summaryrefslogtreecommitdiffstats
path: root/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'drivers')
-rw-r--r--drivers/mtd/nand/Kconfig8
-rw-r--r--drivers/mtd/nand/Makefile1
-rw-r--r--drivers/mtd/nand/brcmnand/brcmnand.c171
-rw-r--r--drivers/mtd/nand/jz4780_bch.c2
-rw-r--r--drivers/mtd/nand/jz4780_nand.c2
-rw-r--r--drivers/mtd/nand/mtk_ecc.c530
-rw-r--r--drivers/mtd/nand/mtk_ecc.h50
-rw-r--r--drivers/mtd/nand/mtk_nand.c1526
-rw-r--r--drivers/mtd/nand/nand_ids.c1
-rw-r--r--drivers/mtd/nand/omap2.c7
-rw-r--r--drivers/mtd/nand/sunxi_nand.c397
-rw-r--r--drivers/mtd/nand/xway_nand.c231
-rw-r--r--drivers/mtd/tests/nandbiterrs.c2
13 files changed, 2806 insertions, 122 deletions
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index eace3ef10d9d..21ff58099f3b 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -539,7 +539,6 @@ config MTD_NAND_FSMC
config MTD_NAND_XWAY
tristate "Support for NAND on Lantiq XWAY SoC"
depends on LANTIQ && SOC_TYPE_XWAY
- select MTD_NAND_PLATFORM
help
Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached
to the External Bus Unit (EBU).
@@ -563,4 +562,11 @@ config MTD_NAND_QCOM
Enables support for NAND flash chips on SoCs containing the EBI2 NAND
controller. This controller is found on IPQ806x SoC.
+config MTD_NAND_MTK
+ tristate "Support for NAND controller on MTK SoCs"
+ depends on HAS_DMA
+ help
+ Enables support for NAND controller on MTK SoCs.
+ This controller is found on mt27xx, mt81xx, mt65xx SoCs.
+
endif # MTD_NAND
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index f55335373f7c..cafde6f3d957 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -57,5 +57,6 @@ obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
+obj-$(CONFIG_MTD_NAND_MTK) += mtk_nand.o mtk_ecc.o
nand-objs := nand_base.o nand_bbt.o nand_timings.o
diff --git a/drivers/mtd/nand/brcmnand/brcmnand.c b/drivers/mtd/nand/brcmnand/brcmnand.c
index b76ad7c0144f..faca01d6e0f9 100644
--- a/drivers/mtd/nand/brcmnand/brcmnand.c
+++ b/drivers/mtd/nand/brcmnand/brcmnand.c
@@ -340,6 +340,36 @@ static const u16 brcmnand_regs_v71[] = {
[BRCMNAND_FC_BASE] = 0x400,
};
+/* BRCMNAND v7.2 */
+static const u16 brcmnand_regs_v72[] = {
+ [BRCMNAND_CMD_START] = 0x04,
+ [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
+ [BRCMNAND_CMD_ADDRESS] = 0x0c,
+ [BRCMNAND_INTFC_STATUS] = 0x14,
+ [BRCMNAND_CS_SELECT] = 0x18,
+ [BRCMNAND_CS_XOR] = 0x1c,
+ [BRCMNAND_LL_OP] = 0x20,
+ [BRCMNAND_CS0_BASE] = 0x50,
+ [BRCMNAND_CS1_BASE] = 0,
+ [BRCMNAND_CORR_THRESHOLD] = 0xdc,
+ [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
+ [BRCMNAND_UNCORR_COUNT] = 0xfc,
+ [BRCMNAND_CORR_COUNT] = 0x100,
+ [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
+ [BRCMNAND_CORR_ADDR] = 0x110,
+ [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
+ [BRCMNAND_UNCORR_ADDR] = 0x118,
+ [BRCMNAND_SEMAPHORE] = 0x150,
+ [BRCMNAND_ID] = 0x194,
+ [BRCMNAND_ID_EXT] = 0x198,
+ [BRCMNAND_LL_RDATA] = 0x19c,
+ [BRCMNAND_OOB_READ_BASE] = 0x200,
+ [BRCMNAND_OOB_READ_10_BASE] = 0,
+ [BRCMNAND_OOB_WRITE_BASE] = 0x400,
+ [BRCMNAND_OOB_WRITE_10_BASE] = 0,
+ [BRCMNAND_FC_BASE] = 0x600,
+};
+
enum brcmnand_cs_reg {
BRCMNAND_CS_CFG_EXT = 0,
BRCMNAND_CS_CFG,
@@ -435,7 +465,9 @@ static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
}
/* Register offsets */
- if (ctrl->nand_version >= 0x0701)
+ if (ctrl->nand_version >= 0x0702)
+ ctrl->reg_offsets = brcmnand_regs_v72;
+ else if (ctrl->nand_version >= 0x0701)
ctrl->reg_offsets = brcmnand_regs_v71;
else if (ctrl->nand_version >= 0x0600)
ctrl->reg_offsets = brcmnand_regs_v60;
@@ -480,7 +512,9 @@ static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
}
/* Maximum spare area sector size (per 512B) */
- if (ctrl->nand_version >= 0x0600)
+ if (ctrl->nand_version >= 0x0702)
+ ctrl->max_oob = 128;
+ else if (ctrl->nand_version >= 0x0600)
ctrl->max_oob = 64;
else if (ctrl->nand_version >= 0x0500)
ctrl->max_oob = 32;
@@ -583,14 +617,20 @@ static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
int cs = host->cs;
- if (ctrl->nand_version >= 0x0600)
+ if (ctrl->nand_version >= 0x0702)
+ bits = 7;
+ else if (ctrl->nand_version >= 0x0600)
bits = 6;
else if (ctrl->nand_version >= 0x0500)
bits = 5;
else
bits = 4;
- if (ctrl->nand_version >= 0x0600) {
+ if (ctrl->nand_version >= 0x0702) {
+ if (cs >= 4)
+ reg = BRCMNAND_CORR_THRESHOLD_EXT;
+ shift = (cs % 4) * bits;
+ } else if (ctrl->nand_version >= 0x0600) {
if (cs >= 5)
reg = BRCMNAND_CORR_THRESHOLD_EXT;
shift = (cs % 5) * bits;
@@ -631,19 +671,28 @@ enum {
static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
{
- if (ctrl->nand_version >= 0x0600)
+ if (ctrl->nand_version >= 0x0702)
+ return GENMASK(7, 0);
+ else if (ctrl->nand_version >= 0x0600)
return GENMASK(6, 0);
else
return GENMASK(5, 0);
}
#define NAND_ACC_CONTROL_ECC_SHIFT 16
+#define NAND_ACC_CONTROL_ECC_EXT_SHIFT 13
static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
{
u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
- return mask << NAND_ACC_CONTROL_ECC_SHIFT;
+ mask <<= NAND_ACC_CONTROL_ECC_SHIFT;
+
+ /* v7.2 includes additional ECC levels */
+ if (ctrl->nand_version >= 0x0702)
+ mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT;
+
+ return mask;
}
static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
@@ -667,7 +716,9 @@ static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
{
- if (ctrl->nand_version >= 0x0600)
+ if (ctrl->nand_version >= 0x0702)
+ return 9;
+ else if (ctrl->nand_version >= 0x0600)
return 7;
else if (ctrl->nand_version >= 0x0500)
return 6;
@@ -773,10 +824,16 @@ enum brcmnand_llop_type {
* Internal support functions
***********************************************************************/
-static inline bool is_hamming_ecc(struct brcmnand_cfg *cfg)
+static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
+ struct brcmnand_cfg *cfg)
{
- return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
- cfg->ecc_level == 15;
+ if (ctrl->nand_version <= 0x0701)
+ return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
+ cfg->ecc_level == 15;
+ else
+ return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
+ cfg->ecc_level == 15) ||
+ (cfg->spare_area_size == 28 && cfg->ecc_level == 16));
}
/*
@@ -931,7 +988,7 @@ static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
if (p->sector_size_1k)
ecc_level <<= 1;
- if (is_hamming_ecc(p)) {
+ if (is_hamming_ecc(host->ctrl, p)) {
ecc->bytes = 3 * sectors;
mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
return 0;
@@ -1545,6 +1602,56 @@ static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
return ret;
}
+/*
+ * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
+ * error
+ *
+ * Because the HW ECC signals an ECC error if an erase paged has even a single
+ * bitflip, we must check each ECC error to see if it is actually an erased
+ * page with bitflips, not a truly corrupted page.
+ *
+ * On a real error, return a negative error code (-EBADMSG for ECC error), and
+ * buf will contain raw data.
+ * Otherwise, buf gets filled with 0xffs and return the maximum number of
+ * bitflips-per-ECC-sector to the caller.
+ *
+ */
+static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
+ struct nand_chip *chip, void *buf, u64 addr)
+{
+ int i, sas;
+ void *oob = chip->oob_poi;
+ int bitflips = 0;
+ int page = addr >> chip->page_shift;
+ int ret;
+
+ if (!buf) {
+ buf = chip->buffers->databuf;
+ /* Invalidate page cache */
+ chip->pagebuf = -1;
+ }
+
+ sas = mtd->oobsize / chip->ecc.steps;
+
+ /* read without ecc for verification */
+ chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
+ ret = chip->ecc.read_page_raw(mtd, chip, buf, true, page);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < chip->ecc.steps; i++, oob += sas) {
+ ret = nand_check_erased_ecc_chunk(buf, chip->ecc.size,
+ oob, sas, NULL, 0,
+ chip->ecc.strength);
+ if (ret < 0)
+ return ret;
+
+ bitflips = max(bitflips, ret);
+ }
+
+ return bitflips;
+}
+
static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
u64 addr, unsigned int trans, u32 *buf, u8 *oob)
{
@@ -1552,9 +1659,11 @@ static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
struct brcmnand_controller *ctrl = host->ctrl;
u64 err_addr = 0;
int err;
+ bool retry = true;
dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
+try_dmaread:
brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_COUNT, 0);
if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
@@ -1575,6 +1684,34 @@ static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
}
if (mtd_is_eccerr(err)) {
+ /*
+ * On controller version and 7.0, 7.1 , DMA read after a
+ * prior PIO read that reported uncorrectable error,
+ * the DMA engine captures this error following DMA read
+ * cleared only on subsequent DMA read, so just retry once
+ * to clear a possible false error reported for current DMA
+ * read
+ */
+ if ((ctrl->nand_version == 0x0700) ||
+ (ctrl->nand_version == 0x0701)) {
+ if (retry) {
+ retry = false;
+ goto try_dmaread;
+ }
+ }
+
+ /*
+ * Controller version 7.2 has hw encoder to detect erased page
+ * bitflips, apply sw verification for older controllers only
+ */
+ if (ctrl->nand_version < 0x0702) {
+ err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
+ addr);
+ /* erased page bitflips corrected */
+ if (err > 0)
+ return err;
+ }
+
dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
(unsigned long long)err_addr);
mtd->ecc_stats.failed++;
@@ -1857,7 +1994,8 @@ static int brcmnand_set_cfg(struct brcmnand_host *host,
return 0;
}
-static void brcmnand_print_cfg(char *buf, struct brcmnand_cfg *cfg)
+static void brcmnand_print_cfg(struct brcmnand_host *host,
+ char *buf, struct brcmnand_cfg *cfg)
{
buf += sprintf(buf,
"%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
@@ -1868,7 +2006,7 @@ static void brcmnand_print_cfg(char *buf, struct brcmnand_cfg *cfg)
cfg->spare_area_size, cfg->device_width);
/* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
- if (is_hamming_ecc(cfg))
+ if (is_hamming_ecc(host->ctrl, cfg))
sprintf(buf, ", Hamming ECC");
else if (cfg->sector_size_1k)
sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
@@ -1987,7 +2125,7 @@ static int brcmnand_setup_dev(struct brcmnand_host *host)
brcmnand_set_ecc_enabled(host, 1);
- brcmnand_print_cfg(msg, cfg);
+ brcmnand_print_cfg(host, msg, cfg);
dev_info(ctrl->dev, "detected %s\n", msg);
/* Configure ACC_CONTROL */
@@ -1995,6 +2133,10 @@ static int brcmnand_setup_dev(struct brcmnand_host *host)
tmp = nand_readreg(ctrl, offs);
tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
tmp &= ~ACC_CONTROL_RD_ERASED;
+
+ /* We need to turn on Read from erased paged protected by ECC */
+ if (ctrl->nand_version >= 0x0702)
+ tmp |= ACC_CONTROL_RD_ERASED;
tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
if (ctrl->features & BRCMNAND_HAS_PREFETCH) {
/*
@@ -2195,6 +2337,7 @@ static const struct of_device_id brcmnand_of_match[] = {
{ .compatible = "brcm,brcmnand-v6.2" },
{ .compatible = "brcm,brcmnand-v7.0" },
{ .compatible = "brcm,brcmnand-v7.1" },
+ { .compatible = "brcm,brcmnand-v7.2" },
{},
};
MODULE_DEVICE_TABLE(of, brcmnand_of_match);
diff --git a/drivers/mtd/nand/jz4780_bch.c b/drivers/mtd/nand/jz4780_bch.c
index d74f4ba4a6f4..731c6051d91e 100644
--- a/drivers/mtd/nand/jz4780_bch.c
+++ b/drivers/mtd/nand/jz4780_bch.c
@@ -375,6 +375,6 @@ static struct platform_driver jz4780_bch_driver = {
module_platform_driver(jz4780_bch_driver);
MODULE_AUTHOR("Alex Smith <alex@alex-smith.me.uk>");
-MODULE_AUTHOR("Harvey Hunt <harvey.hunt@imgtec.com>");
+MODULE_AUTHOR("Harvey Hunt <harveyhuntnexus@gmail.com>");
MODULE_DESCRIPTION("Ingenic JZ4780 BCH error correction driver");
MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/jz4780_nand.c b/drivers/mtd/nand/jz4780_nand.c
index daf3c4217f4d..175f67da25af 100644
--- a/drivers/mtd/nand/jz4780_nand.c
+++ b/drivers/mtd/nand/jz4780_nand.c
@@ -412,6 +412,6 @@ static struct platform_driver jz4780_nand_driver = {
module_platform_driver(jz4780_nand_driver);
MODULE_AUTHOR("Alex Smith <alex@alex-smith.me.uk>");
-MODULE_AUTHOR("Harvey Hunt <harvey.hunt@imgtec.com>");
+MODULE_AUTHOR("Harvey Hunt <harveyhuntnexus@gmail.com>");
MODULE_DESCRIPTION("Ingenic JZ4780 NAND driver");
MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/mtk_ecc.c b/drivers/mtd/nand/mtk_ecc.c
new file mode 100644
index 000000000000..25a4fbd4d24a
--- /dev/null
+++ b/drivers/mtd/nand/mtk_ecc.c
@@ -0,0 +1,530 @@
+/*
+ * MTK ECC controller driver.
