diff options
Diffstat (limited to 'drivers/rtc')
-rw-r--r-- | drivers/rtc/Kconfig | 111 | ||||
-rw-r--r-- | drivers/rtc/Makefile | 3 | ||||
-rw-r--r-- | drivers/rtc/hctosys.c | 18 | ||||
-rw-r--r-- | drivers/rtc/interface.c | 22 | ||||
-rw-r--r-- | drivers/rtc/rtc-ab-b5ze-s3.c | 1035 | ||||
-rw-r--r-- | drivers/rtc/rtc-armada38x.c | 320 | ||||
-rw-r--r-- | drivers/rtc/rtc-at91sam9.c | 2 | ||||
-rw-r--r-- | drivers/rtc/rtc-dev.c | 8 | ||||
-rw-r--r-- | drivers/rtc/rtc-ds1685.c | 2252 | ||||
-rw-r--r-- | drivers/rtc/rtc-efi.c | 1 | ||||
-rw-r--r-- | drivers/rtc/rtc-imxdi.c | 50 | ||||
-rw-r--r-- | drivers/rtc/rtc-isl12022.c | 3 | ||||
-rw-r--r-- | drivers/rtc/rtc-isl12057.c | 351 | ||||
-rw-r--r-- | drivers/rtc/rtc-pcf2123.c | 10 | ||||
-rw-r--r-- | drivers/rtc/rtc-rk808.c | 10 | ||||
-rw-r--r-- | drivers/rtc/rtc-s5m.c | 1 | ||||
-rw-r--r-- | drivers/rtc/systohc.c | 6 |
17 files changed, 4150 insertions, 53 deletions
diff --git a/drivers/rtc/Kconfig b/drivers/rtc/Kconfig index f211dfb7b913..cedb41c95dae 100644 --- a/drivers/rtc/Kconfig +++ b/drivers/rtc/Kconfig @@ -153,6 +153,17 @@ config RTC_DRV_88PM80X This driver can also be built as a module. If so, the module will be called rtc-88pm80x. +config RTC_DRV_ABB5ZES3 + depends on I2C + select REGMAP_I2C + tristate "Abracon AB-RTCMC-32.768kHz-B5ZE-S3" + help + If you say yes here you get support for the Abracon + AB-RTCMC-32.768kHz-B5ZE-S3 I2C RTC chip. + + This driver can also be built as a module. If so, the module + will be called rtc-ab-b5ze-s3. + config RTC_DRV_AS3722 tristate "ams AS3722 RTC driver" depends on MFD_AS3722 @@ -790,6 +801,96 @@ config RTC_DRV_DS1553 This driver can also be built as a module. If so, the module will be called rtc-ds1553. +config RTC_DRV_DS1685_FAMILY + tristate "Dallas/Maxim DS1685 Family" + help + If you say yes here you get support for the Dallas/Maxim DS1685 + family of real time chips. This family includes the DS1685/DS1687, + DS1689/DS1693, DS17285/DS17287, DS17485/DS17487, and + DS17885/DS17887 chips. + + This driver can also be built as a module. If so, the module + will be called rtc-ds1685. + +choice + prompt "Subtype" + depends on RTC_DRV_DS1685_FAMILY + default RTC_DRV_DS1685 + +config RTC_DRV_DS1685 + bool "DS1685/DS1687" + help + This enables support for the Dallas/Maxim DS1685/DS1687 real time + clock chip. + + This chip is commonly found in SGI O2 (IP32) and SGI Octane (IP30) + systems, as well as EPPC-405-UC modules by electronic system design + GmbH. + +config RTC_DRV_DS1689 + bool "DS1689/DS1693" + help + This enables support for the Dallas/Maxim DS1689/DS1693 real time + clock chip. + + This is an older RTC chip, supplanted by the DS1685/DS1687 above, + which supports a few minor features such as Vcc, Vbat, and Power + Cycle counters, plus a customer-specific, 8-byte ROM/Serial number. + + It also works for the even older DS1688/DS1691 RTC chips, which are + virtually the same and carry the same model number. Both chips + have 114 bytes of user NVRAM. + +config RTC_DRV_DS17285 + bool "DS17285/DS17287" + help + This enables support for the Dallas/Maxim DS17285/DS17287 real time + clock chip. + + This chip features 2kb of extended NV-SRAM. It may possibly be + found in some SGI O2 systems (rare). + +config RTC_DRV_DS17485 + bool "DS17485/DS17487" + help + This enables support for the Dallas/Maxim DS17485/DS17487 real time + clock chip. + + This chip features 4kb of extended NV-SRAM. + +config RTC_DRV_DS17885 + bool "DS17885/DS17887" + help + This enables support for the Dallas/Maxim DS17885/DS17887 real time + clock chip. + + This chip features 8kb of extended NV-SRAM. + +endchoice + +config RTC_DS1685_PROC_REGS + bool "Display register values in /proc" + depends on RTC_DRV_DS1685_FAMILY && PROC_FS + help + Enable this to display a readout of all of the RTC registers in + /proc/drivers/rtc. Keep in mind that this can potentially lead + to lost interrupts, as reading Control Register C will clear + all pending IRQ flags. + + Unless you are debugging this driver, choose N. + +config RTC_DS1685_SYSFS_REGS + bool "SysFS access to RTC register bits" + depends on RTC_DRV_DS1685_FAMILY && SYSFS + help + Enable this to provide access to the RTC control register bits + in /sys. Some of the bits are read-write, others are read-only. + + Keep in mind that reading Control C's bits automatically clears + all pending IRQ flags - this can cause lost interrupts. + + If you know that you need access to these bits, choose Y, Else N. + config RTC_DRV_DS1742 tristate "Maxim/Dallas DS1742/1743" depends on HAS_IOMEM @@ -1241,6 +1342,16 @@ config RTC_DRV_MV This driver can also be built as a module. If so, the module will be called rtc-mv. +config RTC_DRV_ARMADA38X + tristate "Armada 38x Marvell SoC RTC" + depends on ARCH_MVEBU + help + If you say yes here you will get support for the in-chip RTC + that can be found in the Armada 38x Marvell's SoC device + + This driver can also be built as a module. If so, the module + will be called armada38x-rtc. + config RTC_DRV_PS3 tristate "PS3 RTC" depends on PPC_PS3 diff --git a/drivers/rtc/Makefile b/drivers/rtc/Makefile index c8ef3e1e6ccd..69c87062b098 100644 --- a/drivers/rtc/Makefile +++ b/drivers/rtc/Makefile @@ -24,6 +24,8 @@ obj-$(CONFIG_RTC_DRV_88PM860X) += rtc-88pm860x.o obj-$(CONFIG_RTC_DRV_88PM80X) += rtc-88pm80x.o obj-$(CONFIG_RTC_DRV_AB3100) += rtc-ab3100.o obj-$(CONFIG_RTC_DRV_AB8500) += rtc-ab8500.o +obj-$(CONFIG_RTC_DRV_ABB5ZES3) += rtc-ab-b5ze-s3.o +obj-$(CONFIG_RTC_DRV_ARMADA38X) += rtc-armada38x.o obj-$(CONFIG_RTC_DRV_AS3722) += rtc-as3722.o obj-$(CONFIG_RTC_DRV_AT32AP700X)+= rtc-at32ap700x.o obj-$(CONFIG_RTC_DRV_AT91RM9200)+= rtc-at91rm9200.o @@ -52,6 +54,7 @@ obj-$(CONFIG_RTC_DRV_DS1390) += rtc-ds1390.o obj-$(CONFIG_RTC_DRV_DS1511) += rtc-ds1511.o obj-$(CONFIG_RTC_DRV_DS1553) += rtc-ds1553.o obj-$(CONFIG_RTC_DRV_DS1672) += rtc-ds1672.o +obj-$(CONFIG_RTC_DRV_DS1685_FAMILY) += rtc-ds1685.o obj-$(CONFIG_RTC_DRV_DS1742) += rtc-ds1742.o obj-$(CONFIG_RTC_DRV_DS2404) += rtc-ds2404.o obj-$(CONFIG_RTC_DRV_DS3232) += rtc-ds3232.o diff --git a/drivers/rtc/hctosys.c b/drivers/rtc/hctosys.c index 4aa60d74004e..6c719f23520a 100644 --- a/drivers/rtc/hctosys.c +++ b/drivers/rtc/hctosys.c @@ -26,7 +26,7 @@ static int __init rtc_hctosys(void) { int err = -ENODEV; struct rtc_time tm; - struct timespec tv = { + struct timespec64 tv64 = { .tv_nsec = NSEC_PER_SEC >> 1, }; struct rtc_device *rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE); @@ -45,25 +45,17 @@ static int __init rtc_hctosys(void) } - err = rtc_valid_tm(&tm); - if (err) { - dev_err(rtc->dev.parent, - "hctosys: invalid date/time\n"); - goto err_invalid; - } - - rtc_tm_to_time(&tm, &tv.tv_sec); + tv64.tv_sec = rtc_tm_to_time64(&tm); - err = do_settimeofday(&tv); + err = do_settimeofday64(&tv64); dev_info(rtc->dev.parent, "setting system clock to " - "%d-%02d-%02d %02d:%02d:%02d UTC (%u)\n", + "%d-%02d-%02d %02d:%02d:%02d UTC (%lld)\n", tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, - (unsigned int) tv.tv_sec); + (long long) tv64.tv_sec); -err_invalid: err_read: rtc_class_close(rtc); diff --git a/drivers/rtc/interface.c b/drivers/rtc/interface.c index 45bfc28ee3aa..37215cf983e9 100644 --- a/drivers/rtc/interface.c +++ b/drivers/rtc/interface.c @@ -73,10 +73,8 @@ int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) else if (rtc->ops->set_time) err = rtc->ops->set_time(rtc->dev.parent, tm); else if (rtc->ops->set_mmss) { - unsigned long secs; - err = rtc_tm_to_time(tm, &secs); - if (err == 0) - err = rtc->ops->set_mmss(rtc->dev.parent, secs); + time64_t secs64 = rtc_tm_to_time64(tm); + err = rtc->ops->set_mmss(rtc->dev.parent, secs64); } else err = -EINVAL; @@ -105,7 +103,7 @@ int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs) err = rtc->ops->read_time(rtc->dev.parent, &old); if (err == 0) { - rtc_time_to_tm(secs, &new); + rtc_time64_to_tm(secs, &new); /* * avoid writing when we're going to change the day of @@ -157,7 +155,7 @@ int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) int err; struct rtc_time before, now; int first_time = 1; - unsigned long t_now, t_alm; + time64_t t_now, t_alm; enum { none, day, month, year } missing = none; unsigned days; @@ -258,8 +256,8 @@ int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) } /* with luck, no rollover is needed */ - rtc_tm_to_time(&now, &t_now); - rtc_tm_to_time(&alarm->time, &t_alm); + t_now = rtc_tm_to_time64(&now); + t_alm = rtc_tm_to_time64(&alarm->time); if (t_now < t_alm) goto done; @@ -273,7 +271,7 @@ int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) case day: dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); t_alm += 24 * 60 * 60; - rtc_time_to_tm(t_alm, &alarm->time); + rtc_time64_to_tm(t_alm, &alarm->time); break; /* Month rollover ... if it's the 31th, an alarm on the 3rd will @@ -346,19 +344,19 @@ EXPORT_SYMBOL_GPL(rtc_read_alarm); static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) { struct rtc_time tm; - long now, scheduled; + time64_t now, scheduled; int err; err = rtc_valid_tm(&alarm->time); if (err) return err; - rtc_tm_to_time(&alarm->time, &scheduled); + scheduled = rtc_tm_to_time64(&alarm->time); /* Make sure we're not setting alarms in the past */ err = __rtc_read_time(rtc, &tm); if (err) return err; - rtc_tm_to_time(&tm, &now); + now = rtc_tm_to_time64(&tm); if (scheduled <= now) return -ETIME; /* diff --git a/drivers/rtc/rtc-ab-b5ze-s3.c b/drivers/rtc/rtc-ab-b5ze-s3.c new file mode 100644 index 000000000000..cfc2ef98d393 --- /dev/null +++ b/drivers/rtc/rtc-ab-b5ze-s3.c @@ -0,0 +1,1035 @@ +/* + * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3 + * I2C RTC / Alarm chip + * + * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org> + * + * Detailed datasheet of the chip is available here: + * + * http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf + * + * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c). + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include <linux/module.h> +#include <linux/mutex.h> +#include <linux/rtc.h> +#include <linux/i2c.h> +#include <linux/bcd.h> +#include <linux/of.h> +#include <linux/regmap.h> +#include <linux/interrupt.h> + +#define DRV_NAME "rtc-ab-b5ze-s3" + +/* Control section */ +#define ABB5ZES3_REG_CTRL1 0x00 /* Control 1 register */ +#define ABB5ZES3_REG_CTRL1_CIE BIT(0) /* Pulse interrupt enable */ +#define ABB5ZES3_REG_CTRL1_AIE BIT(1) /* Alarm interrupt enable */ +#define ABB5ZES3_REG_CTRL1_SIE BIT(2) /* Second interrupt enable */ +#define ABB5ZES3_REG_CTRL1_PM BIT(3) /* 24h/12h mode */ +#define ABB5ZES3_REG_CTRL1_SR BIT(4) /* Software reset */ +#define ABB5ZES3_REG_CTRL1_STOP BIT(5) /* RTC circuit enable */ +#define ABB5ZES3_REG_CTRL1_CAP BIT(7) + +#define ABB5ZES3_REG_CTRL2 0x01 /* Control 2 register */ +#define ABB5ZES3_REG_CTRL2_CTBIE BIT(0) /* Countdown timer B int. enable */ +#define ABB5ZES3_REG_CTRL2_CTAIE BIT(1) /* Countdown timer A int. enable */ +#define ABB5ZES3_REG_CTRL2_WTAIE BIT(2) /* Watchdog timer A int. enable */ +#define ABB5ZES3_REG_CTRL2_AF BIT(3) /* Alarm interrupt status */ +#define ABB5ZES3_REG_CTRL2_SF BIT(4) /* Second interrupt status */ +#define ABB5ZES3_REG_CTRL2_CTBF BIT(5) /* Countdown timer B int. status */ +#define ABB5ZES3_REG_CTRL2_CTAF BIT(6) /* Countdown timer A int. status */ +#define ABB5ZES3_REG_CTRL2_WTAF BIT(7) /* Watchdog timer A int. status */ + +#define ABB5ZES3_REG_CTRL3 0x02 /* Control 3 register */ +#define ABB5ZES3_REG_CTRL3_PM2 BIT(7) /* Power Management bit 2 */ +#define ABB5ZES3_REG_CTRL3_PM1 BIT(6) /* Power Management bit 1 */ +#define ABB5ZES3_REG_CTRL3_PM0 BIT(5) /* Power Management bit 0 */ +#define ABB5ZES3_REG_CTRL3_BSF BIT(3) /* Battery switchover int. status */ +#define ABB5ZES3_REG_CTRL3_BLF BIT(2) /* Battery low int. status */ +#define ABB5ZES3_REG_CTRL3_BSIE BIT(1) /* Battery switchover int. enable */ +#define ABB5ZES3_REG_CTRL3_BLIE BIT(0) /* Battery low int. enable */ + +#define ABB5ZES3_CTRL_SEC_LEN 3 + +/* RTC section */ +#define ABB5ZES3_REG_RTC_SC 0x03 /* RTC Seconds register */ +#define ABB5ZES3_REG_RTC_SC_OSC BIT(7) /* Clock integrity status */ +#define ABB5ZES3_REG_RTC_MN 0x04 /* RTC Minutes register */ +#define ABB5ZES3_REG_RTC_HR 0x05 /* RTC Hours register */ +#define ABB5ZES3_REG_RTC_HR_PM BIT(5) /* RTC Hours PM bit */ +#define ABB5ZES3_REG_RTC_DT 0x06 /* RTC Date register */ +#define ABB5ZES3_REG_RTC_DW 0x07 /* RTC Day of the week register */ +#define ABB5ZES3_REG_RTC_MO 0x08 /* RTC Month register */ +#define ABB5ZES3_REG_RTC_YR 0x09 /* RTC Year register */ + +#define ABB5ZES3_RTC_SEC_LEN 7 + +/* Alarm section (enable bits are all active low) */ +#define ABB5ZES3_REG_ALRM_MN 0x0A /* Alarm - minute register */ +#define ABB5ZES3_REG_ALRM_MN_AE BIT(7) /* Minute enable */ +#define ABB5ZES3_REG_ALRM_HR 0x0B /* Alarm - hours register */ +#define ABB5ZES3_REG_ALRM_HR_AE BIT(7) /* Hour enable */ +#define ABB5ZES3_REG_ALRM_DT 0x0C /* Alarm - date register */ +#define ABB5ZES3_REG_ALRM_DT_AE BIT(7) /* Date (day of the month) enable */ +#define ABB5ZES3_REG_ALRM_DW 0x0D /* Alarm - day of the week reg. */ +#define ABB5ZES3_REG_ALRM_DW_AE BIT(7) /* Day of the week enable */ + +#define ABB5ZES3_ALRM_SEC_LEN 4 + +/* Frequency offset section */ +#define ABB5ZES3_REG_FREQ_OF 0x0E /* Frequency offset register */ +#define ABB5ZES3_REG_FREQ_OF_MODE 0x0E /* Offset mode: 2 hours / minute */ + +/* CLOCKOUT section */ +#define ABB5ZES3_REG_TIM_CLK 0x0F /* Timer & Clockout register */ +#define ABB5ZES3_REG_TIM_CLK_TAM BIT(7) /* Permanent/pulsed timer A/int. 2 */ +#define ABB5ZES3_REG_TIM_CLK_TBM BIT(6) /* Permanent/pulsed timer B */ +#define ABB5ZES3_REG_TIM_CLK_COF2 BIT(5) /* Clkout Freq bit 2 */ +#define ABB5ZES3_REG_TIM_CLK_COF1 BIT(4) /* Clkout Freq bit 1 */ +#define ABB5ZES3_REG_TIM_CLK_COF0 BIT(3) /* Clkout Freq bit 0 */ +#define ABB5ZES3_REG_TIM_CLK_TAC1 BIT(2) /* Timer A: - 01 : countdown */ +#define ABB5ZES3_REG_TIM_CLK_TAC0 BIT(1) /* - 10 : timer */ +#define ABB5ZES3_REG_TIM_CLK_TBC BIT(0) /* Timer B enable */ + +/* Timer A Section */ +#define ABB5ZES3_REG_TIMA_CLK 0x10 /* Timer A clock register */ +#define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2) /* Freq bit 2 */ +#define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1) /* Freq bit 1 */ +#define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0) /* Freq bit 0 */ +#define ABB5ZES3_REG_TIMA 0x11 /* Timer A register */ + +#define ABB5ZES3_TIMA_SEC_LEN 2 + +/* Timer B Section */ +#define ABB5ZES3_REG_TIMB_CLK 0x12 /* Timer B clock register */ +#define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6) +#define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5) +#define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4) +#define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2) +#define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1) +#define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0) +#define ABB5ZES3_REG_TIMB 0x13 /* Timer B register */ +#define ABB5ZES3_TIMB_SEC_LEN 2 + +#define ABB5ZES3_MEM_MAP_LEN 0x14 + +struct abb5zes3_rtc_data { + struct rtc_device *rtc; + struct regmap *regmap; + struct mutex lock; + + int irq; + + bool battery_low; + bool timer_alarm; /* current alarm is via timer A */ +}; + +/* + * Try and match register bits w/ fixed null values to see whether we + * are dealing with an ABB5ZES3. Note: this function is called early + * during init and hence does need mutex protection. + */ +static int abb5zes3_i2c_validate_chip(struct regmap *regmap) +{ + u8 regs[ABB5ZES3_MEM_MAP_LEN]; + static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00, + 0x80, 0xc0, 0xc0, 0xf8, + 0xe0, 0x00, 0x00, 0x40, + 0x40, 0x78, 0x00, 0x00, + 0xf8, 0x00, 0x88, 0x00 }; + int ret, i; + + ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN); + if (ret) + return ret; + + for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) { + if (regs[i] & mask[i]) /* check if bits are cleared */ + return -ENODEV; + } + + return 0; +} + +/* Clear alarm status bit. */ +static int _abb5zes3_rtc_clear_alarm(struct device *dev) +{ + struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); + int ret; + + ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2, + ABB5ZES3_REG_CTRL2_AF, 0); + if (ret) + dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret); + + return ret; +} + +/* Enable or disable alarm (i.e. alarm interrupt generation) */ +static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable) +{ + struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); + int ret; + + ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1, + ABB5ZES3_REG_CTRL1_AIE, + enable ? ABB5ZES3_REG_CTRL1_AIE : 0); + if (ret) + dev_err(dev, "%s: writing alarm INT failed (%d)\n", + __func__, ret); + + return ret; +} + +/* Enable or disable timer (watchdog timer A interrupt generation) */ +static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable) +{ + struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); + int