 bit_shift = 0; - - /* Register count multiplied by bits per register */ - hash_mask = (hw->mac.mta_reg_count * 32) - 1; - - /* - * For a mc_filter_type of 0, bit_shift is the number of left-shifts - * where 0xFF would still fall within the hash mask. - */ - while (hash_mask >> bit_shift != 0xFF) - bit_shift++; - - /* - * The portion of the address that is used for the hash table - * is determined by the mc_filter_type setting. - * The algorithm is such that there is a total of 8 bits of shifting. - * The bit_shift for a mc_filter_type of 0 represents the number of - * left-shifts where the MSB of mc_addr[5] would still fall within - * the hash_mask. Case 0 does this exactly. Since there are a total - * of 8 bits of shifting, then mc_addr[4] will shift right the - * remaining number of bits. Thus 8 - bit_shift. The rest of the - * cases are a variation of this algorithm...essentially raising the - * number of bits to shift mc_addr[5] left, while still keeping the - * 8-bit shifting total. - * - * For example, given the following Destination MAC Address and an - * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), - * we can see that the bit_shift for case 0 is 4. These are the hash - * values resulting from each mc_filter_type... - * [0] [1] [2] [3] [4] [5] - * 01 AA 00 12 34 56 - * LSB MSB - * - * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 - * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 - * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 - * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 - */ - switch (hw->mac.mc_filter_type) { - default: - case 0: - break; - case 1: - bit_shift += 1; - break; - case 2: - bit_shift += 2; - break; - case 3: - bit_shift += 4; - break; - } - - hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | - (((u16) mc_addr[5]) << bit_shift))); - - return hash_value; -} - -/** - * igb_update_mc_addr_list - Update Multicast addresses - * @hw: pointer to the HW structure - * @mc_addr_list: array of multicast addresses to program - * @mc_addr_count: number of multicast addresses to program - * - * Updates entire Multicast Table Array. - * The caller must have a packed mc_addr_list of multicast addresses. - **/ -void igb_update_mc_addr_list(struct e1000_hw *hw, - u8 *mc_addr_list, u32 mc_addr_count) -{ - u32 hash_value, hash_bit, hash_reg; - int i; - - /* clear mta_shadow */ - memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); - - /* update mta_shadow from mc_addr_list */ - for (i = 0; (u32) i < mc_addr_count; i++) { - hash_value = igb_hash_mc_addr(hw, mc_addr_list); - - hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); - hash_bit = hash_value & 0x1F; - - hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); - mc_addr_list += (ETH_ALEN); - } - - /* replace the entire MTA table */ - for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) - array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]); - wrfl(); -} - -/** - * igb_clear_hw_cntrs_base - Clear base hardware counters - * @hw: pointer to the HW structure - * - * Clears the base hardware counters by reading the counter registers. - **/ -void igb_clear_hw_cntrs_base(struct e1000_hw *hw) -{ - rd32(E1000_CRCERRS); - rd32(E1000_SYMERRS); - rd32(E1000_MPC); - rd32(E1000_SCC); - rd32(E1000_ECOL); - rd32(E1000_MCC); - rd32(E1000_LATECOL); - rd32(E1000_COLC); - rd32(E1000_DC); - rd32(E1000_SEC); - rd32(E1000_RLEC); - rd32(E1000_XONRXC); - rd32(E1000_XONTXC); - rd32(E1000_XOFFRXC); - rd32(E1000_XOFFTXC); - rd32(E1000_FCRUC); - rd32(E1000_GPRC); - rd32(E1000_BPRC); - rd32(E1000_MPRC); - rd32(E1000_GPTC); - rd32(E1000_GORCL); - rd32(E1000_GORCH); - rd32(E1000_GOTCL); - rd32(E1000_GOTCH); - rd32(E1000_RNBC); - rd32(E1000_RUC); - rd32(E1000_RFC); - rd32(E1000_ROC); - rd32(E1000_RJC); - rd32(E1000_TORL); - rd32(E1000_TORH); - rd32(E1000_TOTL); - rd32(E1000_TOTH); - rd32(E1000_TPR); - rd32(E1000_TPT); - rd32(E1000_MPTC); - rd32(E1000_BPTC); -} - -/** - * igb_check_for_copper_link - Check for link (Copper) - * @hw: pointer to the HW structure - * - * Checks to see of the link status of the hardware has