diff options
Diffstat (limited to 'drivers/net/wireless/ath5k')
-rw-r--r-- | drivers/net/wireless/ath5k/ath5k.h | 35 | ||||
-rw-r--r-- | drivers/net/wireless/ath5k/attach.c | 2 | ||||
-rw-r--r-- | drivers/net/wireless/ath5k/base.c | 46 | ||||
-rw-r--r-- | drivers/net/wireless/ath5k/base.h | 2 | ||||
-rw-r--r-- | drivers/net/wireless/ath5k/desc.c | 4 | ||||
-rw-r--r-- | drivers/net/wireless/ath5k/eeprom.c | 774 | ||||
-rw-r--r-- | drivers/net/wireless/ath5k/eeprom.h | 128 | ||||
-rw-r--r-- | drivers/net/wireless/ath5k/initvals.c | 4 | ||||
-rw-r--r-- | drivers/net/wireless/ath5k/led.c | 2 | ||||
-rw-r--r-- | drivers/net/wireless/ath5k/phy.c | 1170 | ||||
-rw-r--r-- | drivers/net/wireless/ath5k/reg.h | 19 | ||||
-rw-r--r-- | drivers/net/wireless/ath5k/reset.c | 35 |
12 files changed, 1833 insertions, 388 deletions
diff --git a/drivers/net/wireless/ath5k/ath5k.h b/drivers/net/wireless/ath5k/ath5k.h index 0dc2c7321c8b..0b616e72fe05 100644 --- a/drivers/net/wireless/ath5k/ath5k.h +++ b/drivers/net/wireless/ath5k/ath5k.h @@ -204,9 +204,9 @@ #define AR5K_TUNE_CWMAX_11B 1023 #define AR5K_TUNE_CWMAX_XR 7 #define AR5K_TUNE_NOISE_FLOOR -72 -#define AR5K_TUNE_MAX_TXPOWER 60 -#define AR5K_TUNE_DEFAULT_TXPOWER 30 -#define AR5K_TUNE_TPC_TXPOWER true +#define AR5K_TUNE_MAX_TXPOWER 63 +#define AR5K_TUNE_DEFAULT_TXPOWER 25 +#define AR5K_TUNE_TPC_TXPOWER false #define AR5K_TUNE_ANT_DIVERSITY true #define AR5K_TUNE_HWTXTRIES 4 @@ -551,11 +551,11 @@ enum ath5k_pkt_type { */ #define AR5K_TXPOWER_OFDM(_r, _v) ( \ ((0 & 1) << ((_v) + 6)) | \ - (((ah->ah_txpower.txp_rates[(_r)]) & 0x3f) << (_v)) \ + (((ah->ah_txpower.txp_rates_power_table[(_r)]) & 0x3f) << (_v)) \ ) #define AR5K_TXPOWER_CCK(_r, _v) ( \ - (ah->ah_txpower.txp_rates[(_r)] & 0x3f) << (_v) \ + (ah->ah_txpower.txp_rates_power_table[(_r)] & 0x3f) << (_v) \ ) /* @@ -1085,13 +1085,25 @@ struct ath5k_hw { struct ath5k_gain ah_gain; u8 ah_offset[AR5K_MAX_RF_BANKS]; + struct { - u16 txp_pcdac[AR5K_EEPROM_POWER_TABLE_SIZE]; - u16 txp_rates[AR5K_MAX_RATES]; - s16 txp_min; - s16 txp_max; + /* Temporary tables used for interpolation */ + u8 tmpL[AR5K_EEPROM_N_PD_GAINS] + [AR5K_EEPROM_POWER_TABLE_SIZE]; + u8 tmpR[AR5K_EEPROM_N_PD_GAINS] + [AR5K_EEPROM_POWER_TABLE_SIZE]; + u8 txp_pd_table[AR5K_EEPROM_POWER_TABLE_SIZE * 2]; + u16 txp_rates_power_table[AR5K_MAX_RATES]; + u8 txp_min_idx; bool txp_tpc; + /* Values in 0.25dB units */ + s16 txp_min_pwr; + s16 txp_max_pwr; + s16 txp_offset; s16 txp_ofdm; + /* Values in dB units */ + s16 txp_cck_ofdm_pwr_delta; + s16 txp_cck_ofdm_gainf_delta; } ah_txpower; struct { @@ -1161,6 +1173,7 @@ extern void ath5k_hw_update_mib_counters(struct ath5k_hw *ah, struct ieee80211_l /* EEPROM access functions */ extern int ath5k_eeprom_init(struct ath5k_hw *ah); +extern void ath5k_eeprom_detach(struct ath5k_hw *ah); extern int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac); extern bool ath5k_eeprom_is_hb63(struct ath5k_hw *ah); @@ -1256,8 +1269,8 @@ extern void ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant); extern unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah); extern int ath5k_hw_phy_disable(struct ath5k_hw *ah); /* TX power setup */ -extern int ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, unsigned int txpower); -extern int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, unsigned int power); +extern int ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, u8 ee_mode, u8 txpower); +extern int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 ee_mode, u8 txpower); /* * Functions used internaly diff --git a/drivers/net/wireless/ath5k/attach.c b/drivers/net/wireless/ath5k/attach.c index 656cb9dc833b..70d376c63aac 100644 --- a/drivers/net/wireless/ath5k/attach.c +++ b/drivers/net/wireless/ath5k/attach.c @@ -341,6 +341,8 @@ void ath5k_hw_detach(struct ath5k_hw *ah) if (ah->ah_rf_banks != NULL) kfree(ah->ah_rf_banks); + ath5k_eeprom_detach(ah); + /* assume interrupts are down */ kfree(ah); } diff --git a/drivers/net/wireless/ath5k/base.c b/drivers/net/wireless/ath5k/base.c index cad3ccf61b00..5d57d774e466 100644 --- a/drivers/net/wireless/ath5k/base.c +++ b/drivers/net/wireless/ath5k/base.c @@ -685,13 +685,6 @@ ath5k_pci_resume(struct pci_dev *pdev) if (err) return err; - /* - * Suspend/Resume resets the PCI configuration space, so we have to - * re-disable the RETRY_TIMEOUT register (0x41) to keep - * PCI Tx retries from interfering with C3 CPU state - */ - pci_write_config_byte(pdev, 0x41, 0); - err = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc); if (err) { ATH5K_ERR(sc, "request_irq failed\n"); @@ -1095,9 +1088,18 @@ ath5k_mode_setup(struct ath5k_softc *sc) static inline int ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix) { - WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES, - "hw_rix out of bounds: %x\n", hw_rix); - return sc->rate_idx[sc->curband->band][hw_rix]; + int rix; + + /* return base rate on errors */ + if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES, + "hw_rix out of bounds: %x\n", hw_rix)) + return 0; + + rix = sc->rate_idx[sc->curband->band][hw_rix]; + if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix)) + rix = 0; + + return rix; } /***************\ @@ -1216,6 +1218,9 @@ ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf) pktlen = skb->len; + /* FIXME: If we are in g mode and rate is a CCK rate + * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta + * from tx power (value is in dB units already) */ if (info->control.hw_key) { keyidx = info->control.hw_key->hw_key_idx; pktlen += info->control.hw_key->icv_len; @@ -2044,6 +2049,9 @@ ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf) antenna = sc->bsent & 4 ? 2 : 1; } + /* FIXME: If we are in g mode and rate is a CCK rate + * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta + * from tx power (value is in dB units already) */ ds->ds_data = bf->skbaddr; ret = ah->ah_setup_tx_desc(ah, ds, skb->len, ieee80211_get_hdrlen_from_skb(skb), @@ -2305,7 +2313,7 @@ ath5k_init(struct ath5k_softc *sc) sc->curband = &sc->sbands[sc->curchan->band]; sc->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL | AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL | - AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB; + AR5K_INT_FATAL | AR5K_INT_GLOBAL; ret = ath5k_reset(sc, false, false); if (ret) goto done; @@ -2554,7 +2562,7 @@ ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb) if (skb_headroom(skb) < padsize) { ATH5K_ERR(sc, "tx hdrlen not %%4: %d not enough" " headroom to pad %d\n", hdrlen, padsize); - return NETDEV_TX_BUSY; + goto drop_packet; } skb_push(skb, padsize); memmove(skb->data, skb->data+padsize, hdrlen); @@ -2565,7 +2573,7 @@ ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb) ATH5K_ERR(sc, "no further txbuf available, dropping packet\n"); spin_unlock_irqrestore(&sc->txbuflock, flags); ieee80211_stop_queue(hw, skb_get_queue_mapping(skb)); - return NETDEV_TX_BUSY; + goto drop_packet; } bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list); list_del(&bf->list); @@ -2582,10 +2590,12 @@ ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb) list_add_tail(&bf->list, &sc->txbuf); sc->txbuf_len++; spin_unlock_irqrestore(&sc->txbuflock, flags); - dev_kfree_skb_any(skb); - return NETDEV_TX_OK; + goto drop_packet; } + return NETDEV_TX_OK; +drop_packet: + dev_kfree_skb_any(skb); return NETDEV_TX_OK; } @@ -2608,12 +2618,6 @@ ath5k_reset(struct ath5k_softc *sc, bool stop, bool change_channel) goto err; } - /* - * This is needed only to setup initial state - * but it's best done after a reset. - */ - ath5k_hw_set_txpower_limit(sc->ah, 0); - ret = ath5k_rx_start(sc); if (ret) { ATH5K_ERR(sc, "can't start recv logic\n"); diff --git a/drivers/net/wireless/ath5k/base.h b/drivers/net/wireless/ath5k/base.h index 20e0d14b41ec..822956114cd7 100644 --- a/drivers/net/wireless/ath5k/base.h +++ b/drivers/net/wireless/ath5k/base.h @@ -112,7 +112,7 @@ struct ath5k_softc { struct ieee80211_supported_band sbands[IEEE80211_NUM_BANDS]; struct ieee80211_channel channels[ATH_CHAN_MAX]; struct ieee80211_rate rates[IEEE80211_NUM_BANDS][AR5K_MAX_RATES]; - u8 rate_idx[IEEE80211_NUM_BANDS][AR5K_MAX_RATES]; + s8 rate_idx[IEEE80211_NUM_BANDS][AR5K_MAX_RATES]; enum nl80211_iftype opmode; struct ath5k_hw *ah; /* Atheros HW */ diff --git a/drivers/net/wireless/ath5k/desc.c b/drivers/net/wireless/ath5k/desc.c index b40a9287a39a..dc30a2b70a6b 100644 --- a/drivers/net/wireless/ath5k/desc.c +++ b/drivers/net/wireless/ath5k/desc.c @@ -194,6 +194,10 @@ static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *ah, return -EINVAL; } + tx_power += ah->ah_txpower.txp_offset; + if (tx_power > AR5K_TUNE_MAX_TXPOWER) + tx_power = AR5K_TUNE_MAX_TXPOWER; + /* Clear descriptor */ memset(&desc->ud.ds_tx5212, 0, sizeof(struct ath5k_hw_5212_tx_desc)); diff --git a/drivers/net/wireless/ath5k/eeprom.c b/drivers/net/wireless/ath5k/eeprom.c index ac45ca47ca87..c0fb3b09ba45 100644 --- a/drivers/net/wireless/ath5k/eeprom.c +++ b/drivers/net/wireless/ath5k/eeprom.c @@ -1,7 +1,7 @@ /* * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org> - * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com> - * Copyright (c) 2008 Felix Fietkau <nbd@openwrt.org> + * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> + * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above @@ -98,11 +98,6 @@ ath5k_eeprom_init_header(struct ath5k_hw *ah) int ret; u16 val; - /* Initial TX thermal adjustment values */ - ee->ee_tx_clip = 4; - ee->ee_pwd_84 = ee->ee_pwd_90 = 1; - ee->ee_gain_select = 1; - /* * Read values from EEPROM and store them in the capability structure */ @@ -241,22 +236,22 @@ static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset, ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff); switch(mode) { case AR5K_EEPROM_MODE_11A: - ee->ee_ob[mode][3] = (val >> 5) & 0x7; - ee->ee_db[mode][3] = (val >> 2) & 0x7; - ee->ee_ob[mode][2] = (val << 1) & 0x7; + ee->ee_ob[mode][3] = (val >> 5) & 0x7; + ee->ee_db[mode][3] = (val >> 2) & 0x7; + ee->ee_ob[mode][2] = (val << 1) & 0x7; AR5K_EEPROM_READ(o++, val); - ee->ee_ob[mode][2] |= (val >> 15) & 0x1; - ee->ee_db[mode][2] = (val >> 12) & 0x7; - ee->ee_ob[mode][1] = (val >> 9) & 0x7; - ee->ee_db[mode][1] = (val >> 6) & 0x7; - ee->ee_ob[mode][0] = (val >> 3) & 0x7; - ee->ee_db[mode][0] = val & 0x7; + ee->ee_ob[mode][2] |= (val >> 15) & 0x1; + ee->ee_db[mode][2] = (val >> 12) & 0x7; + ee->ee_ob[mode][1] = (val >> 9) & 0x7; + ee->ee_db[mode][1] = (val >> 6) & 0x7; + ee->ee_ob[mode][0] = (val >> 3) & 0x7; + ee->ee_db[mode][0] = val & 0x7; break; case AR5K_EEPROM_MODE_11G: case AR5K_EEPROM_MODE_11B: - ee->ee_ob[mode][1] = (val >> 4) & 0x7; - ee->ee_db[mode][1] = val & 0x7; + ee->ee_ob[mode][1] = (val >> 4) & 0x7; + ee->ee_db[mode][1] = val & 0x7; break; } @@ -504,35 +499,6 @@ ath5k_eeprom_init_modes(struct ath5k_hw *ah) return 0; } -/* Used to match PCDAC steps with power values on RF5111 chips - * (eeprom versions < 4). For RF5111 we have 10 pre-defined PCDAC - * steps that match with the power values we read from eeprom. On - * older eeprom versions (< 3.2) these steps are equaly spaced at - * 10% of the pcdac curve -until the curve reaches it's maximum- - * (10 steps from 0 to 100%) but on newer eeprom versions (>= 3.2) - * these 10 steps are spaced in a different way. This function returns - * the pcdac steps based on eeprom version and curve min/max so that we - * can have pcdac/pwr points. - */ -static inline void -ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp) -{ - static const u16 intercepts3[] = - { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 }; - static const u16 intercepts3_2[] = - { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 }; - const u16 *ip; - int i; - - if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2) - ip = intercepts3_2; - else - ip = intercepts3; - - for (i = 0; i < ARRAY_SIZE(intercepts3); i++) - *vp++ = (ip[i] * max + (100 - ip[i]) * min) / 100; -} - /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff * frequency mask) */ static inline int @@ -546,26 +512,25 @@ ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max, int ret; u16 val; + ee->ee_n_piers[mode] = 0; while(i < max) { AR5K_EEPROM_READ(o++, val); - freq1 = (val >> 8) & 0xff; - freq2 = val & 0xff; - - if (freq1) { - pc[i++].freq = ath5k_eeprom_bin2freq(ee, - freq1, mode); - ee->ee_n_piers[mode]++; - } + freq1 = val & 0xff; + if (!freq1) + break; - if (freq2) { - pc[i++].freq = ath5k_eeprom_bin2freq(ee, - freq2, mode); - ee->ee_n_piers[mode]++; - } + pc[i++].freq = ath5k_eeprom_bin2freq(ee, + freq1, mode); + ee->ee_n_piers[mode]++; - if (!freq1 || !freq2) + freq2 = (val >> 8) & 0xff; + if (!freq2) break; + + pc[i++].freq = ath5k_eeprom_bin2freq(ee, + freq2, mode); + ee->ee_n_piers[mode]++; } /* return new offset */ @@ -652,13 +617,122 @@ ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset) return 0; } -/* Read power calibration for RF5111 chips +/* + * Read power calibration for RF5111 chips + * * For RF5111 we have an XPD -eXternal Power Detector- curve - * for each calibrated channel. Each curve has PCDAC steps on - * x axis and power on y axis and looks like a logarithmic - * function. To recreate the curve and pass the power values - * on the pcdac table, we read 10 points here and interpolate later. + * for each calibrated channel. Each curve has 0,5dB Power steps + * on x axis and PCDAC steps (offsets) on y axis and looks like an + * exponential function. To recreate the curve we read 11 points + * here and interpolate later. */ + +/* Used to match PCDAC steps with power values on RF5111 chips + * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC + * steps that match with the power values we read from eeprom. On + * older eeprom versions (< 3.2) these steps are equaly spaced at + * 10% of the pcdac curve -until the curve reaches it's maximum- + * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2) + * these 11 steps are spaced in a different way. This function returns + * the pcdac steps based on eeprom version and curve min/max so that we + * can have pcdac/pwr points. + */ +static inline void +ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp) +{ + const static u16 intercepts3[] = + { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 }; + const static u16 intercepts3_2[] = + { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 }; + const u16 *ip; + int i; + + if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2) + ip = intercepts3_2; + else + ip = intercepts3; + + for (i = 0; i < ARRAY_SIZE(intercepts3); i++) + vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100; +} + +/* Convert RF5111 specific data to generic raw data + * used by interpolation code */ +static int +ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode, + struct ath5k_chan_pcal_info *chinfo) +{ + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + struct ath5k_chan_pcal_info_rf5111 *pcinfo; + struct ath5k_pdgain_info *pd; + u8 pier, point, idx; + u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; + + /* Fill raw data for each calibration pier */ + for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { + + pcinfo = &chinfo[pier].rf5111_info; + + /* Allocate pd_curves for this cal pier */ + chinfo[pier].pd_curves = + kcalloc(AR5K_EEPROM_N_PD_CURVES, + sizeof(struct ath5k_pdgain_info), + GFP_KERNEL); + + if (!chinfo[pier].pd_curves) + return -ENOMEM; + + /* Only one curve for RF5111 + * find out which one and place + * in in pd_curves. + * Note: ee_x_gain is reversed here */ + for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) { + + if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) { + pdgain_idx[0] = idx; + break; + } + } + + ee->ee_pd_gains[mode] = 1; + + pd = &chinfo[pier].pd_curves[idx]; + + pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111; + + /* Allocate pd points for this curve */ + pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111, + sizeof(u8), GFP_KERNEL); + if (!pd->pd_step) + return -ENOMEM; + + pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111, + sizeof(s16), GFP_KERNEL); + if (!pd->pd_pwr) + return -ENOMEM; + + /* Fill raw dataset + * (convert power to 0.25dB units + * for RF5112 combatibility) */ + for (point = 0; point < pd->pd_points; point++) { + + /* Absolute values */ + pd->pd_pwr[point] = 2 * pcinfo->pwr[point]; + + /* Already sorted */ + pd->pd_step[point] = pcinfo->pcdac[point]; + } + + /* Set min/max pwr */ + chinfo[pier].min_pwr = pd->pd_pwr[0]; + chinfo[pier].max_pwr = pd->pd_pwr[10]; + + } + + return 0; +} + +/* Parse EEPROM data */ static int ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode) { @@ -747,30 +821,165 @@ ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode) cdata->pcdac_max, cdata->pcdac); } - return 0; + return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal); } -/* Read power calibration for RF5112 chips + +/* + * Read power calibration for RF5112 chips + * * For RF5112 we have 4 XPD -eXternal Power Detector- curves * for each calibrated channel on 0, -6, -12 and -18dbm but we only - * use the higher (3) and the lower (0) curves. Each curve has PCDAC - * steps on x axis and power on y axis and looks like a linear - * function. To recreate the curve and pass the power values - * on the pcdac table, we read 4 points for xpd 0 and 3 points - * for xpd 3 here and interpolate later. + * use the higher (3) and the lower (0) curves. Each curve has 0.5dB + * power steps on x axis and PCDAC steps on y axis and looks like a + * linear function. To recreate the curve and pass the power values + * on hw, we read 4 points for xpd 0 (lower gain -> max power) + * and 3 points for xpd 3 (higher gain -> lower power) here and + * interpolate later. * * Note: Many vendors just use xpd 0 so xpd 3 is zeroed. */ + +/* Convert RF5112 specific data to generic raw data + * used by interpolation code */ +static int +ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode, + struct ath5k_chan_pcal_info *chinfo) +{ + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + struct ath5k_chan_pcal_info_rf5112 *pcinfo; + u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; + unsigned int pier, pdg, point; + + /* Fill raw data for each calibration pier */ + for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { + + pcinfo = &chinfo[pier].rf5112_info; + + /* Allocate pd_curves for this cal pier */ + chinfo[pier].pd_curves = + kcalloc(AR5K_EEPROM_N_PD_CURVES, + sizeof(struct ath5k_pdgain_info), + GFP_KERNEL); + + if (!chinfo[pier].pd_curves) + return -ENOMEM; + + /* Fill pd_curves */ + for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) { + + u8 idx = pdgain_idx[pdg]; + struct ath5k_pdgain_info *pd = + &chinfo[pier].pd_curves[idx]; + + /* Lowest gain curve (max power) */ + if (pdg == 0) { + /* One more point for better accuracy */ + pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS; + + /* Allocate pd points for this curve */ + pd->pd_step = kcalloc(pd->pd_points, + sizeof(u8), GFP_KERNEL); + + if (!pd->pd_step) + return -ENOMEM; + + pd->pd_pwr = kcalloc(pd->pd_points, + sizeof(s16), GFP_KERNEL); + + if (!pd->pd_pwr) + return -ENOMEM; + + + /* Fill raw dataset + * (all power levels are in 0.25dB units) */ + pd->pd_step[0] = pcinfo->pcdac_x0[0]; + pd->pd_pwr[0] = pcinfo->pwr_x0[0]; + + for (point = 1; point < pd->pd_points; + point++) { + /* Absolute values */ + pd->pd_pwr[point] = + pcinfo->pwr_x0[point]; + + /* Deltas */ + pd->pd_step[point] = + pd->pd_step[point - 1] + + pcinfo->pcdac_x0[point]; + } + + /* Set min power for this frequency */ + chinfo[pier].min_pwr = pd->pd_pwr[0]; + + /* Highest gain curve (min power) */ + } else if (pdg == 1) { + + pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS; + + /* Allocate pd points for this curve */ + pd->pd_step = kcalloc(pd->pd_points, + sizeof(u8), GFP_KERNEL); + + if (!pd->pd_step) + return -ENOMEM; + + pd->pd_pwr = kcalloc(pd->pd_points, + sizeof(s16), GFP_KERNEL); + + if (!pd->pd_pwr) + return -ENOMEM; + + /* Fill raw dataset + * (all power levels are in 0.25dB units) */ + for (point = 0; point < pd->pd_points; + point++) { + /* Absolute values */ + pd->pd_pwr[point] = + pcinfo->pwr_x3[point]; + + /* Fixed points */ + pd->pd_step[point] = + pcinfo->pcdac_x3[point]; + } + + /* Since we have a higher gain curve + * override min power */ + chinfo[pier].min_pwr = pd->pd_pwr[0]; + } + } + } + + return 0; +} + +/* Parse EEPROM data */ static int ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info; struct ath5k_chan_pcal_info *gen_chan_info; + u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; u32 offset; - unsigned int i, c; + u8 i, c; u16 val; int ret; + u8 pd_gains = 0; + + /* Count how many curves we have and + * identify them (which one of the 4 + * available curves we have on each count). + * Curves are stored from lower (x0) to + * higher (x3) gain */ + for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) { + /* ee_x_gain[mode] is x gain mask */ + if ((ee->ee_x_gain[mode] >> i) & 0x1) + pdgain_idx[pd_gains++] = i; + } + ee->ee_pd_gains[mode] = pd_gains; + + if (pd_gains == 0 || pd_gains > 2) + return -EINVAL; switch (mode) { case AR5K_EEPROM_MODE_11A: @@ -808,13 +1017,13 @@ ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode) for (i = 0; i < ee->ee_n_piers[mode]; i++) { chan_pcal_info = &gen_chan_info[i].rf5112_info; - /* Power values in dBm * 4 + /* Power values in quarter dB * for the lower xpd gain