diff options
Diffstat (limited to 'drivers/net/qlge/qlge_main.c')
-rw-r--r-- | drivers/net/qlge/qlge_main.c | 3954 |
1 files changed, 3954 insertions, 0 deletions
diff --git a/drivers/net/qlge/qlge_main.c b/drivers/net/qlge/qlge_main.c new file mode 100644 index 000000000000..ad878e2b9ded --- /dev/null +++ b/drivers/net/qlge/qlge_main.c @@ -0,0 +1,3954 @@ +/* + * QLogic qlge NIC HBA Driver + * Copyright (c) 2003-2008 QLogic Corporation + * See LICENSE.qlge for copyright and licensing details. + * Author: Linux qlge network device driver by + * Ron Mercer <ron.mercer@qlogic.com> + */ +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/types.h> +#include <linux/module.h> +#include <linux/list.h> +#include <linux/pci.h> +#include <linux/dma-mapping.h> +#include <linux/pagemap.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/dmapool.h> +#include <linux/mempool.h> +#include <linux/spinlock.h> +#include <linux/kthread.h> +#include <linux/interrupt.h> +#include <linux/errno.h> +#include <linux/ioport.h> +#include <linux/in.h> +#include <linux/ip.h> +#include <linux/ipv6.h> +#include <net/ipv6.h> +#include <linux/tcp.h> +#include <linux/udp.h> +#include <linux/if_arp.h> +#include <linux/if_ether.h> +#include <linux/netdevice.h> +#include <linux/etherdevice.h> +#include <linux/ethtool.h> +#include <linux/skbuff.h> +#include <linux/rtnetlink.h> +#include <linux/if_vlan.h> +#include <linux/init.h> +#include <linux/delay.h> +#include <linux/mm.h> +#include <linux/vmalloc.h> + +#include "qlge.h" + +char qlge_driver_name[] = DRV_NAME; +const char qlge_driver_version[] = DRV_VERSION; + +MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>"); +MODULE_DESCRIPTION(DRV_STRING " "); +MODULE_LICENSE("GPL"); +MODULE_VERSION(DRV_VERSION); + +static const u32 default_msg = + NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | +/* NETIF_MSG_TIMER | */ + NETIF_MSG_IFDOWN | + NETIF_MSG_IFUP | + NETIF_MSG_RX_ERR | + NETIF_MSG_TX_ERR | + NETIF_MSG_TX_QUEUED | + NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | +/* NETIF_MSG_PKTDATA | */ + NETIF_MSG_HW | NETIF_MSG_WOL | 0; + +static int debug = 0x00007fff; /* defaults above */ +module_param(debug, int, 0); +MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); + +#define MSIX_IRQ 0 +#define MSI_IRQ 1 +#define LEG_IRQ 2 +static int irq_type = MSIX_IRQ; +module_param(irq_type, int, MSIX_IRQ); +MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy."); + +static struct pci_device_id qlge_pci_tbl[] __devinitdata = { + {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)}, + {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID1)}, + /* required last entry */ + {0,} +}; + +MODULE_DEVICE_TABLE(pci, qlge_pci_tbl); + +/* This hardware semaphore causes exclusive access to + * resources shared between the NIC driver, MPI firmware, + * FCOE firmware and the FC driver. + */ +static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask) +{ + u32 sem_bits = 0; + + switch (sem_mask) { + case SEM_XGMAC0_MASK: + sem_bits = SEM_SET << SEM_XGMAC0_SHIFT; + break; + case SEM_XGMAC1_MASK: + sem_bits = SEM_SET << SEM_XGMAC1_SHIFT; + break; + case SEM_ICB_MASK: + sem_bits = SEM_SET << SEM_ICB_SHIFT; + break; + case SEM_MAC_ADDR_MASK: + sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT; + break; + case SEM_FLASH_MASK: + sem_bits = SEM_SET << SEM_FLASH_SHIFT; + break; + case SEM_PROBE_MASK: + sem_bits = SEM_SET << SEM_PROBE_SHIFT; + break; + case SEM_RT_IDX_MASK: + sem_bits = SEM_SET << SEM_RT_IDX_SHIFT; + break; + case SEM_PROC_REG_MASK: + sem_bits = SEM_SET << SEM_PROC_REG_SHIFT; + break; + default: + QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n"); + return -EINVAL; + } + + ql_write32(qdev, SEM, sem_bits | sem_mask); + return !(ql_read32(qdev, SEM) & sem_bits); +} + +int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask) +{ + unsigned int seconds = 3; + do { + if (!ql_sem_trylock(qdev, sem_mask)) + return 0; + ssleep(1); + } while (--seconds); + return -ETIMEDOUT; +} + +void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask) +{ + ql_write32(qdev, SEM, sem_mask); + ql_read32(qdev, SEM); /* flush */ +} + +/* This function waits for a specific bit to come ready + * in a given register. It is used mostly by the initialize + * process, but is also used in kernel thread API such as + * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid. + */ +int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit) +{ + u32 temp; + int count = UDELAY_COUNT; + + while (count) { + temp = ql_read32(qdev, reg); + + /* check for errors */ + if (temp & err_bit) { + QPRINTK(qdev, PROBE, ALERT, + "register 0x%.08x access error, value = 0x%.08x!.\n", + reg, temp); + return -EIO; + } else if (temp & bit) + return 0; + udelay(UDELAY_DELAY); + count--; + } + QPRINTK(qdev, PROBE, ALERT, + "Timed out waiting for reg %x to come ready.\n", reg); + return -ETIMEDOUT; +} + +/* The CFG register is used to download TX and RX control blocks + * to the chip. This function waits for an operation to complete. + */ +static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit) +{ + int count = UDELAY_COUNT; + u32 temp; + + while (count) { + temp = ql_read32(qdev, CFG); + if (temp & CFG_LE) + return -EIO; + if (!(temp & bit)) + return 0; + udelay(UDELAY_DELAY); + count--; + } + return -ETIMEDOUT; +} + + +/* Used to issue init control blocks to hw. Maps control block, + * sets address, triggers download, waits for completion. + */ +int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit, + u16 q_id) +{ + u64 map; + int status = 0; + int direction; + u32 mask; + u32 value; + + direction = + (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE : + PCI_DMA_FROMDEVICE; + + map = pci_map_single(qdev->pdev, ptr, size, direction); + if (pci_dma_mapping_error(qdev->pdev, map)) { + QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n"); + return -ENOMEM; + } + + status = ql_wait_cfg(qdev, bit); + if (status) { + QPRINTK(qdev, IFUP, ERR, + "Timed out waiting for CFG to come ready.\n"); + goto exit; + } + + status = ql_sem_spinlock(qdev, SEM_ICB_MASK); + if (status) + goto exit; + ql_write32(qdev, ICB_L, (u32) map); + ql_write32(qdev, ICB_H, (u32) (map >> 32)); + ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */ + + mask = CFG_Q_MASK | (bit << 16); + value = bit | (q_id << CFG_Q_SHIFT); + ql_write32(qdev, CFG, (mask | value)); + + /* + * Wait for the bit to clear after signaling hw. + */ + status = ql_wait_cfg(qdev, bit); +exit: + pci_unmap_single(qdev->pdev, map, size, direction); + return status; +} + +/* Get a specific MAC address from the CAM. Used for debug and reg dump. */ +int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index, + u32 *value) +{ + u32 offset = 0; + int status; + + status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); + if (status) + return status; + switch (type) { + case MAC_ADDR_TYPE_MULTI_MAC: + case MAC_ADDR_TYPE_CAM_MAC: + { + status = + ql_wait_reg_rdy(qdev, + MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E); + if (status) + goto exit; + ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ + (index << MAC_ADDR_IDX_SHIFT) | /* index */ + MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ + status = + ql_wait_reg_rdy(qdev, + MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E); + if (status) + goto exit; + *value++ = ql_read32(qdev, MAC_ADDR_DATA); + status = + ql_wait_reg_rdy(qdev, + MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E); + if (status) + goto exit; + ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ + (index << MAC_ADDR_IDX_SHIFT) | /* index */ + MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ + status = + ql_wait_reg_rdy(qdev, + MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E); + if (status) + goto exit; + *value++ = ql_read32(qdev, MAC_ADDR_DATA); + if (type == MAC_ADDR_TYPE_CAM_MAC) { + status = + ql_wait_reg_rdy(qdev, + MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E); + if (status) + goto exit; + ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ + (index << MAC_ADDR_IDX_SHIFT) | /* index */ + MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ + status = + ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, + MAC_ADDR_MR, MAC_ADDR_E); + if (status) + goto exit; + *value++ = ql_read32(qdev, MAC_ADDR_DATA); + } + break; + } + case MAC_ADDR_TYPE_VLAN: + case MAC_ADDR_TYPE_MULTI_FLTR: + default: + QPRINTK(qdev, IFUP, CRIT, + "Address type %d not yet supported.\n", type); + status = -EPERM; + } +exit: + ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); + return status; +} + +/* Set up a MAC, multicast or VLAN address for the + * inbound frame matching. + */ +static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type, + u16 index) +{ + u32 offset = 0; + int status = 0; + + status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); + if (status) + return status; + switch (type) { + case MAC_ADDR_TYPE_MULTI_MAC: + case MAC_ADDR_TYPE_CAM_MAC: + { + u32 cam_output; + u32 upper = (addr[0] << 8) | addr[1]; + u32 lower = + (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | + (addr[5]); + + QPRINTK(qdev, IFUP, INFO, + "Adding %s address %02x:%02x:%02x:%02x:%02x:%02x" + " at index %d in the CAM.\n", + ((type == + MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" : + "UNICAST"), addr[0], addr[1], addr[2], addr[3], + addr[4], addr[5], index); + + status = + ql_wait_reg_rdy(qdev, + MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E); + if (status) + goto exit; + ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ + (index << MAC_ADDR_IDX_SHIFT) | /* index */ + type); /* type */ + ql_write32(qdev, MAC_ADDR_DATA, lower); + status = + ql_wait_reg_rdy(qdev, + MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E); + if (status) + goto exit; + ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ + (index << MAC_ADDR_IDX_SHIFT) | /* index */ + type); /* type */ + ql_write32(qdev, MAC_ADDR_DATA, upper); + status = + ql_wait_reg_rdy(qdev, + MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E); + if (status) + goto exit; + ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */ + (index << MAC_ADDR_IDX_SHIFT) | /* index */ + type); /* type */ + /* This field should also include the queue id + and possibly the function id. Right now we hardcode + the route field to NIC core. + */ + if (type == MAC_ADDR_TYPE_CAM_MAC) { + cam_output = (CAM_OUT_ROUTE_NIC | + (qdev-> + func << CAM_OUT_FUNC_SHIFT) | + (qdev-> + rss_ring_first_cq_id << + CAM_OUT_CQ_ID_SHIFT)); + if (qdev->vlgrp) + cam_output |= CAM_OUT_RV; + /* route to NIC core */ + ql_write32(qdev, MAC_ADDR_DATA, cam_output); + } + break; + } + case MAC_ADDR_TYPE_VLAN: + { + u32 enable_bit = *((u32 *) &addr[0]); + /* For VLAN, the addr actually holds a bit that + * either enables or disables the vlan id we are + * addressing. It's either MAC_ADDR_E on or off. + * That's bit-27 we're talking about. + */ + QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n", + (enable_bit ? "Adding" : "Removing"), + index, (enable_bit ? "to" : "from")); + + status = + ql_wait_reg_rdy(qdev, + MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E); + if (status) + goto exit; + ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */ + (index << MAC_ADDR_IDX_SHIFT) | /* index */ + type | /* type */ + enable_bit); /* enable/disable */ + break; + } + case MAC_ADDR_TYPE_MULTI_FLTR: + default: + QPRINTK(qdev, IFUP, CRIT, + "Address type %d not yet supported.\n", type); + status = -EPERM; + } +exit: + ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); + return status; +} + +/* Get a specific frame routing value from the CAM. + * Used for debug and reg dump. + */ +int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value) +{ + int status = 0; + + status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK); + if (status) + goto exit; + + status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, RT_IDX_E); + if (status) + goto exit; + + ql_write32(qdev, RT_IDX, + RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT)); + status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, RT_IDX_E); + if (status) + goto exit; + *value = ql_read32(qdev, RT_DATA); +exit: + ql_sem_unlock(qdev, SEM_RT_IDX_MASK); + return status; +} + +/* The NIC function for this chip has 16 routing indexes. Each one can be used + * to route different frame types to various inbound queues. We send broadcast/ + * multicast/error frames to the default queue for slow handling, + * and CAM hit/RSS frames to the fast handling queues. + */ +static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask, + int enable) +{ + int status; + u32 value = 0; + + status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK); + if (status) + return status; + + QPRINTK(qdev, IFUP, DEBUG, + "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n", + (enable ? "Adding" : "Removing"), + ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""), + ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""), + ((index == + RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""), + ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""), + ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""), + ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""), + ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""), + ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""), + ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""), + ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""), + ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""), + ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""), + ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""), + ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""), + ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""), + ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""), + (enable ? "to" : "from")); + + switch (mask) { + case RT_IDX_CAM_HIT: + { + value = RT_IDX_DST_CAM_Q | /* dest */ + RT_IDX_TYPE_NICQ | /* type */ + (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */ + break; + } + case RT_IDX_VALID: /* Promiscuous Mode frames. */ + { + value = RT_IDX_DST_DFLT_Q | /* dest */ + RT_IDX_TYPE_NICQ | /* type */ + (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */ + break; + } + case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */ + { + value = RT_IDX_DST_DFLT_Q | /* dest */ + RT_IDX_TYPE_NICQ | /* type */ + (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */ + break; + } + case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */ + { + value = RT_IDX_DST_DFLT_Q | /* dest */ + RT_IDX_TYPE_NICQ | /* type */ + (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */ + break; + } + case RT_IDX_MCAST: /* Pass up All Multicast frames. */ + { + value = RT_IDX_DST_CAM_Q | /* dest */ + RT_IDX_TYPE_NICQ | /* type */ + (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */ + break; + } + case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */ + { + value = RT_IDX_DST_CAM_Q | /* dest */ + RT_IDX_TYPE_NICQ | /* type */ + (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */ + break; + } + case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */ + { + value = RT_IDX_DST_RSS | /* dest */ + RT_IDX_TYPE_NICQ | /* type */ + (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */ + break; + } + case 0: /* Clear the E-bit on an entry. */ + { + value = RT_IDX_DST_DFLT_Q | /* dest */ + RT_IDX_TYPE_NICQ | /* type */ + (index << RT_IDX_IDX_SHIFT);/* index */ + break; + } + default: + QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n", + mask); + status = -EPERM; + goto exit; + } + + if (value) { + status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0); + if (status) + goto exit; + value |= (enable ? RT_IDX_E : 0); + ql_write32(qdev, RT_IDX, value); + ql_write32(qdev, RT_DATA, enable ? mask : 0); + } +exit: + ql_sem_unlock(qdev, SEM_RT_IDX_MASK); + return status; +} + +static void ql_enable_interrupts(struct ql_adapter *qdev) +{ + ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI); +} + +static void ql_disable_interrupts(struct ql_adapter *qdev) +{ + ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16)); +} + +/* If we're running with multiple MSI-X vectors then we enable on the fly. + * Otherwise, we may have multiple outstanding workers and don't want to + * enable until the last one finishes. In this case, the irq_cnt gets + * incremented everytime we queue a worker and decremented everytime + * a worker finishes. Once it hits zero we enable the interrupt. + */ +void ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr) +{ + if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) + ql_write32(qdev, INTR_EN, + qdev->intr_context[intr].intr_en_mask); + else { + if (qdev->legacy_check) + spin_lock(&qdev->legacy_lock); + if (atomic_dec_and_test(&qdev->intr_context[intr].irq_cnt)) { + QPRINTK(qdev, INTR, ERR, "Enabling interrupt %d.\n", + intr); + ql_write32(qdev, INTR_EN, + qdev->intr_context[intr].intr_en_mask); + } else { + QPRINTK(qdev, INTR, ERR, + "Skip enable, other queue(s) are active.\n"); + } + if (qdev->legacy_check) + spin_unlock(&qdev->legacy_lock); + } +} + +static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr) +{ + u32 var = 0; + + if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) + goto exit; + else if (!atomic_read(&qdev->intr_context[intr].irq_cnt)) { + ql_write32(qdev, INTR_EN, + qdev->intr_context[intr].intr_dis_mask); + var = ql_read32(qdev, STS); + } + atomic_inc(&qdev->intr_context[intr].irq_cnt); +exit: + return var; +} + +static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev) +{ + int i; + for (i = 0; i < qdev->intr_count; i++) { + /* The enable call does a atomic_dec_and_test + * and enables only if the result is zero. + * So we precharge it here. + */ + atomic_set(&qdev->intr_context[i].irq_cnt, 1); + ql_enable_completion_interrupt(qdev, i); + } + +} + +int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data) +{ + int status = 0; + /* wait for reg to come ready */ + status = ql_wait_reg_rdy(qdev, + FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR); + if (status) + goto exit; + /* set up for reg read */ + ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset); + /* wait for reg to come ready */ + status = ql_wait_reg_rdy(qdev, + FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR); + if (status) + goto exit; + /* get the data */ + *data = ql_read32(qdev, FLASH_DATA); +exit: + return status; +} + +static int ql_get_flash_params(struct ql_adapter *qdev) +{ + int i; + int status; + u32 *p = (u32 *)&qdev->flash; + + if (ql_sem_spinlock(qdev, SEM_FLASH_MASK)) + return -ETIMEDOUT; + + for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) { + status = ql_read_flash_word(qdev, i, p); + if (status) { + QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n"); + goto exit; + } + + } +exit: + ql_sem_unlock(qdev, SEM_FLASH_MASK); + return status; +} + +/* xgmac register are located behind the xgmac_addr and xgmac_data + * register pair. Each read/write requires us to wait for the ready + * bit before reading/writing the data. + */ +static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data) +{ + int status; + /* wait for reg to come ready */ + status = ql_wait_reg_rdy(qdev, + XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); + if (status) + return status; + /* write the data to the data reg */ + ql_write32(qdev, XGMAC_DATA, data); + /* trigger the write */ + ql_write32(qdev, XGMAC_ADDR, reg); + return status; +} + +/* xgmac register are located behind the xgmac_addr and xgmac_data + * register pair. Each read/write requires us to wait for the ready + * bit before reading/writing the data. + */ +int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data) +{ + int status = 0; + /* wait for reg to come ready */ + status = ql_wait_reg_rdy(qdev, + XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); + if (status) + goto exit; + /* set up for reg read */ + ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R); + /* wait for reg to come ready */ + status = ql_wait_reg_rdy(qdev, + XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); + if (status) + goto exit; + /* get the data */ + *data = ql_read32(qdev, XGMAC_DATA); +exit: + return status; +} + +/* This is used for reading the 64-bit statistics regs. */ +int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data) +{ + int status = 0; + u32 hi = 0; + u32 lo = 0; + + status = ql_read_xgmac_reg(qdev, reg, &lo); + if (status) + goto exit; + + status = ql_read_xgmac_reg(qdev, reg + 4, &hi); + if (status) + goto exit; + + *data = (u64) lo | ((u64) hi << 32); + +exit: + return status; +} + +/* Take the MAC Core out of reset. + * Enable statistics counting. + * Take the transmitter/receiver out of reset. + * This functionality may be done in the MPI firmware at a + * later date. + */ +static int ql_port_initialize(struct ql_adapter *qdev) +{ + int status = 0; + u32 data; + + if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) { + /* Another function has the semaphore, so + * wait for the port init bit to come ready. + */ + QPRINTK(qdev, LINK, INFO, + "Another function has the semaphore, so wait for the port init bit to come ready.\n"); + status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0); + if (status) { + QPRINTK(qdev, LINK, CRIT, + "Port initialize timed out.\n"); + } + return status; + } + + QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n"); + /* Set the core reset. */ + status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data); + if (status) + goto end; + data |= GLOBAL_CFG_RESET; + status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data); + if (status) + goto end; + + /* Clear the core reset and turn on jumbo for receiver. */ + data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */ + data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */ + data |= GLOBAL_CFG_TX_STAT_EN; + data |= GLOBAL_CFG_RX_STAT_EN; + status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data); + if (status) + goto end; + + /* Enable transmitter, and clear it's reset. */ + status = ql_read_xgmac_reg(qdev, TX_CFG, &data); + if (status) + goto end; + data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */ + data |= TX_CFG_EN; /* Enable the transmitter. */ + status = ql_write_xgmac_reg(qdev, TX_CFG, data); + if (status) + goto end; + + /* Enable receiver and clear it's reset. */ + status = ql_read_xgmac_reg(qdev, RX_CFG, &data); + if (status) + goto end; + data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */ + data |= RX_CFG_EN; /* Enable the receiver. */ + status = ql_write_xgmac_reg(qdev, RX_CFG, data); + if (status) + goto end; + + /* Turn on jumbo. */ + status = + ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16)); + if (status) + goto end; + status = + ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580); + if (status) + goto end; + + /* Signal to the world that the port is enabled. */ + ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init)); +end: + ql_sem_unlock(qdev, qdev->xg_sem_mask); + return status; +} + +/* Get the next large buffer. */ +struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring) +{ + struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx]; + rx_ring->lbq_curr_idx++; + if (rx_ring->lbq_curr_idx == rx_ring->lbq_len) + rx_ring->lbq_curr_idx = 0; + rx_ring->lbq_free_cnt++; + return lbq_desc; +} + +/* Get the next small buffer. */ +struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring) +{ + struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx]; + rx_ring->sbq_curr_idx++; + if (rx_ring->sbq_curr_idx == rx_ring->sbq_len) + rx_ring->sbq_curr_idx = 0; + rx_ring->sbq_free_cnt++; + return sbq_desc; +} + +/* Update an rx ring index. */ +static void ql_update_cq(struct rx_ring *rx_ring) +{ + rx_ring->cnsmr_idx++; + rx_ring->curr_entry++; + if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) { + rx_ring->cnsmr_idx = 0; + rx_ring->curr_entry = rx_ring->cq_base; + } +} + +static void ql_write_cq_idx(struct rx_ring *rx_ring) +{ + ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg); +} + +/* Process (refill) a large buffer queue. */ +static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring) +{ + int clean_idx = rx_ring->lbq_clean_idx; + struct bq_desc *lbq_desc; + struct bq_element *bq; + u64 map; + int i; + + while (rx_ring->lbq_free_cnt > 16) { + for (i = 0; i < 16; i++) { + QPRINTK(qdev, RX_STATUS, DEBUG, + "lbq: try cleaning clean_idx = %d.\n", + clean_idx); + lbq_desc = &rx_ring->lbq[clean_idx]; + bq = lbq_desc->bq; + if (lbq_desc->p.lbq_page == NULL) { + QPRINTK(qdev, RX_STATUS, DEBUG, + "lbq: getting new page for index %d.\n", + lbq_desc->index); + lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC); + if (lbq_desc->p.lbq_page == NULL) { + QPRINTK(qdev, RX_STATUS, ERR, + "Couldn't get a page.\n"); + return; + } + map = pci_map_page(qdev->pdev, + lbq_desc->p.lbq_page, + 0, PAGE_SIZE, + PCI_DMA_FROMDEVICE); + if (pci_dma_mapping_error(qdev->pdev, map)) { + QPRINTK(qdev, RX_STATUS, ERR, + "PCI mapping failed.\n"); + return; + } + pci_unmap_addr_set(lbq_desc, mapaddr, map); + pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE); + bq->addr_lo = /*lbq_desc->addr_lo = */ + cpu_to_le32(map); + bq->addr_hi = /*lbq_desc->addr_hi = */ + cpu_to_le32(map >> 32); + } + clean_idx++; + if (clean_idx == rx_ring->lbq_len) + clean_idx = 0; + } + + rx_ring->lbq_clean_idx = clean_idx; + rx_ring->lbq_prod_idx += 16; + if (rx_ring->lbq_prod_idx == rx_ring->lbq_len) + rx_ring->lbq_prod_idx = 0; + QPRINTK(qdev, RX_STATUS, DEBUG, + "lbq: updating prod idx = %d.\n", + rx_ring->lbq_prod_idx); + ql_write_db_reg(rx_ring->lbq_prod_idx, + rx_ring->lbq_prod_idx_db_reg); + rx_ring->lbq_free_cnt -= 16; + } +} + +/* Process (refill) a small buffer queue. */ +static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring) +{ + int clean_idx = rx_ring->sbq_clean_idx; + struct bq_desc *sbq_desc; + struct bq_element *bq; + u64 map; + int i; + + while (rx_ring->sbq_free_cnt > 16) { + for (i = 0; i < 16; i++) { + sbq_desc = &rx_ring->sbq[clean_idx]; + QPRINTK(qdev, RX_STATUS, DEBUG, + "sbq: try cleaning clean_idx = %d.\n", + clean_idx); + bq = sbq_desc->bq; + if (sbq_desc->p.skb == NULL) { + QPRINTK(qdev, RX_STATUS, DEBUG, + "sbq: getting new skb for index %d.\n", + sbq_desc->index); + sbq_desc->p.skb = + netdev_alloc_skb(qdev->ndev, + rx_ring->sbq_buf_size); + if (sbq_desc->p.skb == NULL) { + QPRINTK(qdev, PROBE, ERR, + "Couldn't get an skb.\n"); + rx_ring->sbq_clean_idx = clean_idx; + return; + } + skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD); + map = pci_map_single(qdev->pdev, + sbq_desc->p.skb->data, + rx_ring->sbq_buf_size / + 2, PCI_DMA_FROMDEVICE); + pci_unmap_addr_set(sbq_desc, mapaddr, map); + pci_unmap_len_set(sbq_desc, maplen, + rx_ring->sbq_buf_size / 2); + bq->addr_lo = cpu_to_le32(map); + bq->addr_hi = cpu_to_le32(map >> 32); + } + + clean_idx++; + if (clean_idx == rx_ring->sbq_len) + clean_idx = 0; + } + rx_ring->sbq_clean_idx = clean_idx; + rx_ring->sbq_prod_idx += 16; + if (rx_ring->sbq_prod_idx == rx_ring->sbq_len) + rx_ring->sbq_prod_idx = 0; + QPRINTK(qdev, RX_STATUS, DEBUG, + "sbq: updating prod idx = %d.