+ * Copyright (C) 2016 MediaTek Inc.
+ * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
+ * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/platform_device.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/clk.h>
+#include <linux/module.h>
+#include <linux/iopoll.h>
+#include <linux/of.h>
+#include <linux/of_platform.h>
+#include <linux/mutex.h>
+
+#include "mtk_ecc.h"
+
+#define ECC_IDLE_MASK BIT(0)
+#define ECC_IRQ_EN BIT(0)
+#define ECC_OP_ENABLE (1)
+#define ECC_OP_DISABLE (0)
+
+#define ECC_ENCCON (0x00)
+#define ECC_ENCCNFG (0x04)
+#define ECC_CNFG_4BIT (0)
+#define ECC_CNFG_6BIT (1)
+#define ECC_CNFG_8BIT (2)
+#define ECC_CNFG_10BIT (3)
+#define ECC_CNFG_12BIT (4)
+#define ECC_CNFG_14BIT (5)
+#define ECC_CNFG_16BIT (6)
+#define ECC_CNFG_18BIT (7)
+#define ECC_CNFG_20BIT (8)
+#define ECC_CNFG_22BIT (9)
+#define ECC_CNFG_24BIT (0xa)
+#define ECC_CNFG_28BIT (0xb)
+#define ECC_CNFG_32BIT (0xc)
+#define ECC_CNFG_36BIT (0xd)
+#define ECC_CNFG_40BIT (0xe)
+#define ECC_CNFG_44BIT (0xf)
+#define ECC_CNFG_48BIT (0x10)
+#define ECC_CNFG_52BIT (0x11)
+#define ECC_CNFG_56BIT (0x12)
+#define ECC_CNFG_60BIT (0x13)
+#define ECC_MODE_SHIFT (5)
+#define ECC_MS_SHIFT (16)
+#define ECC_ENCDIADDR (0x08)
+#define ECC_ENCIDLE (0x0C)
+#define ECC_ENCPAR(x) (0x10 + (x) * sizeof(u32))
+#define ECC_ENCIRQ_EN (0x80)
+#define ECC_ENCIRQ_STA (0x84)
+#define ECC_DECCON (0x100)
+#define ECC_DECCNFG (0x104)
+#define DEC_EMPTY_EN BIT(31)
+#define DEC_CNFG_CORRECT (0x3 << 12)
+#define ECC_DECIDLE (0x10C)
+#define ECC_DECENUM0 (0x114)
+#define ERR_MASK (0x3f)
+#define ECC_DECDONE (0x124)
+#define ECC_DECIRQ_EN (0x200)
+#define ECC_DECIRQ_STA (0x204)
+
+#define ECC_TIMEOUT (500000)
+
+#define ECC_IDLE_REG(op) ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE)
+#define ECC_CTL_REG(op) ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON)
+#define ECC_IRQ_REG(op) ((op) == ECC_ENCODE ? \
+ ECC_ENCIRQ_EN : ECC_DECIRQ_EN)
+
+struct mtk_ecc {
+ struct device *dev;
+ void __iomem *regs;
+ struct clk *clk;
+
+ struct completion done;
+ struct mutex lock;
+ u32 sectors;
+};
+
+static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc,
+ enum mtk_ecc_operation op)
+{
+ struct device *dev = ecc->dev;
+ u32 val;
+ int ret;
+
+ ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val,
+ val & ECC_IDLE_MASK,
+ 10, ECC_TIMEOUT);
+ if (ret)
+ dev_warn(dev, "%s NOT idle\n",
+ op == ECC_ENCODE ? "encoder" : "decoder");
+}
+
+static irqreturn_t mtk_ecc_irq(int irq, void *id)
+{
+ struct mtk_ecc *ecc = id;
+ enum mtk_ecc_operation op;
+ u32 dec, enc;
+
+ dec = readw(ecc->regs + ECC_DECIRQ_STA) & ECC_IRQ_EN;
+ if (dec) {
+ op = ECC_DECODE;
+ dec = readw(ecc->regs + ECC_DECDONE);
+ if (dec & ecc->sectors) {
+ ecc->sectors = 0;
+ complete(&ecc->done);
+ } else {
+ return IRQ_HANDLED;
+ }
+ } else {
+ enc = readl(ecc->regs + ECC_ENCIRQ_STA) & ECC_IRQ_EN;
+ if (enc) {
+ op = ECC_ENCODE;
+ complete(&ecc->done);
+ } else {
+ return IRQ_NONE;
+ }
+ }
+
+ writel(0, ecc->regs + ECC_IRQ_REG(op));
+
+ return IRQ_HANDLED;
+}
+
+static void mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
+{
+ u32 ecc_bit = ECC_CNFG_4BIT, dec_sz, enc_sz;
+ u32 reg;
+
+ switch (config->strength) {
+ case 4:
+ ecc_bit = ECC_CNFG_4BIT;
+ break;
+ case 6:
+ ecc_bit = ECC_CNFG_6BIT;
+ break;
+ case 8:
+ ecc_bit = ECC_CNFG_8BIT;
+ break;
+ case 10:
+ ecc_bit = ECC_CNFG_10BIT;
+ break;
+ case 12:
+ ecc_bit = ECC_CNFG_12BIT;
+ break;
+ case 14:
+ ecc_bit = ECC_CNFG_14BIT;
+ break;
+ case 16:
+ ecc_bit = ECC_CNFG_16BIT;
+ break;
+ case 18:
+ ecc_bit = ECC_CNFG_18BIT;
+ break;
+ case 20:
+ ecc_bit = ECC_CNFG_20BIT;
+ break;
+ case 22:
+ ecc_bit = ECC_CNFG_22BIT;
+ break;
+ case 24:
+ ecc_bit = ECC_CNFG_24BIT;
+ break;
+ case 28:
+ ecc_bit = ECC_CNFG_28BIT;
+ break;
+ case 32:
+ ecc_bit = ECC_CNFG_32BIT;
+ break;
+ case 36:
+ ecc_bit = ECC_CNFG_36BIT;
+ break;
+ case 40:
+ ecc_bit = ECC_CNFG_40BIT;
+ break;
+ case 44:
+ ecc_bit = ECC_CNFG_44BIT;
+ break;
+ case 48:
+ ecc_bit = ECC_CNFG_48BIT;
+ break;
+ case 52:
+ ecc_bit = ECC_CNFG_52BIT;
+ break;
+ case 56:
+ ecc_bit = ECC_CNFG_56BIT;
+ break;
+ case 60:
+ ecc_bit = ECC_CNFG_60BIT;
+ break;
+ default:
+ dev_err(ecc->dev, "invalid strength %d, default to 4 bits\n",
+ config->strength);
+ }
+
+ if (config->op == ECC_ENCODE) {
+ /* configure ECC encoder (in bits) */
+ enc_sz = config->len << 3;
+
+ reg = ecc_bit | (config->mode << ECC_MODE_SHIFT);
+ reg |= (enc_sz << ECC_MS_SHIFT);
+ writel(reg, ecc->regs + ECC_ENCCNFG);
+
+ if (config->mode != ECC_NFI_MODE)
+ writel(lower_32_bits(config->addr),
+ ecc->regs + ECC_ENCDIADDR);
+
+ } else {
+ /* configure ECC decoder (in bits) */
+ dec_sz = (config->len << 3) +
+ config->strength * ECC_PARITY_BITS;
+
+ reg = ecc_bit | (config->mode << ECC_MODE_SHIFT);
+ reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT;
+ reg |= DEC_EMPTY_EN;
+ writel(reg, ecc->regs + ECC_DECCNFG);
+
+ if (config->sectors)
+ ecc->sectors = 1 << (config->sectors - 1);
+ }
+}
+
+void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats,
+ int sectors)
+{
+ u32 offset, i, err;
+ u32 bitflips = 0;
+
+ stats->corrected = 0;
+ stats->failed = 0;
+
+ for (i = 0; i < sectors; i++) {
+ offset = (i >> 2) << 2;
+ err = readl(ecc->regs + ECC_DECENUM0 + offset);
+ err = err >> ((i % 4) * 8);
+ err &= ERR_MASK;
+ if (err == ERR_MASK) {
+ /* uncorrectable errors */
+ stats->failed++;
+ continue;
+ }
+
+ stats->corrected += err;
+ bitflips = max_t(u32, bitflips, err);
+ }
+
+ stats->bitflips = bitflips;
+}
+EXPORT_SYMBOL(mtk_ecc_get_stats);
+
+void mtk_ecc_release(struct mtk_ecc *ecc)
+{
+ clk_disable_unprepare(ecc->clk);
+ put_device(ecc->dev);
+}
+EXPORT_SYMBOL(mtk_ecc_release);
+
+static void mtk_ecc_hw_init(struct mtk_ecc *ecc)
+{
+ mtk_ecc_wait_idle(ecc, ECC_ENCODE);
+ writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON);
+
+ mtk_ecc_wait_idle(ecc, ECC_DECODE);
+ writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON);
+}
+
+static struct mtk_ecc *mtk_ecc_get(struct device_node *np)
+{
+ struct platform_device *pdev;
+ struct mtk_ecc *ecc;
+
+ pdev = of_find_device_by_node(np);
+ if (!pdev || !platform_get_drvdata(pdev))
+ return ERR_PTR(-EPROBE_DEFER);
+
+ get_device(&pdev->dev);
+ ecc = platform_get_drvdata(pdev);
+ clk_prepare_enable(ecc->clk);
+ mtk_ecc_hw_init(ecc);
+
+ return ecc;
+}
+
+struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node)
+{
+ struct mtk_ecc *ecc = NULL;
+ struct device_node *np;
+
+ np = of_parse_phandle(of_node, "ecc-engine", 0);
+ if (np) {
+ ecc = mtk_ecc_get(np);
+ of_node_put(np);
+ }
+
+ return ecc;
+}
+EXPORT_SYMBOL(of_mtk_ecc_get);
+