ret; + + ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2, + ABB5ZES3_REG_CTRL2_WTAIE, + enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0); + if (ret) + dev_err(dev, "%s: writing timer INT failed (%d)\n", + __func__, ret); + + return ret; +} + +/* + * Note: we only read, so regmap inner lock protection is sufficient, i.e. + * we do not need driver's main lock protection. + */ +static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm) +{ + struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); + u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN]; + int ret; + + /* + * As we need to read CTRL1 register anyway to access 24/12h + * mode bit, we do a single bulk read of both control and RTC + * sections (they are consecutive). This also ease indexing + * of register values after bulk read. + */ + ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs, + sizeof(regs)); + if (ret) { + dev_err(dev, "%s: reading RTC time failed (%d)\n", + __func__, ret); + goto err; + } + + /* If clock integrity is not guaranteed, do not return a time value */ + if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) { + ret = -ENODATA; + goto err; + } + + tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F); + tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]); + + if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */ + tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f); + if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */ + tm->tm_hour += 12; + } else { /* 24hr mode */ + tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]); + } + + tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]); + tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]); + tm->tm_mon = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */ + tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100; + + ret = rtc_valid_tm(tm); + +err: + return ret; +} + +static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm) +{ + struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); + u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN]; + int ret; + + /* + * Year register is 8-bit wide and bcd-coded, i.e records values + * between 0 and 99. tm_year is an offset from 1900 and we are + * interested in the 2000-2099 range, so any value less than 100 + * is invalid. + */ + if (tm->tm_year < 100) + return -EINVAL; + + regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */ + regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min); + regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */ + regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday); + regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday); + regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1); + regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100); + + mutex_lock(&data->lock); + ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC, + regs + ABB5ZES3_REG_RTC_SC, + ABB5ZES3_RTC_SEC_LEN); + mutex_unlock(&data->lock); + + + return ret; +} + +/* + * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on + * given number of seconds. + */ +static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a) +{ + *taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */ + *timer_a = secs; +} + +/* + * Return current number of seconds in Timer A. As we only use + * timer A with a 1Hz freq, this is what we expect to have. + */ +static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a) +{ + if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */ + return -EINVAL; + + *secs = timer_a; + + return 0; +} + +/* + * Read alarm currently configured via a watchdog timer using timer A. This + * is done by reading current RTC time and adding remaining timer time. + */ +static int _abb5zes3_rtc_read_timer(struct device *dev, + struct rtc_wkalrm *alarm) +{ + struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); + struct rtc_time rtc_tm, *alarm_tm = &alarm->time; + u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1]; + unsigned long rtc_secs; + unsigned int reg; + u8 timer_secs; + int ret; + + /* + * Instead of doing two separate calls, because they are consecutive, + * we grab both clockout register and Timer A section. The latter is + * used to decide if timer A is enabled (as a watchdog timer). + */ + ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs, + ABB5ZES3_TIMA_SEC_LEN + 1); + if (ret) { + dev_err(dev, "%s: reading Timer A section failed (%d)\n", + __func__, ret); + goto err; + } + + /* get current time ... */ + ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); + if (ret) + goto err; + + /* ... convert to seconds ... */ + ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); + if (ret) + goto err; + + /* ... add remaining timer A time ... */ + ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]); + if (ret) + goto err; + + /* ... and convert back. */ + rtc_time_to_tm(rtc_secs + timer_secs, alarm_tm); + + ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, ®); + if (ret) { + dev_err(dev, "%s: reading ctrl reg failed (%d)\n", + __func__, ret); + goto err; + } + + alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE); + +err: + return ret; +} + +/* Read alarm currently configured via a RTC alarm registers. */ +static int _abb5zes3_rtc_read_alarm(struct device *dev, + struct rtc_wkalrm *alarm) +{ + struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); + struct rtc_time rtc_tm, *alarm_tm = &alarm->time; + unsigned long rtc_secs, alarm_secs; + u8 regs[ABB5ZES3_ALRM_SEC_LEN]; + unsigned int reg; + int ret; + + ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs, + ABB5ZES3_ALRM_SEC_LEN); + if (ret) { + dev_err(dev, "%s: reading alarm section failed (%d)\n", + __func__, ret); + goto err; + } + + alarm_tm->tm_sec = 0; + alarm_tm->tm_min = bcd2bin(regs[0] & 0x7f); + alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f); + alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f); + alarm_tm->tm_wday = -1; + + /* + * The alarm section does not store year/month. We use the ones in rtc + * section as a basis and increment month and then year if needed to get + * alarm after current time. + */ + ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); + if (ret) + goto err; + + alarm_tm->tm_year = rtc_tm.tm_year; + alarm_tm->tm_mon = rtc_tm.tm_mon; + + ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); + if (ret) + goto err; + + ret = rtc_tm_to_time(alarm_tm, &alarm_secs); + if (ret) + goto err; + + if (alarm_secs < rtc_secs) { + if (alarm_tm->tm_mon == 11) { + alarm_tm->tm_mon = 0; + alarm_tm->tm_year += 1; + } else { + alarm_tm->tm_mon += 1; + } + } + + ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, ®); + if (ret) { + dev_err(dev, "%s: reading ctrl reg failed (%d)\n", + __func__, ret); + goto err; + } + + alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE); + +err: + return ret; +} + +/* + * As the Alarm mechanism supported by the chip is only accurate to the + * minute, we use the watchdog timer mechanism provided by timer A + * (up to 256 seconds w/ a second accuracy) for low alarm values (below + * 4 minutes). Otherwise, we use the common alarm mechanism provided + * by the chip. In order for that to work, we keep track of currently + * configured timer type via 'timer_alarm' flag in our private data + * structure. + */ +static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) +{ + struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); + int ret; + + mutex_lock(&data->lock); + if (data->timer_alarm) + ret = _abb5zes3_rtc_read_timer(dev, alarm); + else + ret = _abb5zes3_rtc_read_alarm(dev, alarm); + mutex_unlock(&data->lock); + + return ret; +} + +/* + * Set alarm using chip alarm mechanism. It is only accurate to the + * minute (not the second). The function expects alarm interrupt to + * be disabled. + */ +static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) +{ + struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); + struct rtc_time *alarm_tm = &alarm->time; + unsigned long rtc_secs, alarm_secs; + u8 regs[ABB5ZES3_ALRM_SEC_LEN]; + struct rtc_time rtc_tm; + int ret, enable = 1; + + ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); + if (ret) + goto err; + + ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); + if (ret) + goto err; + + ret = rtc_tm_to_time(alarm_tm, &alarm_secs); + if (ret) + goto err; + + /* If alarm time is before current time, disable the alarm */ + if (!alarm->enabled || alarm_secs <= rtc_secs) { + enable = 0; + } else { + /* + * Chip only support alarms up to one month in the future. Let's + * return an error if we get something after that limit. + * Comparison is done by incrementing rtc_tm month field by one + * and checking alarm value is still below. + */ + if (rtc_tm.tm_mon == 11) { /* handle year wrapping */ + rtc_tm.tm_mon = 0; + rtc_tm.tm_year += 1; + } else { + rtc_tm.tm_mon += 1; + } + + ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); + if (ret) + goto err; + + if (alarm_secs > rtc_secs) { + dev_err(dev, "%s: alarm maximum is one month in the " + "future (%d)\n", __func__, ret); + ret = -EINVAL; + goto err; + } + } + + /* + * Program all alarm registers but DW one. For each register, setting + * MSB to 0 enables associated alarm. + */ + regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f; + regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f; + regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f; + regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */ + + ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs, + ABB5ZES3_ALRM_SEC_LEN); + if (ret < 0) { + dev_err(dev, "%s: writing ALARM section failed (%d)\n", + __func__, ret); + goto err; + } + + /* Record currently configured alarm is not a timer */ + data->timer_alarm = 0; + + /* Enable or disable alarm interrupt generation */ + ret = _abb5zes3_rtc_update_alarm(dev, enable); + +err: + return ret; +} + +/* + * Set alarm using timer watchdog (via timer A) mechanism. The function expects + * timer A interrupt to be disabled. + */ +static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm, + u8 secs) +{ + struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); + u8 regs[ABB5ZES3_TIMA_SEC_LEN]; + u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1; + int ret = 0; + + /* Program given number of seconds to Timer A registers */ + sec_to_timer_a(secs, ®s[0], ®s[1]); + ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs, + ABB5ZES3_TIMA_SEC_LEN); + if (ret < 0) { + dev_err(dev, "%s: writing timer section failed\n", __func__); + goto err; + } + + /* Configure Timer A as a watchdog timer */ + ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK, + mask, ABB5ZES3_REG_TIM_CLK_TAC1); + if (ret) + dev_err(dev, "%s: failed to update timer\n", __func__); + + /* Record currently configured alarm is a timer */ + data->timer_alarm = 1; + + /* Enable or disable timer interrupt generation */ + ret = _abb5zes3_rtc_update_timer(dev, alarm->enabled); + +err: + return ret; +} + +/* + * The chip has an alarm which is only accurate to the minute. In order to + * handle alarms below that limit, we use the watchdog timer function of + * timer A. More precisely, the timer method is used for alarms below 240 + * seconds. + */ +static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) +{ + struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); + struct rtc_time *alarm_tm = &alarm->time; + unsigned long rtc_secs, alarm_secs; + struct rtc_time rtc_tm; + int ret; + + mutex_lock(&data->lock); + ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); + if (ret) + goto err; + + ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); + if (ret) + goto err; + + ret = rtc_tm_to_time(alarm_tm, &alarm_secs); + if (ret) + goto err; + + /* Let's first disable both the alarm and the timer interrupts */ + ret = _abb5zes3_rtc_update_alarm(dev, false); + if (ret < 0) { + dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__, + ret); + goto err; + } + ret = _abb5zes3_rtc_update_timer(dev, false); + if (ret < 0) { + dev_err(dev, "%s: unable to disable timer (%d)\n", __func__, + ret); + goto err; + } + + data->timer_alarm = 0; + + /* + * Let's now configure the alarm; if we are expected to ring in + * more than 240s, then we setup an alarm. Otherwise, a timer. + */ + if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240)) + ret = _abb5zes3_rtc_set_timer(dev, alarm, + alarm_secs - rtc_secs); + else + ret = _abb5zes3_rtc_set_alarm(dev, alarm); + + err: + mutex_unlock(&data->lock); + + if (ret) + dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__, + ret); + + return ret; + } + +/* Enable or disable battery low irq generation */ +static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap, + bool enable) +{ + return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, + ABB5ZES3_REG_CTRL3_BLIE, + enable ? ABB5ZES3_REG_CTRL3_BLIE : 0); +} + +/* + * Check current RTC status and enable/disable what needs to be. Return 0 if + * everything went ok and a negative value upon error. Note: this function + * is called early during init and hence does need mutex protection. + */ +static int abb5zes3_rtc_check_setup(struct device *dev) +{ + struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); + struct regmap *regmap = data->regmap; + unsigned int reg; + int ret; + u8 mask; + + /* + * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It + * is disabled here to prevent polluting the interrupt line and + * uselessly triggering the IRQ handler we install for alarm and battery + * low events. Note: this is done before clearing int. status below + * in this function. + * We also disable all timers and set timer interrupt to permanent (not + * pulsed). + */ + mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 | + ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 | + ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 | + ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM); + ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask, + ABB5ZES3_REG_TIM_CLK_COF0 | ABB5ZES3_REG_TIM_CLK_COF1 | + ABB5ZES3_REG_TIM_CLK_COF2); + if (ret < 0) { + dev_err(dev, "%s: unable to initialize clkout register (%d)\n", + __func__, ret); + return ret; + } + + /* + * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled + * individually by clearing/setting MSB of each associated register. So, + * we set all alarm enable bits to disable current alarm setting. + */ + mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE | + ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE); + ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask); + if (ret < 0) { + dev_err(dev, "%s: unable to disable alarm setting (%d)\n", + __func__, ret); + return ret; + } + + /* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */ + mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE | + ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM | + ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP); + ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0); + if (ret < 0) { + dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n", + __func__, ret); + return ret; + } + + /* + * Set Control 2 register (timer int. disabled, alarm status cleared). + * WTAF is read-only and cleared automatically by reading the register. + */ + mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE | + ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF | + ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF | + ABB5ZES3_REG_CTRL2_CTAF); + ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0); + if (ret < 0) { + dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n", + __func__, ret); + return ret; + } + + /* + * Enable battery low detection function and battery switchover function + * (standard mode). Disable associated interrupts. Clear battery + * switchover flag but not battery low flag. The latter is checked + * later below. + */ + mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 | + ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE | + ABB5ZES3_REG_CTRL3_BSIE| ABB5ZES3_REG_CTRL3_BSF); + ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0); + if (ret < 0) { + dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n", + __func__, ret); + return ret; + } + + /* Check oscillator integrity flag */ + ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, ®); + if (ret < 0) { + dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n", + __func__, ret); + return ret; + } + + if (reg & ABB5ZES3_REG_RTC_SC_OSC) { + dev_err(dev, "clock integrity not guaranteed. Osc. has stopped " + "or has been interrupted.\n"); + dev_err(dev, "change battery (if not already done) and " + "then set time to reset osc. failure flag.