changed. If a - * change in link status has been detected, then we read the PHY registers - * to get the current speed/duplex if link exists. - **/ -s32 igb_check_for_copper_link(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - bool link; - - /* - * We only want to go out to the PHY registers to see if Auto-Neg - * has completed and/or if our link status has changed. The - * get_link_status flag is set upon receiving a Link Status - * Change or Rx Sequence Error interrupt. - */ - if (!mac->get_link_status) { - ret_val = 0; - goto out; - } - - /* - * First we want to see if the MII Status Register reports - * link. If so, then we want to get the current speed/duplex - * of the PHY. - */ - ret_val = igb_phy_has_link(hw, 1, 0, &link); - if (ret_val) - goto out; - - if (!link) - goto out; /* No link detected */ - - mac->get_link_status = false; - - /* - * Check if there was DownShift, must be checked - * immediately after link-up - */ - igb_check_downshift(hw); - - /* - * If we are forcing speed/duplex, then we simply return since - * we have already determined whether we have link or not. - */ - if (!mac->autoneg) { - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - /* - * Auto-Neg is enabled. Auto Speed Detection takes care - * of MAC speed/duplex configuration. So we only need to - * configure Collision Distance in the MAC. - */ - igb_config_collision_dist(hw); - - /* - * Configure Flow Control now that Auto-Neg has completed. - * First, we need to restore the desired flow control - * settings because we may have had to re-autoneg with a - * different link partner. - */ - ret_val = igb_config_fc_after_link_up(hw); - if (ret_val) - hw_dbg("Error configuring flow control\n"); - -out: - return ret_val; -} - -/** - * igb_setup_link - Setup flow control and link settings - * @hw: pointer to the HW structure - * - * Determines which flow control settings to use, then configures flow - * control. Calls the appropriate media-specific link configuration - * function. Assuming the adapter has a valid link partner, a valid link - * should be established. Assumes the hardware has previously been reset - * and the transmitter and receiver are not enabled. - **/ -s32 igb_setup_link(struct e1000_hw *hw) -{ - s32 ret_val = 0; - - /* - * In the case of the phy reset being blocked, we already have a link. - * We do not need to set it up again. - */ - if (igb_check_reset_block(hw)) - goto out; - - /* - * If requested flow control is set to default, set flow control - * based on the EEPROM flow control settings. - */ - if (hw->fc.requested_mode == e1000_fc_default) { - ret_val = igb_set_default_fc(hw); - if (ret_val) - goto out; - } - - /* - * We want to save off the original Flow Control configuration just - * in case we get disconnected and then reconnected into a different - * hub or switch with different Flow Control capabilities. - */ - hw->fc.current_mode = hw->fc.requested_mode; - - hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); - - /* Call the necessary media_type subroutine to configure the link. */ - ret_val = hw->mac.ops.setup_physical_interface(hw); - if (ret_val) - goto out; - - /* - * Initialize the flow control address, type, and PAUSE timer - * registers to their default values. This is done even if flow - * control is disabled, because it does not hurt anything to - * initialize these registers. - */ - hw_dbg("Initializing the Flow Control address, type and timer regs\n"); - wr32(E1000_FCT, FLOW_CONTROL_TYPE); - wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); - wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); - - wr32(E1000_FCTTV, hw->fc.pause_time); - - ret_val = igb_set_fc_watermarks(hw); - -out: - return ret_val; -} - -/** - * igb_config_collision_dist - Configure collision distance - * @hw: pointer to the HW structure - * - * Configures the collision distance to the default value and is used - * during link setup. Currently no func pointer exists and all - * implementations are handled in the generic version of this function. - **/ -void igb_config_collision_dist(struct e1000_hw *hw) -{ - u32 tctl; - - tctl = rd32(E1000_TCTL); - - tctl &= ~E1000_TCTL_COLD; - tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; - - wr32(E1000_TCTL, tctl); - wrfl(); -} - -/** - * igb_set_fc_watermarks - Set flow control high/low watermarks - * @hw: pointer to the HW structure - * - * Sets the flow control high/low threshold (watermark) registers. If - * flow control XON frame transmission is enabled, then set XON frame - * tansmission as well. - **/ -static s32 igb_set_fc_watermarks(struct e1000_hw *hw) -{ - s32 ret_val = 0; - u32 fcrtl = 0, fcrth = 0; - - /* - * Set the flow control receive threshold registers. Normally, - * these registers will be set to a default threshold that may be - * adjusted later by the driver's runtime code. However, if the - * ability to transmit pause frames is not enabled, then these - * registers will be set to 0. - */ - if (hw->fc.current_mode & e1000_fc_tx_pause) { - /* - * We need to set up the Receive Threshold high and low water - * marks as well as (optionally) enabling the transmission of - * XON frames. - */ - fcrtl = hw->fc.low_water; - if (hw->fc.send_xon) - fcrtl |= E1000_FCRTL_XONE; - - fcrth = hw->fc.high_water; - } - wr32(E1000_FCRTL, fcrtl); - wr32(E1000_FCRTH, fcrth); - - return ret_val; -} - -/** - * igb_set_default_fc - Set flow control default values - * @hw: pointer to the HW structure - * - * Read the EEPROM for the default values for flow control and store the - * values. - **/ -static s32 igb_set_default_fc(struct e1000_hw *hw) -{ - s32 ret_val = 0; - u16 nvm_data; - - /* - * Read and store word 0x0F of the EEPROM. This word contains bits - * that determine the hardware's default PAUSE (flow control) mode, - * a bit that determines whether the HW defaults to enabling or - * disabling auto-negotiation, and the direction of the - * SW defined pins. If there is no SW over-ride of the flow - * control setting, then the variable hw->fc will - * be initialized based on a value in the EEPROM. - */ - ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); - - if (ret_val) { - hw_dbg("NVM Read Error\n"); - goto out; - } - - if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) - hw->fc.requested_mode = e1000_fc_none; - else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == - NVM_WORD0F_ASM_DIR) - hw->fc.requested_mode = e1000_fc_tx_pause; - else - hw->fc.requested_mode = e1000_fc_full; - -out: - return ret_val; -} - -/** - * igb_force_mac_fc - Force the MAC's flow control settings - * @hw: pointer to the HW structure - * - * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the - * device control register to reflect the adapter settings. TFCE and RFCE - * need to be explicitly set by software when a copper PHY is used because - * autonegotiation is managed by the PHY rather than the MAC. Software must - * also configure these bits when link is forced on a fiber connection. - **/ -s32 igb_force_mac_fc(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val = 0; - - ctrl = rd32(E1000_CTRL); - - /* - * Because we didn't get link via the internal auto-negotiation - * mechanism (we either forced link or we got link via PHY - * auto-neg), we have to manually enable/disable transmit an - * receive flow control. - * - * The "Case" statement below enables/disable flow control - * according to the "hw->fc.current_mode" parameter. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause - * frames but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * frames but we do not receive pause frames). - * 3: Both Rx and TX flow control (symmetric) is enabled. - * other: No other values should be possible at this point. - */ - hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); - - switch (hw->fc.current_mode) { - case e1000_fc_none: - ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); - break; - case e1000_fc_rx_pause: - ctrl &= (~E1000_CTRL_TFCE); - ctrl |= E1000_CTRL_RFCE; - break; - case e1000_fc_tx_pause: - ctrl &= (~E1000_CTRL_RFCE); - ctrl |= E1000_CTRL_TFCE; - break; - case e1000_fc_full: - ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); - break; - default: - hw_dbg("Flow control param set incorrectly\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - wr32(E1000_CTRL, ctrl); - -out: - return ret_val; -} - -/** - * igb_config_fc_after_link_up - Configures flow control after link - * @hw: pointer to the HW structure - * - * Checks the status of auto-negotiation after link up to ensure that the - * speed and duplex were not forced. If the link needed to be forced, then - * flow control needs to be forced also. If auto-negotiation is enabled - * and did not fail, then we configure flow control based on our link - * partner. - **/ -s32 igb_config_fc_after_link_up(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val = 0; - u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; - u16 speed, duplex; - - /* - * Check for the case where we have fiber media and auto-neg failed - * so we had to force link. In this case, we need to force the - * configuration of the MAC to match the "fc" parameter. - */ - if (mac->autoneg_failed) { - if (hw->phy.media_type == e1000_media_type_internal_serdes) - ret_val = igb_force_mac_fc(hw); - } else { - if (hw->phy.media_type == e1000_media_type_copper) - ret_val = igb_force_mac_fc(hw); - } - - if (ret_val) { - hw_dbg("Error forcing flow control settings\n"); - goto out; - } - - /* - * Check for the case where we have copper media and auto-neg is - * enabled. In this case, we need to check and see if Auto-Neg - * has completed, and if so, how the PHY and link partner has - * flow control configured. - */ - if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { - /* - * Read the MII Status Register and check to see if AutoNeg - * has completed. We read this twice because this reg has - * some "sticky" (latched) bits. - */ - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, - &mii_status_reg); - if (ret_val) - goto out; - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, - &mii_status_reg); - if (ret_val) - goto out; - - if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { - hw_dbg("Copper PHY and Auto Neg " - "has not completed.\n"); - goto out; - } - - /* - * The AutoNeg process has completed, so we now need to - * read both the Auto Negotiation Advertisement - * Register (Address 4) and the Auto_Negotiation Base - * Page Ability Register (Address 5) to determine how - * flow control was negotiated. - */ - ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, - &mii_nway_adv_reg); - if (ret_val) - goto out; - ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, - &mii_nway_lp_ability_reg); - if (ret_val) - goto out; - - /* - * Two bits in the Auto Negotiation Advertisement Register - * (Address 4) and two bits in the Auto Negotiation Base - * Page Ability Register (Address 5) determine flow control - * for both the PHY and the link partner. The following - * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, - * 1999, describes these PAUSE resolution bits and how flow - * control is determined based upon these settings. - * NOTE: DC = Don't Care - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution - *-------|---------|-------|---------|-------------------- - * 0 | 0 | DC | DC | e1000_fc_none - * 0 | 1 | 0 | DC | e1000_fc_none - * 0 | 1 | 1 | 0 | e1000_fc_none - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - * 1 | 0 | 0 | DC | e1000_fc_none - * 1 | DC | 1 | DC | e1000_fc_full - * 1 | 1 | 0 | 0 | e1000_fc_none - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - * - * Are both PAUSE bits set to 1? If so, this implies - * Symmetric Flow Control is enabled at both ends. The - * ASM_DIR bits are irrelevant per the spec. - * - * For Symmetric Flow Control: - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | DC | 1 | DC | E1000_fc_full - * - */ - if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { - /* - * Now we need to check if the user selected RX ONLY - * of pause frames. In this case, we had to advertise - * FULL flow control because we could not advertise RX - * ONLY. Hence, we must now check to see if we need to - * turn OFF the TRANSMISSION of PAUSE frames. - */ - if (hw->fc.requested_mode == e1000_fc_full) { - hw->fc.current_mode = e1000_fc_full; - hw_dbg("Flow Control = FULL.