curve * (0 dBm -> higher output power) */ for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) { AR5K_EEPROM_READ(offset++, val); - chan_pcal_info->pwr_x0[c] = (val & 0xff); - chan_pcal_info->pwr_x0[++c] = ((val >> 8) & 0xff); + chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff); + chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff); } /* PCDAC steps @@ -825,12 +1034,12 @@ ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode) chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f); chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f); - /* Power values in dBm * 4 + /* Power values in quarter dB * for the higher xpd gain curve * (18 dBm -> lower output power) */ AR5K_EEPROM_READ(offset++, val); - chan_pcal_info->pwr_x3[0] = (val & 0xff); - chan_pcal_info->pwr_x3[1] = ((val >> 8) & 0xff); + chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff); + chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff); AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pwr_x3[2] = (val & 0xff); @@ -843,24 +1052,36 @@ ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode) chan_pcal_info->pcdac_x3[2] = 63; if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) { - chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0xff); + chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f); /* Last xpd0 power level is also channel maximum */ gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3]; } else { chan_pcal_info->pcdac_x0[0] = 1; - gen_chan_info[i].max_pwr = ((val >> 8) & 0xff); + gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff); } - /* Recreate pcdac_x0 table for this channel using pcdac steps */ - chan_pcal_info->pcdac_x0[1] += chan_pcal_info->pcdac_x0[0]; - chan_pcal_info->pcdac_x0[2] += chan_pcal_info->pcdac_x0[1]; - chan_pcal_info->pcdac_x0[3] += chan_pcal_info->pcdac_x0[2]; } - return 0; + return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info); } + +/* + * Read power calibration for RF2413 chips + * + * For RF2413 we have a Power to PDDAC table (Power Detector) + * instead of a PCDAC and 4 pd gain curves for each calibrated channel. + * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y + * axis and looks like an exponential function like the RF5111 curve. + * + * To recreate the curves we read here the points and interpolate + * later. Note that in most cases only 2 (higher and lower) curves are + * used (like RF5112) but vendors have the oportunity to include all + * 4 curves on eeprom. The final curve (higher power) has an extra + * point for better accuracy like RF5112. + */ + /* For RF2413 power calibration data doesn't start on a fixed location and * if a mode is not supported, it's section is missing -not zeroed-. * So we need to calculate the starting offset for each section by using @@ -890,13 +1111,15 @@ ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode) switch(mode) { case AR5K_EEPROM_MODE_11G: if (AR5K_EEPROM_HDR_11B(ee->ee_header)) - offset += ath5k_pdgains_size_2413(ee, AR5K_EEPROM_MODE_11B) + - AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; + offset += ath5k_pdgains_size_2413(ee, + AR5K_EEPROM_MODE_11B) + + AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; /* fall through */ case AR5K_EEPROM_MODE_11B: if (AR5K_EEPROM_HDR_11A(ee->ee_header)) - offset += ath5k_pdgains_size_2413(ee, AR5K_EEPROM_MODE_11A) + - AR5K_EEPROM_N_5GHZ_CHAN / 2; + offset += ath5k_pdgains_size_2413(ee, + AR5K_EEPROM_MODE_11A) + + AR5K_EEPROM_N_5GHZ_CHAN / 2; /* fall through */ case AR5K_EEPROM_MODE_11A: break; @@ -907,37 +1130,118 @@ ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode) return offset; } -/* Read power calibration for RF2413 chips - * For RF2413 we have a PDDAC table (Power Detector) instead - * of a PCDAC and 4 pd gain curves for each calibrated channel. - * Each curve has PDDAC steps on x axis and power on y axis and - * looks like an exponential function. To recreate the curves - * we read here the points and interpolate later. Note that - * in most cases only higher and lower curves are used (like - * RF5112) but vendors have the oportunity to include all 4 - * curves on eeprom. The final curve (higher power) has an extra - * point for better accuracy like RF5112. - */ +/* Convert RF2413 specific data to generic raw data + * used by interpolation code */ +static int +ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode, + struct ath5k_chan_pcal_info *chinfo) +{ + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + struct ath5k_chan_pcal_info_rf2413 *pcinfo; + u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; + unsigned int pier, pdg, point; + + /* Fill raw data for each calibration pier */ + for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { + + pcinfo = &chinfo[pier].rf2413_info; + + /* Allocate pd_curves for this cal pier */ + chinfo[pier].pd_curves = + kcalloc(AR5K_EEPROM_N_PD_CURVES, + sizeof(struct ath5k_pdgain_info), + GFP_KERNEL); + + if (!chinfo[pier].pd_curves) + return -ENOMEM; + + /* Fill pd_curves */ + for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) { + + u8 idx = pdgain_idx[pdg]; + struct ath5k_pdgain_info *pd = + &chinfo[pier].pd_curves[idx]; + + /* One more point for the highest power + * curve (lowest gain) */ + if (pdg == ee->ee_pd_gains[mode] - 1) + pd->pd_points = AR5K_EEPROM_N_PD_POINTS; + else + pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1; + + /* Allocate pd points for this curve */ + pd->pd_step = kcalloc(pd->pd_points, + sizeof(u8), GFP_KERNEL); + + if (!pd->pd_step) + return -ENOMEM; + + pd->pd_pwr = kcalloc(pd->pd_points, + sizeof(s16), GFP_KERNEL); + + if (!pd->pd_pwr) + return -ENOMEM; + + /* Fill raw dataset + * convert all pwr levels to + * quarter dB for RF5112 combatibility */ + pd->pd_step[0] = pcinfo->pddac_i[pdg]; + pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg]; + + for (point = 1; point < pd->pd_points; point++) { + + pd->pd_pwr[point] = pd->pd_pwr[point - 1] + + 2 * pcinfo->pwr[pdg][point - 1]; + + pd->pd_step[point] = pd->pd_step[point - 1] + + pcinfo->pddac[pdg][point - 1]; + + } + + /* Highest gain curve -> min power */ + if (pdg == 0) + chinfo[pier].min_pwr = pd->pd_pwr[0]; + + /* Lowest gain curve -> max power */ + if (pdg == ee->ee_pd_gains[mode] - 1) + chinfo[pier].max_pwr = + pd->pd_pwr[pd->pd_points - 1]; + } + } + + return 0; +} + +/* Parse EEPROM data */ static int ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; - struct ath5k_chan_pcal_info_rf2413 *chan_pcal_info; - struct ath5k_chan_pcal_info *gen_chan_info; - unsigned int i, c; + struct ath5k_chan_pcal_info_rf2413 *pcinfo; + struct ath5k_chan_pcal_info *chinfo; + u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; u32 offset; - int ret; + int idx, i, ret; u16 val; u8 pd_gains = 0; - if (ee->ee_x_gain[mode] & 0x1) pd_gains++; - if ((ee->ee_x_gain[mode] >> 1) & 0x1) pd_gains++; - if ((ee->ee_x_gain[mode] >> 2) & 0x1) pd_gains++; - if ((ee->ee_x_gain[mode] >> 3) & 0x1) pd_gains++; + /* Count how many curves we have and + * identify them (which one of the 4 + * available curves we have on each count). + * Curves are stored from higher to + * lower gain so we go backwards */ + for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) { + /* ee_x_gain[mode] is x gain mask */ + if ((ee->ee_x_gain[mode] >> idx) & 0x1) + pdgain_idx[pd_gains++] = idx; + + } ee->ee_pd_gains[mode] = pd_gains; + if (pd_gains == 0) + return -EINVAL; + offset = ath5k_cal_data_offset_2413(ee, mode); - ee->ee_n_piers[mode] = 0; switch (mode) { case AR5K_EEPROM_MODE_11A: if (!AR5K_EEPROM_HDR_11A(ee->ee_header)) @@ -945,7 +1249,7 @@ ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode) ath5k_eeprom_init_11a_pcal_freq(ah, offset); offset += AR5K_EEPROM_N_5GHZ_CHAN / 2; - gen_chan_info = ee->ee_pwr_cal_a; + chinfo = ee->ee_pwr_cal_a; break; case AR5K_EEPROM_MODE_11B: if (!AR5K_EEPROM_HDR_11B(ee->ee_header)) @@ -953,7 +1257,7 @@ ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode) ath5k_eeprom_init_11bg_2413(ah, mode, offset); offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; - gen_chan_info = ee->ee_pwr_cal_b; + chinfo = ee->ee_pwr_cal_b; break; case AR5K_EEPROM_MODE_11G: if (!AR5K_EEPROM_HDR_11G(ee->ee_header)) @@ -961,41 +1265,35 @@ ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode) ath5k_eeprom_init_11bg_2413(ah, mode, offset); offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; - gen_chan_info = ee->ee_pwr_cal_g; + chinfo = ee->ee_pwr_cal_g; break; default: return -EINVAL; } - if (pd_gains == 0) - return 0; - for (i = 0; i < ee->ee_n_piers[mode]; i++) { - chan_pcal_info = &gen_chan_info[i].rf2413_info; + pcinfo = &chinfo[i].rf2413_info; /* * Read pwr_i, pddac_i and the first * 2 pd points (pwr, pddac) */ AR5K_EEPROM_READ(offset++, val); - chan_pcal_info->pwr_i[0] = val & 0x1f; - chan_pcal_info->pddac_i[0] = (val >> 5) & 0x7f; - chan_pcal_info->pwr[0][0] = - (val >> 12) & 0xf; + pcinfo->pwr_i[0] = val & 0x1f; + pcinfo->pddac_i[0] = (val >> 5) & 0x7f; + pcinfo->pwr[0][0] = (val >> 12) & 0xf; AR5K_EEPROM_READ(offset++, val); - chan_pcal_info->pddac[0][0] = val & 0x3f; - chan_pcal_info->pwr[0][1] = (val >> 6) & 0xf; - chan_pcal_info->pddac[0][1] = - (val >> 10) & 0x3f; + pcinfo->pddac[0][0] = val & 0x3f; + pcinfo->pwr[0][1] = (val >> 6) & 0xf; + pcinfo->pddac[0][1] = (val >> 10) & 0x3f; AR5K_EEPROM_READ(offset++, val); - chan_pcal_info->pwr[0][2] = val & 0xf; - chan_pcal_info->pddac[0][2] = - (val >> 4) & 0x3f; + pcinfo->pwr[0][2] = val & 0xf; + pcinfo->pddac[0][2] = (val >> 4) & 0x3f; - chan_pcal_info->pwr[0][3] = 0; - chan_pcal_info->pddac[0][3] = 0; + pcinfo->pwr[0][3] = 0; + pcinfo->pddac[0][3] = 0; if (pd_gains > 1) { /* @@ -1003,44 +1301,36 @@ ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode) * so it only has 2 pd points. * Continue wih pd gain 1. */ - chan_pcal_info->pwr_i[1] = (val >> 10) & 0x1f; + pcinfo->pwr_i[1] = (val >> 10) & 0x1f; - chan_pcal_info->pddac_i[1] = (val >> 15) & 0x1; + pcinfo->pddac_i[1] = (val >> 15) & 0x1; AR5K_EEPROM_READ(offset++, val); - chan_pcal_info->pddac_i[1] |= (val & 0x3F) << 1; + pcinfo->pddac_i[1] |= (val & 0x3F) << 1; - chan_pcal_info->pwr[1][0] = (val >> 6) & 0xf; - chan_pcal_info->pddac[1][0] = - (val >> 10) & 0x3f; + pcinfo->pwr[1][0] = (val >> 6) & 0xf; + pcinfo->pddac[1][0] = (val >> 10) & 0x3f; AR5K_EEPROM_READ(offset++, val); - chan_pcal_info->pwr[1][1] = val & 0xf; - chan_pcal_info->pddac[1][1] = - (val >> 4) & 0x3f; - chan_pcal_info->pwr[1][2] = - (val >> 10) & 0xf; - - chan_pcal_info->pddac[1][2] = - (val >> 14) & 0x3; + pcinfo->pwr[1][1] = val & 0xf; + pcinfo->pddac[1][1] = (val >> 4) & 0x3f; + pcinfo->pwr[1][2] = (val >> 10) & 0xf; + + pcinfo->pddac[1][2] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); - chan_pcal_info->pddac[1][2] |= - (val & 0xF) << 2; + pcinfo->pddac[1][2] |= (val & 0xF) << 2; - chan_pcal_info->pwr[1][3] = 0; - chan_pcal_info->pddac[1][3] = 0; + pcinfo->pwr[1][3] = 0; + pcinfo->pddac[1][3] = 0; } else if (pd_gains == 1) { /* * Pd gain 0 is the last one so * read the extra point. */ - chan_pcal_info->pwr[0][3] = - (val >> 10) & 0xf; + pcinfo->pwr[0][3] = (val >> 10) & 0xf; - chan_pcal_info->pddac[0][3] = - (val >> 14) & 0x3; + pcinfo->pddac[0][3] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); - chan_pcal_info->pddac[0][3] |= - (val & 0xF) << 2; + pcinfo->pddac[0][3] |= (val & 0xF) << 2; } /* @@ -1048,105 +1338,65 @@ ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode) * as above. */ if (pd_gains > 2) { - chan_pcal_info->pwr_i[2] = (val >> 4) & 0x1f; - chan_pcal_info->pddac_i[2] = (val >> 9) & 0x7f; + pcinfo->pwr_i[2] = (val >> 4) & 0x1f; + pcinfo->pddac_i[2] = (val >> 9) & 0x7f; AR5K_EEPROM_READ(offset++, val); - chan_pcal_info->pwr[2][0] = - (val >> 0) & 0xf; - chan_pcal_info->pddac[2][0] = - (val >> 4) & 0x3f; - chan_pcal_info->pwr[2][1] = - (val >> 10) & 0xf; - - chan_pcal_info->pddac[2][1] = - (val >> 14) & 0x3; + pcinfo->pwr[2][0] = (val >> 0) & 0xf; + pcinfo->pddac[2][0] = (val >> 4) & 0x3f; + pcinfo->pwr[2][1] = (val >> 10) & 0xf; + + pcinfo->pddac[2][1] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); - chan_pcal_info->pddac[2][1] |= - (val & 0xF) << 2; + pcinfo->pddac[2][1] |= (val & 0xF) << 2; - chan_pcal_info->pwr[2][2] = - (val >> 4) & 0xf; - chan_pcal_info->pddac[2][2] = - (val >> 8) & 0x3f; + pcinfo->pwr[2][2] = (val >> 4) & 0xf; + pcinfo->pddac[2][2] = (val >> 8) & 0x3f; - chan_pcal_info->pwr[2][3] = 0; - chan_pcal_info->pddac[2][3] = 0; + pcinfo->pwr[2][3] = 0; + pcinfo->pddac[2][3] = 0; } else if (pd_gains == 2) { - chan_pcal_info->pwr[1][3] = - (val >> 4) & 0xf; - chan_pcal_info->pddac[1][3] = - (val >> 8) & 0x3f; + pcinfo->pwr[1][3] = (val >> 4) & 0xf; + pcinfo->pddac[1][3] = (val >> 8) & 0x3f; } if (pd_gains > 3) { - chan_pcal_info->pwr_i[3] = (val >> 14) & 0x3; + pcinfo->pwr_i[3] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); - chan_pcal_info->pwr_i[3] |= ((val >> 0) & 0x7) << 2; + pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2; - chan_pcal_info->pddac_i[3] = (val >> 3) & 0x7f; - chan_pcal_info->pwr[3][0] = - (val >> 10) & 0xf; - chan_pcal_info->pddac[3][0] = - (val >> 14) & 0x3; + pcinfo->pddac_i[3] = (val >> 3) & 0x7f; + pcinfo->pwr[3][0] = (val >> 10) & 0xf; + pcinfo->pddac[3][0] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); - chan_pcal_info->pddac[3][0] |= - (val & 0xF) << 2; - chan_pcal_info->pwr[3][1] = - (val >> 4) & 0xf; - chan_pcal_info->pddac[3][1] = - (val >> 8) & 0x3f; - - chan_pcal_info->pwr[3][2] = - (val >> 14) & 0x3; + pcinfo->pddac[3][0] |= (val & 0xF) << 2; + pcinfo->pwr[3][1] = (val >> 4) & 0xf; + pcinfo->pddac[3][1] = (val >> 8) & 0x3f; + + pcinfo->pwr[3][2] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); - chan_pcal_info->pwr[3][2] |= - ((val >> 0) & 0x3) << 2; + pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2; - chan_pcal_info->pddac[3][2] = - (val >> 2) & 0x3f; - chan_pcal_info->pwr[3][3] = - (val >> 8) & 0xf; + pcinfo->pddac[3][2] = (val >> 2) & 0x3f; + pcinfo->pwr[3][3] = (val >> 8) & 0xf; - chan_pcal_info->pddac[3][3] = - (val >> 12) & 0xF; + pcinfo->pddac[3][3] = (val >> 12) & 0xF; AR5K_EEPROM_READ(offset++, val); - chan_pcal_info->pddac[3][3] |= - ((val >> 0) & 0x3) << 4; + pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4; } else if (pd_gains == 3) { - chan_pcal_info->pwr[2][3] = - (val >> 14) & 0x3; + pcinfo->pwr[2][3] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); - chan_pcal_info->pwr[2][3] |= - ((val >> 0) & 0x3) << 2; - - chan_pcal_info->pddac[2][3] = - (val >> 2) & 0x3f; - } + pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2; - for (c = 0; c < pd_gains; c++) { - /* Recreate pwr table for this channel using pwr steps */ - chan_pcal_info->pwr[c][0] += chan_pcal_info->pwr_i[c] * 2; - chan_pcal_info->pwr[c][1] += chan_pcal_info->pwr[c][0]; - chan_pcal_info->pwr[c][2] += chan_pcal_info->pwr[c][1]; - chan_pcal_info->pwr[c][3] += chan_pcal_info->pwr[c][2]; - if (chan_pcal_info->pwr[c][3] == chan_pcal_info->pwr[c][2]) - chan_pcal_info->pwr[c][3] = 0; - - /* Recreate pddac table for this channel using pddac steps */ - chan_pcal_info->pddac[c][0] += chan_pcal_info->pddac_i[c]; - chan_pcal_info->pddac[c][1] += chan_pcal_info->pddac[c][0]; - chan_pcal_info->pddac[c][2] += chan_pcal_info->pddac[c][1]; - chan_pcal_info->pddac[c][3] += chan_pcal_info->pddac[c][2]; - if (chan_pcal_info->pddac[c][3] == chan_pcal_info->pddac[c][2]) - chan_pcal_info->pddac[c][3] = 0; + pcinfo->pddac[2][3] = (val >> 2) & 0x3f; } } - return 0; + return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo); } + /* * Read per rate target power (this is the maximum tx power * supported by the card). This info is used when setting @@ -1154,11 +1404,12 @@ ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode) * * This also works for v5 EEPROMs. */ -static int ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode) +static int +ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_rate_pcal_info *rate_pcal_info; - u16 *rate_target_pwr_num; + u8 *rate_target_pwr_num; u32 offset; u16 val; int ret, i; @@ -1264,7 +1515,9 @@ ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah) else read_pcal = ath5k_eeprom_read_pcal_info_5111; - for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) { + + for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; + mode++) { err = read_pcal(ah, mode); if (err) return err; @@ -1277,6 +1530,62 @@ ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah) return 0; } +static int +ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode) +{ + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + struct ath5k_chan_pcal_info *chinfo; + u8 pier, pdg; + + switch (mode) { + case AR5K_EEPROM_MODE_11A: + if (!AR5K_EEPROM_HDR_11A(ee->ee_header)) + return 0; + chinfo = ee->ee_pwr_cal_a; + break; + case AR5K_EEPROM_MODE_11B: + if (!AR5K_EEPROM_HDR_11B(ee->ee_header)) + return 0; + chinfo = ee->ee_pwr_cal_b; + break; + case AR5K_EEPROM_MODE_11G: + if (!AR5K_EEPROM_HDR_11G(ee->ee_header)) + return 0; + chinfo = ee->ee_pwr_cal_g; + break; + default: + return -EINVAL; + } + + for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { + if (!chinfo[pier].pd_curves) + continue; + + for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) { + struct ath5k_pdgain_info *pd = + &chinfo[pier].pd_curves[pdg]; + + if (pd != NULL) { + kfree(pd->pd_step); + kfree(pd->pd_pwr); + } + } + + kfree(chinfo[pier].pd_curves); + } + + return 0; +} + +void +ath5k_eeprom_detach(struct ath5k_hw *ah) +{ + u8 mode; + + for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) + ath5k_eeprom_free_pcal_info(ah, mode); +} + /* Read conformance test limits used for regulatory control */ static int ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah) @@ -1457,3 +1766,4 @@ bool ath5k_eeprom_is_hb63(struct ath5k_hw *ah) else return false; } + diff --git a/drivers/net/wireless/ath5k/eeprom.h b/drivers/net/wireless/ath5k/eeprom.h index 1deebc0257d4..b0c0606dea0b 100644 --- a/drivers/net/wireless/ath5k/eeprom.h +++ b/drivers/net/wireless/ath5k/eeprom.h @@ -173,6 +173,7 @@ #define AR5K_EEPROM_N_5GHZ_CHAN 10 #define AR5K_EEPROM_N_2GHZ_CHAN 3 #define AR5K_EEPROM_N_2GHZ_CHAN_2413 4 +#define AR5K_EEPROM_N_2GHZ_CHAN_MAX 4 #define AR5K_EEPROM_MAX_CHAN 10 #define AR5K_EEPROM_N_PWR_POINTS_5111 11 #define AR5K_EEPROM_N_PCDAC 11 @@ -193,7 +194,7 @@ #define AR5K_EEPROM_SCALE_OC_DELTA(_x) (((_x) * 2) / 10) #define AR5K_EEPROM_N_CTLS(_v) AR5K_EEPROM_OFF(_v, 16, 32) #define AR5K_EEPROM_MAX_CTLS 32 -#define AR5K_EEPROM_N_XPD_PER_CHANNEL 4 +#define AR5K_EEPROM_N_PD_CURVES 4 #define AR5K_EEPROM_N_XPD0_POINTS 4 #define AR5K_EEPROM_N_XPD3_POINTS 3 #define AR5K_EEPROM_N_PD_GAINS 4 @@ -232,7 +233,7 @@ enum ath5k_ctl_mode { AR5K_CTL_11B = 1, AR5K_CTL_11G = 2, AR5K_CTL_TURBO = 3, - AR5K_CTL_108G = 4, + AR5K_CTL_TURBOG = 4, AR5K_CTL_2GHT20 = 5, AR5K_CTL_5GHT20 = 6, AR5K_CTL_2GHT40 = 7, @@ -240,65 +241,114 @@ enum ath5k_ctl_mode { AR5K_CTL_MODE_M = 15, }; +/* Default CTL ids for the 3 main reg domains. + * Atheros only uses these by default but vendors + * can have up to 32 different CTLs for different + * scenarios. Note that theese values are ORed with + * the mode id (above) so we can have up to 24 CTL + * datasets out of these 3 main regdomains. That leaves + * 8 ids that can be used by vendors and since 0x20 is + * missing from HAL sources i guess this is the set of + * custom CTLs vendors can use. */ +#define AR5K_CTL_FCC 0x10 +#define AR5K_CTL_CUSTOM 0x20 +#define AR5K_CTL_ETSI 0x30 +#define AR5K_CTL_MKK 0x40 + +/* Indicates a CTL with only mode set and + * no reg domain mapping, such CTLs are used + * for world roaming domains or simply when + * a reg domain is not set */ +#define AR5K_CTL_NO_REGDOMAIN 0xf0 + +/* Indicates an empty (invalid) CTL */ +#define AR5K_CTL_NO_CTL 0xff + /* Per channel calibration data, used for power table setup */ struct ath5k_chan_pcal_info_rf5111 { /* Power levels in half dbm units * for one power curve. */ - u8 pwr[AR5K_EEPROM_N_PWR_POINTS_5111]; + u8 pwr[AR5K_EEPROM_N_PWR_POINTS_5111]; /* PCDAC table steps * for the above values */ - u8 pcdac[AR5K_EEPROM_N_PWR_POINTS_5111]; + u8 pcdac[AR5K_EEPROM_N_PWR_POINTS_5111]; /* Starting PCDAC step */ - u8 pcdac_min; + u8 pcdac_min; /* Final PCDAC step */ - u8 pcdac_max; + u8 pcdac_max; }; struct ath5k_chan_pcal_info_rf5112 { /* Power levels in quarter dBm units * for lower (0) and higher (3) - * level curves */ - s8 pwr_x0[AR5K_EEPROM_N_XPD0_POINTS]; - s8 pwr_x3[AR5K_EEPROM_N_XPD3_POINTS]; + * level curves in 0.25dB units */ + s8 pwr_x0[AR5K_EEPROM_N_XPD0_POINTS]; + s8 pwr_x3[AR5K_EEPROM_N_XPD3_POINTS]; /* PCDAC table steps * for the above values */ - u8 pcdac_x0[AR5K_EEPROM_N_XPD0_POINTS]; - u8 pcdac_x3[AR5K_EEPROM_N_XPD3_POINTS]; + u8 pcdac_x0[AR5K_EEPROM_N_XPD0_POINTS]; + u8 pcdac_x3[AR5K_EEPROM_N_XPD3_POINTS]; }; struct ath5k_chan_pcal_info_rf2413 { /* Starting pwr/pddac values */ - s8 pwr_i[AR5K_EEPROM_N_PD_GAINS]; - u8 pddac_i[AR5K_EEPROM_N_PD_GAINS]; - /* (pwr,pddac) points */ - s8 pwr[AR5K_EEPROM_N_PD_GAINS] - [AR5K_EEPROM_N_PD_POINTS]; - u8 pddac[AR5K_EEPROM_N_PD_GAINS] - [AR5K_EEPROM_N_PD_POINTS]; + s8 pwr_i[AR5K_EEPROM_N_PD_GAINS]; + u8 pddac_i[AR5K_EEPROM_N_PD_GAINS]; + /* (pwr,pddac) points + * power levels in 0.5dB units */ + s8 pwr[AR5K_EEPROM_N_PD_GAINS] + [AR5K_EEPROM_N_PD_POINTS]; + u8 pddac[AR5K_EEPROM_N_PD_GAINS] + [AR5K_EEPROM_N_PD_POINTS]; +}; + +enum ath5k_powertable_type { + AR5K_PWRTABLE_PWR_TO_PCDAC = 0, + AR5K_PWRTABLE_LINEAR_PCDAC = 1, + AR5K_PWRTABLE_PWR_TO_PDADC = 2, +}; + +struct ath5k_pdgain_info { + u8 pd_points; + u8 *pd_step; + /* Power values are in + * 0.25dB units */ + s16 *pd_pwr; }; struct ath5k_chan_pcal_info { /* Frequency */ u16 freq; - /* Max available power */ - s8 max_pwr; + /* Tx power boundaries */ + s16 max_pwr; + s16 min_pwr; union { struct ath5k_chan_pcal_info_rf5111 rf5111_info; struct ath5k_chan_pcal_info_rf5112 rf5112_info; struct ath5k_chan_pcal_info_rf2413 rf2413_info; }; + /* Raw values used by phy code + * Curves are stored in order from lower + * gain to higher gain (max txpower -> min txpower) */ + struct ath5k_pdgain_info *pd_curves; }; -/* Per rate calibration data for each mode, used for power table setup */ +/* Per rate calibration data for each mode, + * used for rate power table setup. + * Note: Values in 0.5dB units */ struct ath5k_rate_pcal_info { u16 freq; /* Frequency */ - /* Power level for 6-24Mbit/s rates */ + /* Power level for 6-24Mbit/s rates or + * 1Mb rate */ u16 target_power_6to24; - /* Power level for 36Mbit rate */ + /* Power level for 36Mbit rate or + * 2Mb rate */ u16 target_power_36; - /* Power level for 48Mbit rate */ + /* Power level for 48Mbit rate or + * 5.5Mbit rate */ u16 target_power_48; - /* Power level for 54Mbit rate */ + /* Power level for 54Mbit rate or + * 11Mbit rate */ u16 target_power_54; }; @@ -330,12 +380,6 @@ struct ath5k_eeprom_info { u16 ee_cck_ofdm_power_delta; u16 ee_scaled_cck_delta; - /* Used for tx thermal adjustment (eeprom_init, rfregs) */ - u16 ee_tx_clip; - u16 ee_pwd_84; - u16 ee_pwd_90; - u16 ee_gain_select; - /* RF Calibration settings (reset, rfregs) */ u16 ee_i_cal[AR5K_EEPROM_N_MODES]; u16 ee_q_cal[AR5K_EEPROM_N_MODES]; @@ -363,23 +407,25 @@ struct ath5k_eeprom_info { /* Power calibration data */ u16 ee_false_detect[AR5K_EEPROM_N_MODES]; - /* Number of pd gain curves per mode (RF2413) */ - u8 ee_pd_gains[AR5K_EEPROM_N_MODES]; + /* Number of pd gain curves per mode */ + u8 ee_pd_gains[AR5K_EEPROM_N_MODES]; + /* Back mapping pdcurve number -> pdcurve index in pd->pd_curves */ + u8 ee_pdc_to_idx[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_PD_GAINS]; - u8 ee_n_piers[AR5K_EEPROM_N_MODES]; + u8 ee_n_piers[AR5K_EEPROM_N_MODES]; struct ath5k_chan_pcal_info ee_pwr_cal_a[AR5K_EEPROM_N_5GHZ_CHAN]; - struct ath5k_chan_pcal_info ee_pwr_cal_b[AR5K_EEPROM_N_2GHZ_CHAN]; - struct ath5k_chan_pcal_info ee_pwr_cal_g[AR5K_EEPROM_N_2GHZ_CHAN]; + struct ath5k_chan_pcal_info ee_pwr_cal_b[AR5K_EEPROM_N_2GHZ_CHAN_MAX]; + struct ath5k_chan_pcal_info ee_pwr_cal_g[AR5K_EEPROM_N_2GHZ_CHAN_MAX]; /* Per rate target power levels */ - u16 ee_rate_target_pwr_num[AR5K_EEPROM_N_MODES]; + u8 ee_rate_target_pwr_num[AR5K_EEPROM_N_MODES]; struct ath5k_rate_pcal_info ee_rate_tpwr_a[AR5K_EEPROM_N_5GHZ_CHAN]; - struct ath5k_rate_pcal_info ee_rate_tpwr_b[AR5K_EEPROM_N_2GHZ_CHAN]; - struct ath5k_rate_pcal_info ee_rate_tpwr_g[AR5K_EEPROM_N_2GHZ_CHAN]; + struct ath5k_rate_pcal_info ee_rate_tpwr_b[AR5K_EEPROM_N_2GHZ_CHAN_MAX]; + struct ath5k_rate_pcal_info ee_rate_tpwr_g[AR5K_EEPROM_N_2GHZ_CHAN_MAX]; /* Conformance test limits (Unused) */ - u16 ee_ctls; - u16 ee_ctl[AR5K_EEPROM_MAX_CTLS]; + u8 ee_ctls; + u8 ee_ctl[AR5K_EEPROM_MAX_CTLS]; struct ath5k_edge_power ee_ctl_pwr[AR5K_EEPROM_N_EDGES * AR5K_EEPROM_MAX_CTLS]; /* Noise Floor Calibration settings */ diff --git a/drivers/net/wireless/ath5k/initvals.c b/drivers/net/wireless/ath5k/initvals.c index 44886434187b..61fb621ed20d 100644 --- a/drivers/net/wireless/ath5k/initvals.c +++ b/drivers/net/wireless/ath5k/initvals.c @@ -1510,8 +1510,8 @@ int ath5k_hw_write_initvals(struct ath5k_hw *ah, u8 mode, bool change_channel) rf2425_ini_mode_end, mode); ath5k_hw_ini_registers(ah, - ARRAY_SIZE(rf2413_ini_common_end), - rf2413_ini_common_end, change_channel); + ARRAY_SIZE(rf2425_ini_common_end), + rf2425_ini_common_end, change_channel); ath5k_hw_ini_registers(ah, ARRAY_SIZE(rf5112_ini_bbgain), diff --git a/drivers/net/wireless/ath5k/led.c b/drivers/net/wireless/ath5k/led.c index 0686e12738b3..19555fb79c9b 100644 --- a/drivers/net/wireless/ath5k/led.c +++ b/drivers/net/wireless/ath5k/led.c @@ -65,6 +65,8 @@ static const struct pci_device_id ath5k_led_devices[] = { { ATH_SDEVICE(PCI_VENDOR_ID_AMBIT, 0x0422), ATH_LED(1, 1) }, /* E-machines E510 (tuliom@gmail.com) */ { ATH_SDEVICE(PCI_VENDOR_ID_AMBIT, 0x0428), ATH_LED(3, 0) }, + /* Acer Extensa 5620z (nekoreeve@gmail.com) */ + { ATH_SDEVICE(PCI_VENDOR_ID_QMI, 0x0105), ATH_LED(3, 0) }, { } }; diff --git a/drivers/net/wireless/ath5k/phy.c b/drivers/net/wireless/ath5k/phy.c index 81f5bebc48b1..9e2faae5ae94 100644 --- a/drivers/net/wireless/ath5k/phy.c +++ b/drivers/net/wireless/ath5k/phy.c @@ -4,6 +4,7 @@ * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org> * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> + * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above @@ -183,7 +184,9 @@ static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah) if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE) return; - ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max, + /* Send the packet with 2dB below max power as + * patent doc suggest */ + ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max_pwr - 4, AR5K_PHY_PAPD_PROBE_TXPOWER) | AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE); @@ -1433,93 +1436,1120 @@ unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah) return false; /*XXX: What do we return for 5210 ?*/ } + +/****************\ +* TX power setup * +\****************/ + +/* + * Helper functions + */ + +/* + * Do linear interpolation between two given (x, y) points + */ +static s16 +ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right, + s16 y_left, s16 y_right) +{ + s16 ratio, result; + + /* Avoid divide by zero and skip interpolation + * if we have the same point */ + if ((x_left == x_right) || (y_left == y_right)) + return y_left; + + /* + * Since we use ints and not fps, we need to scale up in + * order to get a sane ratio value (or else we 'll eg. get + * always 1 instead of 1.25, 1.75 etc). We scale up by 100 + * to have some accuracy both for 0.5 and 0.25 steps. + */ + ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left)); + + /* Now scale down to be in range */ + result = y_left + (ratio * (target - x_left) / 100); + + return result; +} + +/* + * Find vertical boundary (min pwr) for the linear PCDAC curve. + * + * Since we have the top of the curve and we draw the line below + * until we reach 1 (1 pcdac step) we need to know which point + * (x value) that is so that we don't go below y axis and have negative + * pcdac values when creating the curve, or fill the table with zeroes. + */ +static s16 +ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR, + const s16 *pwrL, const s16 *pwrR) +{ + s8 tmp; + s16 min_pwrL, min_pwrR; + s16 pwr_i = pwrL[0]; + + do { + pwr_i--; + tmp = (s8) ath5k_get_interpolated_value(pwr_i, + pwrL[0], pwrL[1], + stepL[0], stepL[1]); + + } while (tmp > 1); + + min_pwrL = pwr_i; + + pwr_i = pwrR[0]; + do { + pwr_i--; + tmp = (s8) ath5k_get_interpolated_value(pwr_i, + pwrR[0], pwrR[1], + stepR[0], stepR[1]); + + } while (tmp > 1); + + min_pwrR = pwr_i; + + /* Keep the right boundary so that it works for both curves */ + return max(min_pwrL, min_pwrR); +} + +/* + * Interpolate (pwr,vpd) points to create a Power to PDADC or a + * Power to PCDAC curve. + * + * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC + * steps (offsets) on y axis. Power can go up to 31.5dB and max + * PCDAC/PDADC step for each curve is 64 but we can write more than + * one curves on hw so we can go up to 128 (which is the max step we + * can write on the final table). + * + * We write y values (PCDAC/PDADC steps) on hw. + */ +static void +ath5k_create_power_curve(s16 pmin, s16 pmax, + const s16 *pwr, const u8 *vpd, + u8 num_points, + u8 *vpd_table, u8 type) +{ + u8 idx[2] = { 0, 1 }; + s16 pwr_i = 2*pmin; + int i; + + if (num_points < 2) + return; + + /* We want the whole line, so adjust boundaries + * to cover the entire power range. Note that + * power values are already 0.25dB so no need + * to multiply pwr_i by 2 */ + if (type == AR5K_PWRTABLE_LINEAR_PCDAC) { + pwr_i = pmin; + pmin = 0; + pmax = 63; + } + + /* Find surrounding turning points (TPs) + * and interpolate between them */ + for (i = 0; (i <= (u16) (pmax - pmin)) && + (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { + + /* We passed the right TP, move to the next set of TPs + * if we pass the last TP, extrapolate above using the last + * two TPs for ratio */ + if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) { + idx[0]++; + idx[1]++; + } + + vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i, + pwr[idx[0]], pwr[idx[1]], + vpd[idx[0]], vpd[idx[1]]); + + /* Increase by 0.5dB + * (0.25 dB units) */ + pwr_i += 2; + } +} + +/* + * Get the surrounding per-channel power calibration piers + * for a given frequency so that we can interpolate between + * them and come up with an apropriate dataset for our current + * channel. + */ +static void +ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah, + struct ieee80211_channel *channel, + struct ath5k_chan_pcal_info **pcinfo_l, + struct ath5k_chan_pcal_info **pcinfo_r) +{ + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + struct ath5k_chan_pcal_info *pcinfo; + u8 idx_l, idx_r; + u8 mode, max, i; + u32 target = channel->center_freq; + + idx_l = 0; + idx_r = 0; + + if (!(channel->hw_value & CHANNEL_OFDM)) { + pcinfo = ee->ee_pwr_cal_b; + mode = AR5K_EEPROM_MODE_11B; + } else if (channel->hw_value & CHANNEL_2GHZ) { + pcinfo = ee->ee_pwr_cal_g; + mode = AR5K_EEPROM_MODE_11G; + } else { + pcinfo = ee->ee_pwr_cal_a; + mode = AR5K_EEPROM_MODE_11A; + } + max = ee->ee_n_piers[mode] - 1; + + /* Frequency is below our calibrated + * range. Use the lowest power curve + * we have */ + if (target < pcinfo[0].freq) { + idx_l = idx_r = 0; + goto done; + } + + /* Frequency is above our calibrated + * range. Use the highest power curve + * we have */ + if (target > pcinfo[max].freq) { + idx_l = idx_r = max; + goto done; + } + + /* Frequency is inside our calibrated + * channel range. Pick the surrounding + * calibration piers so that we can + * interpolate */ + for (i = 0; i <= max; i++) { + + /* Frequency matches one of our calibration + * piers, no need to interpolate, just use + * that calibration pier */ + if (pcinfo[i].freq == target) { + idx_l = idx_r = i; + goto done; + } + + /* We found a calibration pier that's above + * frequency, use this pier and the previous + * one to interpolate */ + if (target < pcinfo[i].freq) { + idx_r = i; + idx_l = idx_r - 1; + goto done; + } + } + +done: + *pcinfo_l = &pcinfo[idx_l]; + *pcinfo_r = &pcinfo[idx_r]; + + return; +} + +/* + * Get the surrounding per-rate power calibration data + * for a given frequency and interpolate between power + * values to set max target power supported by hw for + * each rate. + */ +static void +ath5k_get_rate_pcal_data(struct ath5k_hw *ah, + struct ieee80211_channel *channel, + struct ath5k_rate_pcal_info *rates) +{ + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + struct ath5k_rate_pcal_info *rpinfo; + u8 idx_l, idx_r; + u8 mode, max, i; + u32 target = channel->center_freq; + + idx_l = 0; + idx_r = 0; + + if (!