\n"); + } + + /* + * Check battery low flag at startup: this allows reporting battery + * is low at startup when IRQ line is not connected. Note: we record + * current status to avoid reenabling this interrupt later in probe + * function if battery is low. + */ + ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, ®); + if (ret < 0) { + dev_err(dev, "%s: unable to read battery low flag (%d)\n", + __func__, ret); + return ret; + } + + data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF; + if (data->battery_low) { + dev_err(dev, "RTC battery is low; please, consider " + "changing it!\n"); + + ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false); + if (ret) + dev_err(dev, "%s: disabling battery low interrupt " + "generation failed (%d)\n", __func__, ret); + } + + return ret; +} + +static int abb5zes3_rtc_alarm_irq_enable(struct device *dev, + unsigned int enable) +{ + struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); + int ret = 0; + + if (rtc_data->irq) { + mutex_lock(&rtc_data->lock); + if (rtc_data->timer_alarm) + ret = _abb5zes3_rtc_update_timer(dev, enable); + else + ret = _abb5zes3_rtc_update_alarm(dev, enable); + mutex_unlock(&rtc_data->lock); + } + + return ret; +} + +static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data) +{ + struct i2c_client *client = data; + struct device *dev = &client->dev; + struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); + struct rtc_device *rtc = rtc_data->rtc; + u8 regs[ABB5ZES3_CTRL_SEC_LEN]; + int ret, handled = IRQ_NONE; + + ret = regmap_bulk_read(rtc_data->regmap, 0, regs, + ABB5ZES3_CTRL_SEC_LEN); + if (ret) { + dev_err(dev, "%s: unable to read control section (%d)!\n", + __func__, ret); + return handled; + } + + /* + * Check battery low detection flag and disable battery low interrupt + * generation if flag is set (interrupt can only be cleared when + * battery is replaced). + */ + if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) { + dev_err(dev, "RTC battery is low; please change it!\n"); + + _abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false); + + handled = IRQ_HANDLED; + } + + /* Check alarm flag */ + if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) { + dev_dbg(dev, "RTC alarm!\n"); + + rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); + + /* Acknowledge and disable the alarm */ + _abb5zes3_rtc_clear_alarm(dev); + _abb5zes3_rtc_update_alarm(dev, 0); + + handled = IRQ_HANDLED; + } + + /* Check watchdog Timer A flag */ + if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) { + dev_dbg(dev, "RTC timer!\n"); + + rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); + + /* + * Acknowledge and disable the alarm. Note: WTAF + * flag had been cleared when reading CTRL2 + */ + _abb5zes3_rtc_update_timer(dev, 0); + + rtc_data->timer_alarm = 0; + + handled = IRQ_HANDLED; + } + + return handled; +} + +static const struct rtc_class_ops rtc_ops = { + .read_time = _abb5zes3_rtc_read_time, + .set_time = abb5zes3_rtc_set_time, + .read_alarm = abb5zes3_rtc_read_alarm, + .set_alarm = abb5zes3_rtc_set_alarm, + .alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable, +}; + +static struct regmap_config abb5zes3_rtc_regmap_config = { + .reg_bits = 8, + .val_bits = 8, +}; + +static int abb5zes3_probe(struct i2c_client *client, + const struct i2c_device_id *id) +{ + struct abb5zes3_rtc_data *data = NULL; + struct device *dev = &client->dev; + struct regmap *regmap; + int ret; + + if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C | + I2C_FUNC_SMBUS_BYTE_DATA | + I2C_FUNC_SMBUS_I2C_BLOCK)) { + ret = -ENODEV; + goto err; + } + + regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config); + if (IS_ERR(regmap)) { + ret = PTR_ERR(regmap); + dev_err(dev, "%s: regmap allocation failed: %d\n", + __func__, ret); + goto err; + } + + ret = abb5zes3_i2c_validate_chip(regmap); + if (ret) + goto err; + + data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); + if (!data) { + ret = -ENOMEM; + goto err; + } + + mutex_init(&data->lock); + data->regmap = regmap; + dev_set_drvdata(dev, data); + + ret = abb5zes3_rtc_check_setup(dev); + if (ret) + goto err; + + if (client->irq > 0) { + ret = devm_request_threaded_irq(dev, client->irq, NULL, + _abb5zes3_rtc_interrupt, + IRQF_SHARED|IRQF_ONESHOT, + DRV_NAME, client); + if (!ret) { + device_init_wakeup(dev, true); + data->irq = client->irq; + dev_dbg(dev, "%s: irq %d used by RTC\n", __func__, + client->irq); + } else { + dev_err(dev, "%s: irq %d unavailable (%d)\n", + __func__, client->irq, ret); + goto err; + } + } + + data->rtc = devm_rtc_device_register(dev, DRV_NAME, &rtc_ops, + THIS_MODULE); + ret = PTR_ERR_OR_ZERO(data->rtc); + if (ret) { + dev_err(dev, "%s: unable to register RTC device (%d)\n", + __func__, ret); + goto err; + } + + /* Enable battery low detection interrupt if battery not already low */ + if (!data->battery_low && data->irq) { + ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true); + if (ret) { + dev_err(dev, "%s: enabling battery low interrupt " + "generation failed (%d)\n", __func__, ret); + goto err; + } + } + +err: + if (ret && data && data->irq) + device_init_wakeup(dev, false); + return ret; +} + +static int abb5zes3_remove(struct i2c_client *client) +{ + struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(&client->dev); + + if (rtc_data->irq > 0) + device_init_wakeup(&client->dev, false); + + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int abb5zes3_rtc_suspend(struct device *dev) +{ + struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); + + if (device_may_wakeup(dev)) + return enable_irq_wake(rtc_data->irq); + + return 0; +} + +static int abb5zes3_rtc_resume(struct device *dev) +{ + struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); + + if (device_may_wakeup(dev)) + return disable_irq_wake(rtc_data->irq); + + return 0; +} +#endif + +static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend, + abb5zes3_rtc_resume); + +#ifdef CONFIG_OF +static const struct of_device_id abb5zes3_dt_match[] = { + { .compatible = "abracon,abb5zes3" }, + { }, +}; +#endif + +static const struct i2c_device_id abb5zes3_id[] = { + { "abb5zes3", 0 }, + { } +}; +MODULE_DEVICE_TABLE(i2c, abb5zes3_id); + +static struct i2c_driver abb5zes3_driver = { + .driver = { + .name = DRV_NAME, + .owner = THIS_MODULE, + .pm = &abb5zes3_rtc_pm_ops, + .of_match_table = of_match_ptr(abb5zes3_dt_match), + }, + .probe = abb5zes3_probe, + .remove = abb5zes3_remove, + .id_table = abb5zes3_id, +}; +module_i2c_driver(abb5zes3_driver); + +MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>"); +MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/rtc/rtc-armada38x.c b/drivers/rtc/rtc-armada38x.c new file mode 100644 index 000000000000..43e04af39e09 --- /dev/null +++ b/drivers/rtc/rtc-armada38x.c @@ -0,0 +1,320 @@ +/* + * RTC driver for the Armada 38x Marvell SoCs + * + * Copyright (C) 2015 Marvell + * + * Gregory Clement <gregory.clement@free-electrons.com> + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation; either version 2 of the + * License, or (at your option) any later version. + * + */ + +#include <linux/delay.h> +#include <linux/io.h> +#include <linux/module.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/rtc.h> + +#define RTC_STATUS 0x0 +#define RTC_STATUS_ALARM1 BIT(0) +#define RTC_STATUS_ALARM2 BIT(1) +#define RTC_IRQ1_CONF 0x4 +#define RTC_IRQ1_AL_EN BIT(0) +#define RTC_IRQ1_FREQ_EN BIT(1) +#define RTC_IRQ1_FREQ_1HZ BIT(2) +#define RTC_TIME 0xC +#define RTC_ALARM1 0x10 + +#define SOC_RTC_INTERRUPT 0x8 +#define SOC_RTC_ALARM1 BIT(0) +#define SOC_RTC_ALARM2 BIT(1) +#define SOC_RTC_ALARM1_MASK BIT(2) +#define SOC_RTC_ALARM2_MASK BIT(3) + +struct armada38x_rtc { + struct rtc_device *rtc_dev; + void __iomem *regs; + void __iomem *regs_soc; + spinlock_t lock; + int irq; +}; + +/* + * According to the datasheet, the OS should wait 5us after every + * register write to the RTC hard macro so that the required update + * can occur without holding off the system bus + */ +static void rtc_delayed_write(u32 val, struct armada38x_rtc *rtc, int offset) +{ + writel(val, rtc->regs + offset); + udelay(5); +} + +static int armada38x_rtc_read_time(struct device *dev, struct rtc_time *tm) +{ + struct armada38x_rtc *rtc = dev_get_drvdata(dev); + unsigned long time, time_check, flags; + + spin_lock_irqsave(&rtc->lock, flags); + + time = readl(rtc->regs + RTC_TIME); + /* + * WA for failing time set attempts. As stated in HW ERRATA if + * more than one second between two time reads is detected + * then read once again. + */ + time_check = readl(rtc->regs + RTC_TIME); + if ((time_check - time) > 1) + time_check = readl(rtc->regs + RTC_TIME); + + spin_unlock_irqrestore(&rtc->lock, flags); + + rtc_time_to_tm(time_check, tm); + + return 0; +} + +static int armada38x_rtc_set_time(struct device *dev, struct rtc_time *tm) +{ + struct armada38x_rtc *rtc = dev_get_drvdata(dev); + int ret = 0; + unsigned long time, flags; + + ret = rtc_tm_to_time(tm, &time); + + if (ret) + goto out; + /* + * Setting the RTC time not always succeeds. According to the + * errata we need to first write on the status register and + * then wait for 100ms before writing to the time register to be + * sure that the data will be taken into account. + */ + spin_lock_irqsave(&rtc->lock, flags); + + rtc_delayed_write(0, rtc, RTC_STATUS); + + spin_unlock_irqrestore(&rtc->lock, flags); + + msleep(100); + + spin_lock_irqsave(&rtc->lock, flags); + + rtc_delayed_write(time, rtc, RTC_TIME); + + spin_unlock_irqrestore(&rtc->lock, flags); +out: + return ret; +} + +static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) +{ + struct armada38x_rtc *rtc = dev_get_drvdata(dev); + unsigned long time, flags; + u32 val; + + spin_lock_irqsave(&rtc->lock, flags); + + time = readl(rtc->regs + RTC_ALARM1); + val = readl(rtc->regs + RTC_IRQ1_CONF) & RTC_IRQ1_AL_EN; + + spin_unlock_irqrestore(&rtc->lock, flags); + + alrm->enabled = val ? 1 : 0; + rtc_time_to_tm(time, &alrm->time); + + return 0; +} + +static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) +{ + struct armada38x_rtc *rtc = dev_get_drvdata(dev); + unsigned long time, flags; + int ret = 0; + u32 val; + + ret = rtc_tm_to_time(&alrm->time, &time); + + if (ret) + goto out; + + spin_lock_irqsave(&rtc->lock, flags); + + rtc_delayed_write(time, rtc, RTC_ALARM1); + + if (alrm->enabled) { + rtc_delayed_write(RTC_IRQ1_AL_EN, rtc, RTC_IRQ1_CONF); + val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT); + writel(val | SOC_RTC_ALARM1_MASK, + rtc->regs_soc + SOC_RTC_INTERRUPT); + } + + spin_unlock_irqrestore(&rtc->lock, flags); + +out: + return ret; +} + +static int armada38x_rtc_alarm_irq_enable(struct device *dev, + unsigned int enabled) +{ + struct armada38x_rtc *rtc = dev_get_drvdata(dev); + unsigned long flags; + + spin_lock_irqsave(&rtc->lock, flags); + + if (enabled) + rtc_delayed_write(RTC_IRQ1_AL_EN, rtc, RTC_IRQ1_CONF); + else + rtc_delayed_write(0, rtc, RTC_IRQ1_CONF); + + spin_unlock_irqrestore(&rtc->lock, flags); + + return 0; +} + +static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data) +{ + struct armada38x_rtc *rtc = data; + u32 val; + int event = RTC_IRQF | RTC_AF; + + dev_dbg(&rtc->rtc_dev->dev, "%s:irq(%d)\n", __func__, irq); + + spin_lock(&rtc->lock); + + val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT); + + writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT); + val = readl(rtc->regs + RTC_IRQ1_CONF); + /* disable all the interrupts for alarm 1 */ + rtc_delayed_write(0, rtc, RTC_IRQ1_CONF); + /* Ack the event */ + rtc_delayed_write(RTC_STATUS_ALARM1, rtc, RTC_STATUS); + + spin_unlock(&rtc->lock); + + if (val & RTC_IRQ1_FREQ_EN) { + if (val & RTC_IRQ1_FREQ_1HZ) + event |= RTC_UF; + else + event |= RTC_PF; + } + + rtc_update_irq(rtc->rtc_dev, 1, event); + + return IRQ_HANDLED; +} + +static struct rtc_class_ops armada38x_rtc_ops = { + .read_time = armada38x_rtc_read_time, + .set_time = armada38x_rtc_set_time, + .read_alarm = armada38x_rtc_read_alarm, + .set_alarm = armada38x_rtc_set_alarm, + .alarm_irq_enable = armada38x_rtc_alarm_irq_enable, +}; + +static __init int armada38x_rtc_probe(struct platform_device *pdev) +{ + struct resource *res; + struct armada38x_rtc *rtc; + int ret; + + rtc = devm_kzalloc(&pdev->dev, sizeof(struct armada38x_rtc), + GFP_KERNEL); + if (!rtc) + return -ENOMEM; + + spin_lock_init(&rtc->lock); + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc"); + rtc->regs = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(rtc->regs)) + return PTR_ERR(rtc->regs); + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc-soc"); + rtc->regs_soc = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(rtc->regs_soc)) + return PTR_ERR(rtc->regs_soc); + + rtc->irq = platform_get_irq(pdev, 0); + + if (rtc->irq < 0) { + dev_err(&pdev->dev, "no irq\n"); + return rtc->irq; + } + if (devm_request_irq(&pdev->dev, rtc->irq, armada38x_rtc_alarm_irq, + 0, pdev->name, rtc) < 0) { + dev_warn(&pdev->dev, "Interrupt not available.\n"); + rtc->irq = -1; + /* + * If there is no interrupt available then we can't + * use the alarm + */ + armada38x_rtc_ops.set_alarm = NULL; + armada38x_rtc_ops.alarm_irq_enable = NULL; + } + platform_set_drvdata(pdev, rtc); + if (rtc->irq != -1) + device_init_wakeup(&pdev->dev, 1); + + rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name, + &armada38x_rtc_ops, THIS_MODULE); + if (IS_ERR(rtc->rtc_dev)) { + ret = PTR_ERR(rtc->rtc_dev); + dev_err(&pdev->dev, "Failed to register RTC device: %d\n", ret); + return ret; + } + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int armada38x_rtc_suspend(struct device *dev) +{ + if (device_may_wakeup(dev)) { + struct armada38x_rtc *rtc = dev_get_drvdata(dev); + + return enable_irq_wake(rtc->irq); + } + + return 0; +} + +static int armada38x_rtc_resume(struct device *dev) +{ + if (device_may_wakeup(dev)) { + struct armada38x_rtc *rtc = dev_get_drvdata(dev); + + return disable_irq_wake(rtc->irq); + } + + return 0; +} +#endif + +static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops, + armada38x_rtc_suspend, armada38x_rtc_resume); + +#ifdef CONFIG_OF +static const struct of_device_id armada38x_rtc_of_match_table[] = { + { .compatible = "marvell,armada-380-rtc", }, + {} +}; +#endif + +static struct platform_driver armada38x_rtc_driver = { + .driver = { + .name = "armada38x-rtc", + .pm = &armada38x_rtc_pm_ops, + .of_match_table = of_match_ptr(armada38x_rtc_of_match_table), + }, +}; + +module_platform_driver_probe(armada38x_rtc_driver, armada38x_rtc_probe); + +MODULE_DESCRIPTION("Marvell Armada 38x RTC driver"); +MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>"); +MODULE_LICENSE("GPL"); diff --git a/drivers/rtc/rtc-at91sam9.c b/drivers/rtc/rtc-at91sam9.c index 6b9aaf1afc72..2183fd2750ab 100644 --- a/drivers/rtc/rtc-at91sam9.c +++ b/drivers/rtc/rtc-at91sam9.c @@ -313,7 +313,7 @@ static const struct rtc_class_ops at91_rtc_ops = { .alarm_irq_enable = at91_rtc_alarm_irq_enable, }; -static struct regmap_config gpbr_regmap_config = { +static const struct regmap_config gpbr_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, diff --git a/drivers/rtc/rtc-dev.c b/drivers/rtc/rtc-dev.c index d04939369251..799c34bcb26f 100644 --- a/drivers/rtc/rtc-dev.c +++ b/drivers/rtc/rtc-dev.c @@ -304,12 +304,12 @@ static long rtc_dev_ioctl(struct file *file, * Not supported here. */ { - unsigned long now, then; + time64_t now, then; err = rtc_read_time(rtc, &tm); if (err < 0) return err; - rtc_tm_to_time(&tm, &now); + now = rtc_tm_to_time64(&tm); alarm.time.tm_mday = tm.tm_mday; alarm.time.tm_mon = tm.tm_mon; @@ -317,11 +317,11 @@ static long rtc_dev_ioctl(struct file *file, err = rtc_valid_tm(&alarm.time); if (err < 0) return err; - rtc_tm_to_time(&alarm.time, &then); + then = rtc_tm_to_time64(&alarm.time); /* alarm may need to wrap into tomorrow */ if (then < now) { - rtc_time_to_tm(now + 24 * 60 * 60, &tm); + rtc_time64_to_tm(now + 24 * 60 * 60, &tm); alarm.time.tm_mday = tm.tm_mday; alarm.time.tm_mon = tm.tm_mon; alarm.time.tm_year = tm.tm_year; diff --git a/drivers/rtc/rtc-ds1685.c b/drivers/rtc/rtc-ds1685.c new file mode 100644 index 000000000000..8c3bfcb115b7 --- /dev/null +++ b/drivers/rtc/rtc-ds1685.c @@ -0,0 +1,2252 @@ +/* + * An rtc driver for the Dallas/Maxim DS1685/DS1687 and related real-time + * chips. + * + * Copyright (C) 2011-2014 Joshua Kinard <kumba@gentoo.org>. + * Copyright (C) 2009 Matthias Fuchs <matthias.fuchs@esd-electronics.com>. + * + * References: + * DS1685/DS1687 3V/5V Real-Time Clocks, 19-5215, Rev 4/10. + * DS17x85/DS17x87 3V/5V Real-Time Clocks, 19-5222, Rev 4/10. + * DS1689/DS1693 3V/5V Serialized Real-Time Clocks, Rev 112105. + * Application Note 90, Using the Multiplex Bus RTC Extended Features. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#include <linux/bcd.h> +#include <linux/delay.h> +#include <linux/io.h> +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/rtc.h> +#include <linux/workqueue.h> + +#include <linux/rtc/ds1685.h> + +#ifdef CONFIG_PROC_FS +#include <linux/proc_fs.h> +#endif + +#define DRV_VERSION "0.42.0" + + +/* ----------------------------------------------------------------------- */ +/* Standard read/write functions if platform does not provide overrides */ + +/** + * ds1685_read - read a value from an rtc register. + * @rtc: pointer to the ds1685 rtc structure. + * @reg: the register address to read. + */ +static u8 +ds1685_read(struct ds1685_priv *rtc, int reg) +{ + return readb((u8 __iomem *)rtc->regs + + (reg * rtc->regstep)); +} + +/** + * ds1685_write - write a value to an rtc register. + * @rtc: pointer to the ds1685 rtc structure. + * @reg: the register address to write. + * @value: value to write to the register. + */ +static void +ds1685_write(struct ds1685_priv *rtc, int reg, u8 value) +{ + writeb(value, ((u8 __iomem *)rtc->regs + + (reg * rtc->regstep))); +} +/* ----------------------------------------------------------------------- */ + + +/* ----------------------------------------------------------------------- */ +/* Inlined functions */ + +/** + * ds1685_rtc_bcd2bin - bcd2bin wrapper in case platform doesn't support BCD. + * @rtc: pointer to the ds1685 rtc structure. + * @val: u8 time value to consider converting. + * @bcd_mask: u8 mask value if BCD mode is used. + * @bin_mask: u8 mask value if BIN mode is used. + * + * Returns the value, converted to BIN if originally in BCD and bcd_mode TRUE. + */ +static inline u8 +ds1685_rtc_bcd2bin(struct ds1685_priv *rtc, u8 val, u8 bcd_mask, u8 bin_mask) +{ + if (rtc->bcd_mode) + return (bcd2bin(val) & bcd_mask); + + return (val & bin_mask); +} + +/** + * ds1685_rtc_bin2bcd - bin2bcd wrapper in case platform doesn't support BCD. + * @rtc: pointer to the ds1685 rtc structure. + * @val: u8 time value to consider converting. + * @bin_mask: u8 mask value if BIN mode is used. + * @bcd_mask: u8 mask value if BCD mode is used. + * + * Returns the value, converted to BCD if originally in BIN and bcd_mode TRUE. + */ +static inline u8 +ds1685_rtc_bin2bcd(struct ds1685_priv *rtc, u8 val, u8 bin_mask, u8 bcd_mask) +{ + if (rtc->bcd_mode) + return (bin2bcd(val) & bcd_mask); + + return (val & bin_mask); +} + +/** + * ds1685_rtc_switch_to_bank0 - switch the rtc to bank 0. + * @rtc: pointer to the ds1685 rtc structure. + */ +static inline void +ds1685_rtc_switch_to_bank0(struct ds1685_priv *rtc) +{ + rtc->write(rtc, RTC_CTRL_A, + (rtc->read(rtc, RTC_CTRL_A) & ~(RTC_CTRL_A_DV0))); +} + +/** + * ds1685_rtc_switch_to_bank1 - switch the rtc to bank 1. + * @rtc: pointer to the ds1685 rtc structure. + */ +static inline void +ds1685_rtc_switch_to_bank1(struct ds1685_priv *rtc) +{ + rtc->write(rtc, RTC_CTRL_A, + (rtc->read(rtc, RTC_CTRL_A) | RTC_CTRL_A_DV0)); +} + +/** + * ds1685_rtc_begin_data_access - prepare the rtc for data access. + * @rtc: pointer to the ds1685 rtc structure. + * + * This takes several steps to prepare the rtc for access to get/set time + * and alarm values from the rtc registers: + * - Sets the SET bit in Control Register B. + * - Reads Ext Control Register 4A and checks the INCR bit. + * - If INCR is active, a short delay is added before Ext Control Register 4A + * is read again in a loop until INCR is inactive. + * - Switches the rtc to bank 1. This allows access to all relevant + * data for normal rtc operation, as bank 0 contains only the nvram. + */ +static inline void +ds1685_rtc_begin_data_access(struct ds1685_priv *rtc) +{ + /* Set the SET bit in Ctrl B */ + rtc->write(rtc, RTC_CTRL_B, + (rtc->read(rtc, RTC_CTRL_B) | RTC_CTRL_B_SET)); + + /* Read Ext Ctrl 4A and check the INCR bit to avoid a lockout. */ + while (rtc->read(rtc, RTC_EXT_CTRL_4A) & RTC_CTRL_4A_INCR) + cpu_relax(); + + /* Switch to Bank 1 */ + ds1685_rtc_switch_to_bank1(rtc); +} + +/** + * ds1685_rtc_end_data_access - end data access on the rtc. + * @rtc: pointer to the ds1685 rtc structure. + * + * This ends what was started by ds1685_rtc_begin_data_access: + * - Switches the rtc back to bank 0. + * - Clears the SET bit in Control Register B. + */ +static inline void +ds1685_rtc_end_data_access(struct ds1685_priv *rtc) +{ + /* Switch back to Bank 0 */ + ds1685_rtc_switch_to_bank1(rtc); + + /* Clear the SET bit in Ctrl B */ + rtc->write(rtc, RTC_CTRL_B, + (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_SET))); +} + +/** + * ds1685_rtc_begin_ctrl_access - prepare the rtc for ctrl access. + * @rtc: pointer to the ds1685 rtc structure. + * @flags: irq flags variable for spin_lock_irqsave. + * + * This takes several steps to prepare the rtc for access to read just the + * control registers: + * - Sets a spinlock on the rtc IRQ. + * - Switches the rtc to bank 1. This allows access to the two extended + * control registers. + * + * Only use this where you are certain another lock will not be held. + */ +static inline void +ds1685_rtc_begin_ctrl_access(struct ds1685_priv *rtc, unsigned long flags) +{ + spin_lock_irqsave(&rtc->lock, flags); + ds1685_rtc_switch_to_bank1(rtc); +} + +/** + * ds1685_rtc_end_ctrl_access - end ctrl access on the rtc. + * @rtc: pointer to the ds1685 rtc structure. + * @flags: irq flags variable for spin_unlock_irqrestore. + * + * This ends what was started by ds1685_rtc_begin_ctrl_access: + * - Switches the rtc back to bank 0. + * - Unsets the spinlock on the rtc IRQ. + */ +static inline void +ds1685_rtc_end_ctrl_access(struct ds1685_priv *rtc, unsigned long flags) +{ + ds1685_rtc_switch_to_bank0(rtc); + spin_unlock_irqrestore(&rtc->lock, flags); +} + +/** + * ds1685_rtc_get_ssn - retrieve the silicon serial number. + * @rtc: pointer to the ds1685 rtc structure. + * @ssn: u8 array to hold the bits of the silicon serial number. + * + * This number starts at 0x40, and is 8-bytes long, ending at 0x47. The + * first byte is the model number, the next six bytes are the serial number + * digits, and the final byte is a CRC check byte. Together, they form the + * silicon serial number. + * + * These values are stored in bank1, so ds1685_rtc_switch_to_bank1 must be + * called first before calling this function, else data will be read out of + * the bank0 NVRAM. Be sure to call ds1685_rtc_switch_to_bank0 when done. + */ +static inline void +ds1685_rtc_get_ssn(struct ds1685_priv *rtc, u8 *ssn) +{ + ssn[0] = rtc->read(rtc, RTC_BANK1_SSN_MODEL); + ssn[1] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_1); + ssn[2] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_2); + ssn[3] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_3); + ssn[4] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_4); + ssn[5] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_5); + ssn[6] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_6); + ssn[7] = rtc->read(rtc, RTC_BANK1_SSN_CRC); +} +/* ----------------------------------------------------------------------- */ + + +/* ----------------------------------------------------------------------- */ +/* Read/Set Time & Alarm functions */ + +/** + * ds1685_rtc_read_time - reads the time registers. + * @dev: pointer to device structure. + * @tm: pointer to rtc_time structure. + */ +static int +ds1685_rtc_read_time(struct device *dev, struct rtc_time *tm) +{ + struct platform_device *pdev = to_platform_device(dev); + struct ds1685_priv *rtc = platform_get_drvdata(pdev); + u8 ctrlb, century; + u8 seconds, minutes, hours, wday, mday, month, years; + + /* Fetch the time info from the RTC registers. */ + ds1685_rtc_begin_data_access(rtc); + seconds = rtc->read(rtc, RTC_SECS); + minutes = rtc->read(rtc, RTC_MINS); + hours = rtc->read(rtc, RTC_HRS); + wday = rtc->read(rtc, RTC_WDAY); + mday = rtc->read(rtc, RTC_MDAY); + month = rtc->read(rtc, RTC_MONTH); + years = rtc->read(rtc, RTC_YEAR); + century = rtc->read(rtc, RTC_CENTURY); + ctrlb = rtc->read(rtc, RTC_CTRL_B); + ds1685_rtc_end_data_access(rtc); + + /* bcd2bin if needed, perform fixups, and store to rtc_time. */ + years = ds1685_rtc_bcd2bin(rtc, years, RTC_YEAR_BCD_MASK, + RTC_YEAR_BIN_MASK); + century = ds1685_rtc_bcd2bin(rtc, century, RTC_CENTURY_MASK, + RTC_CENTURY_MASK); + tm->tm_sec = ds1685_rtc_bcd2bin(rtc, seconds, RTC_SECS_BCD_MASK, + RTC_SECS_BIN_MASK); + tm->tm_min = ds1685_rtc_bcd2bin(rtc, minutes, RTC_MINS_BCD_MASK, + RTC_MINS_BIN_MASK); + tm->tm_hour = ds1685_rtc_bcd2bin(rtc, hours, RTC_HRS_24_BCD_MASK, + RTC_HRS_24_BIN_MASK); + tm->tm_wday = (ds1685_rtc_bcd2bin(rtc, wday, RTC_WDAY_MASK, + RTC_WDAY_MASK) - 1); + tm->tm_mday = ds1685_rtc_bcd2bin(rtc, mday, RTC_MDAY_BCD_MASK, + RTC_MDAY_BIN_MASK); + tm->tm_mon = (ds1685_rtc_bcd2bin(rtc, month, RTC_MONTH_BCD_MASK, + RTC_MONTH_BIN_MASK) - 1); + tm->tm_year = ((years + (century * 100)) - 1900); + tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year); + tm->tm_isdst = 0; /* RTC has hardcoded timezone, so don't use. */ + + return rtc_valid_tm(tm); +} + +/** + * ds1685_rtc_set_time - sets the time registers. + * @dev: pointer to device structure. + * @tm: pointer to rtc_time structure. + */ +static int +ds1685_rtc_set_time(struct device *dev, struct rtc_time *tm) +{ + struct platform_device *pdev = to_platform_device(dev); + struct ds1685_priv *rtc = platform_get_drvdata(pdev); + u8 ctrlb, seconds, minutes, hours, wday, mday, month, years, century; + + /* Fetch the time info from rtc_time. */ + seconds = ds1685_rtc_bin2bcd(rtc, tm->tm_sec, RTC_SECS_BIN_MASK, + RTC_SECS_BCD_MASK); + minutes = ds1685_rtc_bin2bcd(rtc, tm->tm_min, RTC_MINS_BIN_MASK, + RTC_MINS_BCD_MASK); + hours = ds1685_rtc_bin2bcd(rtc, tm->tm_hour, RTC_HRS_24_BIN_MASK, + RTC_HRS_24_BCD_MASK); + wday = ds1685_rtc_bin2bcd(rtc, (tm->tm_wday + 1), RTC_WDAY_MASK, + RTC_WDAY_MASK); + mday = ds1685_rtc_bin2bcd(rtc, tm->tm_mday, RTC_MDAY_BIN_MASK, + RTC_MDAY_BCD_MASK); + month = ds1685_rtc_bin2bcd(rtc, (tm->tm_mon + 1), RTC_MONTH_BIN_MASK, + RTC_MONTH_BCD_MASK); + years = ds1685_rtc_bin2bcd(rtc, (tm->tm_year % 100), + RTC_YEAR_BIN_MASK, RTC_YEAR_BCD_MASK); + century = ds1685_rtc_bin2bcd(rtc, ((tm->tm_year + 1900) / 100), + RTC_CENTURY_MASK, RTC_CENTURY_MASK); + + /* + * Perform Sanity Checks: + * - Months: !> 12, Month Day != 0. + * - Month Day !> Max days in current month. + * - Hours !>= 24, Mins !>= 60, Secs !>= 60, & Weekday !> 7. + */ + if ((tm->tm_mon > 11) || (mday == 0)) + return -EDOM; + + if (tm->tm_mday > rtc_month_days(tm->tm_mon, tm->tm_year)) + return -EDOM; + + if ((tm->tm_hour >= 24) || (tm->tm_min >= 60) || + (tm->tm_sec >= 60) || (wday > 7)) + return -EDOM; + + /* + * Set the data mode to use and store the time values in the + * RTC registers. + */ + ds1685_rtc_begin_data_access(rtc); + ctrlb = rtc->read(rtc, RTC_CTRL_B); + if (rtc->bcd_mode) + ctrlb &= ~(RTC_CTRL_B_DM); + else + ctrlb |= RTC_CTRL_B_DM; + rtc->write(rtc, RTC_CTRL_B, ctrlb); + rtc->write(rtc, RTC_SECS, seconds); + rtc->write(rtc, RTC_MINS, minutes); + rtc->write(rtc, RTC_HRS, hours); + rtc->write(rtc, RTC_WDAY, wday); + rtc->write(rtc, RTC_MDAY, mday); + rtc->write(rtc, RTC_MONTH, month); + rtc->write(rtc, RTC_YEAR, years); + rtc->write(rtc, RTC_CENTURY, century); + ds1685_rtc_end_data_access(rtc); + + return 0; +} + +/** + * ds1685_rtc_read_alarm - reads the alarm registers. + * @dev: pointer to device structure. + * @alrm: pointer to rtc_wkalrm structure. + * + * There are three primary alarm registers: seconds, minutes, and hours. + * A fourth alarm register for the month date is also available in bank1 for + * kickstart/wakeup features. The DS1685/DS1687 manual states that a + * "don't care" value ranging from 0xc0 to 0xff may be written into one or + * more of the three alarm bytes to act as a wildcard value. The fourth + * byte doesn't support a "don't care" value. + */ +static int +ds1685_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) +{ + struct platform_device *pdev = to_platform_device(dev); + struct ds1685_priv *rtc = platform_get_drvdata(pdev); + u8 seconds, minutes, hours, mday, ctrlb, ctrlc; + + /* Fetch the alarm info from the RTC alarm registers. */ + ds1685_rtc_begin_data_access(rtc); + seconds = rtc->read(rtc, RTC_SECS_ALARM); + minutes = rtc->read(rtc, RTC_MINS_ALARM); + hours = rtc->read(rtc, RTC_HRS_ALARM); + mday = rtc->read(rtc, RTC_MDAY_ALARM); + ctrlb = rtc->read(rtc, RTC_CTRL_B); + ctrlc = rtc->read(rtc, RTC_CTRL_C); + ds1685_rtc_end_data_access(rtc); + + /* Check month date. */ + if (!(mday >= 1) && (mday <= 31)) + return -EDOM; + + /* + * Check the three alarm bytes. + * + * The Linux RTC system doesn't support the "don't care" capability + * of this RTC chip. We check for it anyways in case support is + * added in the future. + */ + if (unlikely((seconds >= 0xc0) && (seconds <= 0xff))) + alrm->time.tm_sec = -1; + else + alrm->time.tm_sec = ds1685_rtc_bcd2bin(rtc, seconds, + RTC_SECS_BCD_MASK, + RTC_SECS_BIN_MASK); + + if (unlikely((minutes >= 0xc0) && (minutes <= 0xff))) + alrm->time.tm_min = -1; + else + alrm->time.tm_min = ds1685_rtc_bcd2bin(rtc, minutes, + RTC_MINS_BCD_MASK, + RTC_MINS_BIN_MASK); + + if (unlikely((hours >= 0xc0) && (hours <= 0xff))) + alrm->time.tm_hour = -1; + else + alrm->time.tm_hour = ds1685_rtc_bcd2bin(rtc, hours, + RTC_HRS_24_BCD_MASK, + RTC_HRS_24_BIN_MASK); + + /* Write the data to rtc_wkalrm. */ + alrm->time.tm_mday = ds1685_rtc_bcd2bin(rtc, mday, RTC_MDAY_BCD_MASK, + RTC_MDAY_BIN_MASK); + alrm->time.tm_mon = -1; + alrm->time.tm_year = -1; + alrm->time.tm_wday = -1; + alrm->time.tm_yday = -1; + alrm->time.tm_isdst = -1; + alrm->enabled = !!(ctrlb & RTC_CTRL_B_AIE); + alrm->pending = !!(ctrlc & RTC_CTRL_C_AF); + + return 0; +} + +/** + * ds1685_rtc_set_alarm - sets the alarm in registers. + * @dev: pointer to device structure. + * @alrm: pointer to rtc_wkalrm structure. + */ +static int +ds1685_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) +{ + struct platform_device *pdev = to_platform_device(dev); + struct ds1685_priv *rtc = platform_get_drvdata(pdev); + u8 ctrlb, seconds, minutes, hours, mday; + + /* Fetch the alarm info and convert to BCD. */ + seconds = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_sec, + RTC_SECS_BIN_MASK, + RTC_SECS_BCD_MASK); + minutes = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_min, + RTC_MINS_BIN_MASK, + RTC_MINS_BCD_MASK); + hours = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_hour, + RTC_HRS_24_BIN_MASK, + RTC_HRS_24_BCD_MASK); + mday = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_mday, + RTC_MDAY_BIN_MASK, + RTC_MDAY_BCD_MASK); + + /* Check the month date for validity. */ + if (!(mday >= 1) && (mday <= 31)) + return -EDOM; + + /* + * Check the three alarm bytes. + * + * The Linux RTC system doesn't support the "don't care" capability + * of this RTC chip because rtc_valid_tm tries to validate every + * field, and we only support four fields. We put the support + * here anyways for the future. + */ + if (unlikely((seconds >= 0xc0) && (seconds <= 0xff))) + seconds = 0xff; + + if (unlikely((minutes >= 0xc0) && (minutes <= 0xff))) + minutes = 0xff; + + if (unlikely((hours >= 0xc0) && (hours <= 0xff))) + hours = 0xff; + + alrm->time.tm_mon = -1; + alrm->time.tm_year = -1; + alrm->time.tm_wday = -1; + alrm->time.tm_yday = -1; + alrm->time.tm_isdst = -1; + + /* Disable the alarm interrupt first. */ + ds1685_rtc_begin_data_access(rtc); + ctrlb = rtc->read(rtc, RTC_CTRL_B); + rtc->write(rtc, RTC_CTRL_B, (ctrlb & ~(RTC_CTRL_B_AIE))); + + /* Read ctrlc to clear RTC_CTRL_C_AF. */ + rtc->read(rtc, RTC_CTRL_C); + + /* + * Set the data mode to use and store the time values in the + * RTC registers. + */ + ctrlb = rtc->read(rtc, RTC_CTRL_B); + if (rtc->bcd_mode) + ctrlb &= ~(RTC_CTRL_B_DM); + else + ctrlb |= RTC_CTRL_B_DM; + rtc->write(rtc, RTC_CTRL_B, ctrlb); + rtc->write(rtc, RTC_SECS_ALARM, seconds); + rtc->write(rtc, RTC_MINS_ALARM, minutes); + rtc->write(rtc, RTC_HRS_ALARM, hours); + rtc->write(rtc, RTC_MDAY_ALARM, mday); + + /* Re-enable the alarm if needed. */ + if (alrm->enabled) { + ctrlb = rtc->read(rtc, RTC_CTRL_B); + ctrlb |= RTC_CTRL_B_AIE; + rtc->write(rtc, RTC_CTRL_B, ctrlb); + } + + /* Done! */ + ds1685_rtc_end_data_access(rtc); + + return 0; +} +/* ----------------------------------------------------------------------- */ + + +/* ----------------------------------------------------------------------- */ +/* /dev/rtcX Interface functions */ + +#ifdef CONFIG_RTC_INTF_DEV +/** + * ds1685_rtc_alarm_irq_enable - replaces ioctl() RTC_AIE on/off. + * @dev: pointer to device structure. + * @enabled: flag indicating whether to enable or disable. + */ +static int +ds1685_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) +{ + struct ds1685_priv *rtc = dev_get_drvdata(dev); + unsigned long flags = 0; + + /* Enable/disable the Alarm IRQ-Enable flag. */ + spin_lock_irqsave(&rtc->lock, flags); + + /* Flip the requisite interrupt-enable bit. */ + if (enabled) + rtc->write(rtc, RTC_CTRL_B, (rtc->read(rtc, RTC_CTRL_B) | + RTC_CTRL_B_AIE)); + else + rtc->write(rtc, RTC_CTRL_B, (rtc->read(rtc, RTC_CTRL_B) & + ~(RTC_CTRL_B_AIE))); + + /* Read Control C to clear all the flag bits. */ + rtc->read(rtc, RTC_CTRL_C); + spin_unlock_irqrestore(&rtc->lock, flags); + + return 0; +} +#endif +/* ----------------------------------------------------------------------- */ + + +/* ----------------------------------------------------------------------- */ +/* IRQ handler & workqueue. */ + +/** + * ds1685_rtc_irq_handler - IRQ handler. + * @irq: IRQ number. + * @dev_id: platform device pointer. + */ +static irqreturn_t +ds1685_rtc_irq_handler(int irq, void *dev_id) +{ + struct platform_device *pdev = dev_id; + struct ds1685_priv *rtc = platform_get_drvdata(pdev); + u8 ctrlb, ctrlc; + unsigned long events = 0; + u8 num_irqs = 0; + + /* Abort early if the device isn't ready yet (i.e., DEBUG_SHIRQ). */ + if (unlikely(!rtc)) + return IRQ_HANDLED; + + /* Ctrlb holds the interrupt-enable bits and ctrlc the flag bits. */ + spin_lock(&rtc->lock); + ctrlb = rtc->read(rtc, RTC_CTRL_B); + ctrlc = rtc->read(rtc, RTC_CTRL_C); + + /* Is the IRQF bit set? */ + if (likely(ctrlc & RTC_CTRL_C_IRQF)) { + /* + * We need to determine if it was one of the standard + * events: PF, AF, or UF. If so, we handle them and + * update the RTC core. + */ + if (likely(ctrlc & RTC_CTRL_B_PAU_MASK)) { + events = RTC_IRQF; + + /* Check for a periodic interrupt. */ + if ((ctrlb & RTC_CTRL_B_PIE) && + (ctrlc & RTC_CTRL_C_PF)) { + events |= RTC_PF; + num_irqs++; + } + + /* Check for an alarm interrupt. */ + if ((ctrlb & RTC_CTRL_B_AIE) && + (ctrlc & RTC_CTRL_C_AF)) { + events |= RTC_AF; + num_irqs++; + } + + /* Check for an update interrupt. */ + if ((ctrlb & RTC_CTRL_B_UIE) && + (ctrlc & RTC_CTRL_C_UF)) { + events |= RTC_UF; + num_irqs++; + } + + rtc_update_irq(rtc->dev, num_irqs, events); + } else { + /* + * One of the "extended" interrupts was received that + * is not recognized by the RTC core. These need to + * be handled in task context as they can call other + * functions and the time spent in irq context needs + * to be minimized. Schedule them into a workqueue + * and inform the RTC core that the IRQs were handled. + */ + spin_unlock(&rtc->lock); + schedule_work(&rtc->work); + rtc_update_irq(rtc->dev, 0, 0); + return IRQ_HANDLED; + } + } + spin_unlock(&rtc->lock); + + return events ? IRQ_HANDLED : IRQ_NONE; +} + +/** + * ds1685_rtc_work_queue - work queue handler. + * @work: work_struct containing data to work on in task context. + */ +static void +ds1685_rtc_work_queue(struct work_struct *work) +{ + struct ds1685_priv *rtc = container_of(work, + struct ds1685_priv, work); + struct platform_device *pdev = to_platform_device(&rtc->dev->dev); + struct mutex *rtc_mutex = &rtc->dev->ops_lock; + u8 ctrl4a, ctrl4b; + + mutex_lock(rtc_mutex); + + ds1685_rtc_switch_to_bank1(rtc); + ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A); + ctrl4b = rtc->read(rtc, RTC_EXT_CTRL_4B); + + /* + * Check for a kickstart interrupt. With Vcc applied, this + * typically means that the power button was pressed, so we + * begin the shutdown sequence. + */ + if ((ctrl4b & RTC_CTRL_4B_KSE) && (ctrl4a & RTC_CTRL_4A_KF)) { + /* Briefly disable kickstarts to debounce button presses. */ + rtc->write(rtc, RTC_EXT_CTRL_4B, + (rtc->read(rtc, RTC_EXT_CTRL_4B) & + ~(RTC_CTRL_4B_KSE))); + + /* Clear the kickstart flag. */ + rtc->write(rtc, RTC_EXT_CTRL_4A, + (ctrl4a & ~(RTC_CTRL_4A_KF))); + + + /* + * Sleep 500ms before re-enabling kickstarts. This allows + * adequate time to avoid reading signal jitter as additional + * button presses. + */ + msleep(500); + rtc->write(rtc, RTC_EXT_CTRL_4B, + (rtc->read(rtc, RTC_EXT_CTRL_4B) | + RTC_CTRL_4B_KSE)); + + /* Call the platform pre-poweroff function. Else, shutdown. */ + if (rtc->prepare_poweroff != NULL) + rtc->prepare_poweroff(); + else + ds1685_rtc_poweroff(pdev); + } + + /* + * Check for a wake-up interrupt. With Vcc applied, this is + * essentially a second alarm interrupt, except it takes into + * account the 'date' register in bank1 in addition to the + * standard three alarm registers. + */ + if ((ctrl4b & RTC_CTRL_4B_WIE) && (ctrl4a & RTC_CTRL_4A_WF)) { + rtc->write(rtc, RTC_EXT_CTRL_4A, + (ctrl4a & ~(RTC_CTRL_4A_WF))); + + /* Call the platform wake_alarm function if defined. */ + if (rtc->wake_alarm != NULL) + rtc->wake_alarm(); + else + dev_warn(&pdev->dev, + "Wake Alarm IRQ just occurred!\n"); + } + + /* + * Check for a ram-clear interrupt. This happens if RIE=1 and RF=0 + * when RCE=1 in 4B. This clears all NVRAM bytes in bank0 by setting + * each byte to a logic 1. This has no effect on any extended + * NV-SRAM that might be present, nor on the time/calendar/alarm + * registers. After a ram-clear is completed, there is a minimum + * recovery time of ~150ms in which all reads/writes are locked out. + * NOTE: A ram-clear can still occur if RCE=1 and RIE=0. We cannot + * catch this scenario. + */ + if ((ctrl4b & RTC_CTRL_4B_RIE) && (ctrl4a & RTC_CTRL_4A_RF)) { + rtc->write(rtc, RTC_EXT_CTRL_4A, + (ctrl4a & ~(RTC_CTRL_4A_RF))); + msleep(150); + + /* Call the platform post_ram_clear function if defined. */ + if (rtc->post_ram_clear != NULL) + rtc->post_ram_clear(); + else + dev_warn(&pdev->dev, + "RAM-Clear IRQ just occurred!\n"); + } + ds1685_rtc_switch_to_bank0(rtc); + + mutex_unlock(rtc_mutex); +} +/* ----------------------------------------------------------------------- */ + + +/* ----------------------------------------------------------------------- */ +/* ProcFS interface */ + +#ifdef CONFIG_PROC_FS +#define NUM_REGS 6 /* Num of control registers. */ +#define NUM_BITS 8 /* Num bits per register. */ +#define NUM_SPACES 4 /* Num spaces between each bit. */ + +/* + * Periodic Interrupt Rates. + */ +static const char *ds1685_rtc_pirq_rate[16] = { + "none", "3.90625ms", "7.8125ms", "0.122070ms", "0.244141ms", + "0.488281ms", "0.9765625ms", "1.953125ms", "3.90625ms", "7.8125ms", + "15.625ms", "31.25ms", "62.5ms", "125ms", "250ms", "500ms" +}; + +/* + * Square-Wave Output Frequencies. + */ +static const char *ds1685_rtc_sqw_freq[16] = { + "none", "256Hz", "128Hz", "8192Hz", "4096Hz", "2048Hz", "1024Hz", + "512Hz", "256Hz", "128Hz", "64Hz", "32Hz", "16Hz", "8Hz", "4Hz", "2Hz" +}; + +#ifdef CONFIG_RTC_DS1685_PROC_REGS +/** + * ds1685_rtc_print_regs - helper function to print register values. + * @hex: hex byte to convert into binary bits. + * @dest: destination char array. + * + * This is basically a hex->binary function, just with extra spacing between + * the digits. It only works on 1-byte values (8 bits). + */ +static char* +ds1685_rtc_print_regs(u8 hex, char *dest) +{ + u32 i, j; + char *tmp = dest; + + for (i = 0; i < NUM_BITS; i++) { + *tmp++ = ((hex & 0x80) != 0 ? '1' : '0'); + for (j = 0; j < NUM_SPACES; j++) + *tmp++ = ' '; + hex <<= 1; + } + *tmp++ = '\0'; + + return dest; +} +#endif + +/** + * ds1685_rtc_proc - procfs access function. + * @dev: pointer to device structure. + * @seq: pointer to seq_file structure. + */ +static int +ds1685_rtc_proc(struct device *dev, struct seq_file *seq) +{ + struct platform_device *pdev = to_platform_device(dev); + struct ds1685_priv *rtc = platform_get_drvdata(pdev); + u8 ctrla, ctrlb, ctrlc, ctrld, ctrl4a, ctrl4b, ssn[8]; + char *model = '\0'; +#ifdef CONFIG_RTC_DS1685_PROC_REGS + char bits[NUM_REGS][(NUM_BITS * NUM_SPACES) + NUM_BITS + 1]; +#endif + + /* Read all the relevant data from the control registers. */ + ds1685_rtc_switch_to_bank1(rtc); + ds1685_rtc_get_ssn(rtc, ssn); + ctrla = rtc->read(rtc, RTC_CTRL_A); + ctrlb = rtc->read(rtc, RTC_CTRL_B); + ctrlc = rtc->read(rtc, RTC_CTRL_C); + ctrld = rtc->read(rtc, RTC_CTRL_D); + ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A); + ctrl4b = rtc->read(rtc, RTC_EXT_CTRL_4B); + ds1685_rtc_switch_to_bank0(rtc); + + /* Determine the RTC model. */ + switch (ssn[0]) { + case RTC_MODEL_DS1685: + model = "DS1685/DS1687\0"; + break; + case RTC_MODEL_DS1689: + model = "DS1689/DS1693\0"; + break; + case RTC_MODEL_DS17285: + model = "DS17285/DS17287\0"; + break; + case RTC_MODEL_DS17485: + model = "DS17485/DS17487\0"; + break; + case RTC_MODEL_DS17885: + model = "DS17885/DS17887\0"; + break; + default: + model = "Unknown\0"; + break; + } + + /* Print out the information. */ + seq_printf(seq, + "Model\t\t: %s\n" + "Oscillator\t: %s\n" + "12/24hr\t\t: %s\n" + "DST\t\t: %s\n" + "Data mode\t: %s\n" + "Battery\t\t: %s\n" + "Aux batt\t: %s\n" + "Update IRQ\t: %s\n" + "Periodic IRQ\t: %s\n" + "Periodic Rate\t: %s\n" + "SQW Freq\t: %s\n" +#ifdef CONFIG_RTC_DS1685_PROC_REGS + "Serial #\t: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n" + "Register Status\t:\n" + " Ctrl A\t: UIP DV2 DV1 DV0 RS3 RS2 RS1 RS0\n" + "\t\t: %s\n" + " Ctrl B\t: SET PIE AIE UIE SQWE DM 2412 DSE\n" + "\t\t: %s\n" + " Ctrl C\t: IRQF PF AF UF --- --- --- ---\n" + "\t\t: %s\n" + " Ctrl D\t: VRT --- --- --- --- --- --- ---\n" + "\t\t: %s\n" +#if !defined(CONFIG_RTC_DRV_DS1685) && !defined(CONFIG_RTC_DRV_DS1689) + " Ctrl 4A\t: VRT2 INCR BME --- PAB RF WF KF\n" +#else + " Ctrl 4A\t: VRT2 INCR --- --- PAB RF WF KF\n" +#endif + "\t\t: %s\n" + " Ctrl 4B\t: ABE E32k CS RCE PRS RIE WIE KSE\n" + "\t\t: %s\n", +#else + "Serial #\t: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", +#endif + model, + ((ctrla & RTC_CTRL_A_DV1) ? "enabled" : "disabled"), + ((ctrlb & RTC_CTRL_B_2412) ? "24-hour" : "12-hour"), + ((ctrlb & RTC_CTRL_B_DSE) ? "enabled" : "disabled"), + ((ctrlb & RTC_CTRL_B_DM) ? "binary" : "BCD"), + ((ctrld & RTC_CTRL_D_VRT) ? "ok" : "exhausted or n/a"), + ((ctrl4a & RTC_CTRL_4A_VRT2) ? "ok" : "exhausted or n/a"), + ((ctrlb & RTC_CTRL_B_UIE) ? "yes" : "no"), + ((ctrlb & RTC_CTRL_B_PIE) ? "yes" : "no"), + (!(ctrl4b & RTC_CTRL_4B_E32K) ? + ds1685_rtc_pirq_rate[(ctrla & RTC_CTRL_A_RS_MASK)] : "none"), + (!((ctrl4b & RTC_CTRL_4B_E32K)) ? + ds1685_rtc_sqw_freq[(ctrla & RTC_CTRL_A_RS_MASK)] : "32768Hz"), +#ifdef CONFIG_RTC_DS1685_PROC_REGS + ssn[0], ssn[1], ssn[2], ssn[3], ssn[4], ssn[5], ssn[6], ssn[7], + ds1685_rtc_print_regs(ctrla, bits[0]), + ds1685_rtc_print_regs(ctrlb, bits[1]), + ds1685_rtc_print_regs(ctrlc, bits[2]), + ds1685_rtc_print_regs(ctrld, bits[3]), + ds1685_rtc_print_regs(ctrl4a, bits[4]), + ds1685_rtc_print_regs(ctrl4b, bits[5])); +#else + ssn[0], ssn[1], ssn[2], ssn[3], ssn[4], ssn[5], ssn[6], ssn[7]); +#endif + return 0; +} +#else +#define ds1685_rtc_proc NULL +#endif /* CONFIG_PROC_FS */ +/* ----------------------------------------------------------------------- */ + + +/* ----------------------------------------------------------------------- */ +/* RTC Class operations */ + +static const struct rtc_class_ops +ds1685_rtc_ops = { + .proc = ds1685_rtc_proc, + .read_time = ds1685_rtc_read_time, + .set_time = ds1685_rtc_set_time, + .read_alarm = ds1685_rtc_read_alarm, + .set_alarm = ds1685_rtc_set_alarm, + .alarm_irq_enable = ds1685_rtc_alarm_irq_enable, +}; +/* ----------------------------------------------------------------------- */ + + +/* ----------------------------------------------------------------------- */ +/* SysFS interface */ + +#ifdef CONFIG_SYSFS +/** + * ds1685_rtc_sysfs_nvram_read - reads rtc nvram via sysfs. + * @file: pointer to file structure. + * @kobj: pointer to kobject structure. + * @bin_attr: pointer to bin_attribute structure. + * @buf: pointer to char array to hold the output. + * @pos: current file position pointer. + * @size: size of the data to read. + */ +static ssize_t +ds1685_rtc_sysfs_nvram_read(struct file *filp, struct kobject *kobj, + struct bin_attribute *bin_attr, char *buf, + loff_t pos, size_t size) +{ + struct platform_device *pdev = + to_platform_device(container_of(kobj, struct device, kobj)); + struct ds1685_priv *rtc = platform_get_drvdata(pdev); + ssize_t count; + unsigned long flags = 0; + + spin_lock_irqsave(&rtc->lock, flags); + ds1685_rtc_switch_to_bank0(rtc); + + /* Read NVRAM in time and bank0 registers. */ + for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ_BANK0; + count++, size--) { + if (count < NVRAM_SZ_TIME) + *buf++ = rtc->read(rtc, (NVRAM_TIME_BASE + pos++)); + else + *buf++ = rtc->read(rtc, (NVRAM_BANK0_BASE + pos++)); + } + +#ifndef CONFIG_RTC_DRV_DS1689 + if (size > 0) { + ds1685_rtc_switch_to_bank1(rtc); + +#ifndef CONFIG_RTC_DRV_DS1685 + /* Enable burst-mode on DS17x85/DS17x87 */ + rtc->write(rtc, RTC_EXT_CTRL_4A, + (rtc->read(rtc, RTC_EXT_CTRL_4A) | + RTC_CTRL_4A_BME)); + + /* We need one write to RTC_BANK1_RAM_ADDR_LSB to start + * reading with burst-mode */ + rtc->write(rtc, RTC_BANK1_RAM_ADDR_LSB, + (pos - NVRAM_TOTAL_SZ_BANK0)); +#endif + + /* Read NVRAM in bank1 registers. */ + for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ; + count++, size--) { +#ifdef CONFIG_RTC_DRV_DS1685 + /* DS1685/DS1687 has to write to RTC_BANK1_RAM_ADDR + * before each read. */ + rtc->write(rtc, RTC_BANK1_RAM_ADDR, + (pos - NVRAM_TOTAL_SZ_BANK0)); +#endif + *buf++ = rtc->read(rtc, RTC_BANK1_RAM_DATA_PORT); + pos++; + } + +#ifndef CONFIG_RTC_DRV_DS1685 + /* Disable burst-mode on DS17x85/DS17x87 */ + rtc->write(rtc, RTC_EXT_CTRL_4A, + (rtc->read(rtc, RTC_EXT_CTRL_4A) & + ~(RTC_CTRL_4A_BME))); +#endif + ds1685_rtc_switch_to_bank0(rtc); + } +#endif /* !CONFIG_RTC_DRV_DS1689 */ + spin_unlock_irqrestore(&rtc->lock, flags); + + /* + * XXX: Bug? this appears to cause the function to get executed + * several times in succession. But it's the only way to actually get + * data written out to a file. + */ + return count; +} + +/** + * ds1685_rtc_sysfs_nvram_write - writes rtc nvram via sysfs. + * @file: pointer to file structure. + * @kobj: pointer to kobject structure. + * @bin_attr: pointer to bin_attribute structure. + * @buf: pointer to char array to hold the input. + * @pos: current file position pointer. + * @size: size of the data to write. + */ +static ssize_t +ds1685_rtc_sysfs_nvram_write(struct file *filp, struct kobject *kobj, + struct bin_attribute *bin_attr, char *buf, + loff_t pos, size_t size) +{ + struct platform_device *pdev = + to_platform_device(container_of(kobj, struct device, kobj)); + struct ds1685_priv *rtc = platform_get_drvdata(pdev); + ssize_t count; + unsigned long flags = 0; + + spin_lock_irqsave(&rtc->lock, flags); + ds1685_rtc_switch_to_bank0(rtc); + + /* Write NVRAM in time and bank0 registers. */ + for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ_BANK0; + count++, size--) + if (count < NVRAM_SZ_TIME) + rtc->write(rtc, (NVRAM_TIME_BASE + pos++), + *buf++); + else + rtc->write(rtc, (NVRAM_BANK0_BASE), *buf++); + +#ifndef CONFIG_RTC_DRV_DS1689 + if (size > 0) { + ds1685_rtc_switch_to_bank1(rtc); + +#ifndef CONFIG_RTC_DRV_DS1685 + /* Enable burst-mode on DS17x85/DS17x87 */ + rtc->write(rtc, RTC_EXT_CTRL_4A, + (rtc->read(rtc, RTC_EXT_CTRL_4A) | + RTC_CTRL_4A_BME)); + + /* We need one write to RTC_BANK1_RAM_ADDR_LSB to start + * writing with burst-mode */ + rtc->write(rtc, RTC_BANK1_RAM_ADDR_LSB, + (pos - NVRAM_TOTAL_SZ_BANK0)); +#endif + + /* Write NVRAM in bank1 registers. */ + for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ; + count++, size--) { +#ifdef CONFIG_RTC_DRV_DS1685 + /* DS1685/DS1687 has to write to RTC_BANK1_RAM_ADDR + * before each read. */ + rtc->write(rtc, RTC_BANK1_RAM_ADDR, + (pos - NVRAM_TOTAL_SZ_BANK0)); +#endif + rtc->write(rtc, RTC_BANK1_RAM_DATA_PORT, *buf++); + pos++; + } + +#ifndef CONFIG_RTC_DRV_DS1685 + /* Disable burst-mode on DS17x85/DS17x87 */ + rtc->write(rtc, RTC_EXT_CTRL_4A, + (rtc->read(rtc, RTC_EXT_CTRL_4A) & + ~(RTC_CTRL_4A_BME))); +#endif + ds1685_rtc_switch_to_bank0(rtc); + } +#endif /* !CONFIG_RTC_DRV_DS1689 */ + spin_unlock_irqrestore(&rtc->lock, flags); + + return count; +} + +/** + * struct ds1685_rtc_sysfs_nvram_attr - sysfs attributes for rtc nvram. + * @attr: nvram attributes. + * @read: nvram read function. + * @write: nvram write function. + * @size: nvram total size (bank0 + extended). + */ +static struct bin_attribute +ds1685_rtc_sysfs_nvram_attr = { + .attr = { + .name = "nvram", + .mode = S_IRUGO | S_IWUSR, + }, + .read = ds1685_rtc_sysfs_nvram_read, + .write = ds1685_rtc_sysfs_nvram_write, + .size = NVRAM_TOTAL_SZ +}; + +/** + * ds1685_rtc_sysfs_battery_show - sysfs file for main battery status. + * @dev: pointer to device structure. + * @attr: pointer to device_attribute structure. + * @buf: pointer to char array to hold the output. + */ +static ssize_t +ds1685_rtc_sysfs_battery_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct platform_device *pdev = to_platform_device(dev); + struct ds1685_priv *rtc = platform_get_drvdata(pdev); + u8 ctrld; + + ctrld = rtc->read(rtc, RTC_CTRL_D); + + return snprintf(buf, 13, "%s\n", + (ctrld & RTC_CTRL_D_VRT) ? "ok" : "not ok or N/A"); +} +static DEVICE_ATTR(battery, S_IRUGO, ds1685_rtc_sysfs_battery_show, NULL); + +/** + * ds1685_rtc_sysfs_auxbatt_show - sysfs file for aux battery status. + * @dev: pointer to device structure. + * @attr: pointer to device_attribute structure. + * @buf: pointer to char array to hold the output. + */ +static ssize_t +ds1685_rtc_sysfs_auxbatt_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct platform_device *pdev = to_platform_device(dev); + struct ds1685_priv *rtc = platform_get_drvdata(pdev); + u8 