\r\n"); - } else { - hw->fc.current_mode = e1000_fc_rx_pause; - hw_dbg("Flow Control = " - "RX PAUSE frames only.\r\n"); - } - } - /* - * For receiving PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - */ - else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_tx_pause; - hw_dbg("Flow Control = TX PAUSE frames only.\r\n"); - } - /* - * For transmitting PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - */ - else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_rx_pause; - hw_dbg("Flow Control = RX PAUSE frames only.\r\n"); - } - /* - * Per the IEEE spec, at this point flow control should be - * disabled. However, we want to consider that we could - * be connected to a legacy switch that doesn't advertise - * desired flow control, but can be forced on the link - * partner. So if we advertised no flow control, that is - * what we will resolve to. If we advertised some kind of - * receive capability (Rx Pause Only or Full Flow Control) - * and the link partner advertised none, we will configure - * ourselves to enable Rx Flow Control only. We can do - * this safely for two reasons: If the link partner really - * didn't want flow control enabled, and we enable Rx, no - * harm done since we won't be receiving any PAUSE frames - * anyway. If the intent on the link partner was to have - * flow control enabled, then by us enabling RX only, we - * can at least receive pause frames and process them. - * This is a good idea because in most cases, since we are - * predominantly a server NIC, more times than not we will - * be asked to delay transmission of packets than asking - * our link partner to pause transmission of frames. - */ - else if ((hw->fc.requested_mode == e1000_fc_none || - hw->fc.requested_mode == e1000_fc_tx_pause) || - hw->fc.strict_ieee) { - hw->fc.current_mode = e1000_fc_none; - hw_dbg("Flow Control = NONE.\r\n"); - } else { - hw->fc.current_mode = e1000_fc_rx_pause; - hw_dbg("Flow Control = RX PAUSE frames only.\r\n"); - } - - /* - * Now we need to do one last check... If we auto- - * negotiated to HALF DUPLEX, flow control should not be - * enabled per IEEE 802.3 spec. - */ - ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); - if (ret_val) { - hw_dbg("Error getting link speed and duplex\n"); - goto out; - } - - if (duplex == HALF_DUPLEX) - hw->fc.current_mode = e1000_fc_none; - - /* - * Now we call a subroutine to actually force the MAC - * controller to use the correct flow control settings. - */ - ret_val = igb_force_mac_fc(hw); - if (ret_val) { - hw_dbg("Error forcing flow control settings\n"); - goto out; - } - } - -out: - return ret_val; -} - -/** - * igb_get_speed_and_duplex_copper - Retrieve current speed/duplex - * @hw: pointer to the HW structure - * @speed: stores the current speed - * @duplex: stores the current duplex - * - * Read the status register for the current speed/duplex and store the current - * speed and duplex for copper connections. - **/ -s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, - u16 *duplex) -{ - u32 status; - - status = rd32(E1000_STATUS); - if (status & E1000_STATUS_SPEED_1000) { - *speed = SPEED_1000; - hw_dbg("1000 Mbs, "); - } else if (status & E1000_STATUS_SPEED_100) { - *speed = SPEED_100; - hw_dbg("100 Mbs, "); - } else { - *speed = SPEED_10; - hw_dbg("10 Mbs, "); - } - - if (status & E1000_STATUS_FD) { - *duplex = FULL_DUPLEX; - hw_dbg("Full Duplex\n"); - } else { - *duplex = HALF_DUPLEX; - hw_dbg("Half Duplex\n"); - } - - return 0; -} - -/** - * igb_get_hw_semaphore - Acquire hardware semaphore - * @hw: pointer to the HW structure - * - * Acquire the HW semaphore to access the PHY or NVM - **/ -s32 igb_get_hw_semaphore(struct e1000_hw *hw) -{ - u32 swsm; - s32 ret_val = 0; - s32 timeout = hw->nvm.word_size + 1; - s32 i = 0; - - /* Get the SW semaphore */ - while (i < timeout) { - swsm = rd32(E1000_SWSM); - if (!(swsm & E1000_SWSM_SMBI)) - break; - - udelay(50); - i++; - } - - if (i == timeout) { - hw_dbg("Driver can't access device - SMBI bit is set.