(channel->hw_value & CHANNEL_OFDM)) { + rpinfo = ee->ee_rate_tpwr_b; + mode = AR5K_EEPROM_MODE_11B; + } else if (channel->hw_value & CHANNEL_2GHZ) { + rpinfo = ee->ee_rate_tpwr_g; + mode = AR5K_EEPROM_MODE_11G; + } else { + rpinfo = ee->ee_rate_tpwr_a; + mode = AR5K_EEPROM_MODE_11A; + } + max = ee->ee_rate_target_pwr_num[mode] - 1; + + /* Get the surrounding calibration + * piers - same as above */ + if (target < rpinfo[0].freq) { + idx_l = idx_r = 0; + goto done; + } + + if (target > rpinfo[max].freq) { + idx_l = idx_r = max; + goto done; + } + + for (i = 0; i <= max; i++) { + + if (rpinfo[i].freq == target) { + idx_l = idx_r = i; + goto done; + } + + if (target < rpinfo[i].freq) { + idx_r = i; + idx_l = idx_r - 1; + goto done; + } + } + +done: + /* Now interpolate power value, based on the frequency */ + rates->freq = target; + + rates->target_power_6to24 = + ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, + rpinfo[idx_r].freq, + rpinfo[idx_l].target_power_6to24, + rpinfo[idx_r].target_power_6to24); + + rates->target_power_36 = + ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, + rpinfo[idx_r].freq, + rpinfo[idx_l].target_power_36, + rpinfo[idx_r].target_power_36); + + rates->target_power_48 = + ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, + rpinfo[idx_r].freq, + rpinfo[idx_l].target_power_48, + rpinfo[idx_r].target_power_48); + + rates->target_power_54 = + ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, + rpinfo[idx_r].freq, + rpinfo[idx_l].target_power_54, + rpinfo[idx_r].target_power_54); +} + +/* + * Get the max edge power for this channel if + * we have such data from EEPROM's Conformance Test + * Limits (CTL), and limit max power if needed. + * + * FIXME: Only works for world regulatory domains + */ +static void +ath5k_get_max_ctl_power(struct ath5k_hw *ah, + struct ieee80211_channel *channel) +{ + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + struct ath5k_edge_power *rep = ee->ee_ctl_pwr; + u8 *ctl_val = ee->ee_ctl; + s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4; + s16 edge_pwr = 0; + u8 rep_idx; + u8 i, ctl_mode; + u8 ctl_idx = 0xFF; + u32 target = channel->center_freq; + + /* Find out a CTL for our mode that's not mapped + * on a specific reg domain. + * + * TODO: Map our current reg domain to one of the 3 available + * reg domain ids so that we can support more CTLs. */ + switch (channel->hw_value & CHANNEL_MODES) { + case CHANNEL_A: + ctl_mode = AR5K_CTL_11A | AR5K_CTL_NO_REGDOMAIN; + break; + case CHANNEL_G: + ctl_mode = AR5K_CTL_11G | AR5K_CTL_NO_REGDOMAIN; + break; + case CHANNEL_B: + ctl_mode = AR5K_CTL_11B | AR5K_CTL_NO_REGDOMAIN; + break; + case CHANNEL_T: + ctl_mode = AR5K_CTL_TURBO | AR5K_CTL_NO_REGDOMAIN; + break; + case CHANNEL_TG: + ctl_mode = AR5K_CTL_TURBOG | AR5K_CTL_NO_REGDOMAIN; + break; + case CHANNEL_XR: + /* Fall through */ + default: + return; + } + + for (i = 0; i < ee->ee_ctls; i++) { + if (ctl_val[i] == ctl_mode) { + ctl_idx = i; + break; + } + } + + /* If we have a CTL dataset available grab it and find the + * edge power for our frequency */ + if (ctl_idx == 0xFF) + return; + + /* Edge powers are sorted by frequency from lower + * to higher. Each CTL corresponds to 8 edge power + * measurements. */ + rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES; + + /* Don't do boundaries check because we + * might have more that one bands defined + * for this mode */ + + /* Get the edge power that's closer to our + * frequency */ + for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) { + rep_idx += i; + if (target <= rep[rep_idx].freq) + edge_pwr = (s16) rep[rep_idx].edge; + } + + if (edge_pwr) + ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr); +} + + +/* + * Power to PCDAC table functions + */ + /* - * TX power setup + * Fill Power to PCDAC table on RF5111 + * + * No further processing is needed for RF5111, the only thing we have to + * do is fill the values below and above calibration range since eeprom data + * may not cover the entire PCDAC table. */ +static void +ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min, + s16 *table_max) +{ + u8 *pcdac_out = ah->ah_txpower.txp_pd_table; + u8 *pcdac_tmp = ah->ah_txpower.tmpL[0]; + u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i; + s16 min_pwr, max_pwr; + + /* Get table boundaries */ + min_pwr = table_min[0]; + pcdac_0 = pcdac_tmp[0]; + + max_pwr = table_max[0]; + pcdac_n = pcdac_tmp[table_max[0] - table_min[0]]; + + /* Extrapolate below minimum using pcdac_0 */ + pcdac_i = 0; + for (i = 0; i < min_pwr; i++) + pcdac_out[pcdac_i++] = pcdac_0; + + /* Copy values from pcdac_tmp */ + pwr_idx = min_pwr; + for (i = 0 ; pwr_idx <= max_pwr && + pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) { + pcdac_out[pcdac_i++] = pcdac_tmp[i]; + pwr_idx++; + } + + /* Extrapolate above maximum */ + while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE) + pcdac_out[pcdac_i++] = pcdac_n; + +} /* - * Initialize the tx power table (not fully implemented) + * Combine available XPD Curves and fill Linear Power to PCDAC table + * on RF5112 + * + * RFX112 can have up to 2 curves (one for low txpower range and one for + * higher txpower range). We need to put them both on pcdac_out and place + * them in the correct location. In case we only have one curve available + * just fit it on pcdac_out (it's supposed to cover the entire range of + * available pwr levels since it's always the higher power curve). Extrapolate + * below and above final table if needed. */ -static void ath5k_txpower_table(struct ath5k_hw *ah, - struct ieee80211_channel *channel, s16 max_power) +static void +ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min, + s16 *table_max, u8 pdcurves) { - unsigned int i, min, max, n; - u16 txpower, *rates; - - rates = ah->ah_txpower.txp_rates; - - txpower = AR5K_TUNE_DEFAULT_TXPOWER * 2; - if (max_power > txpower) - txpower = max_power > AR5K_TUNE_MAX_TXPOWER ? - AR5K_TUNE_MAX_TXPOWER : max_power; - - for (i = 0; i < AR5K_MAX_RATES; i++) - rates[i] = txpower; - - /* XXX setup target powers by rate */ - - ah->ah_txpower.txp_min = rates[7]; - ah->ah_txpower.txp_max = rates[0]; - ah->ah_txpower.txp_ofdm = rates[0]; - - /* Calculate the power table */ - n = ARRAY_SIZE(ah->ah_txpower.txp_pcdac); - min = AR5K_EEPROM_PCDAC_START; - max = AR5K_EEPROM_PCDAC_STOP; - for (i = 0; i < n; i += AR5K_EEPROM_PCDAC_STEP) - ah->ah_txpower.txp_pcdac[i] = -#ifdef notyet - min + ((i * (max - min)) / n); -#else - min; + u8 *pcdac_out = ah->ah_txpower.txp_pd_table; + u8 *pcdac_low_pwr; + u8 *pcdac_high_pwr; + u8 *pcdac_tmp; + u8 pwr; + s16 max_pwr_idx; + s16 min_pwr_idx; + s16 mid_pwr_idx = 0; + /* Edge flag turs on the 7nth bit on the PCDAC + * to delcare the higher power curve (force values + * to be greater than 64). If we only have one curve + * we don't need to set this, if we have 2 curves and + * fill the table backwards this can also be used to + * switch from higher power curve to lower power curve */ + u8 edge_flag; + int i; + + /* When we have only one curve available + * that's the higher power curve. If we have + * two curves the first is the high power curve + * and the next is the low power curve. */ + if (pdcurves > 1) { + pcdac_low_pwr = ah->ah_txpower.tmpL[1]; + pcdac_high_pwr = ah->ah_txpower.tmpL[0]; + mid_pwr_idx = table_max[1] - table_min[1] - 1; + max_pwr_idx = (table_max[0] - table_min[0]) / 2; + + /* If table size goes beyond 31.5dB, keep the + * upper 31.5dB range when setting tx power. + * Note: 126 = 31.5 dB in quarter dB steps */ + if (table_max[0] - table_min[1] > 126) + min_pwr_idx = table_max[0] - 126; + else + min_pwr_idx = table_min[1]; + + /* Since we fill table backwards + * start from high power curve */ + pcdac_tmp = pcdac_high_pwr; + + edge_flag = 0x40; +#if 0 + /* If both min and max power limits are in lower + * power curve's range, only use the low power curve. + * TODO: min/max levels are related to target + * power values requested from driver/user + * XXX: Is this really needed ? */ + if (min_pwr < table_max[1] && + max_pwr < table_max[1]) { + edge_flag = 0; + pcdac_tmp = pcdac_low_pwr; + max_pwr_idx = (table_max[1] - table_min[1])/2; + } #endif + } else { + pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */ + pcdac_high_pwr = ah->ah_txpower.tmpL[0]; + min_pwr_idx = table_min[0]; + max_pwr_idx = (table_max[0] - table_min[0]) / 2; + pcdac_tmp = pcdac_high_pwr; + edge_flag = 0; + } + + /* This is used when setting tx power*/ + ah->ah_txpower.txp_min_idx = min_pwr_idx/2; + + /* Fill Power to PCDAC table backwards */ + pwr = max_pwr_idx; + for (i = 63; i >= 0; i--) { + /* Entering lower power range, reset + * edge flag and set pcdac_tmp to lower + * power curve.