\n", + rx_ring->sbq_prod_idx); + ql_write_db_reg(rx_ring->sbq_prod_idx, + rx_ring->sbq_prod_idx_db_reg); + + rx_ring->sbq_free_cnt -= 16; + } +} + +static void ql_update_buffer_queues(struct ql_adapter *qdev, + struct rx_ring *rx_ring) +{ + ql_update_sbq(qdev, rx_ring); + ql_update_lbq(qdev, rx_ring); +} + +/* Unmaps tx buffers. Can be called from send() if a pci mapping + * fails at some stage, or from the interrupt when a tx completes. + */ +static void ql_unmap_send(struct ql_adapter *qdev, + struct tx_ring_desc *tx_ring_desc, int mapped) +{ + int i; + for (i = 0; i < mapped; i++) { + if (i == 0 || (i == 7 && mapped > 7)) { + /* + * Unmap the skb->data area, or the + * external sglist (AKA the Outbound + * Address List (OAL)). + * If its the zeroeth element, then it's + * the skb->data area. If it's the 7th + * element and there is more than 6 frags, + * then its an OAL. + */ + if (i == 7) { + QPRINTK(qdev, TX_DONE, DEBUG, + "unmapping OAL area.\n"); + } + pci_unmap_single(qdev->pdev, + pci_unmap_addr(&tx_ring_desc->map[i], + mapaddr), + pci_unmap_len(&tx_ring_desc->map[i], + maplen), + PCI_DMA_TODEVICE); + } else { + QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n", + i); + pci_unmap_page(qdev->pdev, + pci_unmap_addr(&tx_ring_desc->map[i], + mapaddr), + pci_unmap_len(&tx_ring_desc->map[i], + maplen), PCI_DMA_TODEVICE); + } + } + +} + +/* Map the buffers for this transmit. This will return + * NETDEV_TX_BUSY or NETDEV_TX_OK based on success. + */ +static int ql_map_send(struct ql_adapter *qdev, + struct ob_mac_iocb_req *mac_iocb_ptr, + struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc) +{ + int len = skb_headlen(skb); + dma_addr_t map; + int frag_idx, err, map_idx = 0; + struct tx_buf_desc *tbd = mac_iocb_ptr->tbd; + int frag_cnt = skb_shinfo(skb)->nr_frags; + + if (frag_cnt) { + QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt); + } + /* + * Map the skb buffer first. + */ + map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE); + + err = pci_dma_mapping_error(qdev->pdev, map); + if (err) { + QPRINTK(qdev, TX_QUEUED, ERR, + "PCI mapping failed with error: %d\n", err); + + return NETDEV_TX_BUSY; + } + + tbd->len = cpu_to_le32(len); + tbd->addr = cpu_to_le64(map); + pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map); + pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len); + map_idx++; + + /* + * This loop fills the remainder of the 8 address descriptors + * in the IOCB. If there are more than 7 fragments, then the + * eighth address desc will point to an external list (OAL). + * When this happens, the remainder of the frags will be stored + * in this list. + */ + for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) { + skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx]; + tbd++; + if (frag_idx == 6 && frag_cnt > 7) { + /* Let's tack on an sglist. + * Our control block will now + * look like this: + * iocb->seg[0] = skb->data + * iocb->seg[1] = frag[0] + * iocb->seg[2] = frag[1] + * iocb->seg[3] = frag[2] + * iocb->seg[4] = frag[3] + * iocb->seg[5] = frag[4] + * iocb->seg[6] = frag[5] + * iocb->seg[7] = ptr to OAL (external sglist) + * oal->seg[0] = frag[6] + * oal->seg[1] = frag[7] + * oal->seg[2] = frag[8] + * oal->seg[3] = frag[9] + * oal->seg[4] = frag[10] + * etc... + */ + /* Tack on the OAL in the eighth segment of IOCB. */ + map = pci_map_single(qdev->pdev, &tx_ring_desc->oal, + sizeof(struct oal), + PCI_DMA_TODEVICE); + err = pci_dma_mapping_error(qdev->pdev, map); + if (err) { + QPRINTK(qdev, TX_QUEUED, ERR, + "PCI mapping outbound address list with error: %d\n", + err); + goto map_error; + } + + tbd->addr = cpu_to_le64(map); + /* + * The length is the number of fragments + * that remain to be mapped times the length + * of our sglist (OAL). + */ + tbd->len = + cpu_to_le32((sizeof(struct tx_buf_desc) * + (frag_cnt - frag_idx)) | TX_DESC_C); + pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, + map); + pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, + sizeof(struct oal)); + tbd = (struct tx_buf_desc *)&tx_ring_desc->oal; + map_idx++; + } + + map = + pci_map_page(qdev->pdev, frag->page, + frag->page_offset, frag->size, + PCI_DMA_TODEVICE); + + err = pci_dma_mapping_error(qdev->pdev, map); + if (err) { + QPRINTK(qdev, TX_QUEUED, ERR, + "PCI mapping frags failed with error: %d.\n", + err); + goto map_error; + } + + tbd->addr = cpu_to_le64(map); + tbd->len = cpu_to_le32(frag->size); + pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map); + pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, + frag->size); + + } + /* Save the number of segments we've mapped. */ + tx_ring_desc->map_cnt = map_idx; + /* Terminate the last segment. */ + tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E); + return NETDEV_TX_OK; + +map_error: + /* + * If the first frag mapping failed, then i will be zero. + * This causes the unmap of the skb->data area. Otherwise + * we pass in the number of frags that mapped successfully + * so they can be umapped. + */ + ql_unmap_send(qdev, tx_ring_desc, map_idx); + return NETDEV_TX_BUSY; +} + +void ql_realign_skb(struct sk_buff *skb, int len) +{ + void *temp_addr = skb->data; + + /* Undo the skb_reserve(skb,32) we did before + * giving to hardware, and realign data on + * a 2-byte boundary. + */ + skb->data -= QLGE_SB_PAD - NET_IP_ALIGN; + skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN; + skb_copy_to_linear_data(skb, temp_addr, + (unsigned int)len); +} + +/* + * This function builds an skb for the given inbound + * completion. It will be rewritten for readability in the near + * future, but for not it works well. + */ +static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev, + struct rx_ring *rx_ring, + struct ib_mac_iocb_rsp *ib_mac_rsp) +{ + struct bq_desc *lbq_desc; + struct bq_desc *sbq_desc; + struct sk_buff *skb = NULL; + u32 length = le32_to_cpu(ib_mac_rsp->data_len); + u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len); + + /* + * Handle the header buffer if present. + */ + if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV && + ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { + QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len); + /* + * Headers fit nicely into a small buffer. + */ + sbq_desc = ql_get_curr_sbuf(rx_ring); + pci_unmap_single(qdev->pdev, + pci_unmap_addr(sbq_desc, mapaddr), + pci_unmap_len(sbq_desc, maplen), + PCI_DMA_FROMDEVICE); + skb = sbq_desc->p.skb; + ql_realign_skb(skb, hdr_len); + skb_put(skb, hdr_len); + sbq_desc->p.skb = NULL; + } + + /* + * Handle the data buffer(s). + */ + if (unlikely(!length)) { /* Is there data too? */ + QPRINTK(qdev, RX_STATUS, DEBUG, + "No Data buffer in this packet.\n"); + return skb; + } + + if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) { + if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { + QPRINTK(qdev, RX_STATUS, DEBUG, + "Headers in small, data of %d bytes in small, combine them.\n", length); + /* + * Data is less than small buffer size so it's + * stuffed in a small buffer. + * For this case we append the data + * from the "data" small buffer to the "header" small + * buffer. + */ + sbq_desc = ql_get_curr_sbuf(rx_ring); + pci_dma_sync_single_for_cpu(qdev->pdev, + pci_unmap_addr + (sbq_desc, mapaddr), + pci_unmap_len + (sbq_desc, maplen), + PCI_DMA_FROMDEVICE); + memcpy(skb_put(skb, length), + sbq_desc->p.skb->data, length); + pci_dma_sync_single_for_device(qdev->pdev, + pci_unmap_addr + (sbq_desc, + mapaddr), + pci_unmap_len + (sbq_desc, + maplen), + PCI_DMA_FROMDEVICE); + } else { + QPRINTK(qdev, RX_STATUS, DEBUG, + "%d bytes in a single small buffer.\n", length); + sbq_desc = ql_get_curr_sbuf(rx_ring); + skb = sbq_desc->p.skb; + ql_realign_skb(skb, length); + skb_put(skb, length); + pci_unmap_single(qdev->pdev, + pci_unmap_addr(sbq_desc, + mapaddr), + pci_unmap_len(sbq_desc, + maplen), + PCI_DMA_FROMDEVICE); + sbq_desc->p.skb = NULL; + } + } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) { + if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { + QPRINTK(qdev, RX_STATUS, DEBUG, + "Header in small, %d bytes in large. Chain large to small!\n", length); + /* + * The data is in a single large buffer. We + * chain it to the header buffer's skb and let + * it rip. + */ + lbq_desc = ql_get_curr_lbuf(rx_ring); + pci_unmap_page(qdev->pdev, + pci_unmap_addr(lbq_desc, + mapaddr), + pci_unmap_len(lbq_desc, maplen), + PCI_DMA_FROMDEVICE); + QPRINTK(qdev, RX_STATUS, DEBUG, + "Chaining page to skb.\n"); + skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page, + 0, length); + skb->len += length; + skb->data_len += length; + skb->truesize += length; + lbq_desc->p.lbq_page = NULL; + } else { + /* + * The headers and data are in a single large buffer. We + * copy it to a new skb and let it go. This can happen with + * jumbo mtu on a non-TCP/UDP frame. + */ + lbq_desc = ql_get_curr_lbuf(rx_ring); + skb = netdev_alloc_skb(qdev->ndev, length); + if (skb == NULL) { + QPRINTK(qdev, PROBE, DEBUG, + "No skb available, drop the packet.\n"); + return NULL; + } + skb_reserve(skb, NET_IP_ALIGN); + QPRINTK(qdev, RX_STATUS, DEBUG, + "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length); + skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page, + 0, length); + skb->len += length; + skb->data_len += length; + skb->truesize += length; + length -= length; + lbq_desc->p.lbq_page = NULL; + __pskb_pull_tail(skb, + (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? + VLAN_ETH_HLEN : ETH_HLEN); + } + } else { + /* + * The data is in a chain of large buffers + * pointed to by a small buffer. We loop + * thru and chain them to the our small header + * buffer's skb. + * frags: There are 18 max frags and our small + * buffer will hold 32 of them. The thing is, + * we'll use 3 max for our 9000 byte jumbo + * frames. If the MTU goes up we could + * eventually be in trouble. + */ + int size, offset, i = 0; + struct bq_element *bq, bq_array[8]; + sbq_desc = ql_get_curr_sbuf(rx_ring); + pci_unmap_single(qdev->pdev, + pci_unmap_addr(sbq_desc, mapaddr), + pci_unmap_len(sbq_desc, maplen), + PCI_DMA_FROMDEVICE); + if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) { + /* + * This is an non TCP/UDP IP frame, so + * the headers aren't split into a small + * buffer. We have to use the small buffer + * that contains our sg list as our skb to + * send upstairs. Copy the sg list here to + * a local buffer and use it to find the + * pages to chain. + */ + QPRINTK(qdev, RX_STATUS, DEBUG, + "%d bytes of headers & data in chain of large.\n", length); + skb = sbq_desc->p.skb; + bq = &bq_array[0]; + memcpy(bq, skb->data, sizeof(bq_array)); + sbq_desc->p.skb = NULL; + skb_reserve(skb, NET_IP_ALIGN); + } else { + QPRINTK(qdev, RX_STATUS, DEBUG, + "Headers in small, %d bytes of data in chain of large.\n", length); + bq = (struct bq_element *)sbq_desc->p.skb->data; + } + while (length > 0) { + lbq_desc = ql_get_curr_lbuf(rx_ring); + if ((bq->addr_lo & ~BQ_MASK) != lbq_desc->bq->addr_lo) { + QPRINTK(qdev, RX_STATUS, ERR, + "Panic!!! bad large buffer address, expected 0x%.08x, got 0x%.08x.\n", + lbq_desc->bq->addr_lo, bq->addr_lo); + return NULL; + } + pci_unmap_page(qdev->pdev, + pci_unmap_addr(lbq_desc, + mapaddr), + pci_unmap_len(lbq_desc, + maplen), + PCI_DMA_FROMDEVICE); + size = (length < PAGE_SIZE) ? length : PAGE_SIZE; + offset = 0; + + QPRINTK(qdev, RX_STATUS, DEBUG, + "Adding page %d to skb for %d bytes.\n", + i, size); + skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page, + offset, size); + skb->len += size; + skb->data_len += size; + skb->truesize += size; + length -= size; + lbq_desc->p.lbq_page = NULL; + bq++; + i++; + } + __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? + VLAN_ETH_HLEN : ETH_HLEN); + } + return skb; +} + +/* Process an inbound completion from an rx ring. */ +static void ql_process_mac_rx_intr(struct ql_adapter *qdev, + struct rx_ring *rx_ring, + struct ib_mac_iocb_rsp *ib_mac_rsp) +{ + struct net_device *ndev = qdev->ndev; + struct sk_buff *skb = NULL; + + QL_DUMP_IB_MAC_RSP(ib_mac_rsp); + + skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp); + if (unlikely(!skb)) { + QPRINTK(qdev, RX_STATUS, DEBUG, + "No skb available, drop packet.\n"); + return; + } + + prefetch(skb->data); + skb->dev = ndev; + if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) { + QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n", + (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == + IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "", + (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == + IB_MAC_IOCB_RSP_M_REG ? "Registered" : "", + (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == + IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : ""); + } + if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) { + QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n"); + } + if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) { + QPRINTK(qdev, RX_STATUS, ERR, + "Bad checksum for this %s packet.\n", + ((ib_mac_rsp-> + flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP")); + skb->ip_summed = CHECKSUM_NONE; + } else if (qdev->rx_csum && + ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) || + ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) && + !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) { + QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n"); + skb->ip_summed = CHECKSUM_UNNECESSARY; + } + qdev->stats.rx_packets++; + qdev->stats.rx_bytes += skb->len; + skb->protocol = eth_type_trans(skb, ndev); + if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) { + QPRINTK(qdev, RX_STATUS, DEBUG, + "Passing a VLAN packet upstream.\n"); + vlan_hwaccel_rx(skb, qdev->vlgrp, + le16_to_cpu(ib_mac_rsp->vlan_id)); + } else { + QPRINTK(qdev, RX_STATUS, DEBUG, + "Passing a normal packet upstream.