+int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
+{
+ enum mtk_ecc_operation op = config->op;
+ int ret;
+
+ ret = mutex_lock_interruptible(&ecc->lock);
+ if (ret) {
+ dev_err(ecc->dev, "interrupted when attempting to lock\n");
+ return ret;
+ }
+
+ mtk_ecc_wait_idle(ecc, op);
+ mtk_ecc_config(ecc, config);
+ writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op));
+
+ init_completion(&ecc->done);
+ writew(ECC_IRQ_EN, ecc->regs + ECC_IRQ_REG(op));
+
+ return 0;
+}
+EXPORT_SYMBOL(mtk_ecc_enable);
+
+void mtk_ecc_disable(struct mtk_ecc *ecc)
+{
+ enum mtk_ecc_operation op = ECC_ENCODE;
+
+ /* find out the running operation */
+ if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE)
+ op = ECC_DECODE;
+
+ /* disable it */
+ mtk_ecc_wait_idle(ecc, op);
+ writew(0, ecc->regs + ECC_IRQ_REG(op));
+ writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op));
+
+ mutex_unlock(&ecc->lock);
+}
+EXPORT_SYMBOL(mtk_ecc_disable);
+
+int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op)
+{
+ int ret;
+
+ ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500));
+ if (!ret) {
+ dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n",
+ (op == ECC_ENCODE) ? "encoder" : "decoder");
+ return -ETIMEDOUT;
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL(mtk_ecc_wait_done);
+
+int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config,
+ u8 *data, u32 bytes)
+{
+ dma_addr_t addr;
+ u32 *p, len, i;
+ int ret = 0;
+
+ addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE);
+ ret = dma_mapping_error(ecc->dev, addr);
+ if (ret) {
+ dev_err(ecc->dev, "dma mapping error\n");
+ return -EINVAL;
+ }
+
+ config->op = ECC_ENCODE;
+ config->addr = addr;
+ ret = mtk_ecc_enable(ecc, config);
+ if (ret) {
+ dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
+ return ret;
+ }
+
+ ret = mtk_ecc_wait_done(ecc, ECC_ENCODE);
+ if (ret)
+ goto timeout;
+
+ mtk_ecc_wait_idle(ecc, ECC_ENCODE);
+
+ /* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */
+ len = (config->strength * ECC_PARITY_BITS + 7) >> 3;
+ p = (u32 *)(data + bytes);
+
+ /* write the parity bytes generated by the ECC back to the OOB region */
+ for (i = 0; i < len; i++)
+ p[i] = readl(ecc->regs + ECC_ENCPAR(i));
+timeout:
+
+ dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
+ mtk_ecc_disable(ecc);
+
+ return ret;
+}
+EXPORT_SYMBOL(mtk_ecc_encode);
+
+void mtk_ecc_adjust_strength(u32 *p)
+{
+ u32 ecc[] = {4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
+ 40, 44, 48, 52, 56, 60};
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(ecc); i++) {
+ if (*p <= ecc[i]) {
+ if (!i)
+ *p = ecc[i];
+ else if (*p != ecc[i])
+ *p = ecc[i - 1];
+ return;
+ }
+ }
+
+ *p = ecc[ARRAY_SIZE(ecc) - 1];
+}
+EXPORT_SYMBOL(mtk_ecc_adjust_strength);
+
+static int mtk_ecc_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct mtk_ecc *ecc;
+ struct resource *res;
+ int irq, ret;
+
+ ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
+ if (!ecc)
+ return -ENOMEM;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ ecc->regs = devm_ioremap_resource(dev, res);
+ if (IS_ERR(ecc->regs)) {
+ dev_err(dev, "failed to map regs: %ld\n", PTR_ERR(ecc->regs));
+ return PTR_ERR(ecc->regs);
+ }
+
+ ecc->clk = devm_clk_get(dev, NULL);
+ if (IS_ERR(ecc->clk)) {
+ dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk));
+ return PTR_ERR(ecc->clk);
+ }
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0) {
+ dev_err(dev, "failed to get irq\n");
+ return -EINVAL;
+ }
+
+ ret = dma_set_mask(dev, DMA_BIT_MASK(32));
+ if (ret) {
+ dev_err(dev, "failed to set DMA mask\n");
+ return ret;
+ }
+
+ ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc);
+ if (ret) {
+ dev_err(dev, "failed to request irq\n");
+ return -EINVAL;
+ }
+
+ ecc->dev = dev;
+ mutex_init(&ecc->lock);
+ platform_set_drvdata(pdev, ecc);
+ dev_info(dev, "probed\n");
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int mtk_ecc_suspend(struct device *dev)
+{
+ struct mtk_ecc *ecc = dev_get_drvdata(dev);
+
+ clk_disable_unprepare(ecc->clk);
+
+ return 0;
+}
+
+static int mtk_ecc_resume(struct device *dev)
+{
+ struct mtk_ecc *ecc = dev_get_drvdata(dev);
+ int ret;
+
+ ret = clk_prepare_enable(ecc->clk);
+ if (ret) {
+ dev_err(dev, "failed to enable clk\n");
+ return ret;
+ }
+
+ mtk_ecc_hw_init(ecc);
+
+ return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume);
+#endif
+
+static const struct of_device_id mtk_ecc_dt_match[] = {
+ { .compatible = "mediatek,mt2701-ecc" },
+ {},
+};
+
+MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match);
+
+static struct platform_driver mtk_ecc_driver = {
+ .probe = mtk_ecc_probe,
+ .driver = {
+ .name = "mtk-ecc",
+ .of_match_table = of_match_ptr(mtk_ecc_dt_match),
+#ifdef CONFIG_PM_SLEEP
+ .pm = &mtk_ecc_pm_ops,
+#endif
+ },
+};
+
+module_platform_driver(mtk_ecc_driver);
+
+MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
+MODULE_DESCRIPTION("MTK Nand ECC Driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/nand/mtk_ecc.h b/drivers/mtd/nand/mtk_ecc.h
new file mode 100644
index 000000000000..cbeba5cd1c13
--- /dev/null
+++ b/drivers/mtd/nand/mtk_ecc.h
@@ -0,0 +1,50 @@
+/*
+ * MTK SDG1 ECC controller
+ *
+ * Copyright (c) 2016 Mediatek
+ * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
+ * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published
+ * by the Free Software Foundation.
+ */
+
+#ifndef __DRIVERS_MTD_NAND_MTK_ECC_H__
+#define __DRIVERS_MTD_NAND_MTK_ECC_H__
+
+#include <linux/types.h>
+
+#define ECC_PARITY_BITS (14)
+
+enum mtk_ecc_mode {ECC_DMA_MODE = 0, ECC_NFI_MODE = 1};
+enum mtk_ecc_operation {ECC_ENCODE, ECC_DECODE};
+
+struct device_node;
+struct mtk_ecc;
+
+struct mtk_ecc_stats {
+ u32 corrected;
+ u32 bitflips;
+ u32 failed;
+};
+
+struct mtk_ecc_config {
+ enum mtk_ecc_operation op;
+ enum mtk_ecc_mode mode;
+ dma_addr_t addr;
+ u32 strength;
+ u32 sectors;
+ u32 len;
+};
+
+int mtk_ecc_encode(struct mtk_ecc *, struct mtk_ecc_config *, u8 *, u32);
+void mtk_ecc_get_stats(struct mtk_ecc *, struct mtk_ecc_stats *, int);
+int mtk_ecc_wait_done(struct mtk_ecc *, enum mtk_ecc_operation);
+int mtk_ecc_enable(struct mtk_ecc *, struct mtk_ecc_config *);
+void mtk_ecc_disable(struct mtk_ecc *);
+void mtk_ecc_adjust_strength(u32 *);
+
+struct mtk_ecc *of_mtk_ecc_get(struct device_node *);
+void mtk_ecc_release(struct mtk_ecc *);
+
+#endif
diff --git a/drivers/mtd/nand/mtk_nand.c b/drivers/mtd/nand/mtk_nand.c
new file mode 100644
index 000000000000..ddaa2acb9dd7
--- /dev/null
+++ b/drivers/mtd/nand/mtk_nand.c
@@ -0,0 +1,1526 @@
+/*
+ * MTK NAND Flash controller driver.
+ * Copyright (C) 2016 MediaTek Inc.
+ * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
+ * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/platform_device.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/delay.h>
+#include <linux/clk.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/mtd.h>
+#include <linux/module.h>
+#include <linux/iopoll.h>
+#include <linux/of.h>
+#include "mtk_ecc.h"
+
+/* NAND controller register definition */
+#define NFI_CNFG (0x00)
+#define CNFG_AHB BIT(0)
+#define CNFG_READ_EN BIT(1)
+#define CNFG_DMA_BURST_EN BIT(2)
+#define CNFG_BYTE_RW BIT(6)
+#define CNFG_HW_ECC_EN BIT(8)
+#define CNFG_AUTO_FMT_EN BIT(9)
+#define CNFG_OP_CUST (6 << 12)
+#define NFI_PAGEFMT (0x04)
+#define PAGEFMT_FDM_ECC_SHIFT (12)
+#define PAGEFMT_FDM_SHIFT (8)
+#define PAGEFMT_SPARE_16 (0)
+#define PAGEFMT_SPARE_26 (1)
+#define PAGEFMT_SPARE_27 (2)
+#define PAGEFMT_SPARE_28 (3)
+#define PAGEFMT_SPARE_32 (4)
+#define PAGEFMT_SPARE_36 (5)
+#define PAGEFMT_SPARE_40 (6)
+#define PAGEFMT_SPARE_44 (7)
+#define PAGEFMT_SPARE_48 (8)
+#define PAGEFMT_SPARE_49 (9)
+#define PAGEFMT_SPARE_50 (0xa)
+#define PAGEFMT_SPARE_51 (0xb)
+#define PAGEFMT_SPARE_52 (0xc)
+#define PAGEFMT_SPARE_62 (0xd)
+#define PAGEFMT_SPARE_63 (0xe)
+#define PAGEFMT_SPARE_64 (0xf)
+#define PAGEFMT_SPARE_SHIFT (4)
+#define PAGEFMT_SEC_SEL_512 BIT(2)
+#define PAGEFMT_512_2K (0)
+#define PAGEFMT_2K_4K (1)
+#define PAGEFMT_4K_8K (2)
+#define PAGEFMT_8K_16K (3)
+/* NFI control */
+#define NFI_CON (0x08)
+#define CON_FIFO_FLUSH BIT(0)
+#define CON_NFI_RST BIT(1)
+#define CON_BRD BIT(8) /* burst read */
+#define CON_BWR BIT(9) /* burst write */
+#define CON_SEC_SHIFT (12)
+/* Timming control register */
+#define NFI_ACCCON (0x0C)
+#define NFI_INTR_EN (0x10)
+#define INTR_AHB_DONE_EN BIT(6)
+#define NFI_INTR_STA (0x14)
+#define NFI_CMD (0x20)
+#define NFI_ADDRNOB (0x30)
+#define NFI_COLADDR (0x34)
+#define NFI_ROWADDR (0x38)
+#define NFI_STRDATA (0x40)
+#define STAR_EN (1)
+#define STAR_DE (0)
+#define NFI_CNRNB (0x44)
+#define NFI_DATAW (0x50)
+#define NFI_DATAR (0x54)
+#define NFI_PIO_DIRDY (0x58)
+#define PIO_DI_RDY (0x01)
+#define NFI_STA (0x60)
+#define STA_CMD BIT(0)
+#define STA_ADDR BIT(1)
+#define STA_BUSY BIT(8)
+#define STA_EMP_PAGE BIT(12)
+#define NFI_FSM_CUSTDATA (0xe << 16)
+#define NFI_FSM_MASK (0xf << 16)
+#define NFI_ADDRCNTR (0x70)
+#define CNTR_MASK GENMASK(16, 12)
+#define NFI_STRADDR (0x80)
+#define NFI_BYTELEN (0x84)
+#define NFI_CSEL (0x90)
+#define NFI_FDML(x) (0xA0 + (x) * sizeof(u32) * 2)
+#define NFI_FDMM(x) (0xA4 + (x) * sizeof(u32) * 2)
+#define NFI_FDM_MAX_SIZE (8)
+#define NFI_FDM_MIN_SIZE (1)
+#define NFI_MASTER_STA (0x224)
+#define MASTER_STA_MASK (0x0FFF)
+#define NFI_EMPTY_THRESH (0x23C)
+
+#define MTK_NAME "mtk-nand"
+#define KB(x) ((x) * 1024UL)
+#define MB(x) (KB(x) * 1024UL)
+
+#define MTK_TIMEOUT (500000)
+#define MTK_RESET_TIMEOUT (1000000)
+#define MTK_MAX_SECTOR (16)
+#define MTK_NAND_MAX_NSELS (2)
+
+struct mtk_nfc_bad_mark_ctl {
+ void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
+ u32 sec;
+ u32 pos;
+};
+
+/*
+ * FDM: region used to store free OOB data
+ */
+struct mtk_nfc_fdm {
+ u32 reg_size;
+ u32 ecc_size;
+};
+
+struct mtk_nfc_nand_chip {
+ struct list_head node;
+ struct nand_chip nand;
+
+ struct mtk_nfc_bad_mark_ctl bad_mark;
+ struct mtk_nfc_fdm fdm;
+ u32 spare_per_sector;
+
+ int nsels;
+ u8 sels[0];
+ /* nothing after this field */
+};
+
+struct mtk_nfc_clk {
+ struct clk *nfi_clk;
+ struct clk *pad_clk;
+};
+
+struct mtk_nfc {
+ struct nand_hw_control controller;
+ struct mtk_ecc_config ecc_cfg;
+ struct mtk_nfc_clk clk;
+ struct mtk_ecc *ecc;
+
+ struct device *dev;
+ void __iomem *regs;
+
+ struct completion done;
+ struct list_head chips;
+
+ u8 *buffer;
+};
+
+static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
+{
+ return container_of(nand, struct mtk_nfc_nand_chip, nand);
+}
+
+static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
+{
+ return (u8 *)p + i * chip->ecc.size;
+}
+
+static inline u8 *oob_ptr(struct nand_chip *chip, int i)
+{
+ struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+ u8 *poi;
+
+ /* map the sector's FDM data to free oob:
+ * the beginning of the oob area stores the FDM data of bad mark sectors
+ */
+
+ if (i < mtk_nand->bad_mark.sec)
+ poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
+ else if (i == mtk_nand->bad_mark.sec)
+ poi = chip->oob_poi;
+ else
+ poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;
+
+ return poi;
+}
+
+static inline int mtk_data_len(struct nand_chip *chip)
+{
+ struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+
+ return chip->ecc.size + mtk_nand->spare_per_sector;
+}
+
+static inline u8 *mtk_data_ptr(struct nand_chip *chip, int i)
+{
+ struct mtk_nfc *nfc = nand_get_controller_data(chip);
+
+ return nfc->buffer + i * mtk_data_len(chip);
+}
+
+static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
+{
+ struct mtk_nfc *nfc = nand_get_controller_data(chip);
+
+ return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
+}
+
+static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
+{
+ writel(val, nfc->regs + reg);
+}
+
+static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
+{
+ writew(val, nfc->regs + reg);
+}
+
+static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
+{
+ writeb(val, nfc->regs + reg);
+}
+
+static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
+{
+ return readl_relaxed(nfc->regs + reg);
+}
+
+static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
+{
+ return readw_relaxed(nfc->regs + reg);
+}
+
+static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
+{
+ return readb_relaxed(nfc->regs + reg);
+}
+
+static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
+{
+ struct device *dev = nfc->dev;
+ u32 val;
+ int ret;
+
+ /* reset all registers and force the NFI master to terminate */
+ nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
+
+ /* wait for the master to finish the last transaction */
+ ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
+ !(val & MASTER_STA_MASK), 50,
+ MTK_RESET_TIMEOUT);
+ if (ret)
+ dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
+ NFI_MASTER_STA, val);
+
+ /* ensure any status register affected by the NFI master is reset */
+ nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
+ nfi_writew(nfc, STAR_DE, NFI_STRDATA);
+}
+
+static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
+{
+ struct device *dev = nfc->dev;
+ u32 val;
+ int ret;
+
+ nfi_writel(nfc, command, NFI_CMD);
+
+ ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
+ !(val & STA_CMD), 10, MTK_TIMEOUT);
+ if (ret) {
+ dev_warn(dev, "nfi core timed out entering command mode\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
+{
+ struct device *dev = nfc->dev;
+ u32 val;
+ int ret;
+
+ nfi_writel(nfc, addr, NFI_COLADDR);
+ nfi_writel(nfc, 0, NFI_ROWADDR);
+ nfi_writew(nfc, 1, NFI_ADDRNOB);
+
+ ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
+ !(val & STA_ADDR), 10, MTK_TIMEOUT);
+ if (ret) {
+ dev_warn(dev, "nfi core timed out entering address mode\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+ struct mtk_nfc *nfc = nand_get_controller_data(chip);
+ u32 fmt, spare;
+
+ if (!mtd->writesize)
+ return 0;
+
+ spare = mtk_nand->spare_per_sector;
+
+ switch (mtd->writesize) {
+ case 512:
+ fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
+ break;
+ case KB(2):
+ if (chip->ecc.size == 512)
+ fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
+ else
+ fmt = PAGEFMT_512_2K;
+ break;
+ case KB(4):
+ if (chip->ecc.size == 512)
+ fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
+ else
+ fmt = PAGEFMT_2K_4K;
+ break;
+ case KB(8):
+ if (chip->ecc.size == 512)
+ fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
+ else
+ fmt = PAGEFMT_4K_8K;
+ break;
+ case KB(16):
+ fmt = PAGEFMT_8K_16K;
+ break;
+ default:
+ dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
+ return -EINVAL;
+ }
+
+ /*
+ * the hardware will double the value for this eccsize, so we need to
+ * halve it
+ */
+ if (chip->ecc.size == 1024)
+ spare >>= 1;
+
+ switch (spare) {
+ case 16:
+ fmt |= (PAGEFMT_SPARE_16 << PAGEFMT_SPARE_SHIFT);
+ break;
+ case 26:
+ fmt |= (PAGEFMT_SPARE_26 << PAGEFMT_SPARE_SHIFT);
+ break;
+ case 27:
+ fmt |= (PAGEFMT_SPARE_27 << PAGEFMT_SPARE_SHIFT);
+ break;
+ case 28:
+ fmt |= (PAGEFMT_SPARE_28 << PAGEFMT_SPARE_SHIFT);
+ break;
+ case 32:
+ fmt |= (PAGEFMT_SPARE_32 << PAGEFMT_SPARE_SHIFT);
+ break;
+ case 36:
+ fmt |= (PAGEFMT_SPARE_36 << PAGEFMT_SPARE_SHIFT);
+ break;
+ case 40:
+ fmt |= (PAGEFMT_SPARE_40 << PAGEFMT_SPARE_SHIFT);
+ break;
+ case 44:
+ fmt |= (PAGEFMT_SPARE_44 << PAGEFMT_SPARE_SHIFT);
+ break;
+ case 48:
+ fmt |= (PAGEFMT_SPARE_48 << PAGEFMT_SPARE_SHIFT);
+ break;
+ case 49:
+ fmt |= (PAGEFMT_SPARE_49 << PAGEFMT_SPARE_SHIFT);
+ break;
+ case 50:
+ fmt |= (PAGEFMT_SPARE_50 << PAGEFMT_SPARE_SHIFT);
+ break;
+ case 51:
+ fmt |= (PAGEFMT_SPARE_51 << PAGEFMT_SPARE_SHIFT);
+ break;
+ case 52:
+ fmt |= (PAGEFMT_SPARE_52 << PAGEFMT_SPARE_SHIFT);
+ break;
+ case 62:
+ fmt |= (PAGEFMT_SPARE_62 << PAGEFMT_SPARE_SHIFT);
+ break;
+ case 63:
+ fmt |= (PAGEFMT_SPARE_63 << PAGEFMT_SPARE_SHIFT);
+ break;
+ case 64:
+ fmt |= (PAGEFMT_SPARE_64 << PAGEFMT_SPARE_SHIFT);
+ break;
+ default:
+ dev_err(nfc->dev, "invalid spare per sector %d\n", spare);
+ return -EINVAL;
+ }
+
+ fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
+ fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
+ nfi_writew(nfc, fmt, NFI_PAGEFMT);
+
+ nfc->ecc_cfg.strength = chip->ecc.strength;
+ nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
+
+ return 0;
+}
+
+static void mtk_nfc_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+ struct mtk_nfc *nfc = nand_get_controller_data(nand);
+ struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
+
+ if (chip < 0)
+ return;
+
+ mtk_nfc_hw_runtime_config(mtd);
+
+ nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL);
+}
+
+static int mtk_nfc_dev_ready(struct mtd_info *mtd)
+{
+ struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
+
+ if (nfi_readl(nfc, NFI_STA) & STA_BUSY)
+ return 0;
+
+ return 1;
+}
+
+static void mtk_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
+{
+ struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
+
+ if (ctrl & NAND_ALE) {
+ mtk_nfc_send_address(nfc, dat);
+ } else if (ctrl & NAND_CLE) {
+ mtk_nfc_hw_reset(nfc);
+
+ nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
+ mtk_nfc_send_command(nfc, dat);
+ }
+}
+
+static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
+{
+ int rc;
+ u8 val;
+
+ rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
+ val & PIO_DI_RDY, 10, MTK_TIMEOUT);
+ if (rc < 0)
+ dev_err(nfc->dev, "data not ready\n");
+}
+
+static inline u8 mtk_nfc_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct mtk_nfc *nfc = nand_get_controller_data(chip);
+ u32 reg;
+
+ /* after each byte read, the NFI_STA reg is reset by the hardware */
+ reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
+ if (reg != NFI_FSM_CUSTDATA) {
+ reg = nfi_readw(nfc, NFI_CNFG);
+ reg |= CNFG_BYTE_RW | CNFG_READ_EN;
+ nfi_writew(nfc, reg, NFI_CNFG);
+
+ /*
+ * set to max sector to allow the HW to continue reading over
+ * unaligned accesses
+ */
+ reg = (MTK_MAX_SECTOR << CON_SEC_SHIFT) | CON_BRD;
+ nfi_writel(nfc, reg, NFI_CON);
+
+ /* trigger to fetch data */
+ nfi_writew(nfc, STAR_EN, NFI_STRDATA);
+ }
+
+ mtk_nfc_wait_ioready(nfc);
+
+ return nfi_readb(nfc, NFI_DATAR);
+}
+
+static void mtk_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ buf[i] = mtk_nfc_read_byte(mtd);
+}
+
+static void mtk_nfc_write_byte(struct mtd_info *mtd, u8 byte)
+{
+ struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
+ u32 reg;
+
+ reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
+
+ if (reg != NFI_FSM_CUSTDATA) {
+ reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
+ nfi_writew(nfc, reg, NFI_CNFG);
+
+ reg = MTK_MAX_SECTOR << CON_SEC_SHIFT | CON_BWR;
+ nfi_writel(nfc, reg, NFI_CON);
+
+ nfi_writew(nfc, STAR_EN, NFI_STRDATA);
+ }
+
+ mtk_nfc_wait_ioready(nfc);
+ nfi_writeb(nfc, byte, NFI_DATAW);
+}
+
+static void mtk_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ mtk_nfc_write_byte(mtd, buf[i]);
+}
+
+static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
+{
+ struct mtk_nfc *nfc = nand_get_controller_data(chip);
+ struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+ int size = chip->ecc.size + mtk_nand->fdm.reg_size;