ctrl4a; + + ds1685_rtc_switch_to_bank1(rtc); + ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A); + ds1685_rtc_switch_to_bank0(rtc); + + return snprintf(buf, 13, "%s\n", + (ctrl4a & RTC_CTRL_4A_VRT2) ? "ok" : "not ok or N/A"); +} +static DEVICE_ATTR(auxbatt, S_IRUGO, ds1685_rtc_sysfs_auxbatt_show, NULL); + +/** + * ds1685_rtc_sysfs_serial_show - sysfs file for silicon serial number. + * @dev: pointer to device structure. + * @attr: pointer to device_attribute structure. + * @buf: pointer to char array to hold the output. + */ +static ssize_t +ds1685_rtc_sysfs_serial_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct platform_device *pdev = to_platform_device(dev); + struct ds1685_priv *rtc = platform_get_drvdata(pdev); + u8 ssn[8]; + + ds1685_rtc_switch_to_bank1(rtc); + ds1685_rtc_get_ssn(rtc, ssn); + ds1685_rtc_switch_to_bank0(rtc); + + return snprintf(buf, 24, "%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", + ssn[0], ssn[1], ssn[2], ssn[3], ssn[4], ssn[5], + ssn[6], ssn[7]); + + return 0; +} +static DEVICE_ATTR(serial, S_IRUGO, ds1685_rtc_sysfs_serial_show, NULL); + +/** + * struct ds1685_rtc_sysfs_misc_attrs - list for misc RTC features. + */ +static struct attribute* +ds1685_rtc_sysfs_misc_attrs[] = { + &dev_attr_battery.attr, + &dev_attr_auxbatt.attr, + &dev_attr_serial.attr, + NULL, +}; + +/** + * struct ds1685_rtc_sysfs_misc_grp - attr group for misc RTC features. + */ +static const struct attribute_group +ds1685_rtc_sysfs_misc_grp = { + .name = "misc", + .attrs = ds1685_rtc_sysfs_misc_attrs, +}; + +#ifdef CONFIG_RTC_DS1685_SYSFS_REGS +/** + * struct ds1685_rtc_ctrl_regs. + * @name: char pointer for the bit name. + * @reg: control register the bit is in. + * @bit: the bit's offset in the register. + */ +struct ds1685_rtc_ctrl_regs { + const char *name; + const u8 reg; + const u8 bit; +}; + +/* + * Ctrl register bit lookup table. + */ +static const struct ds1685_rtc_ctrl_regs +ds1685_ctrl_regs_table[] = { + { "uip", RTC_CTRL_A, RTC_CTRL_A_UIP }, + { "dv2", RTC_CTRL_A, RTC_CTRL_A_DV2 }, + { "dv1", RTC_CTRL_A, RTC_CTRL_A_DV1 }, + { "dv0", RTC_CTRL_A, RTC_CTRL_A_DV0 }, + { "rs3", RTC_CTRL_A, RTC_CTRL_A_RS3 }, + { "rs2", RTC_CTRL_A, RTC_CTRL_A_RS2 }, + { "rs1", RTC_CTRL_A, RTC_CTRL_A_RS1 }, + { "rs0", RTC_CTRL_A, RTC_CTRL_A_RS0 }, + { "set", RTC_CTRL_B, RTC_CTRL_B_SET }, + { "pie", RTC_CTRL_B, RTC_CTRL_B_PIE }, + { "aie", RTC_CTRL_B, RTC_CTRL_B_AIE }, + { "uie", RTC_CTRL_B, RTC_CTRL_B_UIE }, + { "sqwe", RTC_CTRL_B, RTC_CTRL_B_SQWE }, + { "dm", RTC_CTRL_B, RTC_CTRL_B_DM }, + { "2412", RTC_CTRL_B, RTC_CTRL_B_2412 }, + { "dse", RTC_CTRL_B, RTC_CTRL_B_DSE }, + { "irqf", RTC_CTRL_C, RTC_CTRL_C_IRQF }, + { "pf", RTC_CTRL_C, RTC_CTRL_C_PF }, + { "af", RTC_CTRL_C, RTC_CTRL_C_AF }, + { "uf", RTC_CTRL_C, RTC_CTRL_C_UF }, + { "vrt", RTC_CTRL_D, RTC_CTRL_D_VRT }, + { "vrt2", RTC_EXT_CTRL_4A, RTC_CTRL_4A_VRT2 }, + { "incr", RTC_EXT_CTRL_4A, RTC_CTRL_4A_INCR }, + { "pab", RTC_EXT_CTRL_4A, RTC_CTRL_4A_PAB }, + { "rf", RTC_EXT_CTRL_4A, RTC_CTRL_4A_RF }, + { "wf", RTC_EXT_CTRL_4A, RTC_CTRL_4A_WF }, + { "kf", RTC_EXT_CTRL_4A, RTC_CTRL_4A_KF }, +#if !defined(CONFIG_RTC_DRV_DS1685) && !defined(CONFIG_RTC_DRV_DS1689) + { "bme", RTC_EXT_CTRL_4A, RTC_CTRL_4A_BME }, +#endif + { "abe", RTC_EXT_CTRL_4B, RTC_CTRL_4B_ABE }, + { "e32k", RTC_EXT_CTRL_4B, RTC_CTRL_4B_E32K }, + { "cs", RTC_EXT_CTRL_4B, RTC_CTRL_4B_CS }, + { "rce", RTC_EXT_CTRL_4B, RTC_CTRL_4B_RCE }, + { "prs", RTC_EXT_CTRL_4B, RTC_CTRL_4B_PRS }, + { "rie", RTC_EXT_CTRL_4B, RTC_CTRL_4B_RIE }, + { "wie", RTC_EXT_CTRL_4B, RTC_CTRL_4B_WIE }, + { "kse", RTC_EXT_CTRL_4B, RTC_CTRL_4B_KSE }, + { NULL, 0, 0 }, +}; + +/** + * ds1685_rtc_sysfs_ctrl_regs_lookup - ctrl register bit lookup function. + * @name: ctrl register bit to look up in ds1685_ctrl_regs_table. + */ +static const struct ds1685_rtc_ctrl_regs* +ds1685_rtc_sysfs_ctrl_regs_lookup(const char *name) +{ + const struct ds1685_rtc_ctrl_regs *p = ds1685_ctrl_regs_table; + + for (; p->name != NULL; ++p) + if (strcmp(p->name, name) == 0) + return p; + + return NULL; +} + +/** + * ds1685_rtc_sysfs_ctrl_regs_show - reads a ctrl register bit via sysfs. + * @dev: pointer to device structure. + * @attr: pointer to device_attribute structure. + * @buf: pointer to char array to hold the output. + */ +static ssize_t +ds1685_rtc_sysfs_ctrl_regs_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + u8 tmp; + struct ds1685_priv *rtc = dev_get_drvdata(dev); + const struct ds1685_rtc_ctrl_regs *reg_info = + ds1685_rtc_sysfs_ctrl_regs_lookup(attr->attr.name); + + /* Make sure we actually matched something. */ + if (!reg_info) + return -EINVAL; + + /* No spinlock during a read -- mutex is already held. */ + ds1685_rtc_switch_to_bank1(rtc); + tmp = rtc->read(rtc, reg_info->reg) & reg_info->bit; + ds1685_rtc_switch_to_bank0(rtc); + + return snprintf(buf, 2, "%d\n", (tmp ? 1 : 0)); +} + +/** + * ds1685_rtc_sysfs_ctrl_regs_store - writes a ctrl register bit via sysfs. + * @dev: pointer to device structure. + * @attr: pointer to device_attribute structure. + * @buf: pointer to char array to hold the output. + * @count: number of bytes written. + */ +static ssize_t +ds1685_rtc_sysfs_ctrl_regs_store(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + struct ds1685_priv *rtc = dev_get_drvdata(dev); + u8 reg = 0, bit = 0, tmp; + unsigned long flags = 0; + long int val = 0; + const struct ds1685_rtc_ctrl_regs *reg_info = + ds1685_rtc_sysfs_ctrl_regs_lookup(attr->attr.name); + + /* We only accept numbers. */ + if (kstrtol(buf, 10, &val) < 0) + return -EINVAL; + + /* bits are binary, 0 or 1 only. */ + if ((val != 0) && (val != 1)) + return -ERANGE; + + /* Make sure we actually matched something. */ + if (!reg_info) + return -EINVAL; + + reg = reg_info->reg; + bit = reg_info->bit; + + /* Safe to spinlock during a write. */ + ds1685_rtc_begin_ctrl_access(rtc, flags); + tmp = rtc->read(rtc, reg); + rtc->write(rtc, reg, (val ? (tmp | bit) : (tmp & ~(bit)))); + ds1685_rtc_end_ctrl_access(rtc, flags); + + return count; +} + +/** + * DS1685_RTC_SYSFS_CTRL_REG_RO - device_attribute for read-only register bit. + * @bit: bit to read. + */ +#define DS1685_RTC_SYSFS_CTRL_REG_RO(bit) \ + static DEVICE_ATTR(bit, S_IRUGO, \ + ds1685_rtc_sysfs_ctrl_regs_show, NULL) + +/** + * DS1685_RTC_SYSFS_CTRL_REG_RW - device_attribute for read-write register bit. + * @bit: bit to read or write. + */ +#define DS1685_RTC_SYSFS_CTRL_REG_RW(bit) \ + static DEVICE_ATTR(bit, S_IRUGO | S_IWUSR, \ + ds1685_rtc_sysfs_ctrl_regs_show, \ + ds1685_rtc_sysfs_ctrl_regs_store) + +/* + * Control Register A bits. + */ +DS1685_RTC_SYSFS_CTRL_REG_RO(uip); +DS1685_RTC_SYSFS_CTRL_REG_RW(dv2); +DS1685_RTC_SYSFS_CTRL_REG_RW(dv1); +DS1685_RTC_SYSFS_CTRL_REG_RO(dv0); +DS1685_RTC_SYSFS_CTRL_REG_RW(rs3); +DS1685_RTC_SYSFS_CTRL_REG_RW(rs2); +DS1685_RTC_SYSFS_CTRL_REG_RW(rs1); +DS1685_RTC_SYSFS_CTRL_REG_RW(rs0); + +static struct attribute* +ds1685_rtc_sysfs_ctrla_attrs[] = { + &dev_attr_uip.attr, + &dev_attr_dv2.attr, + &dev_attr_dv1.attr, + &dev_attr_dv0.attr, + &dev_attr_rs3.attr, + &dev_attr_rs2.attr, + &dev_attr_rs1.attr, + &dev_attr_rs0.attr, + NULL, +}; + +static const struct attribute_group +ds1685_rtc_sysfs_ctrla_grp = { + .name = "ctrla", + .attrs = ds1685_rtc_sysfs_ctrla_attrs, +}; + + +/* + * Control Register B bits. + */ +DS1685_RTC_SYSFS_CTRL_REG_RO(set); +DS1685_RTC_SYSFS_CTRL_REG_RW(pie); +DS1685_RTC_SYSFS_CTRL_REG_RW(aie); +DS1685_RTC_SYSFS_CTRL_REG_RW(uie); +DS1685_RTC_SYSFS_CTRL_REG_RW(sqwe); +DS1685_RTC_SYSFS_CTRL_REG_RO(dm); +DS1685_RTC_SYSFS_CTRL_REG_RO(2412); +DS1685_RTC_SYSFS_CTRL_REG_RO(dse); + +static struct attribute* +ds1685_rtc_sysfs_ctrlb_attrs[] = { + &dev_attr_set.attr, + &dev_attr_pie.attr, + &dev_attr_aie.attr, + &dev_attr_uie.attr, + &dev_attr_sqwe.attr, + &dev_attr_dm.attr, + &dev_attr_2412.attr, + &dev_attr_dse.attr, + NULL, +}; + +static const struct attribute_group +ds1685_rtc_sysfs_ctrlb_grp = { + .name = "ctrlb", + .attrs = ds1685_rtc_sysfs_ctrlb_attrs, +}; + +/* + * Control Register C bits. + * + * Reading Control C clears these bits! Reading them individually can + * possibly cause an interrupt to be missed. Use the /proc interface + * to see all the bits in this register simultaneously. + */ +DS1685_RTC_SYSFS_CTRL_REG_RO(irqf); +DS1685_RTC_SYSFS_CTRL_REG_RO(pf); +DS1685_RTC_SYSFS_CTRL_REG_RO(af); +DS1685_RTC_SYSFS_CTRL_REG_RO(uf); + +static struct attribute* +ds1685_rtc_sysfs_ctrlc_attrs[] = { + &dev_attr_irqf.attr, + &dev_attr_pf.attr, + &dev_attr_af.attr, + &dev_attr_uf.attr, + NULL, +}; + +static const struct attribute_group +ds1685_rtc_sysfs_ctrlc_grp = { + .name = "ctrlc", + .attrs = ds1685_rtc_sysfs_ctrlc_attrs, +}; + +/* + * Control Register D bits. + */ +DS1685_RTC_SYSFS_CTRL_REG_RO(vrt); + +static struct attribute* +ds1685_rtc_sysfs_ctrld_attrs[] = { + &dev_attr_vrt.attr, + NULL, +}; + +static const struct attribute_group +ds1685_rtc_sysfs_ctrld_grp = { + .name = "ctrld", + .attrs = ds1685_rtc_sysfs_ctrld_attrs, +}; + +/* + * Control Register 4A bits. + */ +DS1685_RTC_SYSFS_CTRL_REG_RO(vrt2); +DS1685_RTC_SYSFS_CTRL_REG_RO(incr); +DS1685_RTC_SYSFS_CTRL_REG_RW(pab); +DS1685_RTC_SYSFS_CTRL_REG_RW(rf); +DS1685_RTC_SYSFS_CTRL_REG_RW(wf); +DS1685_RTC_SYSFS_CTRL_REG_RW(kf); +#if !defined(CONFIG_RTC_DRV_DS1685) && !defined(CONFIG_RTC_DRV_DS1689) +DS1685_RTC_SYSFS_CTRL_REG_RO(bme); +#endif + +static struct attribute* +ds1685_rtc_sysfs_ctrl4a_attrs[] = { + &dev_attr_vrt2.attr, + &dev_attr_incr.attr, + &dev_attr_pab.attr, + &dev_attr_rf.attr, + &dev_attr_wf.attr, + &dev_attr_kf.attr, +#if !defined(CONFIG_RTC_DRV_DS1685) && !defined(CONFIG_RTC_DRV_DS1689) + &dev_attr_bme.attr, +#endif + NULL, +}; + +static const struct attribute_group +ds1685_rtc_sysfs_ctrl4a_grp = { + .name = "ctrl4a", + .attrs = ds1685_rtc_sysfs_ctrl4a_attrs, +}; + +/* + * Control Register 4B bits. + */ +DS1685_RTC_SYSFS_CTRL_REG_RW(abe); +DS1685_RTC_SYSFS_CTRL_REG_RW(e32k); +DS1685_RTC_SYSFS_CTRL_REG_RO(cs); +DS1685_RTC_SYSFS_CTRL_REG_RW(rce); +DS1685_RTC_SYSFS_CTRL_REG_RW(prs); +DS1685_RTC_SYSFS_CTRL_REG_RW(rie); +DS1685_RTC_SYSFS_CTRL_REG_RW(wie); +DS1685_RTC_SYSFS_CTRL_REG_RW(kse); + +static struct attribute* +ds1685_rtc_sysfs_ctrl4b_attrs[] = { + &dev_attr_abe.attr, + &dev_attr_e32k.attr, + &dev_attr_cs.attr, + &dev_attr_rce.attr, + &dev_attr_prs.attr, + &dev_attr_rie.attr, + &dev_attr_wie.attr, + &dev_attr_kse.attr, + NULL, +}; + +static const struct attribute_group +ds1685_rtc_sysfs_ctrl4b_grp = { + .name = "ctrl4b", + .attrs = ds1685_rtc_sysfs_ctrl4b_attrs, +}; + + +/** + * struct ds1685_rtc_ctrl_regs. + * @name: char pointer for the bit name. + * @reg: control register the bit is in. + * @bit: the bit's offset in the register. + */ +struct ds1685_rtc_time_regs { + const char *name; + const u8 reg; + const u8 mask; + const u8 min; + const u8 max; +}; + +/* + * Time/Date register lookup tables. + */ +static const struct ds1685_rtc_time_regs +ds1685_time_regs_bcd_table[] = { + { "seconds", RTC_SECS, RTC_SECS_BCD_MASK, 0, 59 }, + { "minutes", RTC_MINS, RTC_MINS_BCD_MASK, 0, 59 }, + { "hours", RTC_HRS, RTC_HRS_24_BCD_MASK, 0, 23 }, + { "wday", RTC_WDAY, RTC_WDAY_MASK, 1, 7 }, + { "mday", RTC_MDAY, RTC_MDAY_BCD_MASK, 1, 31 }, + { "month", RTC_MONTH, RTC_MONTH_BCD_MASK, 1, 12 }, + { "year", RTC_YEAR, RTC_YEAR_BCD_MASK, 0, 99 }, + { "century", RTC_CENTURY, RTC_CENTURY_MASK, 0, 99 }, + { "alarm_seconds", RTC_SECS_ALARM, RTC_SECS_BCD_MASK, 0, 59 }, + { "alarm_minutes", RTC_MINS_ALARM, RTC_MINS_BCD_MASK, 0, 59 }, + { "alarm_hours", RTC_HRS_ALARM, RTC_HRS_24_BCD_MASK, 0, 23 }, + { "alarm_mday", RTC_MDAY_ALARM, RTC_MDAY_ALARM_MASK, 1, 31 }, + { NULL, 0, 0, 0, 0 }, +}; + +static const struct ds1685_rtc_time_regs +ds1685_time_regs_bin_table[] = { + { "seconds", RTC_SECS, RTC_SECS_BIN_MASK, 0x00, 0x3b }, + { "minutes", RTC_MINS, RTC_MINS_BIN_MASK, 0x00, 0x3b }, + { "hours", RTC_HRS, RTC_HRS_24_BIN_MASK, 0x00, 0x17 }, + { "wday", RTC_WDAY, RTC_WDAY_MASK, 0x01, 0x07 }, + { "mday", RTC_MDAY, RTC_MDAY_BIN_MASK, 0x01, 0x1f }, + { "month", RTC_MONTH, RTC_MONTH_BIN_MASK, 0x01, 0x0c }, + { "year", RTC_YEAR, RTC_YEAR_BIN_MASK, 0x00, 0x63 }, + { "century", RTC_CENTURY, RTC_CENTURY_MASK, 0x00, 0x63 }, + { "alarm_seconds", RTC_SECS_ALARM, RTC_SECS_BIN_MASK, 0x00, 0x3b }, + { "alarm_minutes", RTC_MINS_ALARM, RTC_MINS_BIN_MASK, 0x00, 0x3b }, + { "alarm_hours", RTC_HRS_ALARM, RTC_HRS_24_BIN_MASK, 0x00, 0x17 }, + { "alarm_mday", RTC_MDAY_ALARM, RTC_MDAY_ALARM_MASK, 0x01, 0x1f }, + { NULL, 0, 0, 0x00, 0x00 }, +}; + +/** + * ds1685_rtc_sysfs_time_regs_bcd_lookup - time/date reg bit lookup function. + * @name: register bit to look up in ds1685_time_regs_bcd_table. + */ +static const struct ds1685_rtc_time_regs* +ds1685_rtc_sysfs_time_regs_lookup(const char *name, bool bcd_mode) +{ + const struct ds1685_rtc_time_regs *p; + + if (bcd_mode) + p = ds1685_time_regs_bcd_table; + else + p = ds1685_time_regs_bin_table; + + for (; p->name != NULL; ++p) + if (strcmp(p->name, name) == 0) + return p; + + return NULL; +} + +/** + * ds1685_rtc_sysfs_time_regs_show - reads a time/date register via sysfs. + * @dev: pointer to device structure. + * @attr: pointer to device_attribute structure. + * @buf: pointer to char array to hold the output. + */ +static ssize_t +ds1685_rtc_sysfs_time_regs_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + u8 tmp; + struct ds1685_priv *rtc = dev_get_drvdata(dev); + const struct ds1685_rtc_time_regs *bcd_reg_info = + ds1685_rtc_sysfs_time_regs_lookup(attr->attr.name, true); + const struct ds1685_rtc_time_regs *bin_reg_info = + ds1685_rtc_sysfs_time_regs_lookup(attr->attr.name, false); + + /* Make sure we actually matched something. */ + if (!bcd_reg_info && !bin_reg_info) + return -EINVAL; + + /* bcd_reg_info->reg == bin_reg_info->reg. */ + ds1685_rtc_begin_data_access(rtc); + tmp = rtc->read(rtc, bcd_reg_info->reg); + ds1685_rtc_end_data_access(rtc); + + tmp = ds1685_rtc_bcd2bin(rtc, tmp, bcd_reg_info->mask, + bin_reg_info->mask); + + return snprintf(buf, 4, "%d\n", tmp); +} + +/** + * ds1685_rtc_sysfs_time_regs_store - writes a time/date register via sysfs. + * @dev: pointer to device structure. + * @attr: pointer to device_attribute structure. + * @buf: pointer to char array to hold the output. + * @count: number of bytes written. + */ +static ssize_t +ds1685_rtc_sysfs_time_regs_store(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + long int val = 0; + struct ds1685_priv *rtc = dev_get_drvdata(dev); + const struct ds1685_rtc_time_regs *bcd_reg_info = + ds1685_rtc_sysfs_time_regs_lookup(attr->attr.name, true); + const struct ds1685_rtc_time_regs *bin_reg_info = + ds1685_rtc_sysfs_time_regs_lookup(attr->attr.name, false); + + /* We only accept numbers. */ + if (kstrtol(buf, 10, &val) < 0) + return -EINVAL; + + /* Make sure we actually matched something. */ + if (!bcd_reg_info && !bin_reg_info) + return -EINVAL; + + /* Check for a valid range. */ + if (rtc->bcd_mode) { + if ((val < bcd_reg_info->min) || (val > bcd_reg_info->max)) + return -ERANGE; + } else { + if ((val < bin_reg_info->min) || (val > bin_reg_info->max)) + return -ERANGE; + } + + val = ds1685_rtc_bin2bcd(rtc, val, bin_reg_info->mask, + bcd_reg_info->mask); + + /* bcd_reg_info->reg == bin_reg_info->reg. */ + ds1685_rtc_begin_data_access(rtc); + rtc->write(rtc, bcd_reg_info->reg, val); + ds1685_rtc_end_data_access(rtc); + + return count; +} + +/** + * DS1685_RTC_SYSFS_REG_RW - device_attribute for a read-write time register. + * @reg: time/date register to read or write. + */ +#define DS1685_RTC_SYSFS_TIME_REG_RW(reg) \ + static DEVICE_ATTR(reg, S_IRUGO | S_IWUSR, \ + ds1685_rtc_sysfs_time_regs_show, \ + ds1685_rtc_sysfs_time_regs_store) + +/* + * Time/Date Register bits. + */ +DS1685_RTC_SYSFS_TIME_REG_RW(seconds); +DS1685_RTC_SYSFS_TIME_REG_RW(minutes); +DS1685_RTC_SYSFS_TIME_REG_RW(hours); +DS1685_RTC_SYSFS_TIME_REG_RW(wday); +DS1685_RTC_SYSFS_TIME_REG_RW(mday); +DS1685_RTC_SYSFS_TIME_REG_RW(month); +DS1685_RTC_SYSFS_TIME_REG_RW(year); +DS1685_RTC_SYSFS_TIME_REG_RW(century); +DS1685_RTC_SYSFS_TIME_REG_RW(alarm_seconds); +DS1685_RTC_SYSFS_TIME_REG_RW(alarm_minutes); +DS1685_RTC_SYSFS_TIME_REG_RW(alarm_hours); +DS1685_RTC_SYSFS_TIME_REG_RW(alarm_mday); + +static struct attribute* +ds1685_rtc_sysfs_time_attrs[] = { + &dev_attr_seconds.attr, + &dev_attr_minutes.attr, + &dev_attr_hours.attr, + &dev_attr_wday.attr, + &dev_attr_mday.attr, + &dev_attr_month.attr, + &dev_attr_year.attr, + &dev_attr_century.attr, + NULL, +}; + +static const struct attribute_group +ds1685_rtc_sysfs_time_grp = { + .name = "datetime", + .attrs = ds1685_rtc_sysfs_time_attrs, +}; + +static struct attribute* +ds1685_rtc_sysfs_alarm_attrs[] = { + &dev_attr_alarm_seconds.attr, + &dev_attr_alarm_minutes.attr, + &dev_attr_alarm_hours.attr, + &dev_attr_alarm_mday.attr, + NULL, +}; + +static const struct attribute_group +ds1685_rtc_sysfs_alarm_grp = { + .name = "alarm", + .attrs = ds1685_rtc_sysfs_alarm_attrs, +}; +#endif /* CONFIG_RTC_DS1685_SYSFS_REGS */ + + +/** + * ds1685_rtc_sysfs_register - register sysfs files. + * @dev: pointer to device structure. + */ +static int +ds1685_rtc_sysfs_register(struct device *dev) +{ + int ret = 0; + + sysfs_bin_attr_init(&ds1685_rtc_sysfs_nvram_attr); + ret = sysfs_create_bin_file(&dev->kobj, &ds1685_rtc_sysfs_nvram_attr); + if (ret) + return ret; + + ret = sysfs_create_group(&dev->kobj, &ds1685_rtc_sysfs_misc_grp); + if (ret) + return ret; + +#ifdef CONFIG_RTC_DS1685_SYSFS_REGS + ret = sysfs_create_group(&dev->kobj, &ds1685_rtc_sysfs_ctrla_grp); + if (ret) + return ret; + + ret = sysfs_create_group(&dev->kobj, &ds1685_rtc_sysfs_ctrlb_grp); + if (ret) + return ret; + + ret = sysfs_create_group(&dev->kobj, &ds1685_rtc_sysfs_ctrlc_grp); + if (ret) + return ret; + + ret = sysfs_create_group(&dev->kobj, &ds1685_rtc_sysfs_ctrld_grp); + if (ret) + return ret; + + ret = sysfs_create_group(&dev->kobj, &ds1685_rtc_sysfs_ctrl4a_grp); + if (ret) + return ret; + + ret = sysfs_create_group(&dev->kobj, &ds1685_rtc_sysfs_ctrl4b_grp); + if (ret) + return ret; + + ret = sysfs_create_group(&dev->kobj, &ds1685_rtc_sysfs_time_grp); + if (ret) + return ret; + + ret = sysfs_create_group(&dev->kobj, &ds1685_rtc_sysfs_alarm_grp); + if (ret) + return ret; +#endif + return 0; +} + +/** + * ds1685_rtc_sysfs_unregister - unregister sysfs files. + * @dev: pointer to device structure. + */ +static int +ds1685_rtc_sysfs_unregister(struct device *dev) +{ + sysfs_remove_bin_file(&dev->kobj, &ds1685_rtc_sysfs_nvram_attr); + sysfs_remove_group(&dev->kobj, &ds1685_rtc_sysfs_misc_grp); + +#ifdef CONFIG_RTC_DS1685_SYSFS_REGS + sysfs_remove_group(&dev->kobj, &ds1685_rtc_sysfs_ctrla_grp); + sysfs_remove_group(&dev->kobj, &ds1685_rtc_sysfs_ctrlb_grp); + sysfs_remove_group(&dev->kobj, &ds1685_rtc_sysfs_ctrlc_grp); + sysfs_remove_group(&dev->kobj, &ds1685_rtc_sysfs_ctrld_grp); + sysfs_remove_group(&dev->kobj, &ds1685_rtc_sysfs_ctrl4a_grp); + sysfs_remove_group(&dev->kobj, &ds1685_rtc_sysfs_ctrl4b_grp); + sysfs_remove_group(&dev->kobj, &ds1685_rtc_sysfs_time_grp); + sysfs_remove_group(&dev->kobj, &ds1685_rtc_sysfs_alarm_grp); +#endif + + return 0; +} +#endif /* CONFIG_SYSFS */ + + + +/* ----------------------------------------------------------------------- */ +/* Driver Probe/Removal */ + +/** + * ds1685_rtc_probe - initializes rtc driver. + * @pdev: pointer to platform_device structure. + */ +static int +ds1685_rtc_probe(struct platform_device *pdev) +{ + struct rtc_device *rtc_dev; + struct resource *res; + struct ds1685_priv *rtc; + struct ds1685_rtc_platform_data *pdata; + u8 ctrla, ctrlb, hours; + unsigned char am_pm; + int ret = 0; + + /* Get the platform data. */ + pdata = (struct ds1685_rtc_platform_data *) pdev->dev.platform_data; + if (!pdata) + return -ENODEV; + + /* Allocate memory for the rtc device. */ + rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL); + if (!rtc) + return -ENOMEM; + + /* + * Allocate/setup any IORESOURCE_MEM resources, if required. Not all + * platforms put the RTC in an easy-access place. Like the SGI Octane, + * which attaches the RTC to a "ByteBus", hooked to a SuperIO chip + * that sits behind the IOC3 PCI metadevice. + */ + if (pdata->alloc_io_resources) { + /* Get the platform resources. */ + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!res) + return -ENXIO; + rtc->size = resource_size(res); + + /* Request a memory region. */ + /* XXX: mmio-only for now. */ + if (!devm_request_mem_region(&pdev->dev, res->start, rtc->size, + pdev->name)) + return -EBUSY; + + /* + * Set the base address for the rtc, and ioremap its + * registers. + */ + rtc->baseaddr = res->start; + rtc->regs = devm_ioremap(&pdev->dev, res->start, rtc->size); + if (!rtc->regs) + return -ENOMEM; + } + rtc->alloc_io_resources = pdata->alloc_io_resources; + + /* Get the register step size. */ + if (pdata->regstep > 0) + rtc->regstep = pdata->regstep; + else + rtc->regstep = 1; + + /* Platform read function, else default if mmio setup */ + if (pdata->plat_read) + rtc->read = pdata->plat_read; + else + if (pdata->alloc_io_resources) + rtc->read = ds1685_read; + else + return -ENXIO; + + /* Platform write function, else default if mmio setup */ + if (pdata->plat_write) + rtc->write = pdata->plat_write; + else + if (pdata->alloc_io_resources) + rtc->write = ds1685_write; + else + return -ENXIO; + + /* Platform pre-shutdown function, if defined. */ + if (pdata->plat_prepare_poweroff) + rtc->prepare_poweroff = pdata->plat_prepare_poweroff; + + /* Platform wake_alarm function, if defined. */ + if (pdata->plat_wake_alarm) + rtc->wake_alarm = pdata->plat_wake_alarm; + + /* Platform post_ram_clear function, if defined. */ + if (pdata->plat_post_ram_clear) + rtc->post_ram_clear = pdata->plat_post_ram_clear; + + /* Init the spinlock, workqueue, & set the driver data. */ + spin_lock_init(&rtc->lock); + INIT_WORK(&rtc->work, ds1685_rtc_work_queue); + platform_set_drvdata(pdev, rtc); + + /* Turn the oscillator on if is not already on (DV1 = 1). */ + ctrla = rtc->read(rtc, RTC_CTRL_A); + if (!(ctrla & RTC_CTRL_A_DV1)) + ctrla |= RTC_CTRL_A_DV1; + + /* Enable the countdown chain (DV2 = 0) */ + ctrla &= ~(RTC_CTRL_A_DV2); + + /* Clear RS3-RS0 in Control A. */ + ctrla &= ~(RTC_CTRL_A_RS_MASK); + + /* + * All done with Control A. Switch to Bank 1 for the remainder of + * the RTC setup so we have access to the extended functions. + */ + ctrla |= RTC_CTRL_A_DV0; + rtc->write(rtc, RTC_CTRL_A, ctrla); + + /* Default to 32768kHz output. */ + rtc->write(rtc, RTC_EXT_CTRL_4B, + (rtc->read(rtc, RTC_EXT_CTRL_4B) | RTC_CTRL_4B_E32K)); + + /* Set the SET bit in Control B so we can do some housekeeping. */ + rtc->write(rtc, RTC_CTRL_B, + (rtc->read(rtc, RTC_CTRL_B) | RTC_CTRL_B_SET)); + + /* Read Ext Ctrl 4A and check the INCR bit to avoid a lockout. */ + while (rtc->read(rtc, RTC_EXT_CTRL_4A) & RTC_CTRL_4A_INCR) + cpu_relax(); + + /* + * If the platform supports BCD mode, then set DM=0 in Control B. + * Otherwise, set DM=1 for BIN mode. + */ + ctrlb = rtc->read(rtc, RTC_CTRL_B); + if (pdata->bcd_mode) + ctrlb &= ~(RTC_CTRL_B_DM); + else + ctrlb |= RTC_CTRL_B_DM; + rtc->bcd_mode = pdata->bcd_mode; + + /* + * Disable Daylight Savings Time (DSE = 0). + * The RTC has hardcoded timezone information that is rendered + * obselete. We'll let the OS deal with DST settings instead. + */ + if (ctrlb & RTC_CTRL_B_DSE) + ctrlb &= ~(RTC_CTRL_B_DSE); + + /* Force 24-hour mode (2412 = 1). */ + if (!(ctrlb & RTC_CTRL_B_2412)) { + /* Reinitialize the time hours. */ + hours = rtc->read(rtc, RTC_HRS); + am_pm = hours & RTC_HRS_AMPM_MASK; + hours = ds1685_rtc_bcd2bin(rtc, hours, RTC_HRS_12_BCD_MASK, + RTC_HRS_12_BIN_MASK); + hours = ((hours == 12) ? 0 : ((am_pm) ? hours + 12 : hours)); + + /* Enable 24-hour mode. */ + ctrlb |= RTC_CTRL_B_2412; + + /* Write back to Control B, including DM & DSE bits. */ + rtc->write(rtc, RTC_CTRL_B, ctrlb); + + /* Write the time hours back. */ + rtc->write(rtc, RTC_HRS, + ds1685_rtc_bin2bcd(rtc, hours, + RTC_HRS_24_BIN_MASK, + RTC_HRS_24_BCD_MASK)); + + /* Reinitialize the alarm hours. */ + hours = rtc->read(rtc, RTC_HRS_ALARM); + am_pm = hours & RTC_HRS_AMPM_MASK; + hours = ds1685_rtc_bcd2bin(rtc, hours, RTC_HRS_12_BCD_MASK, + RTC_HRS_12_BIN_MASK); + hours = ((hours == 12) ? 0 : ((am_pm) ? hours + 12 : hours)); + + /* Write the alarm hours back. */ + rtc->write(rtc, RTC_HRS_ALARM, + ds1685_rtc_bin2bcd(rtc, hours, + RTC_HRS_24_BIN_MASK, + RTC_HRS_24_BCD_MASK)); + } else { + /* 24-hour mode is already set, so write Control B back. */ + rtc->write(rtc, RTC_CTRL_B, ctrlb); + } + + /* Unset the SET bit in Control B so the RTC can update. */ + rtc->write(rtc, RTC_CTRL_B, + (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_SET))); + + /* Check the main battery. */ + if (!(rtc->read(rtc, RTC_CTRL_D) & RTC_CTRL_D_VRT)) + dev_warn(&pdev->dev, + "Main battery is exhausted! RTC may be invalid!\n"); + + /* Check the auxillary battery. It is optional. */ + if (!(rtc->read(rtc, RTC_EXT_CTRL_4A) & RTC_CTRL_4A_VRT2)) + dev_warn(&pdev->dev, + "Aux battery is exhausted or not available.\n"); + + /* Read Ctrl B and clear PIE/AIE/UIE. */ + rtc->write(rtc, RTC_CTRL_B, + (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_PAU_MASK))); + + /* Reading Ctrl C auto-clears PF/AF/UF. */ + rtc->read(rtc, RTC_CTRL_C); + + /* Read Ctrl 4B and clear RIE/WIE/KSE. */ + rtc->write(rtc, RTC_EXT_CTRL_4B, + (rtc->read(rtc, RTC_EXT_CTRL_4B) & ~(RTC_CTRL_4B_RWK_MASK))); + + /* Clear RF/WF/KF in Ctrl 4A. */ + rtc->write(rtc, RTC_EXT_CTRL_4A, + (rtc->read(rtc, RTC_EXT_CTRL_4A) & ~(RTC_CTRL_4A_RWK_MASK))); + + /* + * Re-enable KSE to handle power button events. We do not enable + * WIE or RIE by default. + */ + rtc->write(rtc, RTC_EXT_CTRL_4B, + (rtc->read(rtc, RTC_EXT_CTRL_4B) | RTC_CTRL_4B_KSE)); + + /* + * Fetch the IRQ and setup the interrupt handler. + * + * Not all platforms have the IRQF pin tied to something. If not, the + * RTC will still set the *IE / *F flags and raise IRQF in ctrlc, but + * there won't be an automatic way of notifying the kernel about it, + * unless ctrlc is explicitly polled. + */ + if (!pdata->no_irq) { + ret = platform_get_irq(pdev, 0); + if (ret > 0) { + rtc->irq_num = ret; + + /* Request an IRQ. */ + ret = devm_request_irq(&pdev->dev, rtc->irq_num, + ds1685_rtc_irq_handler, + IRQF_SHARED, pdev->name, pdev); + + /* Check to see if something came back. */ + if (unlikely(ret)) { + dev_warn(&pdev->dev, + "RTC interrupt not available\n"); + rtc->irq_num = 0; + } + } else + return ret; + } + rtc->no_irq = pdata->no_irq; + + /* Setup complete. */ + ds1685_rtc_switch_to_bank0(rtc); + + /* Register the device as an RTC. */ + rtc_dev = rtc_device_register(pdev->name, &pdev->dev, + &ds1685_rtc_ops, THIS_MODULE); + + /* Success? */ + if (IS_ERR(rtc_dev)) + return PTR_ERR(rtc_dev); + + /* Maximum periodic rate is 8192Hz (0.122070ms). */ + rtc_dev->max_user_freq = RTC_MAX_USER_FREQ; + + /* See if the platform doesn't support UIE. */ + if (pdata->uie_unsupported) + rtc_dev->uie_unsupported = 1; + rtc->uie_unsupported = pdata->uie_unsupported; + + rtc->dev = rtc_dev; + +#ifdef CONFIG_SYSFS + ret = ds1685_rtc_sysfs_register(&pdev->dev); + if (ret) + rtc_device_unregister(rtc->dev); +#endif + + /* Done! */ + return ret; +} + +/** + * ds1685_rtc_remove - removes rtc driver. + * @pdev: pointer to platform_device structure. + */ +static int +ds1685_rtc_remove(struct platform_device *pdev) +{ + struct ds1685_priv *rtc = platform_get_drvdata(pdev); + +#ifdef CONFIG_SYSFS + ds1685_rtc_sysfs_unregister(&pdev->dev); +#endif + + rtc_device_unregister(rtc->dev); + + /* Read Ctrl B and clear PIE/AIE/UIE. */ + rtc->write(rtc, RTC_CTRL_B, + (rtc->read(rtc, RTC_CTRL_B) & + ~(RTC_CTRL_B_PAU_MASK))); + + /* Reading Ctrl C auto-clears PF/AF/UF. */ + rtc->read(rtc, RTC_CTRL_C); + + /* Read Ctrl 4B and clear RIE/WIE/KSE. */ + rtc->write(rtc, RTC_EXT_CTRL_4B, + (rtc->read(rtc, RTC_EXT_CTRL_4B) & + ~(RTC_CTRL_4B_RWK_MASK))); + + /* Manually clear RF/WF/KF in Ctrl 4A. */ + rtc->write(rtc, RTC_EXT_CTRL_4A, + (rtc->read(rtc, RTC_EXT_CTRL_4A) & + ~(RTC_CTRL_4A_RWK_MASK))); + + cancel_work_sync(&rtc->work); + + return 0; +} + +/** + * ds1685_rtc_driver - rtc driver properties. + */ +static struct platform_driver ds1685_rtc_driver = { + .driver = { + .name = "rtc-ds1685", + .owner = THIS_MODULE, + }, + .probe = ds1685_rtc_probe, + .remove = ds1685_rtc_remove, +}; + +/** + * ds1685_rtc_init - rtc module init. + */ +static int __init +ds1685_rtc_init(void) +{ + return platform_driver_register(&ds1685_rtc_driver); +} + +/** + * ds1685_rtc_exit - rtc module exit. + */ +static void __exit +ds1685_rtc_exit(void) +{ + platform_driver_unregister(&ds1685_rtc_driver); +} + +module_init(ds1685_rtc_init); +module_exit(ds1685_rtc_exit); +/* ----------------------------------------------------------------------- */ + + +/* ----------------------------------------------------------------------- */ +/* Poweroff function */ + +/** + * ds1685_rtc_poweroff - uses the RTC chip to power the system off. + * @pdev: pointer to platform_device structure. + */ +extern void __noreturn +ds1685_rtc_poweroff(struct platform_device *pdev) +{ + u8 ctrla, ctrl4a, ctrl4b; + struct ds1685_priv *rtc; + + /* Check for valid RTC data, else, spin forever. */ + if (unlikely(!pdev)) { + pr_emerg("rtc-ds1685: platform device data not available, spinning forever ...\n"); + unreachable(); + } else { + /* Get the rtc data. */ + rtc = platform_get_drvdata(pdev); + + /* + * Disable our IRQ. We're powering down, so we're not + * going to worry about cleaning up. Most of that should + * have been taken care of by the shutdown scripts and this + * is the final function call. + */ + if (!rtc->no_irq) + disable_irq_nosync(rtc->irq_num); + + /* Oscillator must be on and the countdown chain enabled. */ + ctrla = rtc->read(rtc, RTC_CTRL_A); + ctrla |= RTC_CTRL_A_DV1; + ctrla &= ~(RTC_CTRL_A_DV2); + rtc->write(rtc, RTC_CTRL_A, ctrla); + + /* + * Read Control 4A and check the status of the auxillary + * battery. This must be present and working (VRT2 = 1) + * for wakeup and kickstart functionality to be useful. + */ + ds1685_rtc_switch_to_bank1(rtc); + ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A); + if (ctrl4a & RTC_CTRL_4A_VRT2) { + /* Clear all of the interrupt flags on Control 4A. */ + ctrl4a &= ~(RTC_CTRL_4A_RWK_MASK); + rtc->write(rtc, RTC_EXT_CTRL_4A, ctrl4a); + + /* + * The auxillary battery is present and working. + * Enable extended functions (ABE=1), enable + * wake-up (WIE=1), and enable kickstart (KSE=1) + * in Control 4B. + */ + ctrl4b = rtc->read(rtc, RTC_EXT_CTRL_4B); + ctrl4b |= (RTC_CTRL_4B_ABE | RTC_CTRL_4B_WIE | + RTC_CTRL_4B_KSE); + rtc->write(rtc, RTC_EXT_CTRL_4B, ctrl4b); + } + + /* Set PAB to 1 in Control 4A to power the system down. */ + dev_warn(&pdev->dev, "Powerdown.\n"); + msleep(20); + rtc->write(rtc, RTC_EXT_CTRL_4A, + (ctrl4a | RTC_CTRL_4A_PAB)); + + /* Spin ... we do not switch back to bank0. */ + unreachable(); + } +} +EXPORT_SYMBOL(ds1685_rtc_poweroff); +/* ----------------------------------------------------------------------- */ + + +MODULE_AUTHOR("Joshua Kinard <kumba@gentoo.org>"); +MODULE_AUTHOR("Matthias Fuchs <matthias.fuchs@esd-electronics.com>"); +MODULE_DESCRIPTION("Dallas/Maxim DS1685/DS1687-series RTC driver"); +MODULE_LICENSE("GPL"); +MODULE_VERSION(DRV_VERSION); +MODULE_ALIAS("platform:rtc-ds1685"); diff --git a/drivers/rtc/rtc-efi.c b/drivers/rtc/rtc-efi.c index b37b0c80bd5a..cb989cd00b14 100644 --- a/drivers/rtc/rtc-efi.c +++ b/drivers/rtc/rtc-efi.c @@ -218,6 +218,7 @@ static int __init efi_rtc_probe(struct platform_device *dev) if (IS_ERR(rtc)) return PTR_ERR(rtc); + rtc->uie_unsupported = 1; platform_set_drvdata(dev, rtc); return 0; diff --git a/drivers/rtc/rtc-imxdi.c b/drivers/rtc/rtc-imxdi.c index 42f5570f42f8..c666eab98273 100644 --- a/drivers/rtc/rtc-imxdi.c +++ b/drivers/rtc/rtc-imxdi.c @@ -50,22 +50,58 @@ #define DCAMR_UNSET 0xFFFFFFFF /* doomsday - 1 sec */ #define DCR 0x10 /* Control Reg */ +#define DCR_TDCHL (1 << 30) /* Tamper-detect configuration hard lock */ +#define DCR_TDCSL (1 << 29) /* Tamper-detect configuration soft lock */ +#define DCR_KSSL (1 << 27) /* Key-select soft lock */ +#define DCR_MCHL (1 << 20) /* Monotonic-counter hard lock */ +#define DCR_MCSL (1 << 19) /* Monotonic-counter soft lock */ +#define DCR_TCHL (1 << 18) /* Timer-counter hard lock */ +#define DCR_TCSL (1 << 17) /* Timer-counter soft lock */ +#define DCR_FSHL (1 << 16) /* Failure state hard lock */ #define DCR_TCE (1 << 3) /* Time Counter Enable */ +#define DCR_MCE (1 << 2) /* Monotonic Counter Enable */ #define DSR 0x14 /* Status Reg */ -#define DSR_WBF (1 << 10) /* Write Busy Flag */ -#define DSR_WNF (1 << 9) /* Write Next Flag */ -#define DSR_WCF (1 << 8) /* Write Complete Flag */ +#define DSR_WTD (1 << 23) /* Wire-mesh tamper detected */ +#define DSR_ETBD (1 << 22) /* External tamper B detected */ +#define DSR_ETAD (1 << 21) /* External tamper A detected */ +#define DSR_EBD (1 << 20) /* External boot detected */ +#define DSR_SAD (1 << 19) /* SCC alarm detected */ +#define DSR_TTD (1 << 18) /* Temperatur tamper detected */ +#define DSR_CTD (1 << 17) /* Clock tamper detected */ +#define DSR_VTD (1 << 16) /* Voltage tamper detected */ +#define DSR_WBF (1 << 10) /* Write Busy Flag (synchronous) */ +#define DSR_WNF (1 << 9) /* Write Next Flag (synchronous) */ +#define DSR_WCF (1 << 8) /* Write Complete Flag (synchronous)*/ #define DSR_WEF (1 << 7) /* Write Error Flag */ #define DSR_CAF (1 << 4) /* Clock Alarm Flag */ +#define DSR_MCO (1 << 3) /* monotonic counter overflow */ +#define DSR_TCO (1 << 2) /* time counter overflow */ #define DSR_NVF (1 << 1) /* Non-Valid Flag */ #define DSR_SVF (1 << 0) /* Security Violation Flag */ -#define DIER 0x18 /* Interrupt Enable Reg */ +#define DIER 0x18 /* Interrupt Enable Reg (synchronous) */ #define DIER_WNIE (1 << 9) /* Write Next Interrupt Enable */ #define DIER_WCIE (1 << 8) /* Write Complete Interrupt Enable */ #define DIER_WEIE (1 << 7) /* Write Error Interrupt Enable */ #define DIER_CAIE (1 << 4) /* Clock Alarm Interrupt Enable */ +#define DIER_SVIE (1 << 0) /* Security-violation Interrupt Enable */ + +#define DMCR 0x1c /* DryIce Monotonic Counter Reg */ + +#define DTCR 0x28 /* DryIce Tamper Configuration Reg */ +#define DTCR_MOE (1 << 9) /* monotonic overflow enabled */ +#define DTCR_TOE (1 << 8) /* time overflow enabled */ +#define DTCR_WTE (1 << 7) /* wire-mesh tamper enabled */ +#define DTCR_ETBE (1 << 6) /* external B tamper enabled */ +#define DTCR_ETAE (1 << 5) /* external A tamper enabled */ +#define DTCR_EBE (1 << 4) /* external boot tamper enabled */ +#define DTCR_SAIE (1 << 3) /* SCC enabled */ +#define DTCR_TTE (1 << 2) /* temperature tamper enabled */ +#define DTCR_CTE (1 << 1) /* clock tamper enabled */ +#define DTCR_VTE (1 << 0) /* voltage tamper enabled */ + +#define DGPR 0x3c /* DryIce General Purpose Reg */ /** * struct imxdi_dev - private imxdi rtc data @@ -313,7 +349,7 @@ static irqreturn_t dryice_norm_irq(int irq, void *dev_id) dier = __raw_readl(imxdi->ioaddr + DIER); /* handle write complete and write error cases */ - if ((dier & DIER_WCIE)) { + if (dier & DIER_WCIE) { /*If the write wait queue is empty then there is no pending operations. It means the interrupt is for DryIce -Security. IRQ must be returned as none.