\n"); + netif_rx(skb); + } + ndev->last_rx = jiffies; +} + +/* Process an outbound completion from an rx ring. */ +static void ql_process_mac_tx_intr(struct ql_adapter *qdev, + struct ob_mac_iocb_rsp *mac_rsp) +{ + struct tx_ring *tx_ring; + struct tx_ring_desc *tx_ring_desc; + + QL_DUMP_OB_MAC_RSP(mac_rsp); + tx_ring = &qdev->tx_ring[mac_rsp->txq_idx]; + tx_ring_desc = &tx_ring->q[mac_rsp->tid]; + ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt); + qdev->stats.tx_bytes += tx_ring_desc->map_cnt; + qdev->stats.tx_packets++; + dev_kfree_skb(tx_ring_desc->skb); + tx_ring_desc->skb = NULL; + + if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E | + OB_MAC_IOCB_RSP_S | + OB_MAC_IOCB_RSP_L | + OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) { + if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) { + QPRINTK(qdev, TX_DONE, WARNING, + "Total descriptor length did not match transfer length.\n"); + } + if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) { + QPRINTK(qdev, TX_DONE, WARNING, + "Frame too short to be legal, not sent.\n"); + } + if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) { + QPRINTK(qdev, TX_DONE, WARNING, + "Frame too long, but sent anyway.\n"); + } + if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) { + QPRINTK(qdev, TX_DONE, WARNING, + "PCI backplane error. Frame not sent.\n"); + } + } + atomic_inc(&tx_ring->tx_count); +} + +/* Fire up a handler to reset the MPI processor. */ +void ql_queue_fw_error(struct ql_adapter *qdev) +{ + netif_stop_queue(qdev->ndev); + netif_carrier_off(qdev->ndev); + queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0); +} + +void ql_queue_asic_error(struct ql_adapter *qdev) +{ + netif_stop_queue(qdev->ndev); + netif_carrier_off(qdev->ndev); + ql_disable_interrupts(qdev); + queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0); +} + +static void ql_process_chip_ae_intr(struct ql_adapter *qdev, + struct ib_ae_iocb_rsp *ib_ae_rsp) +{ + switch (ib_ae_rsp->event) { + case MGMT_ERR_EVENT: + QPRINTK(qdev, RX_ERR, ERR, + "Management Processor Fatal Error.\n"); + ql_queue_fw_error(qdev); + return; + + case CAM_LOOKUP_ERR_EVENT: + QPRINTK(qdev, LINK, ERR, + "Multiple CAM hits lookup occurred.\n"); + QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n"); + ql_queue_asic_error(qdev); + return; + + case SOFT_ECC_ERROR_EVENT: + QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n"); + ql_queue_asic_error(qdev); + break; + + case PCI_ERR_ANON_BUF_RD: + QPRINTK(qdev, RX_ERR, ERR, + "PCI error occurred when reading anonymous buffers from rx_ring %d.\n", + ib_ae_rsp->q_id); + ql_queue_asic_error(qdev); + break; + + default: + QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n", + ib_ae_rsp->event); + ql_queue_asic_error(qdev); + break; + } +} + +static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring) +{ + struct ql_adapter *qdev = rx_ring->qdev; + u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); + struct ob_mac_iocb_rsp *net_rsp = NULL; + int count = 0; + + /* While there are entries in the completion queue. */ + while (prod != rx_ring->cnsmr_idx) { + + QPRINTK(qdev, RX_STATUS, DEBUG, + "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id, + prod, rx_ring->cnsmr_idx); + + net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry; + rmb(); + switch (net_rsp->opcode) { + + case OPCODE_OB_MAC_TSO_IOCB: + case OPCODE_OB_MAC_IOCB: + ql_process_mac_tx_intr(qdev, net_rsp); + break; + default: + QPRINTK(qdev, RX_STATUS, DEBUG, + "Hit default case, not handled! dropping the packet, opcode = %x.\n", + net_rsp->opcode); + } + count++; + ql_update_cq(rx_ring); + prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); + } + ql_write_cq_idx(rx_ring); + if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) { + struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx]; + if (atomic_read(&tx_ring->queue_stopped) && + (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4))) + /* + * The queue got stopped because the tx_ring was full. + * Wake it up, because it's now at least 25% empty. + */ + netif_wake_queue(qdev->ndev); + } + + return count; +} + +static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget) +{ + struct ql_adapter *qdev = rx_ring->qdev; + u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); + struct ql_net_rsp_iocb *net_rsp; + int count = 0; + + /* While there are entries in the completion queue. */ + while (prod != rx_ring->cnsmr_idx) { + + QPRINTK(qdev, RX_STATUS, DEBUG, + "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id, + prod, rx_ring->cnsmr_idx); + + net_rsp = rx_ring->curr_entry; + rmb(); + switch (net_rsp->opcode) { + case OPCODE_IB_MAC_IOCB: + ql_process_mac_rx_intr(qdev, rx_ring, + (struct ib_mac_iocb_rsp *) + net_rsp); + break; + + case OPCODE_IB_AE_IOCB: + ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *) + net_rsp); + break; + default: + { + QPRINTK(qdev, RX_STATUS, DEBUG, + "Hit default case, not handled! dropping the packet, opcode = %x.\n", + net_rsp->opcode); + } + } + count++; + ql_update_cq(rx_ring); + prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); + if (count == budget) + break; + } + ql_update_buffer_queues(qdev, rx_ring); + ql_write_cq_idx(rx_ring); + return count; +} + +static int ql_napi_poll_msix(struct napi_struct *napi, int budget) +{ + struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi); + struct ql_adapter *qdev = rx_ring->qdev; + int work_done = ql_clean_inbound_rx_ring(rx_ring, budget); + + QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n", + rx_ring->cq_id); + + if (work_done < budget) { + __netif_rx_complete(qdev->ndev, napi); + ql_enable_completion_interrupt(qdev, rx_ring->irq); + } + return work_done; +} + +static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp) +{ + struct ql_adapter *qdev = netdev_priv(ndev); + + qdev->vlgrp = grp; + if (grp) { + QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n"); + ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK | + NIC_RCV_CFG_VLAN_MATCH_AND_NON); + } else { + QPRINTK(qdev, IFUP, DEBUG, + "Turning off VLAN in NIC_RCV_CFG.\n"); + ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK); + } +} + +static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid) +{ + struct ql_adapter *qdev = netdev_priv(ndev); + u32 enable_bit = MAC_ADDR_E; + + spin_lock(&qdev->hw_lock); + if (ql_set_mac_addr_reg + (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) { + QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n"); + } + spin_unlock(&qdev->hw_lock); +} + +static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid) +{ + struct ql_adapter *qdev = netdev_priv(ndev); + u32 enable_bit = 0; + + spin_lock(&qdev->hw_lock); + if (ql_set_mac_addr_reg + (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) { + QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n"); + } + spin_unlock(&qdev->hw_lock); + +} + +/* Worker thread to process a given rx_ring that is dedicated + * to outbound completions. + */ +static void ql_tx_clean(struct work_struct *work) +{ + struct rx_ring *rx_ring = + container_of(work, struct rx_ring, rx_work.work); + ql_clean_outbound_rx_ring(rx_ring); + ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq); + +} + +/* Worker thread to process a given rx_ring that is dedicated + * to inbound completions. + */ +static void ql_rx_clean(struct work_struct *work) +{ + struct rx_ring *rx_ring = + container_of(work, struct rx_ring, rx_work.work); + ql_clean_inbound_rx_ring(rx_ring, 64); + ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq); +} + +/* MSI-X Multiple Vector Interrupt Handler for outbound completions. */ +static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id) +{ + struct rx_ring *rx_ring = dev_id; + queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue, + &rx_ring->rx_work, 0); + return IRQ_HANDLED; +} + +/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */ +static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id) +{ + struct rx_ring *rx_ring = dev_id; + struct ql_adapter *qdev = rx_ring->qdev; + netif_rx_schedule(qdev->ndev, &rx_ring->napi); + return IRQ_HANDLED; +} + +/* We check here to see if we're already handling a legacy + * interrupt. If we are, then it must belong to another + * chip with which we're sharing the interrupt line. + */ +int ql_legacy_check(struct ql_adapter *qdev) +{ + int err; + spin_lock(&qdev->legacy_lock); + err = atomic_read(&qdev->intr_context[0].irq_cnt); + spin_unlock(&qdev->legacy_lock); + return err; +} + +/* This handles a fatal error, MPI activity, and the default + * rx_ring in an MSI-X multiple vector environment. + * In MSI/Legacy environment it also process the rest of + * the rx_rings. + */ +static irqreturn_t qlge_isr(int irq, void *dev_id) +{ + struct rx_ring *rx_ring = dev_id; + struct ql_adapter *qdev = rx_ring->qdev; + struct intr_context *intr_context = &qdev->intr_context[0]; + u32 var; + int i; + int work_done = 0; + + if (qdev->legacy_check && qdev->legacy_check(qdev)) { + QPRINTK(qdev, INTR, INFO, "Already busy, not our interrupt.\n"); + return IRQ_NONE; /* Not our interrupt */ + } + + var = ql_read32(qdev, STS); + + /* + * Check for fatal error. + */ + if (var & STS_FE) { + ql_queue_asic_error(qdev); + QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var); + var = ql_read32(qdev, ERR_STS); + QPRINTK(qdev, INTR, ERR, + "Resetting chip. Error Status Register = 0x%x\n", var); + return IRQ_HANDLED; + } + + /* + * Check MPI processor activity. + */ + if (var & STS_PI) { + /* + * We've got an async event or mailbox completion. + * Handle it and clear the source of the interrupt. + */ + QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n"); + ql_disable_completion_interrupt(qdev, intr_context->intr); + queue_delayed_work_on(smp_processor_id(), qdev->workqueue, + &qdev->mpi_work, 0); + work_done++; + } + + /* + * Check the default queue and wake handler if active. + */ + rx_ring = &qdev->rx_ring[0]; + if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) { + QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n"); + ql_disable_completion_interrupt(qdev, intr_context->intr); + queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue, + &rx_ring->rx_work, 0); + work_done++; + } + + if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) { + /* + * Start the DPC for each active queue. + */ + for (i = 1; i < qdev->rx_ring_count; i++) { + rx_ring = &qdev->rx_ring[i]; + if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != + rx_ring->cnsmr_idx) { + QPRINTK(qdev, INTR, INFO, + "Waking handler for rx_ring[%d].\n", i); + ql_disable_completion_interrupt(qdev, + intr_context-> + intr); + if (i < qdev->rss_ring_first_cq_id) + queue_delayed_work_on(rx_ring->cpu, + qdev->q_workqueue, + &rx_ring->rx_work, + 0); + else + netif_rx_schedule(qdev->ndev, + &rx_ring->napi); + work_done++; + } + } + } + return work_done ? IRQ_HANDLED : IRQ_NONE; +} + +static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr) +{ + + if (skb_is_gso(skb)) { + int err; + if (skb_header_cloned(skb)) { + err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); + if (err) + return err; + } + + mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB; + mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC; + mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len); + mac_iocb_ptr->total_hdrs_len = + cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb)); + mac_iocb_ptr->net_trans_offset = + cpu_to_le16(skb_network_offset(skb) | + skb_transport_offset(skb) + << OB_MAC_TRANSPORT_HDR_SHIFT); + mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); + mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO; + if (likely(skb->protocol == htons(ETH_P_IP))) { + struct iphdr *iph = ip_hdr(skb); + iph->check = 0; + mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4; + tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, + iph->daddr, 0, + IPPROTO_TCP, + 0); + } else if (skb->protocol == htons(ETH_P_IPV6)) { + mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6; + tcp_hdr(skb)->check = + ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, + &ipv6_hdr(skb)->daddr, + 0, IPPROTO_TCP, 0); + } + return 1; + } + return 0; +} + +static void ql_hw_csum_setup(struct sk_buff *skb, + struct ob_mac_tso_iocb_req *mac_iocb_ptr) +{ + int len; + struct iphdr *iph = ip_hdr(skb); + u16 *check; + mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB; + mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len); + mac_iocb_ptr->net_trans_offset = + cpu_to_le16(skb_network_offset(skb) | + skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT); + + mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4; + len = (ntohs(iph->tot_len) - (iph->ihl << 2)); + if (likely(iph->protocol == IPPROTO_TCP)) { + check = &(tcp_hdr(skb)->check); + mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC; + mac_iocb_ptr->total_hdrs_len = + cpu_to_le16(skb_transport_offset(skb) + + (tcp_hdr(skb)->doff << 2)); + } else { + check = &(udp_hdr(skb)->check); + mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC; + mac_iocb_ptr->total_hdrs_len = + cpu_to_le16(skb_transport_offset(skb) + + sizeof(struct udphdr)); + } + *check = ~csum_tcpudp_magic(iph->saddr, + iph->daddr, len, iph->protocol, 0); +} + +static int qlge_send(struct sk_buff *skb, struct net_device *ndev) +{ + struct tx_ring_desc *tx_ring_desc; + struct ob_mac_iocb_req *mac_iocb_ptr; + struct ql_adapter *qdev = netdev_priv(ndev); + int tso; + struct tx_ring *tx_ring; + u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb); + + tx_ring = &qdev->tx_ring[tx_ring_idx]; + + if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) { + QPRINTK(qdev, TX_QUEUED, INFO, + "%s: shutting down tx queue %d du to lack of resources.