+
+ nfc->ecc_cfg.mode = ECC_DMA_MODE;
+ nfc->ecc_cfg.op = ECC_ENCODE;
+
+ return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
+}
+
+static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
+{
+ /* nop */
+}
+
+static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
+ u32 bad_pos = nand->bad_mark.pos;
+
+ if (raw)
+ bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
+ else
+ bad_pos += nand->bad_mark.sec * chip->ecc.size;
+
+ swap(chip->oob_poi[0], buf[bad_pos]);
+}
+
+static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
+ u32 len, const u8 *buf)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+ struct mtk_nfc *nfc = nand_get_controller_data(chip);
+ struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
+ u32 start, end;
+ int i, ret;
+
+ start = offset / chip->ecc.size;
+ end = DIV_ROUND_UP(offset + len, chip->ecc.size);
+
+ memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
+ for (i = 0; i < chip->ecc.steps; i++) {
+ memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
+ chip->ecc.size);
+
+ if (start > i || i >= end)
+ continue;
+
+ if (i == mtk_nand->bad_mark.sec)
+ mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
+
+ memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
+
+ /* program the CRC back to the OOB */
+ ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
+ if (ret < 0)
+ return ret;
+ }
+
+ return 0;
+}
+
+static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+ struct mtk_nfc *nfc = nand_get_controller_data(chip);
+ struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
+ u32 i;
+
+ memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
+ for (i = 0; i < chip->ecc.steps; i++) {
+ if (buf)
+ memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
+ chip->ecc.size);
+
+ if (i == mtk_nand->bad_mark.sec)
+ mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
+
+ memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
+ }
+}
+
+static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
+ u32 sectors)
+{
+ struct mtk_nfc *nfc = nand_get_controller_data(chip);
+ struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+ struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
+ u32 vall, valm;
+ u8 *oobptr;
+ int i, j;
+
+ for (i = 0; i < sectors; i++) {
+ oobptr = oob_ptr(chip, start + i);
+ vall = nfi_readl(nfc, NFI_FDML(i));
+ valm = nfi_readl(nfc, NFI_FDMM(i));
+
+ for (j = 0; j < fdm->reg_size; j++)
+ oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
+ }
+}
+
+static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
+{
+ struct mtk_nfc *nfc = nand_get_controller_data(chip);
+ struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+ struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
+ u32 vall, valm;
+ u8 *oobptr;
+ int i, j;
+
+ for (i = 0; i < chip->ecc.steps; i++) {
+ oobptr = oob_ptr(chip, i);
+ vall = 0;
+ valm = 0;
+ for (j = 0; j < 8; j++) {
+ if (j < 4)
+ vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
+ << (j * 8);
+ else
+ valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
+ << ((j - 4) * 8);
+ }
+ nfi_writel(nfc, vall, NFI_FDML(i));
+ nfi_writel(nfc, valm, NFI_FDMM(i));
+ }
+}
+
+static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+ const u8 *buf, int page, int len)
+{
+ struct mtk_nfc *nfc = nand_get_controller_data(chip);
+ struct device *dev = nfc->dev;
+ dma_addr_t addr;
+ u32 reg;
+ int ret;
+
+ addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
+ ret = dma_mapping_error(nfc->dev, addr);
+ if (ret) {
+ dev_err(nfc->dev, "dma mapping error\n");
+ return -EINVAL;
+ }
+
+ reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
+ nfi_writew(nfc, reg, NFI_CNFG);
+
+ nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
+ nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
+ nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
+
+ init_completion(&nfc->done);
+
+ reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
+ nfi_writel(nfc, reg, NFI_CON);
+ nfi_writew(nfc, STAR_EN, NFI_STRDATA);
+
+ ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
+ if (!ret) {
+ dev_err(dev, "program ahb done timeout\n");
+ nfi_writew(nfc, 0, NFI_INTR_EN);
+ ret = -ETIMEDOUT;
+ goto timeout;
+ }
+
+ ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
+ (reg & CNTR_MASK) >= chip->ecc.steps,
+ 10, MTK_TIMEOUT);
+ if (ret)
+ dev_err(dev, "hwecc write timeout\n");
+
+timeout:
+
+ dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
+ nfi_writel(nfc, 0, NFI_CON);
+
+ return ret;
+}
+
+static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+ const u8 *buf, int page, int raw)
+{
+ struct mtk_nfc *nfc = nand_get_controller_data(chip);
+ struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+ size_t len;
+ const u8 *bufpoi;
+ u32 reg;
+ int ret;
+
+ if (!raw) {
+ /* OOB => FDM: from register, ECC: from HW */
+ reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
+ nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);
+
+ nfc->ecc_cfg.op = ECC_ENCODE;
+ nfc->ecc_cfg.mode = ECC_NFI_MODE;
+ ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
+ if (ret) {
+ /* clear NFI config */
+ reg = nfi_readw(nfc, NFI_CNFG);
+ reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
+ nfi_writew(nfc, reg, NFI_CNFG);
+
+ return ret;
+ }
+
+ memcpy(nfc->buffer, buf, mtd->writesize);
+ mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
+ bufpoi = nfc->buffer;
+
+ /* write OOB into the FDM registers (OOB area in MTK NAND) */
+ mtk_nfc_write_fdm(chip);
+ } else {
+ bufpoi = buf;
+ }
+
+ len = mtd->writesize + (raw ? mtd->oobsize : 0);
+ ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);
+
+ if (!raw)
+ mtk_ecc_disable(nfc->ecc);
+
+ return ret;
+}
+
+static int mtk_nfc_write_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, const u8 *buf,
+ int oob_on, int page)
+{
+ return mtk_nfc_write_page(mtd, chip, buf, page, 0);
+}
+
+static int mtk_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ const u8 *buf, int oob_on, int pg)
+{
+ struct mtk_nfc *nfc = nand_get_controller_data(chip);
+
+ mtk_nfc_format_page(mtd, buf);
+ return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
+}
+
+static int mtk_nfc_write_subpage_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, u32 offset,
+ u32 data_len, const u8 *buf,
+ int oob_on, int page)
+{
+ struct mtk_nfc *nfc = nand_get_controller_data(chip);
+ int ret;
+
+ ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
+ if (ret < 0)
+ return ret;
+
+ /* use the data in the private buffer (now with FDM and CRC) */
+ return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
+}
+
+static int mtk_nfc_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ int ret;
+
+ chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
+
+ ret = mtk_nfc_write_page_raw(mtd, chip, NULL, 1, page);
+ if (ret < 0)
+ return -EIO;
+
+ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+ ret = chip->waitfunc(mtd, chip);
+
+ return ret & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct mtk_nfc *nfc = nand_get_controller_data(chip);
+ struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+ struct mtk_ecc_stats stats;
+ int rc, i;
+
+ rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
+ if (rc) {
+ memset(buf, 0xff, sectors * chip->ecc.size);
+ for (i = 0; i < sectors; i++)
+ memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size);
+ return 0;
+ }
+
+ mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
+ mtd->ecc_stats.corrected += stats.corrected;
+ mtd->ecc_stats.failed += stats.failed;
+
+ return stats.bitflips;
+}
+
+static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
+ u32 data_offs, u32 readlen,
+ u8 *bufpoi, int page, int raw)
+{
+ struct mtk_nfc *nfc = nand_get_controller_data(chip);
+ struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+ u32 spare = mtk_nand->spare_per_sector;
+ u32 column, sectors, start, end, reg;
+ dma_addr_t addr;
+ int bitflips;
+ size_t len;
+ u8 *buf;
+ int rc;
+
+ start = data_offs / chip->ecc.size;
+ end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
+
+ sectors = end - start;
+ column = start * (chip->ecc.size + spare);
+
+ len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
+ buf = bufpoi + start * chip->ecc.size;
+
+ if (column != 0)
+ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, column, -1);
+
+ addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
+ rc = dma_mapping_error(nfc->dev, addr);
+ if (rc) {
+ dev_err(nfc->dev, "dma mapping error\n");
+
+ return -EINVAL;
+ }
+
+ reg = nfi_readw(nfc, NFI_CNFG);
+ reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
+ if (!raw) {
+ reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
+ nfi_writew(nfc, reg, NFI_CNFG);
+
+ nfc->ecc_cfg.mode = ECC_NFI_MODE;
+ nfc->ecc_cfg.sectors = sectors;
+ nfc->ecc_cfg.op = ECC_DECODE;
+ rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
+ if (rc) {
+ dev_err(nfc->dev, "ecc enable\n");
+ /* clear NFI_CNFG */
+ reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
+ CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
+ nfi_writew(nfc, reg, NFI_CNFG);
+ dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
+
+ return rc;
+ }
+ } else {
+ nfi_writew(nfc, reg, NFI_CNFG);
+ }
+
+ nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
+ nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
+ nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
+
+ init_completion(&nfc->done);
+ reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
+ nfi_writel(nfc, reg, NFI_CON);
+ nfi_writew(nfc, STAR_EN, NFI_STRDATA);
+
+ rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
+ if (!rc)
+ dev_warn(nfc->dev, "read ahb/dma done timeout\n");
+
+ rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
+ (reg & CNTR_MASK) >= sectors, 10,
+ MTK_TIMEOUT);
+ if (rc < 0) {
+ dev_err(nfc->dev, "subpage done timeout\n");
+ bitflips = -EIO;
+ } else {
+ bitflips = 0;
+ if (!raw) {
+ rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
+ bitflips = rc < 0 ? -ETIMEDOUT :
+ mtk_nfc_update_ecc_stats(mtd, buf, sectors);
+ mtk_nfc_read_fdm(chip, start, sectors);
+ }
+ }
+
+ dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
+
+ if (raw)
+ goto done;
+
+ mtk_ecc_disable(nfc->ecc);
+
+ if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
+ mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
+done:
+ nfi_writel(nfc, 0, NFI_CON);
+
+ return bitflips;
+}
+
+static int mtk_nfc_read_subpage_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, u32 off,
+ u32 len, u8 *p, int pg)
+{
+ return mtk_nfc_read_subpage(mtd, chip, off, len, p, pg, 0);
+}
+
+static int mtk_nfc_read_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, u8 *p,
+ int oob_on, int pg)
+{
+ return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
+}
+
+static int mtk_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ u8 *buf, int oob_on, int page)
+{
+ struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+ struct mtk_nfc *nfc = nand_get_controller_data(chip);
+ struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
+ int i, ret;
+
+ memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
+ ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
+ page, 1);
+ if (ret < 0)
+ return ret;
+
+ for (i = 0; i < chip->ecc.steps; i++) {
+ memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);
+
+ if (i == mtk_nand->bad_mark.sec)
+ mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
+
+ if (buf)
+ memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
+ chip->ecc.size);
+ }
+
+ return ret;
+}
+
+static int mtk_nfc_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
+
+ return mtk_nfc_read_page_raw(mtd, chip, NULL, 1, page);
+}
+
+static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
+{
+ /*
+ * ACCON: access timing control register
+ * -------------------------------------
+ * 31:28: minimum required time for CS post pulling down after accessing
+ * the device
+ * 27:22: minimum required time for CS pre pulling down before accessing
+ * the device
+ * 21:16: minimum required time from NCEB low to NREB low
+ * 15:12: minimum required time from NWEB high to NREB low.
+ * 11:08: write enable hold time
+ * 07:04: write wait states
+ * 03:00: read wait states
+ */
+ nfi_writel(nfc, 0x10804211, NFI_ACCCON);
+
+ /*
+ * CNRNB: nand ready/busy register
+ * -------------------------------
+ * 7:4: timeout register for polling the NAND busy/ready signal
+ * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles.