*/ @@ -322,7 +358,7 @@ static irqreturn_t dryice_norm_irq(int irq, void *dev_id) /* DSR_WCF clears itself on DSR read */ dsr = __raw_readl(imxdi->ioaddr + DSR); - if ((dsr & (DSR_WCF | DSR_WEF))) { + if (dsr & (DSR_WCF | DSR_WEF)) { /* mask the interrupt */ di_int_disable(imxdi, DIER_WCIE); @@ -335,7 +371,7 @@ static irqreturn_t dryice_norm_irq(int irq, void *dev_id) } /* handle the alarm case */ - if ((dier & DIER_CAIE)) { + if (dier & DIER_CAIE) { /* DSR_WCF clears itself on DSR read */ dsr = __raw_readl(imxdi->ioaddr + DSR); if (dsr & DSR_CAF) { diff --git a/drivers/rtc/rtc-isl12022.c b/drivers/rtc/rtc-isl12022.c index ee3ba7e6b45e..f9b082784b90 100644 --- a/drivers/rtc/rtc-isl12022.c +++ b/drivers/rtc/rtc-isl12022.c @@ -275,7 +275,8 @@ static int isl12022_probe(struct i2c_client *client, #ifdef CONFIG_OF static const struct of_device_id isl12022_dt_match[] = { - { .compatible = "isl,isl12022" }, + { .compatible = "isl,isl12022" }, /* for backward compat., don't use */ + { .compatible = "isil,isl12022" }, { }, }; #endif diff --git a/drivers/rtc/rtc-isl12057.c b/drivers/rtc/rtc-isl12057.c index 6e1fcfb5d7e6..da818d3337ce 100644 --- a/drivers/rtc/rtc-isl12057.c +++ b/drivers/rtc/rtc-isl12057.c @@ -79,8 +79,10 @@ #define ISL12057_MEM_MAP_LEN 0x10 struct isl12057_rtc_data { + struct rtc_device *rtc; struct regmap *regmap; struct mutex lock; + int irq; }; static void isl12057_rtc_regs_to_tm(struct rtc_time *tm, u8 *regs) @@ -160,14 +162,47 @@ static int isl12057_i2c_validate_chip(struct regmap *regmap) return 0; } -static int isl12057_rtc_read_time(struct device *dev, struct rtc_time *tm) +static int _isl12057_rtc_clear_alarm(struct device *dev) +{ + struct isl12057_rtc_data *data = dev_get_drvdata(dev); + int ret; + + ret = regmap_update_bits(data->regmap, ISL12057_REG_SR, + ISL12057_REG_SR_A1F, 0); + if (ret) + dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret); + + return ret; +} + +static int _isl12057_rtc_update_alarm(struct device *dev, int enable) +{ + struct isl12057_rtc_data *data = dev_get_drvdata(dev); + int ret; + + ret = regmap_update_bits(data->regmap, ISL12057_REG_INT, + ISL12057_REG_INT_A1IE, + enable ? ISL12057_REG_INT_A1IE : 0); + if (ret) + dev_err(dev, "%s: changing alarm interrupt flag failed (%d)\n", + __func__, ret); + + return ret; +} + +/* + * Note: as we only read from device and do not perform any update, there is + * no need for an equivalent function which would try and get driver's main + * lock. Here, it is safe for everyone if we just use regmap internal lock + * on the device when reading. + */ +static int _isl12057_rtc_read_time(struct device *dev, struct rtc_time *tm) { struct isl12057_rtc_data *data = dev_get_drvdata(dev); u8 regs[ISL12057_RTC_SEC_LEN]; unsigned int sr; int ret; - mutex_lock(&data->lock); ret = regmap_read(data->regmap, ISL12057_REG_SR, &sr); if (ret) { dev_err(dev, "%s: unable to read oscillator status flag (%d)\n", @@ -187,8 +222,6 @@ static int isl12057_rtc_read_time(struct device *dev, struct rtc_time *tm) __func__, ret); out: - mutex_unlock(&data->lock); - if (ret) return ret; @@ -197,6 +230,168 @@ out: return rtc_valid_tm(tm); } +static int isl12057_rtc_update_alarm(struct device *dev, int enable) +{ + struct isl12057_rtc_data *data = dev_get_drvdata(dev); + int ret; + + mutex_lock(&data->lock); + ret = _isl12057_rtc_update_alarm(dev, enable); + mutex_unlock(&data->lock); + + return ret; +} + +static int isl12057_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) +{ + struct isl12057_rtc_data *data = dev_get_drvdata(dev); + struct rtc_time rtc_tm, *alarm_tm = &alarm->time; + unsigned long rtc_secs, alarm_secs; + u8 regs[ISL12057_A1_SEC_LEN]; + unsigned int ir; + int ret; + + mutex_lock(&data->lock); + ret = regmap_bulk_read(data->regmap, ISL12057_REG_A1_SC, regs, + ISL12057_A1_SEC_LEN); + if (ret) { + dev_err(dev, "%s: reading alarm section failed (%d)\n", + __func__, ret); + goto err_unlock; + } + + alarm_tm->tm_sec = bcd2bin(regs[0] & 0x7f); + alarm_tm->tm_min = bcd2bin(regs[1] & 0x7f); + alarm_tm->tm_hour = bcd2bin(regs[2] & 0x3f); + alarm_tm->tm_mday = bcd2bin(regs[3] & 0x3f); + alarm_tm->tm_wday = -1; + + /* + * The alarm section does not store year/month. We use the ones in rtc + * section as a basis and increment month and then year if needed to get + * alarm after current time. + */ + ret = _isl12057_rtc_read_time(dev, &rtc_tm); + if (ret) + goto err_unlock; + + alarm_tm->tm_year = rtc_tm.tm_year; + alarm_tm->tm_mon = rtc_tm.tm_mon; + + ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); + if (ret) + goto err_unlock; + + ret = rtc_tm_to_time(alarm_tm, &alarm_secs); + if (ret) + goto err_unlock; + + if (alarm_secs < rtc_secs) { + if (alarm_tm->tm_mon == 11) { + alarm_tm->tm_mon = 0; + alarm_tm->tm_year += 1; + } else { + alarm_tm->tm_mon += 1; + } + } + + ret = regmap_read(data->regmap, ISL12057_REG_INT, &ir); + if (ret) { + dev_err(dev, "%s: reading alarm interrupt flag failed (%d)\n", + __func__, ret); + goto err_unlock; + } + + alarm->enabled = !!(ir & ISL12057_REG_INT_A1IE); + +err_unlock: + mutex_unlock(&data->lock); + + return ret; +} + +static int isl12057_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) +{ + struct isl12057_rtc_data *data = dev_get_drvdata(dev); + struct rtc_time *alarm_tm = &alarm->time; + unsigned long rtc_secs, alarm_secs; + u8 regs[ISL12057_A1_SEC_LEN]; + struct rtc_time rtc_tm; + int ret, enable = 1; + + mutex_lock(&data->lock); + ret = _isl12057_rtc_read_time(dev, &rtc_tm); + if (ret) + goto err_unlock; + + ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); + if (ret) + goto err_unlock; + + ret = rtc_tm_to_time(alarm_tm, &alarm_secs); + if (ret) + goto err_unlock; + + /* If alarm time is before current time, disable the alarm */ + if (!alarm->enabled || alarm_secs <= rtc_secs) { + enable = 0; + } else { + /* + * Chip only support alarms up to one month in the future. Let's + * return an error if we get something after that limit. + * Comparison is done by incrementing rtc_tm month field by one + * and checking alarm value is still below. + */ + if (rtc_tm.tm_mon == 11) { /* handle year wrapping */ + rtc_tm.tm_mon = 0; + rtc_tm.tm_year += 1; + } else { + rtc_tm.tm_mon += 1; + } + + ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); + if (ret) + goto err_unlock; + + if (alarm_secs > rtc_secs) { + dev_err(dev, "%s: max for alarm is one month (%d)\n", + __func__, ret); + ret = -EINVAL; + goto err_unlock; + } + } + + /* Disable the alarm before modifying it */ + ret = _isl12057_rtc_update_alarm(dev, 0); + if (ret < 0) { + dev_err(dev, "%s: unable to disable the alarm (%d)\n", + __func__, ret); + goto err_unlock; + } + + /* Program alarm registers */ + regs[0] = bin2bcd(alarm_tm->tm_sec) & 0x7f; + regs[1] = bin2bcd(alarm_tm->tm_min) & 0x7f; + regs[2] = bin2bcd(alarm_tm->tm_hour) & 0x3f; + regs[3] = bin2bcd(alarm_tm->tm_mday) & 0x3f; + + ret = regmap_bulk_write(data->regmap, ISL12057_REG_A1_SC, regs, + ISL12057_A1_SEC_LEN); + if (ret < 0) { + dev_err(dev, "%s: writing alarm section failed (%d)\n", + __func__, ret); + goto err_unlock; + } + + /* Enable or disable alarm */ + ret = _isl12057_rtc_update_alarm(dev, enable); + +err_unlock: + mutex_unlock(&data->lock); + + return ret; +} + static int isl12057_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct isl12057_rtc_data *data = dev_get_drvdata(dev); @@ -262,12 +457,85 @@ static int isl12057_check_rtc_status(struct device *dev, struct regmap *regmap) return 0; } +#ifdef CONFIG_OF +/* + * One would expect the device to be marked as a wakeup source only + * when an IRQ pin of the RTC is routed to an interrupt line of the + * CPU. In practice, such an IRQ pin can be connected to a PMIC and + * this allows the device to be powered up when RTC alarm rings. This + * is for instance the case on ReadyNAS 102, 104 and 2120. On those + * devices with no IRQ driectly connected to the SoC, the RTC chip + * can be forced as a wakeup source by stating that explicitly in + * the device's .dts file using the "isil,irq2-can-wakeup-machine" + * boolean property. This will guarantee 'wakealarm' sysfs entry is + * available on the device. + * + * The function below returns 1, i.e. the capability of the chip to + * wakeup the device, based on IRQ availability or if the boolean + * property has been set in the .dts file. Otherwise, it returns 0. + */ + +static bool isl12057_can_wakeup_machine(struct device *dev) +{ + struct isl12057_rtc_data *data = dev_get_drvdata(dev); + + return (data->irq || of_property_read_bool(dev->of_node, + "isil,irq2-can-wakeup-machine")); +} +#else +static bool isl12057_can_wakeup_machine(struct device *dev) +{ + struct isl12057_rtc_data *data = dev_get_drvdata(dev); + + return !!data->irq; +} +#endif + +static int isl12057_rtc_alarm_irq_enable(struct device *dev, + unsigned int enable) +{ + struct isl12057_rtc_data *rtc_data = dev_get_drvdata(dev); + int ret = -ENOTTY; + + if (rtc_data->irq) + ret = isl12057_rtc_update_alarm(dev, enable); + + return ret; +} + +static irqreturn_t isl12057_rtc_interrupt(int irq, void *data) +{ + struct i2c_client *client = data; + struct isl12057_rtc_data *rtc_data = dev_get_drvdata(&client->dev); + struct rtc_device *rtc = rtc_data->rtc; + int ret, handled = IRQ_NONE; + unsigned int sr; + + ret = regmap_read(rtc_data->regmap, ISL12057_REG_SR, &sr); + if (!ret && (sr & ISL12057_REG_SR_A1F)) { + dev_dbg(&client->dev, "RTC alarm!\n"); + + rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); + + /* Acknowledge and disable the alarm */ + _isl12057_rtc_clear_alarm(&client->dev); + _isl12057_rtc_update_alarm(&client->dev, 0); + + handled = IRQ_HANDLED; + } + + return handled; +} + static const struct rtc_class_ops rtc_ops = { - .read_time = isl12057_rtc_read_time, + .read_time = _isl12057_rtc_read_time, .set_time = isl12057_rtc_set_time, + .read_alarm = isl12057_rtc_read_alarm, + .set_alarm = isl12057_rtc_set_alarm, + .alarm_irq_enable = isl12057_rtc_alarm_irq_enable, }; -static struct regmap_config isl12057_rtc_regmap_config = { +static const struct regmap_config isl12057_rtc_regmap_config = { .reg_bits = 8, .val_bits = 8, }; @@ -277,7 +545,6 @@ static int isl12057_probe(struct i2c_client *client, { struct device *dev = &client->dev; struct isl12057_rtc_data *data; - struct rtc_device *rtc; struct regmap *regmap; int ret; @@ -310,13 +577,75 @@ static int isl12057_probe(struct i2c_client *client, data->regmap = regmap; dev_set_drvdata(dev, data); - rtc = devm_rtc_device_register(dev, DRV_NAME, &rtc_ops, THIS_MODULE); - return PTR_ERR_OR_ZERO(rtc); + if (client->irq > 0) { + ret = devm_request_threaded_irq(dev, client->irq, NULL, + isl12057_rtc_interrupt, + IRQF_SHARED|IRQF_ONESHOT, + DRV_NAME, client); + if (!ret) + data->irq = client->irq; + else + dev_err(dev, "%s: irq %d unavailable (%d)\n", __func__, + client->irq, ret); + } + + if (isl12057_can_wakeup_machine(dev)) + device_init_wakeup(dev, true); + + data->rtc = devm_rtc_device_register(dev, DRV_NAME, &rtc_ops, + THIS_MODULE); + ret = PTR_ERR_OR_ZERO(data->rtc); + if (ret) { + dev_err(dev, "%s: unable to register RTC device (%d)\n", + __func__, ret); + goto err; + } + + /* We cannot support UIE mode if we do not have an IRQ line */ + if (!data->irq) + data->rtc->uie_unsupported = 1; + +err: + return ret; +} + +static int isl12057_remove(struct i2c_client *client) +{ + if (isl12057_can_wakeup_machine(&client->dev)) + device_init_wakeup(&client->dev, false); + + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int isl12057_rtc_suspend(struct device *dev) +{ + struct isl12057_rtc_data *rtc_data = dev_get_drvdata(dev); + + if (rtc_data->irq && device_may_wakeup(dev)) + return enable_irq_wake(rtc_data->irq); + + return 0; +} + +static int isl12057_rtc_resume(struct device *dev) +{ + struct isl12057_rtc_data *rtc_data = dev_get_drvdata(dev); + + if (rtc_data->irq && device_may_wakeup(dev)) + return disable_irq_wake(rtc_data->irq); + + return 0; } +#endif + +static SIMPLE_DEV_PM_OPS(isl12057_rtc_pm_ops, isl12057_rtc_suspend, + isl12057_rtc_resume); #ifdef CONFIG_OF static const struct of_device_id isl12057_dt_match[] = { - { .compatible = "isl,isl12057" }, + { .compatible = "isl,isl12057" }, /* for backward compat., don't use */ + { .compatible = "isil,isl12057" }, { }, }; #endif @@ -331,9 +660,11 @@ static struct i2c_driver isl12057_driver = { .driver = { .name = DRV_NAME, .owner = THIS_MODULE, + .pm = &isl12057_rtc_pm_ops, .of_match_table = of_match_ptr(isl12057_dt_match), }, .probe = isl12057_probe, + .remove = isl12057_remove, .id_table = isl12057_id, }; module_i2c_driver(isl12057_driver); diff --git a/drivers/rtc/rtc-pcf2123.c b/drivers/rtc/rtc-pcf2123.c index d1953bb244c5..8a7556cbcb7f 100644 --- a/drivers/rtc/rtc-pcf2123.c +++ b/drivers/rtc/rtc-pcf2123.c @@ -38,6 +38,7 @@ #include <linux/errno.h> #include <linux/init.h> #include <linux/kernel.h> +#include <linux/of.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/rtc.h> @@ -340,10 +341,19 @@ static int pcf2123_remove(struct spi_device *spi) return 0; } +#ifdef CONFIG_OF +static const struct of_device_id pcf2123_dt_ids[] = { + { .compatible = "nxp,rtc-pcf2123", }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, pcf2123_dt_ids); +#endif + static struct spi_driver pcf2123_driver = { .driver = { .name = "rtc-pcf2123", .owner = THIS_MODULE, + .of_match_table = of_match_ptr(pcf2123_dt_ids), }, .probe = pcf2123_probe, .remove = pcf2123_remove, diff --git a/drivers/rtc/rtc-rk808.c b/drivers/rtc/rtc-rk808.c index df42257668ac..91ca0bc1b484 100644 --- a/drivers/rtc/rtc-rk808.c +++ b/drivers/rtc/rtc-rk808.c @@ -67,15 +67,21 @@ static int rk808_rtc_readtime(struct device *dev, struct rtc_time *tm) /* Force an update of the shadowed registers right now */ ret = regmap_update_bits(rk808->regmap, RK808_RTC_CTRL_REG, BIT_RTC_CTRL_REG_RTC_GET_TIME, - 0); + BIT_RTC_CTRL_REG_RTC_GET_TIME); if (ret) { dev_err(dev, "Failed to update bits rtc_ctrl: %d\n", ret); return ret; } + /* + * After we set the GET_TIME bit, the rtc time can't be read + * immediately. So we should wait up to 31.25 us, about one cycle of + * 32khz. If we clear the GET_TIME bit here, the time of i2c transfer + * certainly more than 31.25us: 16 * 2.5us at 400kHz bus frequency. + */ ret = regmap_update_bits(rk808->regmap, RK808_RTC_CTRL_REG, BIT_RTC_CTRL_REG_RTC_GET_TIME, - BIT_RTC_CTRL_REG_RTC_GET_TIME); + 0); if (ret) { dev_err(dev, "Failed to update bits rtc_ctrl: %d\n", ret); return ret; diff --git a/drivers/rtc/rtc-s5m.c b/drivers/rtc/rtc-s5m.c index b5e7c4670205..89ac1d5083c6 100644 --- a/drivers/rtc/rtc-s5m.c +++ b/drivers/rtc/rtc-s5m.c @@ -832,6 +832,7 @@ static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume); static const struct platform_device_id s5m_rtc_id[] = { { "s5m-rtc", S5M8767X }, { "s2mps14-rtc", S2MPS14X }, + { }, }; static struct platform_driver s5m_rtc_driver = { diff --git a/drivers/rtc/systohc.c b/drivers/rtc/systohc.c index bf3e242ccc5c..eb71872d0361 100644 --- a/drivers/rtc/systohc.c +++ b/drivers/rtc/systohc.c @@ -20,16 +20,16 @@ * * If temporary failure is indicated the caller should try again 'soon' */ -int rtc_set_ntp_time(struct timespec now) +int rtc_set_ntp_time(struct timespec64 now) { struct rtc_device *rtc; struct rtc_time tm; int err = -ENODEV; if (now.tv_nsec < (NSEC_PER_SEC >> 1)) - rtc_time_to_tm(now.tv_sec, &tm); + rtc_time64_to_tm(now.tv_sec, &tm); else - rtc_time_to_tm(now.tv_sec + 1, &tm); + rtc_time64_to_tm(now.tv_sec + 1, &tm); rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE); if (rtc) { |