\n", + __func__, tx_ring_idx); + netif_stop_queue(ndev); + atomic_inc(&tx_ring->queue_stopped); + return NETDEV_TX_BUSY; + } + tx_ring_desc = &tx_ring->q[tx_ring->prod_idx]; + mac_iocb_ptr = tx_ring_desc->queue_entry; + memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr)); + if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) { + QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n"); + return NETDEV_TX_BUSY; + } + + mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB; + mac_iocb_ptr->tid = tx_ring_desc->index; + /* We use the upper 32-bits to store the tx queue for this IO. + * When we get the completion we can use it to establish the context. + */ + mac_iocb_ptr->txq_idx = tx_ring_idx; + tx_ring_desc->skb = skb; + + mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len); + + if (qdev->vlgrp && vlan_tx_tag_present(skb)) { + QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n", + vlan_tx_tag_get(skb)); + mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V; + mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb)); + } + tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr); + if (tso < 0) { + dev_kfree_skb_any(skb); + return NETDEV_TX_OK; + } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) { + ql_hw_csum_setup(skb, + (struct ob_mac_tso_iocb_req *)mac_iocb_ptr); + } + QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr); + tx_ring->prod_idx++; + if (tx_ring->prod_idx == tx_ring->wq_len) + tx_ring->prod_idx = 0; + wmb(); + + ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg); + ndev->trans_start = jiffies; + QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n", + tx_ring->prod_idx, skb->len); + + atomic_dec(&tx_ring->tx_count); + return NETDEV_TX_OK; +} + +static void ql_free_shadow_space(struct ql_adapter *qdev) +{ + if (qdev->rx_ring_shadow_reg_area) { + pci_free_consistent(qdev->pdev, + PAGE_SIZE, + qdev->rx_ring_shadow_reg_area, + qdev->rx_ring_shadow_reg_dma); + qdev->rx_ring_shadow_reg_area = NULL; + } + if (qdev->tx_ring_shadow_reg_area) { + pci_free_consistent(qdev->pdev, + PAGE_SIZE, + qdev->tx_ring_shadow_reg_area, + qdev->tx_ring_shadow_reg_dma); + qdev->tx_ring_shadow_reg_area = NULL; + } +} + +static int ql_alloc_shadow_space(struct ql_adapter *qdev) +{ + qdev->rx_ring_shadow_reg_area = + pci_alloc_consistent(qdev->pdev, + PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma); + if (qdev->rx_ring_shadow_reg_area == NULL) { + QPRINTK(qdev, IFUP, ERR, + "Allocation of RX shadow space failed.\n"); + return -ENOMEM; + } + qdev->tx_ring_shadow_reg_area = + pci_alloc_consistent(qdev->pdev, PAGE_SIZE, + &qdev->tx_ring_shadow_reg_dma); + if (qdev->tx_ring_shadow_reg_area == NULL) { + QPRINTK(qdev, IFUP, ERR, + "Allocation of TX shadow space failed.\n"); + goto err_wqp_sh_area; + } + return 0; + +err_wqp_sh_area: + pci_free_consistent(qdev->pdev, + PAGE_SIZE, + qdev->rx_ring_shadow_reg_area, + qdev->rx_ring_shadow_reg_dma); + return -ENOMEM; +} + +static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring) +{ + struct tx_ring_desc *tx_ring_desc; + int i; + struct ob_mac_iocb_req *mac_iocb_ptr; + + mac_iocb_ptr = tx_ring->wq_base; + tx_ring_desc = tx_ring->q; + for (i = 0; i < tx_ring->wq_len; i++) { + tx_ring_desc->index = i; + tx_ring_desc->skb = NULL; + tx_ring_desc->queue_entry = mac_iocb_ptr; + mac_iocb_ptr++; + tx_ring_desc++; + } + atomic_set(&tx_ring->tx_count, tx_ring->wq_len); + atomic_set(&tx_ring->queue_stopped, 0); +} + +static void ql_free_tx_resources(struct ql_adapter *qdev, + struct tx_ring *tx_ring) +{ + if (tx_ring->wq_base) { + pci_free_consistent(qdev->pdev, tx_ring->wq_size, + tx_ring->wq_base, tx_ring->wq_base_dma); + tx_ring->wq_base = NULL; + } + kfree(tx_ring->q); + tx_ring->q = NULL; +} + +static int ql_alloc_tx_resources(struct ql_adapter *qdev, + struct tx_ring *tx_ring) +{ + tx_ring->wq_base = + pci_alloc_consistent(qdev->pdev, tx_ring->wq_size, + &tx_ring->wq_base_dma); + + if ((tx_ring->wq_base == NULL) + || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) { + QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n"); + return -ENOMEM; + } + tx_ring->q = + kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL); + if (tx_ring->q == NULL) + goto err; + + return 0; +err: + pci_free_consistent(qdev->pdev, tx_ring->wq_size, + tx_ring->wq_base, tx_ring->wq_base_dma); + return -ENOMEM; +} + +void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring) +{ + int i; + struct bq_desc *lbq_desc; + + for (i = 0; i < rx_ring->lbq_len; i++) { + lbq_desc = &rx_ring->lbq[i]; + if (lbq_desc->p.lbq_page) { + pci_unmap_page(qdev->pdev, + pci_unmap_addr(lbq_desc, mapaddr), + pci_unmap_len(lbq_desc, maplen), + PCI_DMA_FROMDEVICE); + + put_page(lbq_desc->p.lbq_page); + lbq_desc->p.lbq_page = NULL; + } + lbq_desc->bq->addr_lo = 0; + lbq_desc->bq->addr_hi = 0; + } +} + +/* + * Allocate and map a page for each element of the lbq. + */ +static int ql_alloc_lbq_buffers(struct ql_adapter *qdev, + struct rx_ring *rx_ring) +{ + int i; + struct bq_desc *lbq_desc; + u64 map; + struct bq_element *bq = rx_ring->lbq_base; + + for (i = 0; i < rx_ring->lbq_len; i++) { + lbq_desc = &rx_ring->lbq[i]; + memset(lbq_desc, 0, sizeof(lbq_desc)); + lbq_desc->bq = bq; + lbq_desc->index = i; + lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC); + if (unlikely(!lbq_desc->p.lbq_page)) { + QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n"); + goto mem_error; + } else { + map = pci_map_page(qdev->pdev, + lbq_desc->p.lbq_page, + 0, PAGE_SIZE, PCI_DMA_FROMDEVICE); + if (pci_dma_mapping_error(qdev->pdev, map)) { + QPRINTK(qdev, IFUP, ERR, + "PCI mapping failed.\n"); + goto mem_error; + } + pci_unmap_addr_set(lbq_desc, mapaddr, map); + pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE); + bq->addr_lo = cpu_to_le32(map); + bq->addr_hi = cpu_to_le32(map >> 32); + } + bq++; + } + return 0; +mem_error: + ql_free_lbq_buffers(qdev, rx_ring); + return -ENOMEM; +} + +void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring) +{ + int i; + struct bq_desc *sbq_desc; + + for (i = 0; i < rx_ring->sbq_len; i++) { + sbq_desc = &rx_ring->sbq[i]; + if (sbq_desc == NULL) { + QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i); + return; + } + if (sbq_desc->p.skb) { + pci_unmap_single(qdev->pdev, + pci_unmap_addr(sbq_desc, mapaddr), + pci_unmap_len(sbq_desc, maplen), + PCI_DMA_FROMDEVICE); + dev_kfree_skb(sbq_desc->p.skb); + sbq_desc->p.skb = NULL; + } + if (sbq_desc->bq == NULL) { + QPRINTK(qdev, IFUP, ERR, "sbq_desc->bq %d is NULL.\n", + i); + return; + } + sbq_desc->bq->addr_lo = 0; + sbq_desc->bq->addr_hi = 0; + } +} + +/* Allocate and map an skb for each element of the sbq. */ +static int ql_alloc_sbq_buffers(struct ql_adapter *qdev, + struct rx_ring *rx_ring) +{ + int i; + struct bq_desc *sbq_desc; + struct sk_buff *skb; + u64 map; + struct bq_element *bq = rx_ring->sbq_base; + + for (i = 0; i < rx_ring->sbq_len; i++) { + sbq_desc = &rx_ring->sbq[i]; + memset(sbq_desc, 0, sizeof(sbq_desc)); + sbq_desc->index = i; + sbq_desc->bq = bq; + skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size); + if (unlikely(!skb)) { + /* Better luck next round */ + QPRINTK(qdev, IFUP, ERR, + "small buff alloc failed for %d bytes at index %d.\n", + rx_ring->sbq_buf_size, i); + goto mem_err; + } + skb_reserve(skb, QLGE_SB_PAD); + sbq_desc->p.skb = skb; + /* + * Map only half the buffer. Because the + * other half may get some data copied to it + * when the completion arrives. + */ + map = pci_map_single(qdev->pdev, + skb->data, + rx_ring->sbq_buf_size / 2, + PCI_DMA_FROMDEVICE); + if (pci_dma_mapping_error(qdev->pdev, map)) { + QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n"); + goto mem_err; + } + pci_unmap_addr_set(sbq_desc, mapaddr, map); + pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2); + bq->addr_lo = /*sbq_desc->addr_lo = */ + cpu_to_le32(map); + bq->addr_hi = /*sbq_desc->addr_hi = */ + cpu_to_le32(map >> 32); + bq++; + } + return 0; +mem_err: + ql_free_sbq_buffers(qdev, rx_ring); + return -ENOMEM; +} + +static void ql_free_rx_resources(struct ql_adapter *qdev, + struct rx_ring *rx_ring) +{ + if (rx_ring->sbq_len) + ql_free_sbq_buffers(qdev, rx_ring); + if (rx_ring->lbq_len) + ql_free_lbq_buffers(qdev, rx_ring); + + /* Free the small buffer queue. */ + if (rx_ring->sbq_base) { + pci_free_consistent(qdev->pdev, + rx_ring->sbq_size, + rx_ring->sbq_base, rx_ring->sbq_base_dma); + rx_ring->sbq_base = NULL; + } + + /* Free the small buffer queue control blocks. */ + kfree(rx_ring->sbq); + rx_ring->sbq = NULL; + + /* Free the large buffer queue. */ + if (rx_ring->lbq_base) { + pci_free_consistent(qdev->pdev, + rx_ring->lbq_size, + rx_ring->lbq_base, rx_ring->lbq_base_dma); + rx_ring->lbq_base = NULL; + } + + /* Free the large buffer queue control blocks. */ + kfree(rx_ring->lbq); + rx_ring->lbq = NULL; + + /* Free the rx queue. */ + if (rx_ring->cq_base) { + pci_free_consistent(qdev->pdev, + rx_ring->cq_size, + rx_ring->cq_base, rx_ring->cq_base_dma); + rx_ring->cq_base = NULL; + } +} + +/* Allocate queues and buffers for this completions queue based + * on the values in the parameter structure. */ +static int ql_alloc_rx_resources(struct ql_adapter *qdev, + struct rx_ring *rx_ring) +{ + + /* + * Allocate the completion queue for this rx_ring. + */ + rx_ring->cq_base = + pci_alloc_consistent(qdev->pdev, rx_ring->cq_size, + &rx_ring->cq_base_dma); + + if (rx_ring->cq_base == NULL) { + QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n"); + return -ENOMEM; + } + + if (rx_ring->sbq_len) { + /* + * Allocate small buffer queue. + */ + rx_ring->sbq_base = + pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size, + &rx_ring->sbq_base_dma); + + if (rx_ring->sbq_base == NULL) { + QPRINTK(qdev, IFUP, ERR, + "Small buffer queue allocation failed.\n"); + goto err_mem; + } + + /* + * Allocate small buffer queue control blocks. + */ + rx_ring->sbq = + kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc), + GFP_KERNEL); + if (rx_ring->sbq == NULL) { + QPRINTK(qdev, IFUP, ERR, + "Small buffer queue control block allocation failed.\n"); + goto err_mem; + } + + if (ql_alloc_sbq_buffers(qdev, rx_ring)) { + QPRINTK(qdev, IFUP, ERR, + "Small buffer allocation failed.\n"); + goto err_mem; + } + } + + if (rx_ring->lbq_len) { + /* + * Allocate large buffer queue. + */ + rx_ring->lbq_base = + pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size, + &rx_ring->lbq_base_dma); + + if (rx_ring->lbq_base == NULL) { + QPRINTK(qdev, IFUP, ERR, + "Large buffer queue allocation failed.\n"); + goto err_mem; + } + /* + * Allocate large buffer queue control blocks. + */ + rx_ring->lbq = + kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc), + GFP_KERNEL); + if (rx_ring->lbq == NULL) { + QPRINTK(qdev, IFUP, ERR, + "Large buffer queue control block allocation failed.\n"); + goto err_mem; + } + + /* + * Allocate the buffers. + */ + if (ql_alloc_lbq_buffers(qdev, rx_ring)) { + QPRINTK(qdev, IFUP, ERR, + "Large buffer allocation failed.\n"); + goto err_mem; + } + } + + return 0; + +err_mem: + ql_free_rx_resources(qdev, rx_ring); + return -ENOMEM; +} + +static void ql_tx_ring_clean(struct ql_adapter *qdev) +{ + struct tx_ring *tx_ring; + struct tx_ring_desc *tx_ring_desc; + int i, j; + + /* + * Loop through all queues and free + * any resources. + */ + for (j = 0; j < qdev->tx_ring_count; j++) { + tx_ring = &qdev->tx_ring[j]; + for (i = 0; i < tx_ring->wq_len; i++) { + tx_ring_desc = &tx_ring->q[i]; + if (tx_ring_desc && tx_ring_desc->skb) { + QPRINTK(qdev, IFDOWN, ERR, + "Freeing lost SKB %p, from queue %d, index %d.\n", + tx_ring_desc->skb, j, + tx_ring_desc->index); + ql_unmap_send(qdev, tx_ring_desc, + tx_ring_desc->map_cnt); + dev_kfree_skb(tx_ring_desc->skb); + tx_ring_desc->skb = NULL; + } + } + } +} + +static void ql_free_ring_cb(struct ql_adapter *qdev) +{ + kfree(qdev->ring_mem); +} + +static int ql_alloc_ring_cb(struct ql_adapter *qdev) +{ + /* Allocate space for tx/rx ring control blocks. */ + qdev->ring_mem_size = + (qdev->tx_ring_count * sizeof(struct tx_ring)) + + (qdev->rx_ring_count * sizeof(struct rx_ring)); + qdev->ring_mem = kmalloc(qdev->ring_mem_size, GFP_KERNEL); + if (qdev->ring_mem == NULL) { + return -ENOMEM; + } else { + qdev->rx_ring = qdev->ring_mem; + qdev->tx_ring = qdev->ring_mem + + (qdev->rx_ring_count * sizeof(struct rx_ring)); + } + return 0; +} + +static void ql_free_mem_resources(struct ql_adapter *qdev) +{ + int i; + + for (i = 0; i < qdev->tx_ring_count; i++) + ql_free_tx_resources(qdev, &qdev->tx_ring[i]); + for (i = 0; i < qdev->rx_ring_count; i++) + ql_free_rx_resources(qdev, &qdev->rx_ring[i]); + ql_free_shadow_space(qdev); +} + +static int ql_alloc_mem_resources(struct ql_adapter *qdev) +{ + int i; + + /* Allocate space for our shadow registers and such. */ + if (ql_alloc_shadow_space(qdev)) + return -ENOMEM; + + for (i = 0; i < qdev->rx_ring_count; i++) { + if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) { + QPRINTK(qdev, IFUP, ERR, + "RX resource allocation failed.\n"); + goto err_mem; + } + } + /* Allocate tx queue resources */ + for (i = 0; i < qdev->tx_ring_count; i++) { + if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) { + QPRINTK(qdev, IFUP, ERR, + "TX resource allocation failed.