+ */
+ nfi_writew(nfc, 0xf1, NFI_CNRNB);
+ nfi_writew(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
+
+ mtk_nfc_hw_reset(nfc);
+
+ nfi_readl(nfc, NFI_INTR_STA);
+ nfi_writel(nfc, 0, NFI_INTR_EN);
+}
+
+static irqreturn_t mtk_nfc_irq(int irq, void *id)
+{
+ struct mtk_nfc *nfc = id;
+ u16 sta, ien;
+
+ sta = nfi_readw(nfc, NFI_INTR_STA);
+ ien = nfi_readw(nfc, NFI_INTR_EN);
+
+ if (!(sta & ien))
+ return IRQ_NONE;
+
+ nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
+ complete(&nfc->done);
+
+ return IRQ_HANDLED;
+}
+
+static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk)
+{
+ int ret;
+
+ ret = clk_prepare_enable(clk->nfi_clk);
+ if (ret) {
+ dev_err(dev, "failed to enable nfi clk\n");
+ return ret;
+ }
+
+ ret = clk_prepare_enable(clk->pad_clk);
+ if (ret) {
+ dev_err(dev, "failed to enable pad clk\n");
+ clk_disable_unprepare(clk->nfi_clk);
+ return ret;
+ }
+
+ return 0;
+}
+
+static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk)
+{
+ clk_disable_unprepare(clk->nfi_clk);
+ clk_disable_unprepare(clk->pad_clk);
+}
+
+static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oob_region)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+ struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
+ u32 eccsteps;
+
+ eccsteps = mtd->writesize / chip->ecc.size;
+
+ if (section >= eccsteps)
+ return -ERANGE;
+
+ oob_region->length = fdm->reg_size - fdm->ecc_size;
+ oob_region->offset = section * fdm->reg_size + fdm->ecc_size;
+
+ return 0;
+}
+
+static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oob_region)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+ u32 eccsteps;
+
+ if (section)
+ return -ERANGE;
+
+ eccsteps = mtd->writesize / chip->ecc.size;
+ oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
+ oob_region->length = mtd->oobsize - oob_region->offset;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
+ .free = mtk_nfc_ooblayout_free,
+ .ecc = mtk_nfc_ooblayout_ecc,
+};
+
+static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+ struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
+ u32 ecc_bytes;
+
+ ecc_bytes = DIV_ROUND_UP(nand->ecc.strength * ECC_PARITY_BITS, 8);
+
+ fdm->reg_size = chip->spare_per_sector - ecc_bytes;
+ if (fdm->reg_size > NFI_FDM_MAX_SIZE)
+ fdm->reg_size = NFI_FDM_MAX_SIZE;
+
+ /* bad block mark storage */
+ fdm->ecc_size = 1;
+}
+
+static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
+ struct mtd_info *mtd)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+
+ if (mtd->writesize == 512) {
+ bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
+ } else {
+ bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
+ bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
+ bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
+ }
+}
+
+static void mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+ u32 spare[] = {16, 26, 27, 28, 32, 36, 40, 44,
+ 48, 49, 50, 51, 52, 62, 63, 64};
+ u32 eccsteps, i;
+
+ eccsteps = mtd->writesize / nand->ecc.size;
+ *sps = mtd->oobsize / eccsteps;
+
+ if (nand->ecc.size == 1024)
+ *sps >>= 1;
+
+ for (i = 0; i < ARRAY_SIZE(spare); i++) {
+ if (*sps <= spare[i]) {
+ if (!i)
+ *sps = spare[i];
+ else if (*sps != spare[i])
+ *sps = spare[i - 1];
+ break;
+ }
+ }
+
+ if (i >= ARRAY_SIZE(spare))
+ *sps = spare[ARRAY_SIZE(spare) - 1];
+
+ if (nand->ecc.size == 1024)
+ *sps <<= 1;
+}
+
+static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+ u32 spare;
+ int free;
+
+ /* support only ecc hw mode */
+ if (nand->ecc.mode != NAND_ECC_HW) {
+ dev_err(dev, "ecc.mode not supported\n");
+ return -EINVAL;
+ }
+
+ /* if optional dt settings not present */
+ if (!nand->ecc.size || !nand->ecc.strength) {
+ /* use datasheet requirements */
+ nand->ecc.strength = nand->ecc_strength_ds;
+ nand->ecc.size = nand->ecc_step_ds;
+
+ /*
+ * align eccstrength and eccsize
+ * this controller only supports 512 and 1024 sizes
+ */
+ if (nand->ecc.size < 1024) {
+ if (mtd->writesize > 512) {
+ nand->ecc.size = 1024;
+ nand->ecc.strength <<= 1;
+ } else {
+ nand->ecc.size = 512;
+ }
+ } else {
+ nand->ecc.size = 1024;
+ }
+
+ mtk_nfc_set_spare_per_sector(&spare, mtd);
+
+ /* calculate oob bytes except ecc parity data */
+ free = ((nand->ecc.strength * ECC_PARITY_BITS) + 7) >> 3;
+ free = spare - free;
+
+ /*
+ * enhance ecc strength if oob left is bigger than max FDM size
+ * or reduce ecc strength if oob size is not enough for ecc
+ * parity data.
+ */
+ if (free > NFI_FDM_MAX_SIZE) {
+ spare -= NFI_FDM_MAX_SIZE;
+ nand->ecc.strength = (spare << 3) / ECC_PARITY_BITS;
+ } else if (free < 0) {
+ spare -= NFI_FDM_MIN_SIZE;
+ nand->ecc.strength = (spare << 3) / ECC_PARITY_BITS;
+ }
+ }
+
+ mtk_ecc_adjust_strength(&nand->ecc.strength);
+
+ dev_info(dev, "eccsize %d eccstrength %d\n",
+ nand->ecc.size, nand->ecc.strength);
+
+ return 0;
+}
+
+static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
+ struct device_node *np)
+{
+ struct mtk_nfc_nand_chip *chip;
+ struct nand_chip *nand;
+ struct mtd_info *mtd;
+ int nsels, len;
+ u32 tmp;
+ int ret;
+ int i;
+
+ if (!of_get_property(np, "reg", &nsels))
+ return -ENODEV;
+
+ nsels /= sizeof(u32);
+ if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
+ dev_err(dev, "invalid reg property size %d\n", nsels);
+ return -EINVAL;
+ }
+
+ chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
+ GFP_KERNEL);
+ if (!chip)
+ return -ENOMEM;
+
+ chip->nsels = nsels;
+ for (i = 0; i < nsels; i++) {
+ ret = of_property_read_u32_index(np, "reg", i, &tmp);
+ if (ret) {
+ dev_err(dev, "reg property failure : %d\n", ret);
+ return ret;
+ }
+ chip->sels[i] = tmp;
+ }
+
+ nand = &chip->nand;
+ nand->controller = &nfc->controller;
+
+ nand_set_flash_node(nand, np);
+ nand_set_controller_data(nand, nfc);
+
+ nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ;
+ nand->dev_ready = mtk_nfc_dev_ready;
+ nand->select_chip = mtk_nfc_select_chip;
+ nand->write_byte = mtk_nfc_write_byte;
+ nand->write_buf = mtk_nfc_write_buf;
+ nand->read_byte = mtk_nfc_read_byte;
+ nand->read_buf = mtk_nfc_read_buf;
+ nand->cmd_ctrl = mtk_nfc_cmd_ctrl;
+
+ /* set default mode in case dt entry is missing */
+ nand->ecc.mode = NAND_ECC_HW;
+
+ nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
+ nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
+ nand->ecc.write_page = mtk_nfc_write_page_hwecc;
+ nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
+ nand->ecc.write_oob = mtk_nfc_write_oob_std;
+
+ nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
+ nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
+ nand->ecc.read_page = mtk_nfc_read_page_hwecc;
+ nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
+ nand->ecc.read_oob = mtk_nfc_read_oob_std;
+
+ mtd = nand_to_mtd(nand);
+ mtd->owner = THIS_MODULE;
+ mtd->dev.parent = dev;
+ mtd->name = MTK_NAME;
+ mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);
+
+ mtk_nfc_hw_init(nfc);
+
+ ret = nand_scan_ident(mtd, nsels, NULL);
+ if (ret)
+ return -ENODEV;
+
+ /* store bbt magic in page, cause OOB is not protected */
+ if (nand->bbt_options & NAND_BBT_USE_FLASH)
+ nand->bbt_options |= NAND_BBT_NO_OOB;
+
+ ret = mtk_nfc_ecc_init(dev, mtd);
+ if (ret)
+ return -EINVAL;
+
+ if (nand->options & NAND_BUSWIDTH_16) {
+ dev_err(dev, "16bits buswidth not supported");
+ return -EINVAL;
+ }
+
+ mtk_nfc_set_spare_per_sector(&chip->spare_per_sector, mtd);
+ mtk_nfc_set_fdm(&chip->fdm, mtd);
+ mtk_nfc_set_bad_mark_ctl(&chip->bad_mark, mtd);
+
+ len = mtd->writesize + mtd->oobsize;
+ nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
+ if (!nfc->buffer)
+ return -ENOMEM;
+
+ ret = nand_scan_tail(mtd);
+ if (ret)
+ return -ENODEV;
+
+ ret = mtd_device_parse_register(mtd, NULL, NULL, NULL, 0);
+ if (ret) {
+ dev_err(dev, "mtd parse partition error\n");
+ nand_release(mtd);
+ return ret;
+ }
+
+ list_add_tail(&chip->node, &nfc->chips);
+
+ return 0;
+}
+
+static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
+{
+ struct device_node *np = dev->of_node;
+ struct device_node *nand_np;
+ int ret;
+
+ for_each_child_of_node(np, nand_np) {
+ ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
+ if (ret) {
+ of_node_put(nand_np);
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+static int mtk_nfc_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct device_node *np = dev->of_node;
+ struct mtk_nfc *nfc;
+ struct resource *res;
+ int ret, irq;
+
+ nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
+ if (!nfc)
+ return -ENOMEM;
+
+ spin_lock_init(&nfc->controller.lock);
+ init_waitqueue_head(&nfc->controller.wq);
+ INIT_LIST_HEAD(&nfc->chips);
+
+ /* probe defer if not ready */
+ nfc->ecc = of_mtk_ecc_get(np);
+ if (IS_ERR(nfc->ecc))
+ return PTR_ERR(nfc->ecc);
+ else if (!nfc->ecc)
+ return -ENODEV;
+
+ nfc->dev = dev;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ nfc->regs = devm_ioremap_resource(dev, res);
+ if (IS_ERR(nfc->regs)) {
+ ret = PTR_ERR(nfc->regs);
+ dev_err(dev, "no nfi base\n");
+ goto release_ecc;
+ }
+
+ nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
+ if (IS_ERR(nfc->clk.nfi_clk)) {
+ dev_err(dev, "no clk\n");
+ ret = PTR_ERR(nfc->clk.nfi_clk);
+ goto release_ecc;
+ }
+
+ nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk");
+ if (IS_ERR(nfc->clk.pad_clk)) {
+ dev_err(dev, "no pad clk\n");
+ ret = PTR_ERR(nfc->clk.pad_clk);
+ goto release_ecc;
+ }
+
+ ret = mtk_nfc_enable_clk(dev, &nfc->clk);
+ if (ret)
+ goto release_ecc;
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0) {
+ dev_err(dev, "no nfi irq resource\n");
+ ret = -EINVAL;
+ goto clk_disable;
+ }
+
+ ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
+ if (ret) {
+ dev_err(dev, "failed to request nfi irq\n");
+ goto clk_disable;
+ }
+