\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - - /* Get the FW semaphore. */ - for (i = 0; i < timeout; i++) { - swsm = rd32(E1000_SWSM); - wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); - - /* Semaphore acquired if bit latched */ - if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) - break; - - udelay(50); - } - - if (i == timeout) { - /* Release semaphores */ - igb_put_hw_semaphore(hw); - hw_dbg("Driver can't access the NVM\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - -out: - return ret_val; -} - -/** - * igb_put_hw_semaphore - Release hardware semaphore - * @hw: pointer to the HW structure - * - * Release hardware semaphore used to access the PHY or NVM - **/ -void igb_put_hw_semaphore(struct e1000_hw *hw) -{ - u32 swsm; - - swsm = rd32(E1000_SWSM); - - swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); - - wr32(E1000_SWSM, swsm); -} - -/** - * igb_get_auto_rd_done - Check for auto read completion - * @hw: pointer to the HW structure - * - * Check EEPROM for Auto Read done bit. - **/ -s32 igb_get_auto_rd_done(struct e1000_hw *hw) -{ - s32 i = 0; - s32 ret_val = 0; - - - while (i < AUTO_READ_DONE_TIMEOUT) { - if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD) - break; - msleep(1); - i++; - } - - if (i == AUTO_READ_DONE_TIMEOUT) { - hw_dbg("Auto read by HW from NVM has not completed.\n"); - ret_val = -E1000_ERR_RESET; - goto out; - } - -out: - return ret_val; -} - -/** - * igb_valid_led_default - Verify a valid default LED config - * @hw: pointer to the HW structure - * @data: pointer to the NVM (EEPROM) - * - * Read the EEPROM for the current default LED configuration. If the - * LED configuration is not valid, set to a valid LED configuration. - **/ -static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data) -{ - s32 ret_val; - - ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); - if (ret_val) { - hw_dbg("NVM Read Error\n"); - goto out; - } - - if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { - switch(hw->phy.media_type) { - case e1000_media_type_internal_serdes: - *data = ID_LED_DEFAULT_82575_SERDES; - break; - case e1000_media_type_copper: - default: - *data = ID_LED_DEFAULT; - break; - } - } -out: - return ret_val; -} - -/** - * igb_id_led_init - - * @hw: pointer to the HW structure - * - **/ -s32 igb_id_led_init(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - const u32 ledctl_mask = 0x000000FF; - const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; - const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; - u16 data, i, temp; - const u16 led_mask = 0x0F; - - ret_val = igb_valid_led_default(hw, &data); - if (ret_val) - goto out; - - mac->ledctl_default = rd32(E1000_LEDCTL); - mac->ledctl_mode1 = mac->ledctl_default; - mac->ledctl_mode2 = mac->ledctl_default; - - for (i = 0; i < 4; i++) { - temp = (data >> (i << 2)) & led_mask; - switch (temp) { - case ID_LED_ON1_DEF2: - case ID_LED_ON1_ON2: - case ID_LED_ON1_OFF2: - mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode1 |= ledctl_on << (i << 3); - break; - case ID_LED_OFF1_DEF2: - case ID_LED_OFF1_ON2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode1 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - switch (temp) { - case ID_LED_DEF1_ON2: - case ID_LED_ON1_ON2: - case ID_LED_OFF1_ON2: - mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode2 |= ledctl_on << (i << 3); - break; - case ID_LED_DEF1_OFF2: - case ID_LED_ON1_OFF2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode2 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - } - -out: - return ret_val; -} - -/** - * igb_cleanup_led - Set LED config to default operation - * @hw: pointer to the HW structure - * - * Remove the current LED configuration and set the LED configuration - * to the default value, saved from the EEPROM. - **/ -s32 igb_cleanup_led(struct e1000_hw *hw) -{ - wr32(E1000_LEDCTL, hw->mac.ledctl_default); - return 0; -} - -/** - * igb_blink_led - Blink LED - * @hw: pointer to the HW structure - * - * Blink the led's which are set to be on. - **/ -s32 igb_blink_led(struct