\n"); + goto err_mem; + } + } + return 0; + +err_mem: + ql_free_mem_resources(qdev); + return -ENOMEM; +} + +/* Set up the rx ring control block and pass it to the chip. + * The control block is defined as + * "Completion Queue Initialization Control Block", or cqicb. + */ +static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring) +{ + struct cqicb *cqicb = &rx_ring->cqicb; + void *shadow_reg = qdev->rx_ring_shadow_reg_area + + (rx_ring->cq_id * sizeof(u64) * 4); + u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma + + (rx_ring->cq_id * sizeof(u64) * 4); + void __iomem *doorbell_area = + qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id)); + int err = 0; + u16 bq_len; + + /* Set up the shadow registers for this ring. */ + rx_ring->prod_idx_sh_reg = shadow_reg; + rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma; + shadow_reg += sizeof(u64); + shadow_reg_dma += sizeof(u64); + rx_ring->lbq_base_indirect = shadow_reg; + rx_ring->lbq_base_indirect_dma = shadow_reg_dma; + shadow_reg += sizeof(u64); + shadow_reg_dma += sizeof(u64); + rx_ring->sbq_base_indirect = shadow_reg; + rx_ring->sbq_base_indirect_dma = shadow_reg_dma; + + /* PCI doorbell mem area + 0x00 for consumer index register */ + rx_ring->cnsmr_idx_db_reg = (u32 *) doorbell_area; + rx_ring->cnsmr_idx = 0; + rx_ring->curr_entry = rx_ring->cq_base; + + /* PCI doorbell mem area + 0x04 for valid register */ + rx_ring->valid_db_reg = doorbell_area + 0x04; + + /* PCI doorbell mem area + 0x18 for large buffer consumer */ + rx_ring->lbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x18); + + /* PCI doorbell mem area + 0x1c */ + rx_ring->sbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x1c); + + memset((void *)cqicb, 0, sizeof(struct cqicb)); + cqicb->msix_vect = rx_ring->irq; + + cqicb->len = cpu_to_le16(rx_ring->cq_len | LEN_V | LEN_CPP_CONT); + + cqicb->addr_lo = cpu_to_le32(rx_ring->cq_base_dma); + cqicb->addr_hi = cpu_to_le32((u64) rx_ring->cq_base_dma >> 32); + + cqicb->prod_idx_addr_lo = cpu_to_le32(rx_ring->prod_idx_sh_reg_dma); + cqicb->prod_idx_addr_hi = + cpu_to_le32((u64) rx_ring->prod_idx_sh_reg_dma >> 32); + + /* + * Set up the control block load flags. + */ + cqicb->flags = FLAGS_LC | /* Load queue base address */ + FLAGS_LV | /* Load MSI-X vector */ + FLAGS_LI; /* Load irq delay values */ + if (rx_ring->lbq_len) { + cqicb->flags |= FLAGS_LL; /* Load lbq values */ + *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma; + cqicb->lbq_addr_lo = + cpu_to_le32(rx_ring->lbq_base_indirect_dma); + cqicb->lbq_addr_hi = + cpu_to_le32((u64) rx_ring->lbq_base_indirect_dma >> 32); + cqicb->lbq_buf_size = cpu_to_le32(rx_ring->lbq_buf_size); + bq_len = (u16) rx_ring->lbq_len; + cqicb->lbq_len = cpu_to_le16(bq_len); + rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16; + rx_ring->lbq_curr_idx = 0; + rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx; + rx_ring->lbq_free_cnt = 16; + } + if (rx_ring->sbq_len) { + cqicb->flags |= FLAGS_LS; /* Load sbq values */ + *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma; + cqicb->sbq_addr_lo = + cpu_to_le32(rx_ring->sbq_base_indirect_dma); + cqicb->sbq_addr_hi = + cpu_to_le32((u64) rx_ring->sbq_base_indirect_dma >> 32); + cqicb->sbq_buf_size = + cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8); + bq_len = (u16) rx_ring->sbq_len; + cqicb->sbq_len = cpu_to_le16(bq_len); + rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16; + rx_ring->sbq_curr_idx = 0; + rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx; + rx_ring->sbq_free_cnt = 16; + } + switch (rx_ring->type) { + case TX_Q: + /* If there's only one interrupt, then we use + * worker threads to process the outbound + * completion handling rx_rings. We do this so + * they can be run on multiple CPUs. There is + * room to play with this more where we would only + * run in a worker if there are more than x number + * of outbound completions on the queue and more + * than one queue active. Some threshold that + * would indicate a benefit in spite of the cost + * of a context switch. + * If there's more than one interrupt, then the + * outbound completions are processed in the ISR. + */ + if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) + INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean); + else { + /* With all debug warnings on we see a WARN_ON message + * when we free the skb in the interrupt context. + */ + INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean); + } + cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs); + cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames); + break; + case DEFAULT_Q: + INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean); + cqicb->irq_delay = 0; + cqicb->pkt_delay = 0; + break; + case RX_Q: + /* Inbound completion handling rx_rings run in + * separate NAPI contexts. + */ + netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix, + 64); + cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs); + cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames); + break; + default: + QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n", + rx_ring->type); + } + QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n"); + err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb), + CFG_LCQ, rx_ring->cq_id); + if (err) { + QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n"); + return err; + } + QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n"); + /* + * Advance the producer index for the buffer queues. + */ + wmb(); + if (rx_ring->lbq_len) + ql_write_db_reg(rx_ring->lbq_prod_idx, + rx_ring->lbq_prod_idx_db_reg); + if (rx_ring->sbq_len) + ql_write_db_reg(rx_ring->sbq_prod_idx, + rx_ring->sbq_prod_idx_db_reg); + return err; +} + +static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring) +{ + struct wqicb *wqicb = (struct wqicb *)tx_ring; + void __iomem *doorbell_area = + qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id); + void *shadow_reg = qdev->tx_ring_shadow_reg_area + + (tx_ring->wq_id * sizeof(u64)); + u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma + + (tx_ring->wq_id * sizeof(u64)); + int err = 0; + + /* + * Assign doorbell registers for this tx_ring. + */ + /* TX PCI doorbell mem area for tx producer index */ + tx_ring->prod_idx_db_reg = (u32 *) doorbell_area; + tx_ring->prod_idx = 0; + /* TX PCI doorbell mem area + 0x04 */ + tx_ring->valid_db_reg = doorbell_area + 0x04; + + /* + * Assign shadow registers for this tx_ring. + */ + tx_ring->cnsmr_idx_sh_reg = shadow_reg; + tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma; + + wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT); + wqicb->flags = cpu_to_le16(Q_FLAGS_LC | + Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO); + wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id); + wqicb->rid = 0; + wqicb->addr_lo = cpu_to_le32(tx_ring->wq_base_dma); + wqicb->addr_hi = cpu_to_le32((u64) tx_ring->wq_base_dma >> 32); + + wqicb->cnsmr_idx_addr_lo = cpu_to_le32(tx_ring->cnsmr_idx_sh_reg_dma); + wqicb->cnsmr_idx_addr_hi = + cpu_to_le32((u64) tx_ring->cnsmr_idx_sh_reg_dma >> 32); + + ql_init_tx_ring(qdev, tx_ring); + + err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ, + (u16) tx_ring->wq_id); + if (err) { + QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n"); + return err; + } + QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n"); + return err; +} + +static void ql_disable_msix(struct ql_adapter *qdev) +{ + if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) { + pci_disable_msix(qdev->pdev); + clear_bit(QL_MSIX_ENABLED, &qdev->flags); + kfree(qdev->msi_x_entry); + qdev->msi_x_entry = NULL; + } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) { + pci_disable_msi(qdev->pdev); + clear_bit(QL_MSI_ENABLED, &qdev->flags); + } +} + +static void ql_enable_msix(struct ql_adapter *qdev) +{ + int i; + + qdev->intr_count = 1; + /* Get the MSIX vectors. */ + if (irq_type == MSIX_IRQ) { + /* Try to alloc space for the msix struct, + * if it fails then go to MSI/legacy. + */ + qdev->msi_x_entry = kcalloc(qdev->rx_ring_count, + sizeof(struct msix_entry), + GFP_KERNEL); + if (!qdev->msi_x_entry) { + irq_type = MSI_IRQ; + goto msi; + } + + for (i = 0; i < qdev->rx_ring_count; i++) + qdev->msi_x_entry[i].entry = i; + + if (!pci_enable_msix + (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) { + set_bit(QL_MSIX_ENABLED, &qdev->flags); + qdev->intr_count = qdev->rx_ring_count; + QPRINTK(qdev, IFUP, INFO, + "MSI-X Enabled, got %d vectors.\n", + qdev->intr_count); + return; + } else { + kfree(qdev->msi_x_entry); + qdev->msi_x_entry = NULL; + QPRINTK(qdev, IFUP, WARNING, + "MSI-X Enable failed, trying MSI.\n"); + irq_type = MSI_IRQ; + } + } +msi: + if (irq_type == MSI_IRQ) { + if (!pci_enable_msi(qdev->pdev)) { + set_bit(QL_MSI_ENABLED, &qdev->flags); + QPRINTK(qdev, IFUP, INFO, + "Running with MSI interrupts.\n"); + return; + } + } + irq_type = LEG_IRQ; + spin_lock_init(&qdev->legacy_lock); + qdev->legacy_check = ql_legacy_check; + QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n"); +} + +/* + * Here we build the intr_context structures based on + * our rx_ring count and intr vector count. + * The intr_context structure is used to hook each vector + * to possibly different handlers. + */ +static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev) +{ + int i = 0; + struct intr_context *intr_context = &qdev->intr_context[0]; + + ql_enable_msix(qdev); + + if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) { + /* Each rx_ring has it's + * own intr_context since we have separate + * vectors for each queue. + * This only true when MSI-X is enabled. + */ + for (i = 0; i < qdev->intr_count; i++, intr_context++) { + qdev->rx_ring[i].irq = i; + intr_context->intr = i; + intr_context->qdev = qdev; + /* + * We set up each vectors enable/disable/read bits so + * there's no bit/mask calculations in the critical path. + */ + intr_context->intr_en_mask = + INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | + INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD + | i; + intr_context->intr_dis_mask = + INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | + INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK | + INTR_EN_IHD | i; + intr_context->intr_read_mask = + INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | + INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD | + i; + + if (i == 0) { + /* + * Default queue handles bcast/mcast plus + * async events. Needs buffers. + */ + intr_context->handler = qlge_isr; + sprintf(intr_context->name, "%s-default-queue", + qdev->ndev->name); + } else if (i < qdev->rss_ring_first_cq_id) { + /* + * Outbound queue is for outbound completions only. + */ + intr_context->handler = qlge_msix_tx_isr; + sprintf(intr_context->name, "%s-txq-%d", + qdev->ndev->name, i); + } else { + /* + * Inbound queues handle unicast frames only. + */ + intr_context->handler = qlge_msix_rx_isr; + sprintf(intr_context->name, "%s-rxq-%d", + qdev->ndev->name, i); + } + } + } else { + /* + * All rx_rings use the same intr_context since + * there is only one vector. + */ + intr_context->intr = 0; + intr_context->qdev = qdev; + /* + * We set up each vectors enable/disable/read bits so + * there's no bit/mask calculations in the critical path. + */ + intr_context->intr_en_mask = + INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE; + intr_context->intr_dis_mask = + INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | + INTR_EN_TYPE_DISABLE; + intr_context->intr_read_mask = + INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ; + /* + * Single interrupt means one handler for all rings. + */ + intr_context->handler = qlge_isr; + sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name); + for (i = 0; i < qdev->rx_ring_count; i++) + qdev->rx_ring[i].irq = 0; + } +} + +static void ql_free_irq(struct ql_adapter *qdev) +{ + int i; + struct intr_context *intr_context = &qdev->intr_context[0]; + + for (i = 0; i < qdev->intr_count; i++, intr_context++) { + if (intr_context->hooked) { + if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) { + free_irq(qdev->msi_x_entry[i].vector, + &qdev->rx_ring[i]); + QPRINTK(qdev, IFDOWN, ERR, + "freeing msix interrupt %d.\n", i); + } else { + free_irq(qdev->pdev->irq, &qdev->rx_ring[0]); + QPRINTK(qdev, IFDOWN, ERR, + "freeing msi interrupt %d.\n", i); + } + } + } + ql_disable_msix(qdev); +} + +static int ql_request_irq(struct ql_adapter *qdev) +{ + int i; + int status = 0; + struct pci_dev *pdev = qdev->pdev; + struct intr_context *intr_context = &qdev->intr_context[0]; + + ql_resolve_queues_to_irqs(qdev); + + for (i = 0; i < qdev->intr_count; i++, intr_context++) { + atomic_set(&intr_context->irq_cnt, 0); + if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) { + status = request_irq(qdev->msi_x_entry[i].vector, + intr_context->handler, + 0, + intr_context->name, + &qdev->rx_ring[i]); + if (status) { + QPRINTK(qdev, IFUP, ERR, + "Failed request for MSIX interrupt %d.\n", + i); + goto err_irq; + } else { + QPRINTK(qdev, IFUP, INFO, + "Hooked intr %d, queue type %s%s%s, with name %s.\n", + i, + qdev->rx_ring[i].type == + DEFAULT_Q ? "DEFAULT_Q" : "", + qdev->rx_ring[i].type == + TX_Q ? "TX_Q" : "", + qdev->rx_ring[i].type == + RX_Q ? "RX_Q" : "", intr_context->name); + } + } else { + QPRINTK(qdev, IFUP, DEBUG, + "trying msi or legacy interrupts.\n"); + QPRINTK(qdev, IFUP, DEBUG, + "%s: irq = %d.\n", __func__, pdev->irq); + QPRINTK(qdev, IFUP, DEBUG, + "%s: context->name = %s.\n", __func__, + intr_context->name); + QPRINTK(qdev, IFUP, DEBUG, + "%s: dev_id = 0x%p.\n", __func__, + &qdev->rx_ring[0]); + status = + request_irq(pdev->irq, qlge_isr, + test_bit(QL_MSI_ENABLED, + &qdev-> + flags) ? 0 : IRQF_SHARED, + intr_context->name, &qdev->rx_ring[0]); + if (status) + goto err_irq; + + QPRINTK(qdev, IFUP, ERR, + "Hooked intr %d, queue type %s%s%s, with name %s.