+ ret = dma_set_mask(dev, DMA_BIT_MASK(32));
+ if (ret) {
+ dev_err(dev, "failed to set dma mask\n");
+ goto clk_disable;
+ }
+
+ platform_set_drvdata(pdev, nfc);
+
+ ret = mtk_nfc_nand_chips_init(dev, nfc);
+ if (ret) {
+ dev_err(dev, "failed to init nand chips\n");
+ goto clk_disable;
+ }
+
+ return 0;
+
+clk_disable:
+ mtk_nfc_disable_clk(&nfc->clk);
+
+release_ecc:
+ mtk_ecc_release(nfc->ecc);
+
+ return ret;
+}
+
+static int mtk_nfc_remove(struct platform_device *pdev)
+{
+ struct mtk_nfc *nfc = platform_get_drvdata(pdev);
+ struct mtk_nfc_nand_chip *chip;
+
+ while (!list_empty(&nfc->chips)) {
+ chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip,
+ node);
+ nand_release(nand_to_mtd(&chip->nand));
+ list_del(&chip->node);
+ }
+
+ mtk_ecc_release(nfc->ecc);
+ mtk_nfc_disable_clk(&nfc->clk);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int mtk_nfc_suspend(struct device *dev)
+{
+ struct mtk_nfc *nfc = dev_get_drvdata(dev);
+
+ mtk_nfc_disable_clk(&nfc->clk);
+
+ return 0;
+}
+
+static int mtk_nfc_resume(struct device *dev)
+{
+ struct mtk_nfc *nfc = dev_get_drvdata(dev);
+ struct mtk_nfc_nand_chip *chip;
+ struct nand_chip *nand;
+ struct mtd_info *mtd;
+ int ret;
+ u32 i;
+
+ udelay(200);
+
+ ret = mtk_nfc_enable_clk(dev, &nfc->clk);
+ if (ret)
+ return ret;
+
+ mtk_nfc_hw_init(nfc);
+
+ /* reset NAND chip if VCC was powered off */
+ list_for_each_entry(chip, &nfc->chips, node) {
+ nand = &chip->nand;
+ mtd = nand_to_mtd(nand);
+ for (i = 0; i < chip->nsels; i++) {
+ nand->select_chip(mtd, i);
+ nand->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+ }
+ }
+
+ return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
+#endif
+
+static const struct of_device_id mtk_nfc_id_table[] = {
+ { .compatible = "mediatek,mt2701-nfc" },
+ {}
+};
+MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
+
+static struct platform_driver mtk_nfc_driver = {
+ .probe = mtk_nfc_probe,
+ .remove = mtk_nfc_remove,
+ .driver = {
+ .name = MTK_NAME,
+ .of_match_table = mtk_nfc_id_table,
+#ifdef CONFIG_PM_SLEEP
+ .pm = &mtk_nfc_pm_ops,
+#endif
+ },
+};
+
+module_platform_driver(mtk_nfc_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
+MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");
diff --git a/drivers/mtd/nand/nand_ids.c b/drivers/mtd/nand/nand_ids.c
index ccc05f5b2695..2af9869a115e 100644
--- a/drivers/mtd/nand/nand_ids.c
+++ b/drivers/mtd/nand/nand_ids.c
@@ -168,6 +168,7 @@ struct nand_flash_dev nand_flash_ids[] = {
/* Manufacturer IDs */
struct nand_manufacturers nand_manuf_ids[] = {
{NAND_MFR_TOSHIBA, "Toshiba"},
+ {NAND_MFR_ESMT, "ESMT"},
{NAND_MFR_SAMSUNG, "Samsung"},
{NAND_MFR_FUJITSU, "Fujitsu"},
{NAND_MFR_NATIONAL, "National"},
diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c
index 08e158895635..83b9091233d4 100644
--- a/drivers/mtd/nand/omap2.c
+++ b/drivers/mtd/nand/omap2.c
@@ -118,8 +118,6 @@
#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
#define STATUS_BUFF_EMPTY 0x00000001
-#define OMAP24XX_DMA_GPMC 4
-
#define SECTOR_BYTES 512
/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
#define BCH4_BIT_PAD 4
@@ -1808,7 +1806,6 @@ static int omap_nand_probe(struct platform_device *pdev)
struct nand_chip *nand_chip;
int err;
dma_cap_mask_t mask;
- unsigned sig;
struct resource *res;
struct device *dev = &pdev->dev;
int min_oobbytes = BADBLOCK_MARKER_LENGTH;
@@ -1921,8 +1918,8 @@ static int omap_nand_probe(struct platform_device *pdev)
case NAND_OMAP_PREFETCH_DMA:
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
- sig = OMAP24XX_DMA_GPMC;
- info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
+ info->dma = dma_request_chan(pdev->dev.parent, "rxtx");
+
if (!info->dma) {
dev_err(&pdev->dev, "DMA engine request failed\n");
err = -ENXIO;
diff --git a/drivers/mtd/nand/sunxi_nand.c b/drivers/mtd/nand/sunxi_nand.c
index a83a690688b4..e414b31b71c1 100644
--- a/drivers/mtd/nand/sunxi_nand.c
+++ b/drivers/mtd/nand/sunxi_nand.c
@@ -39,6 +39,7 @@
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
+#include <linux/reset.h>
#define NFC_REG_CTL 0x0000
#define NFC_REG_ST 0x0004
@@ -153,6 +154,7 @@
/* define bit use in NFC_ECC_ST */
#define NFC_ECC_ERR(x) BIT(x)
+#define NFC_ECC_ERR_MSK GENMASK(15, 0)
#define NFC_ECC_PAT_FOUND(x) BIT(x + 16)
#define NFC_ECC_ERR_CNT(b, x) (((x) >> (((b) % 4) * 8)) & 0xff)
@@ -269,10 +271,12 @@ struct sunxi_nfc {
void __iomem *regs;
struct clk *ahb_clk;
struct clk *mod_clk;
+ struct reset_control *reset;
unsigned long assigned_cs;
unsigned long clk_rate;
struct list_head chips;
struct completion complete;
+ struct dma_chan *dmac;
};
static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
@@ -365,6 +369,67 @@ static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
return ret;
}
+static int sunxi_nfc_dma_op_prepare(struct mtd_info *mtd, const void *buf,
+ int chunksize, int nchunks,
+ enum dma_data_direction ddir,
+ struct scatterlist *sg)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+ struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+ struct dma_async_tx_descriptor *dmad;
+ enum dma_transfer_direction tdir;
+ dma_cookie_t dmat;
+ int ret;
+
+ if (ddir == DMA_FROM_DEVICE)
+ tdir = DMA_DEV_TO_MEM;
+ else
+ tdir = DMA_MEM_TO_DEV;
+
+ sg_init_one(sg, buf, nchunks * chunksize);
+ ret = dma_map_sg(nfc->dev, sg, 1, ddir);
+ if (!ret)
+ return -ENOMEM;
+
+ dmad = dmaengine_prep_slave_sg(nfc->dmac, sg, 1, tdir, DMA_CTRL_ACK);
+ if (!dmad) {
+ ret = -EINVAL;
+ goto err_unmap_buf;
+ }
+
+ writel(readl(nfc->regs + NFC_REG_CTL) | NFC_RAM_METHOD,
+ nfc->regs + NFC_REG_CTL);
+ writel(nchunks, nfc->regs + NFC_REG_SECTOR_NUM);
+ writel(chunksize, nfc->regs + NFC_REG_CNT);
+ dmat = dmaengine_submit(dmad);
+
+ ret = dma_submit_error(dmat);
+ if (ret)
+ goto err_clr_dma_flag;
+
+ return 0;
+
+err_clr_dma_flag:
+ writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD,
+ nfc->regs + NFC_REG_CTL);
+
+err_unmap_buf:
+ dma_unmap_sg(nfc->dev, sg, 1, ddir);
+ return ret;
+}
+
+static void sunxi_nfc_dma_op_cleanup(struct mtd_info *mtd,
+ enum dma_data_direction ddir,
+ struct scatterlist *sg)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+ struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+
+ dma_unmap_sg(nfc->dev, sg, 1, ddir);
+ writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD,
+ nfc->regs + NFC_REG_CTL);
+}
+
static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
{
struct nand_chip *nand = mtd_to_nand(mtd);
@@ -822,17 +887,15 @@ static void sunxi_nfc_hw_ecc_update_stats(struct mtd_info *mtd,
}
static int sunxi_nfc_hw_ecc_correct(struct mtd_info *mtd, u8 *data, u8 *oob,
- int step, bool *erased)
+ int step, u32 status, bool *erased)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
struct nand_ecc_ctrl *ecc = &nand->ecc;
- u32 status, tmp;
+ u32 tmp;
*erased = false;
- status = readl(nfc->regs + NFC_REG_ECC_ST);
-
if (status & NFC_ECC_ERR(step))
return -EBADMSG;
@@ -898,6 +961,7 @@ static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
*cur_off = oob_off + ecc->bytes + 4;
ret = sunxi_nfc_hw_ecc_correct(mtd, data, oob_required ? oob : NULL, 0,
+ readl(nfc->regs + NFC_REG_ECC_ST),
&erased);
if (erased)
return 1;
@@ -967,6 +1031,130 @@ static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd,
*cur_off = mtd->oobsize + mtd->writesize;
}
+static int sunxi_nfc_hw_ecc_read_chunks_dma(struct mtd_info *mtd, uint8_t *buf,
+ int oob_required, int page,
+ int nchunks)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+ bool randomized = nand->options & NAND_NEED_SCRAMBLING;
+ struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+ struct nand_ecc_ctrl *ecc = &nand->ecc;
+ unsigned int max_bitflips = 0;
+ int ret, i, raw_mode = 0;
+ struct scatterlist sg;
+ u32 status;
+
+ ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
+ if (ret)
+ return ret;
+
+ ret = sunxi_nfc_dma_op_prepare(mtd, buf, ecc->size, nchunks,
+ DMA_FROM_DEVICE, &sg);
+ if (ret)
+ return ret;
+
+ sunxi_nfc_hw_ecc_enable(mtd);
+ sunxi_nfc_randomizer_config(mtd, page, false);
+ sunxi_nfc_randomizer_enable(mtd);
+
+ writel((NAND_CMD_RNDOUTSTART << 16) | (NAND_CMD_RNDOUT << 8) |
+ NAND_CMD_READSTART, nfc->regs + NFC_REG_RCMD_SET);
+
+ dma_async_issue_pending(nfc->dmac);
+
+ writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | NFC_DATA_TRANS,
+ nfc->regs + NFC_REG_CMD);
+
+ ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0);
+ if (ret)
+ dmaengine_terminate_all(nfc->dmac);
+
+ sunxi_nfc_randomizer_disable(mtd);
+ sunxi_nfc_hw_ecc_disable(mtd);
+
+ sunxi_nfc_dma_op_cleanup(mtd, DMA_FROM_DEVICE, &sg);
+
+ if (ret)
+ return ret;
+
+ status = readl(nfc->regs + NFC_REG_ECC_ST);
+
+ for (i = 0; i < nchunks; i++) {
+ int data_off = i * ecc->size;
+ int oob_off = i * (ecc->bytes + 4);
+ u8 *data = buf + data_off;
+ u8 *oob = nand->oob_poi + oob_off;
+ bool erased;
+
+ ret = sunxi_nfc_hw_ecc_correct(mtd, randomized ? data : NULL,
+ oob_required ? oob : NULL,
+ i, status, &erased);
+
+ /* ECC errors are handled in the second loop. */
+ if (ret < 0)
+ continue;
+
+ if (oob_required && !erased) {
+ /* TODO: use DMA to retrieve OOB */
+ nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
+ mtd->writesize + oob_off, -1);
+ nand->read_buf(mtd, oob, ecc->bytes + 4);
+
+ sunxi_nfc_hw_ecc_get_prot_oob_bytes(mtd, oob, i,
+ !i, page);
+ }
+
+ if (erased)
+ raw_mode = 1;
+
+ sunxi_nfc_hw_ecc_update_stats(mtd, &max_bitflips, ret);
+ }
+
+ if (status & NFC_ECC_ERR_MSK) {
+ for (i = 0; i < nchunks; i++) {
+ int data_off = i * ecc->size;
+ int oob_off = i * (ecc->bytes + 4);
+ u8 *data = buf + data_off;
+ u8 *oob = nand->oob_poi + oob_off;
+
+ if (!(status & NFC_ECC_ERR(i)))
+ continue;
+
+ /*
+ * Re-read the data with the randomizer disabled to
+ * identify bitflips in erased pages.