e1000_hw *hw) -{ - u32 ledctl_blink = 0; - u32 i; - - /* - * set the blink bit for each LED that's "on" (0x0E) - * in ledctl_mode2 - */ - ledctl_blink = hw->mac.ledctl_mode2; - for (i = 0; i < 4; i++) - if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == - E1000_LEDCTL_MODE_LED_ON) - ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << - (i * 8)); - - wr32(E1000_LEDCTL, ledctl_blink); - - return 0; -} - -/** - * igb_led_off - Turn LED off - * @hw: pointer to the HW structure - * - * Turn LED off. - **/ -s32 igb_led_off(struct e1000_hw *hw) -{ - switch (hw->phy.media_type) { - case e1000_media_type_copper: - wr32(E1000_LEDCTL, hw->mac.ledctl_mode1); - break; - default: - break; - } - - return 0; -} - -/** - * igb_disable_pcie_master - Disables PCI-express master access - * @hw: pointer to the HW structure - * - * Returns 0 (0) if successful, else returns -10 - * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued - * the master requests to be disabled. - * - * Disables PCI-Express master access and verifies there are no pending - * requests. - **/ -s32 igb_disable_pcie_master(struct e1000_hw *hw) -{ - u32 ctrl; - s32 timeout = MASTER_DISABLE_TIMEOUT; - s32 ret_val = 0; - - if (hw->bus.type != e1000_bus_type_pci_express) - goto out; - - ctrl = rd32(E1000_CTRL); - ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; - wr32(E1000_CTRL, ctrl); - - while (timeout) { - if (!(rd32(E1000_STATUS) & - E1000_STATUS_GIO_MASTER_ENABLE)) - break; - udelay(100); - timeout--; - } - - if (!timeout) { - hw_dbg("Master requests are pending.\n"); - ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; - goto out; - } - -out: - return ret_val; -} - -/** - * igb_validate_mdi_setting - Verify MDI/MDIx settings - * @hw: pointer to the HW structure - * - * Verify that when not using auto-negotitation that MDI/MDIx is correctly - * set, which is forced to MDI mode only. - **/ -s32 igb_validate_mdi_setting(struct e1000_hw *hw) -{ - s32 ret_val = 0; - - if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { - hw_dbg("Invalid MDI setting detected\n"); - hw->phy.mdix = 1; - ret_val = -E1000_ERR_CONFIG; - goto out; - } - -out: - return ret_val; -} - -/** - * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register - * @hw: pointer to the HW structure - * @reg: 32bit register offset such as E1000_SCTL - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes an address/data control type register. There are several of these - * and they all have the format address << 8 | data and bit 31 is polled for - * completion. - **/ -s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, - u32 offset, u8 data) -{ - u32 i, regvalue = 0; - s32 ret_val = 0; - - /* Set up the address and data */ - regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); - wr32(reg, regvalue); - - /* Poll the ready bit to see if the MDI read completed */ - for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { - udelay(5); - regvalue = rd32(reg); - if (regvalue & E1000_GEN_CTL_READY) - break; - } - if (!(regvalue & E1000_GEN_CTL_READY)) { - hw_dbg("Reg %08x did not indicate ready\n", reg); - ret_val = -E1000_ERR_PHY; - goto out; - } - -out: - return ret_val; -} - -/** - * igb_enable_mng_pass_thru - Enable processing of ARP's - * @hw: pointer to the HW structure - * - * Verifies the hardware needs to leave interface enabled so that frames can - * be directed to and from the management interface. - **/ -bool igb_enable_mng_pass_thru(struct e1000_hw *hw) -{ - u32 manc; - u32 fwsm, factps; - bool ret_val = false; - - if (!hw->mac.asf_firmware_present) - goto out; - - manc = rd32(E1000_MANC); - - if (!(manc & E1000_MANC_RCV_TCO_EN)) - goto out; - - if (hw->mac.arc_subsystem_valid) { - fwsm = rd32(E1000_FWSM); - factps = rd32(E1000_FACTPS); - - if (!(factps & E1000_FACTPS_MNGCG) && - ((fwsm & E1000_FWSM_MODE_MASK) == - (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { - ret_val = true; - goto out; - } - } else { - if ((manc & E1000_MANC_SMBUS_EN) && - !(manc & E1000_MANC_ASF_EN)) { - ret_val = true; - goto out; - } - } - -out: - return ret_val; -} |