\n", + i, + qdev->rx_ring[0].type == + DEFAULT_Q ? "DEFAULT_Q" : "", + qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "", + qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "", + intr_context->name); + } + intr_context->hooked = 1; + } + return status; +err_irq: + QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n"); + ql_free_irq(qdev); + return status; +} + +static int ql_start_rss(struct ql_adapter *qdev) +{ + struct ricb *ricb = &qdev->ricb; + int status = 0; + int i; + u8 *hash_id = (u8 *) ricb->hash_cq_id; + + memset((void *)ricb, 0, sizeof(ricb)); + + ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K; + ricb->flags = + (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 | + RSS_RT6); + ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1); + + /* + * Fill out the Indirection Table. + */ + for (i = 0; i < 32; i++) + hash_id[i] = i & 1; + + /* + * Random values for the IPv6 and IPv4 Hash Keys. + */ + get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40); + get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16); + + QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n"); + + status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0); + if (status) { + QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n"); + return status; + } + QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n"); + return status; +} + +/* Initialize the frame-to-queue routing. */ +static int ql_route_initialize(struct ql_adapter *qdev) +{ + int status = 0; + int i; + + /* Clear all the entries in the routing table. */ + for (i = 0; i < 16; i++) { + status = ql_set_routing_reg(qdev, i, 0, 0); + if (status) { + QPRINTK(qdev, IFUP, ERR, + "Failed to init routing register for CAM packets.\n"); + return status; + } + } + + status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1); + if (status) { + QPRINTK(qdev, IFUP, ERR, + "Failed to init routing register for error packets.\n"); + return status; + } + status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1); + if (status) { + QPRINTK(qdev, IFUP, ERR, + "Failed to init routing register for broadcast packets.\n"); + return status; + } + /* If we have more than one inbound queue, then turn on RSS in the + * routing block. + */ + if (qdev->rss_ring_count > 1) { + status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT, + RT_IDX_RSS_MATCH, 1); + if (status) { + QPRINTK(qdev, IFUP, ERR, + "Failed to init routing register for MATCH RSS packets.\n"); + return status; + } + } + + status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT, + RT_IDX_CAM_HIT, 1); + if (status) { + QPRINTK(qdev, IFUP, ERR, + "Failed to init routing register for CAM packets.\n"); + return status; + } + return status; +} + +static int ql_adapter_initialize(struct ql_adapter *qdev) +{ + u32 value, mask; + int i; + int status = 0; + + /* + * Set up the System register to halt on errors. + */ + value = SYS_EFE | SYS_FAE; + mask = value << 16; + ql_write32(qdev, SYS, mask | value); + + /* Set the default queue. */ + value = NIC_RCV_CFG_DFQ; + mask = NIC_RCV_CFG_DFQ_MASK; + ql_write32(qdev, NIC_RCV_CFG, (mask | value)); + + /* Set the MPI interrupt to enabled. */ + ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI); + + /* Enable the function, set pagesize, enable error checking. */ + value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND | + FSC_EC | FSC_VM_PAGE_4K | FSC_SH; + + /* Set/clear header splitting. */ + mask = FSC_VM_PAGESIZE_MASK | + FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16); + ql_write32(qdev, FSC, mask | value); + + ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP | + min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE)); + + /* Start up the rx queues. */ + for (i = 0; i < qdev->rx_ring_count; i++) { + status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]); + if (status) { + QPRINTK(qdev, IFUP, ERR, + "Failed to start rx ring[%d].\n", i); + return status; + } + } + + /* If there is more than one inbound completion queue + * then download a RICB to configure RSS. + */ + if (qdev->rss_ring_count > 1) { + status = ql_start_rss(qdev); + if (status) { + QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n"); + return status; + } + } + + /* Start up the tx queues. */ + for (i = 0; i < qdev->tx_ring_count; i++) { + status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]); + if (status) { + QPRINTK(qdev, IFUP, ERR, + "Failed to start tx ring[%d].\n", i); + return status; + } + } + + status = ql_port_initialize(qdev); + if (status) { + QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n"); + return status; + } + + status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr, + MAC_ADDR_TYPE_CAM_MAC, qdev->func); + if (status) { + QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n"); + return status; + } + + status = ql_route_initialize(qdev); + if (status) { + QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n"); + return status; + } + + /* Start NAPI for the RSS queues. */ + for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) { + QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n", + i); + napi_enable(&qdev->rx_ring[i].napi); + } + + return status; +} + +/* Issue soft reset to chip. */ +static int ql_adapter_reset(struct ql_adapter *qdev) +{ + u32 value; + int max_wait_time; + int status = 0; + int resetCnt = 0; + +#define MAX_RESET_CNT 1 +issueReset: + resetCnt++; + QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n"); + ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR); + /* Wait for reset to complete. */ + max_wait_time = 3; + QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n", + max_wait_time); + do { + value = ql_read32(qdev, RST_FO); + if ((value & RST_FO_FR) == 0) + break; + + ssleep(1); + } while ((--max_wait_time)); + if (value & RST_FO_FR) { + QPRINTK(qdev, IFDOWN, ERR, + "Stuck in SoftReset: FSC_SR:0x%08x\n", value); + if (resetCnt < MAX_RESET_CNT) + goto issueReset; + } + if (max_wait_time == 0) { + status = -ETIMEDOUT; + QPRINTK(qdev, IFDOWN, ERR, + "ETIMEOUT!!! errored out of resetting the chip!\n"); + } + + return status; +} + +static void ql_display_dev_info(struct net_device *ndev) +{ + struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev); + + QPRINTK(qdev, PROBE, INFO, + "Function #%d, NIC Roll %d, NIC Rev = %d, " + "XG Roll = %d, XG Rev = %d.\n", + qdev->func, + qdev->chip_rev_id & 0x0000000f, + qdev->chip_rev_id >> 4 & 0x0000000f, + qdev->chip_rev_id >> 8 & 0x0000000f, + qdev->chip_rev_id >> 12 & 0x0000000f); + QPRINTK(qdev, PROBE, INFO, + "MAC address %02x:%02x:%02x:%02x:%02x:%02x\n", + ndev->dev_addr[0], ndev->dev_addr[1], + ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4], + ndev->dev_addr[5]); +} + +static int ql_adapter_down(struct ql_adapter *qdev) +{ + struct net_device *ndev = qdev->ndev; + int i, status = 0; + struct rx_ring *rx_ring; + + netif_stop_queue(ndev); + netif_carrier_off(ndev); + + cancel_delayed_work_sync(&qdev->asic_reset_work); + cancel_delayed_work_sync(&qdev->mpi_reset_work); + cancel_delayed_work_sync(&qdev->mpi_work); + + /* The default queue at index 0 is always processed in + * a workqueue. + */ + cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work); + + /* The rest of the rx_rings are processed in + * a workqueue only if it's a single interrupt + * environment (MSI/Legacy). + */ + for (i = 1; i > qdev->rx_ring_count; i++) { + rx_ring = &qdev->rx_ring[i]; + /* Only the RSS rings use NAPI on multi irq + * environment. Outbound completion processing + * is done in interrupt context. + */ + if (i >= qdev->rss_ring_first_cq_id) { + napi_disable(&rx_ring->napi); + } else { + cancel_delayed_work_sync(&rx_ring->rx_work); + } + } + + clear_bit(QL_ADAPTER_UP, &qdev->flags); + + ql_disable_interrupts(qdev); + + ql_tx_ring_clean(qdev); + + spin_lock(&qdev->hw_lock); + status = ql_adapter_reset(qdev); + if (status) + QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n", + qdev->func); + spin_unlock(&qdev->hw_lock); + return status; +} + +static int ql_adapter_up(struct ql_adapter *qdev) +{ + int err = 0; + + spin_lock(&qdev->hw_lock); + err = ql_adapter_initialize(qdev); + if (err) { + QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n"); + spin_unlock(&qdev->hw_lock); + goto err_init; + } + spin_unlock(&qdev->hw_lock); + set_bit(QL_ADAPTER_UP, &qdev->flags); + ql_enable_interrupts(qdev); + ql_enable_all_completion_interrupts(qdev); + if ((ql_read32(qdev, STS) & qdev->port_init)) { + netif_carrier_on(qdev->ndev); + netif_start_queue(qdev->ndev); + } + + return 0; +err_init: + ql_adapter_reset(qdev); + return err; +} + +static int ql_cycle_adapter(struct ql_adapter *qdev) +{ + int status; + + status = ql_adapter_down(qdev); + if (status) + goto error; + + status = ql_adapter_up(qdev); + if (status) + goto error; + + return status; +error: + QPRINTK(qdev, IFUP, ALERT, + "Driver up/down cycle failed, closing device\n"); + rtnl_lock(); + dev_close(qdev->ndev); + rtnl_unlock(); + return status; +} + +static void ql_release_adapter_resources(struct ql_adapter *qdev) +{ + ql_free_mem_resources(qdev); + ql_free_irq(qdev); +} + +static int ql_get_adapter_resources(struct ql_adapter *qdev) +{ + int status = 0; + + if (ql_alloc_mem_resources(qdev)) { + QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n"); + return -ENOMEM; + } + status = ql_request_irq(qdev); + if (status) + goto err_irq; + return status; +err_irq: + ql_free_mem_resources(qdev); + return status; +} + +static int qlge_close(struct net_device *ndev) +{ + struct ql_adapter *qdev = netdev_priv(ndev); + + /* + * Wait for device to recover from a reset. + * (Rarely happens, but possible.) + */ + while (!test_bit(QL_ADAPTER_UP, &qdev->flags)) + msleep(1); + ql_adapter_down(qdev); + ql_release_adapter_resources(qdev); + ql_free_ring_cb(qdev); + return 0; +} + +static int ql_configure_rings(struct ql_adapter *qdev) +{ + int i; + struct rx_ring *rx_ring; + struct tx_ring *tx_ring; + int cpu_cnt = num_online_cpus(); + + /* + * For each processor present we allocate one + * rx_ring for outbound completions, and one + * rx_ring for inbound completions. Plus there is + * always the one default queue. For the CPU + * counts we end up with the following rx_rings: + * rx_ring count = + * one default queue + + * (CPU count * outbound completion rx_ring) + + * (CPU count * inbound (RSS) completion rx_ring) + * To keep it simple we limit the total number of + * queues to < 32, so we truncate CPU to 8. + * This limitation can be removed when requested. + */ + + if (cpu_cnt > 8) + cpu_cnt = 8; + + /* + * rx_ring[0] is always the default queue. + */ + /* Allocate outbound completion ring for each CPU. */ + qdev->tx_ring_count = cpu_cnt; + /* Allocate inbound completion (RSS) ring for each CPU. */ + qdev->rss_ring_count = cpu_cnt; + /* cq_id for the first inbound ring handler. */ + qdev->rss_ring_first_cq_id = cpu_cnt + 1; + /* + * qdev->rx_ring_count: + * Total number of rx_rings. This includes the one + * default queue, a number of outbound completion + * handler rx_rings, and the number of inbound + * completion handler rx_rings. + */ + qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1; + + if (ql_alloc_ring_cb(qdev)) + return -ENOMEM; + + for (i = 0; i < qdev->tx_ring_count; i++) { + tx_ring = &qdev->tx_ring[i]; + memset((void *)tx_ring, 0, sizeof(tx_ring)); + tx_ring->qdev = qdev; + tx_ring->wq_id = i; + tx_ring->wq_len = qdev->tx_ring_size; + tx_ring->wq_size = + tx_ring->wq_len * sizeof(struct ob_mac_iocb_req); + + /* + * The completion queue ID for the tx rings start + * immediately after the default Q ID, which is zero. + */ + tx_ring->cq_id = i + 1; + } + + for (i = 0; i < qdev->rx_ring_count; i++) { + rx_ring = &qdev->rx_ring[i]; + memset((void *)rx_ring, 0, sizeof(rx_ring)); + rx_ring->qdev = qdev; + rx_ring->cq_id = i; + rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */ + if (i == 0) { /* Default queue at index 0. */ + /* + * Default queue handles bcast/mcast plus + * async events. Needs buffers. + */ + rx_ring->cq_len = qdev->rx_ring_size; + rx_ring->cq_size = + rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb); + rx_ring->lbq_len = NUM_LARGE_BUFFERS; + rx_ring->lbq_size = + rx_ring->lbq_len * sizeof(struct bq_element); + rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE; + rx_ring->sbq_len = NUM_SMALL_BUFFERS; + rx_ring->sbq_size = + rx_ring->sbq_len * sizeof(struct bq_element); + rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2; + rx_ring->type = DEFAULT_Q; + } else if (i < qdev->rss_ring_first_cq_id) { + /* + * Outbound queue handles outbound completions only. + */ + /* outbound cq is same size as tx_ring it services. */ + rx_ring->cq_len = qdev->tx_ring_size; + rx_ring->cq_size = + rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb); + rx_ring->lbq_len = 0; + rx_ring->lbq_size = 0; + rx_ring->lbq_buf_size = 0; + rx_ring->sbq_len = 0; + rx_ring->sbq_size = 0; + rx_ring->sbq_buf_size = 0; + rx_ring->type = TX_Q; + } else { /* Inbound completions (RSS) queues */ + /* + * Inbound queues handle unicast frames only. + */ + rx_ring->cq_len = qdev->rx_ring_size; + rx_ring->cq_size = + rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb); + rx_ring->lbq_len = NUM_LARGE_BUFFERS; + rx_ring->lbq_size = + rx_ring->lbq_len * sizeof(struct bq_element); + rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE; + rx_ring->sbq_len = NUM_SMALL_BUFFERS; + rx_ring->sbq_size = + rx_ring->sbq_len * sizeof(struct bq_element); + rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2; + rx_ring->type = RX_Q; + } + } + return 0; +} + +static int qlge_open(struct net_device *ndev) +{ + int err = 0; + struct ql_adapter *qdev = netdev_priv(ndev); + + err = ql_configure_rings(qdev); + if (err) + return err; + + err = ql_get_adapter_resources(qdev); + if (err) + goto error_up; + + err = ql_adapter_up(qdev); + if (err) + goto error_up; + + return err; + +error_up: + ql_release_adapter_resources(qdev); + ql_free_ring_cb(qdev); + return err; +} + +static int qlge_change_mtu(struct net_device *ndev, int new_mtu) +{ + struct ql_adapter *qdev = netdev_priv(ndev); + + if (ndev->mtu == 1500 && new_mtu == 9000) { + QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n"); + } else if (ndev->mtu == 9000 && new_mtu == 1500) { + QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n"); + } else if ((ndev->mtu == 1500 && new_mtu == 1500) || + (ndev->mtu == 9000 && new_mtu == 9000)) { + return 0; + } else + return -EINVAL; + ndev->mtu = new_mtu; + return 0; +} + +static struct net_device_stats *qlge_get_stats(struct net_device + *ndev) +{ + struct ql_adapter *qdev = netdev_priv(ndev); + return &qdev->stats; +} + +static void qlge_set_multicast_list(struct net_device *ndev) +{ + struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev); + struct dev_mc_list *mc_ptr; + int i; + + spin_lock(&qdev->hw_lock); + /* + * Set or clear promiscuous mode if a + * transition is taking place. + */ + if (ndev->flags & IFF_PROMISC) { + if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) { + if (ql_set_routing_reg + (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) { + QPRINTK(qdev, HW, ERR, + "Failed to set promiscous mode.