*/ + if (edge_flag == 0x40 && + (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) { + edge_flag = 0x00; + pcdac_tmp = pcdac_low_pwr; + pwr = mid_pwr_idx/2; + } + + /* Don't go below 1, extrapolate below if we have + * already swithced to the lower power curve -or + * we only have one curve and edge_flag is zero + * anyway */ + if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) { + while (i >= 0) { + pcdac_out[i] = pcdac_out[i + 1]; + i--; + } + break; + } + + pcdac_out[i] = pcdac_tmp[pwr] | edge_flag; + + /* Extrapolate above if pcdac is greater than + * 126 -this can happen because we OR pcdac_out + * value with edge_flag on high power curve */ + if (pcdac_out[i] > 126) + pcdac_out[i] = 126; + + /* Decrease by a 0.5dB step */ + pwr--; + } } +/* Write PCDAC values on hw */ +static void +ath5k_setup_pcdac_table(struct ath5k_hw *ah) +{ + u8 *pcdac_out = ah->ah_txpower.txp_pd_table; + int i; + + /* + * Write TX power values + */ + for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { + ath5k_hw_reg_write(ah, + (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) | + (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16), + AR5K_PHY_PCDAC_TXPOWER(i)); + } +} + + /* - * Set transmition power + * Power to PDADC table functions */ -int /*O.K. - txpower_table is unimplemented so this doesn't work*/ -ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, - unsigned int txpower) + +/* + * Set the gain boundaries and create final Power to PDADC table + * + * We can have up to 4 pd curves, we need to do a simmilar process + * as we do for RF5112. This time we don't have an edge_flag but we + * set the gain boundaries on a separate register. + */ +static void +ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah, + s16 *pwr_min, s16 *pwr_max, u8 pdcurves) { - bool tpc = ah->ah_txpower.txp_tpc; - unsigned int i; + u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS]; + u8 *pdadc_out = ah->ah_txpower.txp_pd_table; + u8 *pdadc_tmp; + s16 pdadc_0; + u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size; + u8 pd_gain_overlap; + + /* Note: Register value is initialized on initvals + * there is no feedback from hw. + * XXX: What about pd_gain_overlap from EEPROM ? */ + pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) & + AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP; + + /* Create final PDADC table */ + for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) { + pdadc_tmp = ah->ah_txpower.tmpL[pdg]; + + if (pdg == pdcurves - 1) + /* 2 dB boundary stretch for last + * (higher power) curve */ + gain_boundaries[pdg] = pwr_max[pdg] + 4; + else + /* Set gain boundary in the middle + * between this curve and the next one */ + gain_boundaries[pdg] = + (pwr_max[pdg] + pwr_min[pdg + 1]) / 2; + + /* Sanity check in case our 2 db stretch got out of + * range. */ + if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER) + gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER; + + /* For the first curve (lower power) + * start from 0 dB */ + if (pdg == 0) + pdadc_0 = 0; + else + /* For the other curves use the gain overlap */ + pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) - + pd_gain_overlap; - ATH5K_TRACE(ah->ah_sc); - if (txpower > AR5K_TUNE_MAX_TXPOWER) { - ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower); - return -EINVAL; + /* Force each power step to be at least 0.5 dB */ + if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1) + pwr_step = pdadc_tmp[1] - pdadc_tmp[0]; + else + pwr_step = 1; + + /* If pdadc_0 is negative, we need to extrapolate + * below this pdgain by a number of pwr_steps */ + while ((pdadc_0 < 0) && (pdadc_i < 128)) { + s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step; + pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp; + pdadc_0++; + } + + /* Set last pwr level, using gain boundaries */ + pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg]; + /* Limit it to be inside pwr range */ + table_size = pwr_max[pdg] - pwr_min[pdg]; + max_idx = (pdadc_n < table_size) ? pdadc_n : table_size; + + /* Fill pdadc_out table */ + while (pdadc_0 < max_idx) + pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++]; + + /* Need to extrapolate above this pdgain? */ + if (pdadc_n <= max_idx) + continue; + + /* Force each power step to be at least 0.5 dB */ + if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1) + pwr_step = pdadc_tmp[table_size - 1] - + pdadc_tmp[table_size - 2]; + else + pwr_step = 1; + + /* Extrapolate above */ + while ((pdadc_0 < (s16) pdadc_n) && + (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) { + s16 tmp = pdadc_tmp[table_size - 1] + + (pdadc_0 - max_idx) * pwr_step; + pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp; + pdadc_0++; + } } + while (pdg < AR5K_EEPROM_N_PD_GAINS) { + gain_boundaries[pdg] = gain_boundaries[pdg - 1]; + pdg++; + } + + while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) { + pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1]; + pdadc_i++; + } + + /* Set gain boundaries */ + ath5k_hw_reg_write(ah, + AR5K_REG_SM(pd_gain_overlap, + AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) | + AR5K_REG_SM(gain_boundaries[0], + AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) | + AR5K_REG_SM(gain_boundaries[1], + AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) | + AR5K_REG_SM(gain_boundaries[2], + AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) | + AR5K_REG_SM(gain_boundaries[3], + AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4), + AR5K_PHY_TPC_RG5); + + /* Used for setting rate power table */ + ah->ah_txpower.txp_min_idx = pwr_min[0]; + +} + +/* Write PDADC values on hw */ +static void +ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah, + u8 pdcurves, u8 *pdg_to_idx) +{ + u8 *pdadc_out = ah->ah_txpower.txp_pd_table; + u32 reg; + u8 i; + + /* Select the right pdgain curves */ + + /* Clear current settings */ + reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1); + reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 | + AR5K_PHY_TPC_RG1_PDGAIN_2 | + AR5K_PHY_TPC_RG1_PDGAIN_3 | + AR5K_PHY_TPC_RG1_NUM_PD_GAIN); + /* - * RF2413 for some reason can't - * transmit anything if we call - * this funtion, so we skip it - * until we fix txpower. + * Use pd_gains curve from eeprom * - * XXX: Assume same for RF2425 - * to be safe. + * This overrides the default setting from initvals + * in case some vendors (e.g. Zcomax) don't use the default + * curves. If we don't honor their settings we 'll get a + * 5dB (1 * gain overlap ?) drop. */ - if ((ah->ah_radio == AR5K_RF2413) || (ah->ah_radio == AR5K_RF2425)) - return 0; + reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN); - /* Reset TX power values */ - memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower)); - ah->ah_txpower.txp_tpc = tpc; - - /* Initialize TX power table */ - ath5k_txpower_table(ah, channel, txpower); + switch (pdcurves) { + case 3: + reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3); + /* Fall through */ + case 2: + reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2); + /* Fall through */ + case 1: + reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1); + break; + } + ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1); /* * Write TX power values */ for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { ath5k_hw_reg_write(ah, - ((((ah->ah_txpower.txp_pcdac[(i << 1) + 1] << 8) | 0xff) & 0xffff) << 16) | - (((ah->ah_txpower.txp_pcdac[(i << 1) ] << 8) | 0xff) & 0xffff), - AR5K_PHY_PCDAC_TXPOWER(i)); + ((pdadc_out[4*i + 0] & 0xff) << 0) | + ((pdadc_out[4*i + 1] & 0xff) << 8) | + ((pdadc_out[4*i + 2] & 0xff) << 16) | + ((pdadc_out[4*i + 3] & 0xff) << 24), + AR5K_PHY_PDADC_TXPOWER(i)); + } +} + + +/* + * Common code for PCDAC/PDADC tables + */ + +/* + * This is the main function that uses all of the above + * to set PCDAC/PDADC table on hw for the current channel. + * This table is used for tx power calibration on the basband, + * without it we get weird tx power levels and in some cases + * distorted spectral mask + */ +static int +ath5k_setup_channel_powertable(struct ath5k_hw *ah, + struct ieee80211_channel *channel, + u8 ee_mode, u8 type) +{ + struct ath5k_pdgain_info *pdg_L, *pdg_R; + struct ath5k_chan_pcal_info *pcinfo_L; + struct ath5k_chan_pcal_info *pcinfo_R; + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; + s16 table_min[AR5K_EEPROM_N_PD_GAINS]; + s16 table_max[AR5K_EEPROM_N_PD_GAINS]; + u8 *tmpL; + u8 *tmpR; + u32 target = channel->center_freq; + int pdg, i; + + /* Get surounding freq piers for this channel */ + ath5k_get_chan_pcal_surrounding_piers(ah, channel, + &pcinfo_L, + &pcinfo_R); + + /* Loop over pd gain curves on + * surounding freq piers by index */ + for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) { + + /* Fill curves in reverse order + * from lower power (max gain) + * to higher power. Use curve -> idx + * backmaping we did on eeprom init */ + u8 idx = pdg_curve_to_idx[pdg]; + + /* Grab the needed curves by index */ + pdg_L = &pcinfo_L->pd_curves[idx]; + pdg_R = &pcinfo_R->pd_curves[idx]; + + /* Initialize the temp tables */ + tmpL = ah->ah_txpower.tmpL[pdg]; + tmpR = ah->ah_txpower.tmpR[pdg]; + + /* Set curve's x boundaries and create + * curves so that they cover the same + * range (if we don't do that one table + * will have values on some range and the + * other one won't have any so interpolation + * will fail) */ + table_min[pdg] = min(pdg_L->pd_pwr[0], + pdg_R->pd_pwr[0]) / 2; + + table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1], + pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2; + + /* Now create the curves on surrounding channels + * and interpolate if needed to get the final + * curve for this gain on this channel */ + switch (type) { + case AR5K_PWRTABLE_LINEAR_PCDAC: + /* Override min/max so that we don't loose + * accuracy (don't divide by 2) */ + table_min[pdg] = min(pdg_L->pd_pwr[0], + pdg_R->pd_pwr[0]); + + table_max[pdg] = + max(pdg_L->pd_pwr[pdg_L->pd_points - 1], + pdg_R->pd_pwr[pdg_R->pd_points - 1]); + + /* Override minimum so that we don't get + * out of bounds while extrapolating + * below. Don't do this when we have 2 + * curves and we are on the high power curve + * because table_min is ok in this case */ + if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) { + + table_min[pdg] = + ath5k_get_linear_pcdac_min(pdg_L->pd_step, + pdg_R->pd_step, + pdg_L->pd_pwr, + pdg_R->pd_pwr); + + /* Don't go too low because we will + * miss the upper part of the curve. + * Note: 126 = 31.5dB (max power supported) + * in 0.25dB units */ + if (table_max[pdg] - table_min[pdg] > 126) + table_min[pdg] = table_max[pdg] - 126; + } + + /* Fall through */ + case AR5K_PWRTABLE_PWR_TO_PCDAC: + case AR5K_PWRTABLE_PWR_TO_PDADC: + + ath5k_create_power_curve(table_min[pdg], + table_max[pdg], + pdg_L->pd_pwr, + pdg_L->pd_step, + pdg_L->pd_points, tmpL, type); + + /* We are in a calibration + * pier, no need to interpolate + * between freq piers */ + if (pcinfo_L == pcinfo_R) + continue; + + ath5k_create_power_curve(table_min[pdg], + table_max[pdg], + pdg_R->pd_pwr, + pdg_R->pd_step, + pdg_R->pd_points, tmpR, type); + break; + default: + return -EINVAL; + } + + /* Interpolate between curves + * of surounding freq piers to + * get the final curve for this + * pd gain. Re-use tmpL for interpolation + * output */ + for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) && + (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { + tmpL[i] = (u8) ath5k_get_interpolated_value(target, + (s16) pcinfo_L->freq, + (s16) pcinfo_R->freq, + (s16) tmpL[i], + (s16) tmpR[i]); + } } + /* Now we have a set of curves for this + * channel on tmpL (x range is table_max - table_min + * and y values are tmpL[pdg][]) sorted in the same + * order as EEPROM (because we've used the backmaping). + * So for RF5112 it's from higher power to lower power + * and for RF2413 it's from lower power to higher power. + * For RF5111 we only have one curve. */ + + /* Fill min and max power levels for this + * channel by interpolating the values on + * surounding channels to complete the dataset */ + ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target, + (s16) pcinfo_L->freq, + (s16) pcinfo_R->freq, + pcinfo_L->min_pwr, pcinfo_R->min_pwr); + + ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target, + (s16) pcinfo_L->freq, + (s16) pcinfo_R->freq, + pcinfo_L->max_pwr, pcinfo_R->max_pwr); + + /* We are ready to go, fill PCDAC/PDADC + * table and write settings on hardware */ + switch (type) { + case AR5K_PWRTABLE_LINEAR_PCDAC: + /* For RF5112 we can have one or two curves + * and each curve covers a certain power lvl + * range so we need to do some more processing */ + ath5k_combine_linear_pcdac_curves(ah, table_min, table_max, + ee->ee_pd_gains[ee_mode]); + + /* Set txp.offset so that we can + * match max power value with max + * table index */ + ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2); + + /* Write settings on hw */ + ath5k_setup_pcdac_table(ah); + break; + case AR5K_PWRTABLE_PWR_TO_PCDAC: + /* We are done for RF5111 since it has only + * one curve, just fit the curve on the table */ + ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max); + + /* No rate powertable adjustment for RF5111 */ + ah->ah_txpower.txp_min_idx = 0; + ah->ah_txpower.txp_offset = 0; + + /* Write settings on hw */ + ath5k_setup_pcdac_table(ah); + break; + case AR5K_PWRTABLE_PWR_TO_PDADC: + /* Set PDADC boundaries and fill + * final PDADC table */ + ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max, + ee->ee_pd_gains[ee_mode]); + + /* Write settings on hw */ + ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx); + + /* Set txp.offset, note that table_min + * can be negative */ + ah->ah_txpower.txp_offset = table_min[0]; + break; + default: + return -EINVAL; + } + + return 0; +} + + +/* + * Per-rate tx power setting + * + * This is the code that sets the desired tx power (below + * maximum) on hw for each rate (we also have TPC that sets + * power per packet). We do that by providing an index on the + * PCDAC/PDADC table we set up. + */ + +/* + * Set rate power table + * + * For now we only limit txpower based on maximum tx power + * supported by hw (what's inside rate_info). We need to limit + * this even more, based on regulatory domain etc. + * + * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps) + * and is indexed as follows: + * rates[0] - rates[7] -> OFDM rates + * rates[8] - rates[14] -> CCK rates + * rates[15] -> XR rates (they all have the same power) + */ +static void +ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, + struct ath5k_rate_pcal_info *rate_info, + u8 ee_mode) +{ + unsigned int i; + u16 *rates; + + /* max_pwr is power level we got from driver/user in 0.5dB + * units, switch to 0.25dB units so we can compare */ + max_pwr *= 2; + max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2; + + /* apply rate limits */ + rates = ah->ah_txpower.txp_rates_power_table; + + /* OFDM rates 6 to 24Mb/s */ + for (i = 0; i < 5; i++) + rates[i] = min(max_pwr, rate_info->target_power_6to24); + + /* Rest OFDM rates */ + rates[5] = min(rates[0], rate_info->target_power_36); + rates[6] = min(rates[0], rate_info->target_power_48); + rates[7] = min(rates[0], rate_info->target_power_54); + + /* CCK rates */ + /* 1L */ + rates[8] = min(rates[0], rate_info->target_power_6to24); + /* 2L */ + rates[9] = min(rates[0], rate_info->target_power_36); + /* 2S */ + rates[10] = min(rates[0], rate_info->target_power_36); + /* 5L */ + rates[11] = min(rates[0], rate_info->target_power_48); + /* 5S */ + rates[12] = min(rates[0], rate_info->target_power_48); + /* 11L */ + rates[13] = min(rates[0], rate_info->target_power_54); + /* 11S */ + rates[14] = min(rates[0], rate_info->target_power_54); + + /* XR rates */ + rates[15] = min(rates[0], rate_info->target_power_6to24); + + /* CCK rates have different peak to average ratio + * so we have to tweak their power so that gainf + * correction works ok. For this we use OFDM to + * CCK delta from eeprom */ + if ((ee_mode == AR5K_EEPROM_MODE_11G) && + (ah->ah_phy_revision < AR5K_SREV_PHY_5212A)) + for (i = 8; i <= 15; i++) + rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta; + + ah->ah_txpower.txp_min_pwr = rates[7]; + ah->ah_txpower.txp_max_pwr = rates[0]; + ah->ah_txpower.txp_ofdm = rates[7]; +} + + +/* + * Set transmition power + */ +int +ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, + u8 ee_mode, u8 txpower) +{ + struct ath5k_rate_pcal_info rate_info; + u8 type; + int ret; + + ATH5K_TRACE(ah->ah_sc); + if (txpower > AR5K_TUNE_MAX_TXPOWER) { + ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower); + return -EINVAL; + } + if (txpower == 0) + txpower = AR5K_TUNE_DEFAULT_TXPOWER; + + /* Reset TX power values */ + memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower)); + ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER; + ah->ah_txpower.txp_min_pwr = 0; + ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER; + + /* Initialize TX power table */ + switch (ah->ah_radio) { + case AR5K_RF5111: + type = AR5K_PWRTABLE_PWR_TO_PCDAC; + break; + case AR5K_RF5112: + type = AR5K_PWRTABLE_LINEAR_PCDAC; + break; + case AR5K_RF2413: + case AR5K_RF5413: + case AR5K_RF2316: + case AR5K_RF2317: + case AR5K_RF2425: + type = AR5K_PWRTABLE_PWR_TO_PDADC; + break; + default: + return -EINVAL; + } + + /* FIXME: Only on channel/mode change */ + ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type); + if (ret) + return ret; + + /* Limit max power if we have a CTL available */ + ath5k_get_max_ctl_power(ah, channel); + + /* FIXME: Tx power limit for this regdomain + * XXX: Mac80211/CRDA will do that anyway ? */ + + /* FIXME: Antenna reduction stuff */ + + /* FIXME: Limit power on turbo modes */ + + /* FIXME: TPC scale reduction */ + + /* Get surounding channels for per-rate power table + * calibration */ + ath5k_get_rate_pcal_data(ah, channel, &rate_info); + + /* Setup rate power table */ + ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode); + + /* Write rate power table on hw */ ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) | AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) | AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1); @@ -1536,26 +2566,34 @@ ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) | AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4); - if (ah->ah_txpower.txp_tpc) + /* FIXME: TPC support */ + if (ah->ah_txpower.txp_tpc) { ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE | AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); - else + + ath5k_hw_reg_write(ah, + AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) | + AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) | + AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP), + AR5K_TPC); + } else { ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX | AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); + } return 0; } -int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, unsigned int power) +int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 mode, u8 txpower) { /*Just a try M.F.*/ struct ieee80211_channel *channel = &ah->ah_current_channel; ATH5K_TRACE(ah->ah_sc); ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER, - "changing txpower to %d\n", power); + "changing txpower to %d\n", txpower); - return ath5k_hw_txpower(ah, channel, power); + return ath5k_hw_txpower(ah, channel, mode, txpower); } #undef _ATH5K_PHY diff --git a/drivers/net/wireless/ath5k/reg.h b/drivers/net/wireless/ath5k/reg.h index 2dc008e10226..7070d1543cdc 100644 --- a/drivers/net/wireless/ath5k/reg.h +++ b/drivers/net/wireless/ath5k/reg.h @@ -1554,6 +1554,19 @@ /*===5212 Specific PCU registers===*/ /* + * Transmit power control register + */ +#define AR5K_TPC 0x80e8 +#define AR5K_TPC_ACK 0x0000003f /* ack frames */ +#define AR5K_TPC_ACK_S 0 +#define AR5K_TPC_CTS 0x00003f00 /* cts frames */ +#define AR5K_TPC_CTS_S 8 +#define AR5K_TPC_CHIRP 0x003f0000 /* chirp frames */ +#define AR5K_TPC_CHIRP_S 16 +#define AR5K_TPC_DOPPLER 0x0f000000 /* doppler chirp span */ +#define AR5K_TPC_DOPPLER_S 24 + +/* * XR (eXtended Range) mode register */ #define AR5K_XRMODE 0x80c0 /* Register Address */ @@ -2550,6 +2563,12 @@ #define AR5K_PHY_TPC_RG1 0xa258 #define AR5K_PHY_TPC_RG1_NUM_PD_GAIN 0x0000c000 #define AR5K_PHY_TPC_RG1_NUM_PD_GAIN_S 14 +#define AR5K_PHY_TPC_RG1_PDGAIN_1 0x00030000 +#define AR5K_PHY_TPC_RG1_PDGAIN_1_S 16 +#define AR5K_PHY_TPC_RG1_PDGAIN_2 0x000c0000 +#define AR5K_PHY_TPC_RG1_PDGAIN_2_S 18 +#define AR5K_PHY_TPC_RG1_PDGAIN_3 0x00300000 +#define AR5K_PHY_TPC_RG1_PDGAIN_3_S 20 #define AR5K_PHY_TPC_RG5 0xa26C #define AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP 0x0000000F diff --git a/drivers/net/wireless/ath5k/reset.c b/drivers/net/wireless/ath5k/reset.c index 685dc213edae..7a17d31b2fd9 100644 --- a/drivers/net/wireless/ath5k/reset.c +++ b/drivers/net/wireless/ath5k/reset.c @@ -664,29 +664,35 @@ static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah, struct ieee80211_channel *channel, u8 *ant, u8 ee_mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + s16 cck_ofdm_pwr_delta; - /* Set CCK to OFDM power delta */ - if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { - int16_t cck_ofdm_pwr_delta; - - /* Adjust power delta for channel 14 */ - if (channel->center_freq == 2484) - cck_ofdm_pwr_delta = - ((ee->ee_cck_ofdm_power_delta - - ee->ee_scaled_cck_delta) * 2) / 10; - else - cck_ofdm_pwr_delta = - (ee->ee_cck_ofdm_power_delta * 2) / 10; + /* Adjust power delta for channel 14 */ + if (channel->center_freq == 2484) + cck_ofdm_pwr_delta = + ((ee->ee_cck_ofdm_power_delta - + ee->ee_scaled_cck_delta) * 2) / 10; + else + cck_ofdm_pwr_delta = + (ee->ee_cck_ofdm_power_delta * 2) / 10; + /* Set CCK to OFDM power delta on tx power + * adjustment register */ + if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { if (channel->hw_value == CHANNEL_G) ath5k_hw_reg_write(ah, - AR5K_REG_SM((ee->ee_cck_ofdm_power_delta * -1), + AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1), AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) | AR5K_REG_SM((cck_ofdm_pwr_delta * -1), AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX), AR5K_PHY_TX_PWR_ADJ); else ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ); + } else { + /* For older revs we scale power on sw during tx power + * setup */ + ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta; + ah->ah_txpower.txp_cck_ofdm_gainf_delta = + ee->ee_cck_ofdm_gain_delta; } /* Set antenna idle switch table */ @@ -994,7 +1000,8 @@ int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode, /* * Set TX power (FIXME) */ - ret = ath5k_hw_txpower(ah, channel, AR5K_TUNE_DEFAULT_TXPOWER); + ret = ath5k_hw_txpower(ah, channel, ee_mode, + AR5K_TUNE_DEFAULT_TXPOWER); if (ret) return ret; |