\n"); + } else { + set_bit(QL_PROMISCUOUS, &qdev->flags); + } + } + } else { + if (test_bit(QL_PROMISCUOUS, &qdev->flags)) { + if (ql_set_routing_reg + (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) { + QPRINTK(qdev, HW, ERR, + "Failed to clear promiscous mode.\n"); + } else { + clear_bit(QL_PROMISCUOUS, &qdev->flags); + } + } + } + + /* + * Set or clear all multicast mode if a + * transition is taking place. + */ + if ((ndev->flags & IFF_ALLMULTI) || + (ndev->mc_count > MAX_MULTICAST_ENTRIES)) { + if (!test_bit(QL_ALLMULTI, &qdev->flags)) { + if (ql_set_routing_reg + (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) { + QPRINTK(qdev, HW, ERR, + "Failed to set all-multi mode.\n"); + } else { + set_bit(QL_ALLMULTI, &qdev->flags); + } + } + } else { + if (test_bit(QL_ALLMULTI, &qdev->flags)) { + if (ql_set_routing_reg + (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) { + QPRINTK(qdev, HW, ERR, + "Failed to clear all-multi mode.\n"); + } else { + clear_bit(QL_ALLMULTI, &qdev->flags); + } + } + } + + if (ndev->mc_count) { + for (i = 0, mc_ptr = ndev->mc_list; mc_ptr; + i++, mc_ptr = mc_ptr->next) + if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr, + MAC_ADDR_TYPE_MULTI_MAC, i)) { + QPRINTK(qdev, HW, ERR, + "Failed to loadmulticast address.\n"); + goto exit; + } + if (ql_set_routing_reg + (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) { + QPRINTK(qdev, HW, ERR, + "Failed to set multicast match mode.\n"); + } else { + set_bit(QL_ALLMULTI, &qdev->flags); + } + } +exit: + spin_unlock(&qdev->hw_lock); +} + +static int qlge_set_mac_address(struct net_device *ndev, void *p) +{ + struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev); + struct sockaddr *addr = p; + + if (netif_running(ndev)) + return -EBUSY; + + if (!is_valid_ether_addr(addr->sa_data)) + return -EADDRNOTAVAIL; + memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); + + spin_lock(&qdev->hw_lock); + if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr, + MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */ + QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n"); + return -1; + } + spin_unlock(&qdev->hw_lock); + + return 0; +} + +static void qlge_tx_timeout(struct net_device *ndev) +{ + struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev); + queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0); +} + +static void ql_asic_reset_work(struct work_struct *work) +{ + struct ql_adapter *qdev = + container_of(work, struct ql_adapter, asic_reset_work.work); + ql_cycle_adapter(qdev); +} + +static void ql_get_board_info(struct ql_adapter *qdev) +{ + qdev->func = + (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT; + if (qdev->func) { + qdev->xg_sem_mask = SEM_XGMAC1_MASK; + qdev->port_link_up = STS_PL1; + qdev->port_init = STS_PI1; + qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI; + qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO; + } else { + qdev->xg_sem_mask = SEM_XGMAC0_MASK; + qdev->port_link_up = STS_PL0; + qdev->port_init = STS_PI0; + qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI; + qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO; + } + qdev->chip_rev_id = ql_read32(qdev, REV_ID); +} + +static void ql_release_all(struct pci_dev *pdev) +{ + struct net_device *ndev = pci_get_drvdata(pdev); + struct ql_adapter *qdev = netdev_priv(ndev); + + if (qdev->workqueue) { + destroy_workqueue(qdev->workqueue); + qdev->workqueue = NULL; + } + if (qdev->q_workqueue) { + destroy_workqueue(qdev->q_workqueue); + qdev->q_workqueue = NULL; + } + if (qdev->reg_base) + iounmap((void *)qdev->reg_base); + if (qdev->doorbell_area) + iounmap(qdev->doorbell_area); + pci_release_regions(pdev); + pci_set_drvdata(pdev, NULL); +} + +static int __devinit ql_init_device(struct pci_dev *pdev, + struct net_device *ndev, int cards_found) +{ + struct ql_adapter *qdev = netdev_priv(ndev); + int pos, err = 0; + u16 val16; + + memset((void *)qdev, 0, sizeof(qdev)); + err = pci_enable_device(pdev); + if (err) { + dev_err(&pdev->dev, "PCI device enable failed.\n"); + return err; + } + + pos = pci_find_capability(pdev, PCI_CAP_ID_EXP); + if (pos <= 0) { + dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, " + "aborting.\n"); + goto err_out; + } else { + pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16); + val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN; + val16 |= (PCI_EXP_DEVCTL_CERE | + PCI_EXP_DEVCTL_NFERE | + PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE); + pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16); + } + + err = pci_request_regions(pdev, DRV_NAME); + if (err) { + dev_err(&pdev->dev, "PCI region request failed.\n"); + goto err_out; + } + + pci_set_master(pdev); + if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { + set_bit(QL_DMA64, &qdev->flags); + err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); + } else { + err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); + if (!err) + err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); + } + + if (err) { + dev_err(&pdev->dev, "No usable DMA configuration.\n"); + goto err_out; + } + + pci_set_drvdata(pdev, ndev); + qdev->reg_base = + ioremap_nocache(pci_resource_start(pdev, 1), + pci_resource_len(pdev, 1)); + if (!qdev->reg_base) { + dev_err(&pdev->dev, "Register mapping failed.\n"); + err = -ENOMEM; + goto err_out; + } + + qdev->doorbell_area_size = pci_resource_len(pdev, 3); + qdev->doorbell_area = + ioremap_nocache(pci_resource_start(pdev, 3), + pci_resource_len(pdev, 3)); + if (!qdev->doorbell_area) { + dev_err(&pdev->dev, "Doorbell register mapping failed.\n"); + err = -ENOMEM; + goto err_out; + } + + ql_get_board_info(qdev); + qdev->ndev = ndev; + qdev->pdev = pdev; + qdev->msg_enable = netif_msg_init(debug, default_msg); + spin_lock_init(&qdev->hw_lock); + spin_lock_init(&qdev->stats_lock); + + /* make sure the EEPROM is good */ + err = ql_get_flash_params(qdev); + if (err) { + dev_err(&pdev->dev, "Invalid FLASH.\n"); + goto err_out; + } + + if (!is_valid_ether_addr(qdev->flash.mac_addr)) + goto err_out; + + memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len); + memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len); + + /* Set up the default ring sizes. */ + qdev->tx_ring_size = NUM_TX_RING_ENTRIES; + qdev->rx_ring_size = NUM_RX_RING_ENTRIES; + + /* Set up the coalescing parameters. */ + qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT; + qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT; + qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT; + qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT; + + /* + * Set up the operating parameters. + */ + qdev->rx_csum = 1; + + qdev->q_workqueue = create_workqueue(ndev->name); + qdev->workqueue = create_singlethread_workqueue(ndev->name); + INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work); + INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work); + INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work); + + if (!cards_found) { + dev_info(&pdev->dev, "%s\n", DRV_STRING); + dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n", + DRV_NAME, DRV_VERSION); + } + return 0; +err_out: + ql_release_all(pdev); + pci_disable_device(pdev); + return err; +} + +static int __devinit qlge_probe(struct pci_dev *pdev, + const struct pci_device_id *pci_entry) +{ + struct net_device *ndev = NULL; + struct ql_adapter *qdev = NULL; + static int cards_found = 0; + int err = 0; + + ndev = alloc_etherdev(sizeof(struct ql_adapter)); + if (!ndev) + return -ENOMEM; + + err = ql_init_device(pdev, ndev, cards_found); + if (err < 0) { + free_netdev(ndev); + return err; + } + + qdev = netdev_priv(ndev); + SET_NETDEV_DEV(ndev, &pdev->dev); + ndev->features = (0 + | NETIF_F_IP_CSUM + | NETIF_F_SG + | NETIF_F_TSO + | NETIF_F_TSO6 + | NETIF_F_TSO_ECN + | NETIF_F_HW_VLAN_TX + | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER); + + if (test_bit(QL_DMA64, &qdev->flags)) + ndev->features |= NETIF_F_HIGHDMA; + + /* + * Set up net_device structure. + */ + ndev->tx_queue_len = qdev->tx_ring_size; + ndev->irq = pdev->irq; + ndev->open = qlge_open; + ndev->stop = qlge_close; + ndev->hard_start_xmit = qlge_send; + SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops); + ndev->change_mtu = qlge_change_mtu; + ndev->get_stats = qlge_get_stats; + ndev->set_multicast_list = qlge_set_multicast_list; + ndev->set_mac_address = qlge_set_mac_address; + ndev->tx_timeout = qlge_tx_timeout; + ndev->watchdog_timeo = 10 * HZ; + ndev->vlan_rx_register = ql_vlan_rx_register; + ndev->vlan_rx_add_vid = ql_vlan_rx_add_vid; + ndev->vlan_rx_kill_vid = ql_vlan_rx_kill_vid; + err = register_netdev(ndev); + if (err) { + dev_err(&pdev->dev, "net device registration failed.\n"); + ql_release_all(pdev); + pci_disable_device(pdev); + return err; + } + netif_carrier_off(ndev); + netif_stop_queue(ndev); + ql_display_dev_info(ndev); + cards_found++; + return 0; +} + +static void __devexit qlge_remove(struct pci_dev *pdev) +{ + struct net_device *ndev = pci_get_drvdata(pdev); + unregister_netdev(ndev); + ql_release_all(pdev); + pci_disable_device(pdev); + free_netdev(ndev); +} + +/* + * This callback is called by the PCI subsystem whenever + * a PCI bus error is detected. + */ +static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev, + enum pci_channel_state state) +{ + struct net_device *ndev = pci_get_drvdata(pdev); + struct ql_adapter *qdev = netdev_priv(ndev); + + if (netif_running(ndev)) + ql_adapter_down(qdev); + + pci_disable_device(pdev); + + /* Request a slot reset. */ + return PCI_ERS_RESULT_NEED_RESET; +} + +/* + * This callback is called after the PCI buss has been reset. + * Basically, this tries to restart the card from scratch. + * This is a shortened version of the device probe/discovery code, + * it resembles the first-half of the () routine. + */ +static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev) +{ + struct net_device *ndev = pci_get_drvdata(pdev); + struct ql_adapter *qdev = netdev_priv(ndev); + + if (pci_enable_device(pdev)) { + QPRINTK(qdev, IFUP, ERR, + "Cannot re-enable PCI device after reset.\n"); + return PCI_ERS_RESULT_DISCONNECT; + } + + pci_set_master(pdev); + + netif_carrier_off(ndev); + netif_stop_queue(ndev); + ql_adapter_reset(qdev); + + /* Make sure the EEPROM is good */ + memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len); + + if (!is_valid_ether_addr(ndev->perm_addr)) { + QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n"); + return PCI_ERS_RESULT_DISCONNECT; + } + + return PCI_ERS_RESULT_RECOVERED; +} + +static void qlge_io_resume(struct pci_dev *pdev) +{ + struct net_device *ndev = pci_get_drvdata(pdev); + struct ql_adapter *qdev = netdev_priv(ndev); + + pci_set_master(pdev); + + if (netif_running(ndev)) { + if (ql_adapter_up(qdev)) { + QPRINTK(qdev, IFUP, ERR, + "Device initialization failed after reset.\n"); + return; + } + } + + netif_device_attach(ndev); +} + +static struct pci_error_handlers qlge_err_handler = { + .error_detected = qlge_io_error_detected, + .slot_reset = qlge_io_slot_reset, + .resume = qlge_io_resume, +}; + +static int qlge_suspend(struct pci_dev *pdev, pm_message_t state) +{ + struct net_device *ndev = pci_get_drvdata(pdev); + struct ql_adapter *qdev = netdev_priv(ndev); + int err; + + netif_device_detach(ndev); + + if (netif_running(ndev)) { + err = ql_adapter_down(qdev); + if (!err) + return err; + } + + err = pci_save_state(pdev); + if (err) + return err; + + pci_disable_device(pdev); + + pci_set_power_state(pdev, pci_choose_state(pdev, state)); + + return 0; +} + +static int qlge_resume(struct pci_dev *pdev) +{ + struct net_device *ndev = pci_get_drvdata(pdev); + struct ql_adapter *qdev = netdev_priv(ndev); + int err; + + pci_set_power_state(pdev, PCI_D0); + pci_restore_state(pdev); + err = pci_enable_device(pdev); + if (err) { + QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n"); + return err; + } + pci_set_master(pdev); + + pci_enable_wake(pdev, PCI_D3hot, 0); + pci_enable_wake(pdev, PCI_D3cold, 0); + + if (netif_running(ndev)) { + err = ql_adapter_up(qdev); + if (err) + return err; + } + + netif_device_attach(ndev); + + return 0; +} + +static void qlge_shutdown(struct pci_dev *pdev) +{ + qlge_suspend(pdev, PMSG_SUSPEND); +} + +static struct pci_driver qlge_driver = { + .name = DRV_NAME, + .id_table = qlge_pci_tbl, + .probe = qlge_probe, + .remove = __devexit_p(qlge_remove), +#ifdef CONFIG_PM + .suspend = qlge_suspend, + .resume = qlge_resume, +#endif + .shutdown = qlge_shutdown, + .err_handler = &qlge_err_handler +}; + +static int __init qlge_init_module(void) +{ + return pci_register_driver(&qlge_driver); +} + +static void __exit qlge_exit(void) +{ + pci_unregister_driver(&qlge_driver); +} + +module_init(qlge_init_module); +module_exit(qlge_exit); |