+ */
+ if (randomized) {
+ /* TODO: use DMA to read page in raw mode */
+ nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
+ data_off, -1);
+ nand->read_buf(mtd, data, ecc->size);
+ }
+
+ /* TODO: use DMA to retrieve OOB */
+ nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
+ mtd->writesize + oob_off, -1);
+ nand->read_buf(mtd, oob, ecc->bytes + 4);
+
+ ret = nand_check_erased_ecc_chunk(data, ecc->size,
+ oob, ecc->bytes + 4,
+ NULL, 0,
+ ecc->strength);
+ if (ret >= 0)
+ raw_mode = 1;
+
+ sunxi_nfc_hw_ecc_update_stats(mtd, &max_bitflips, ret);
+ }
+ }
+
+ if (oob_required)
+ sunxi_nfc_hw_ecc_read_extra_oob(mtd, nand->oob_poi,
+ NULL, !raw_mode,
+ page);
+
+ return max_bitflips;
+}
+
static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
const u8 *data, int data_off,
const u8 *oob, int oob_off,
@@ -1065,6 +1253,23 @@ static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
return max_bitflips;
}
+static int sunxi_nfc_hw_ecc_read_page_dma(struct mtd_info *mtd,
+ struct nand_chip *chip, u8 *buf,
+ int oob_required, int page)
+{
+ int ret;
+
+ ret = sunxi_nfc_hw_ecc_read_chunks_dma(mtd, buf, oob_required, page,
+ chip->ecc.steps);
+ if (ret >= 0)
+ return ret;
+
+ /* Fallback to PIO mode */
+ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, 0, -1);
+
+ return sunxi_nfc_hw_ecc_read_page(mtd, chip, buf, oob_required, page);
+}
+
static int sunxi_nfc_hw_ecc_read_subpage(struct mtd_info *mtd,
struct nand_chip *chip,
u32 data_offs, u32 readlen,
@@ -1098,6 +1303,25 @@ static int sunxi_nfc_hw_ecc_read_subpage(struct mtd_info *mtd,
return max_bitflips;
}
+static int sunxi_nfc_hw_ecc_read_subpage_dma(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ u32 data_offs, u32 readlen,
+ u8 *buf, int page)
+{
+ int nchunks = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
+ int ret;
+
+ ret = sunxi_nfc_hw_ecc_read_chunks_dma(mtd, buf, false, page, nchunks);
+ if (ret >= 0)
+ return ret;
+
+ /* Fallback to PIO mode */
+ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, 0, -1);
+
+ return sunxi_nfc_hw_ecc_read_subpage(mtd, chip, data_offs, readlen,
+ buf, page);
+}
+
static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf, int oob_required,
@@ -1130,6 +1354,99 @@ static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
return 0;
}
+static int sunxi_nfc_hw_ecc_write_subpage(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ u32 data_offs, u32 data_len,
+ const u8 *buf, int oob_required,
+ int page)
+{
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int ret, i, cur_off = 0;
+
+ sunxi_nfc_hw_ecc_enable(mtd);
+
+ for (i = data_offs / ecc->size;
+ i < DIV_ROUND_UP(data_offs + data_len, ecc->size); i++) {
+ int data_off = i * ecc->size;
+ int oob_off = i * (ecc->bytes + 4);
+ const u8 *data = buf + data_off;
+ const u8 *oob = chip->oob_poi + oob_off;
+
+ ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
+ oob_off + mtd->writesize,
+ &cur_off, !i, page);
+ if (ret)
+ return ret;
+ }
+
+ sunxi_nfc_hw_ecc_disable(mtd);
+
+ return 0;
+}
+
+static int sunxi_nfc_hw_ecc_write_page_dma(struct mtd_info *mtd,
+ struct nand_chip *chip,
+ const u8 *buf,
+ int oob_required,
+ int page)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+ struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+ struct nand_ecc_ctrl *ecc = &nand->ecc;
+ struct scatterlist sg;
+ int ret, i;
+
+ ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
+ if (ret)
+ return ret;
+
+ ret = sunxi_nfc_dma_op_prepare(mtd, buf, ecc->size, ecc->steps,
+ DMA_TO_DEVICE, &sg);
+ if (ret)
+ goto pio_fallback;
+
+ for (i = 0; i < ecc->steps; i++) {
+ const u8 *oob = nand->oob_poi + (i * (ecc->bytes + 4));
+
+ sunxi_nfc_hw_ecc_set_prot_oob_bytes(mtd, oob, i, !i, page);
+ }
+
+ sunxi_nfc_hw_ecc_enable(mtd);
+ sunxi_nfc_randomizer_config(mtd, page, false);
+ sunxi_nfc_randomizer_enable(mtd);
+
+ writel((NAND_CMD_RNDIN << 8) | NAND_CMD_PAGEPROG,
+ nfc->regs + NFC_REG_RCMD_SET);
+
+ dma_async_issue_pending(nfc->dmac);
+
+ writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD |
+ NFC_DATA_TRANS | NFC_ACCESS_DIR,
+ nfc->regs + NFC_REG_CMD);
+
+ ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0);
+ if (ret)
+ dmaengine_terminate_all(nfc->dmac);
+
+ sunxi_nfc_randomizer_disable(mtd);
+ sunxi_nfc_hw_ecc_disable(mtd);
+
+ sunxi_nfc_dma_op_cleanup(mtd, DMA_TO_DEVICE, &sg);
+
+ if (ret)
+ return ret;
+
+ if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
+ /* TODO: use DMA to transfer extra OOB bytes ? */
+ sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
+ NULL, page);
+
+ return 0;
+
+pio_fallback:
+ return sunxi_nfc_hw_ecc_write_page(mtd, chip, buf, oob_required, page);
+}
+
static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
struct nand_chip *chip,
uint8_t *buf, int oob_required,
@@ -1497,10 +1814,19 @@ static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
int ret;
int i;
+ if (ecc->size != 512 && ecc->size != 1024)
+ return -EINVAL;
+
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
+ /* Prefer 1k ECC chunk over 512 ones */
+ if (ecc->size == 512 && mtd->writesize > 512) {
+ ecc->size = 1024;
+ ecc->strength *= 2;
+ }
+
/* Add ECC info retrieval from DT */
for (i = 0; i < ARRAY_SIZE(strengths); i++) {
if (ecc->strength <= strengths[i])
@@ -1550,14 +1876,28 @@ static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
struct nand_ecc_ctrl *ecc,
struct device_node *np)
{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+ struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
+ struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
int ret;
ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
if (ret)
return ret;
- ecc->read_page = sunxi_nfc_hw_ecc_read_page;
- ecc->write_page = sunxi_nfc_hw_ecc_write_page;
+ if (nfc->dmac) {
+ ecc->read_page = sunxi_nfc_hw_ecc_read_page_dma;
+ ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage_dma;
+ ecc->write_page = sunxi_nfc_hw_ecc_write_page_dma;
+ nand->options |= NAND_USE_BOUNCE_BUFFER;
+ } else {
+ ecc->read_page = sunxi_nfc_hw_ecc_read_page;
+ ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage;
+ ecc->write_page = sunxi_nfc_hw_ecc_write_page;
+ }
+
+ /* TODO: support DMA for raw accesses and subpage write */
+ ecc->write_subpage = sunxi_nfc_hw_ecc_write_subpage;
ecc->read_oob_raw = nand_read_oob_std;
ecc->write_oob_raw = nand_write_oob_std;
ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage;
@@ -1871,26 +2211,59 @@ static int sunxi_nfc_probe(struct platform_device *pdev)
if (ret)
goto out_ahb_clk_unprepare;
+ nfc->reset = devm_reset_control_get_optional(dev, "ahb");
+ if (!IS_ERR(nfc->reset)) {
+ ret = reset_control_deassert(nfc->reset);
+ if (ret) {
+ dev_err(dev, "reset err %d\n", ret);
+ goto out_mod_clk_unprepare;
+ }
+ } else if (PTR_ERR(nfc->reset) != -ENOENT) {
+ ret = PTR_ERR(nfc->reset);
+ goto out_mod_clk_unprepare;
+ }
+
ret = sunxi_nfc_rst(nfc);
if (ret)
- goto out_mod_clk_unprepare;
+ goto out_ahb_reset_reassert;
writel(0, nfc->regs + NFC_REG_INT);
ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt,
0, "sunxi-nand", nfc);
if (ret)
- goto out_mod_clk_unprepare;
+ goto out_ahb_reset_reassert;
+
+ nfc->dmac = dma_request_slave_channel(dev, "rxtx");
+ if (nfc->dmac) {
+ struct dma_slave_config dmac_cfg = { };
+
+ dmac_cfg.src_addr = r->start + NFC_REG_IO_DATA;
+ dmac_cfg.dst_addr = dmac_cfg.src_addr;
+ dmac_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ dmac_cfg.dst_addr_width = dmac_cfg.src_addr_width;
+ dmac_cfg.src_maxburst = 4;
+ dmac_cfg.dst_maxburst = 4;
+ dmaengine_slave_config(nfc->dmac, &dmac_cfg);
+ } else {
+ dev_warn(dev, "failed to request rxtx DMA channel\n");
+ }
platform_set_drvdata(pdev, nfc);
ret = sunxi_nand_chips_init(dev, nfc);
if (ret) {
dev_err(dev, "failed to init nand chips\n");
- goto out_mod_clk_unprepare;
+ goto out_release_dmac;
}
return 0;
+out_release_dmac:
+ if (nfc->dmac)
+ dma_release_channel(nfc->dmac);
+out_ahb_reset_reassert:
+ if (!IS_ERR(nfc->reset))
+ reset_control_assert(nfc->reset);
out_mod_clk_unprepare:
clk_disable_unprepare(nfc->mod_clk);
out_ahb_clk_unprepare:
@@ -1904,6 +2277,12 @@ static int sunxi_nfc_remove(struct platform_device *pdev)
struct sunxi_nfc *nfc = platform_get_drvdata(pdev);
sunxi_nand_chips_cleanup(nfc);
+
+ if (!IS_ERR(nfc->reset))
+ reset_control_assert(nfc->reset);
+
+ if (nfc->dmac)
+ dma_release_channel(nfc->dmac);
clk_disable_unprepare(nfc->mod_clk);
clk_disable_unprepare(nfc->ahb_clk);
diff --git a/drivers/mtd/nand/xway_nand.c b/drivers/mtd/nand/xway_nand.c
index 0cf0ac07a8c2..1f2948c0c458 100644
--- a/drivers/mtd/nand/xway_nand.c
+++ b/drivers/mtd/nand/xway_nand.c
@@ -4,6 +4,7 @@
* by the Free Software Foundation.
*
* Copyright © 2012 John Crispin <blogic@openwrt.org>
+ * Copyright © 2016 Hauke Mehrtens <hauke@hauke-m.de>
*/
#include <linux/mtd/nand.h>
@@ -16,20 +17,28 @@
#define EBU_ADDSEL1 0x24
#define EBU_NAND_CON 0xB0
#define EBU_NAND_WAIT 0xB4
+#define NAND_WAIT_RD BIT(0) /* NAND flash status output */
+#define NAND_WAIT_WR_C BIT(3) /* NAND Write/Read complete */
#define EBU_NAND_ECC0 0xB8
#define EBU_NAND_ECC_AC 0xBC
-/* nand commands */
-#define NAND_CMD_ALE (1 << 2)
-#define NAND_CMD_CLE (1 << 3)
-#define NAND_CMD_CS (1 << 4)
-#define NAND_WRITE_CMD_RESET 0xff
+/*
+ * nand commands
+ * The pins of the NAND chip are selected based on the address bits of the
+ * "register" read and write. There are no special registers, but an
+ * address range and the lower address bits are used to activate the
+ * correct line. For example when the bit (1 << 2) is set in the address
+ * the ALE pin will be activated.
+ */
+#define NAND_CMD_ALE BIT(2) /* address latch enable */
+#define NAND_CMD_CLE BIT(3) /* command latch enable */
+#define NAND_CMD_CS BIT(4) /* chip select */
+#define NAND_CMD_SE BIT(5) /* spare area access latch */
+#define NAND_CMD_WP BIT(6) /* write protect */
#define NAND_WRITE_CMD (NAND_CMD_CS | NAND_CMD_CLE)
#define NAND_WRITE_ADDR (NAND_CMD_CS | NAND_CMD_ALE)
#define NAND_WRITE_DATA (NAND_CMD_CS)
#define NAND_READ_DATA (NAND_CMD_CS)
-#define NAND_WAIT_WR_C (1 << 3)
-#define NAND_WAIT_RD (0x1)
/* we need to tel the ebu which addr we mapped the nand to */
#define ADDSEL1_MASK(x) (x << 4)
@@ -54,31 +63,41 @@
#define NAND_CON_CSMUX (1 << 1)
#define NAND_CON_NANDM 1
-static void xway_reset_chip(struct nand_chip *chip)
+struct xway_nand_data {
+ struct nand_chip chip;
+ unsigned long csflags;
+ void __iomem *nandaddr;
+};
+
+static u8 xway_readb(struct mtd_info *mtd, int op)
{
- unsigned long nandaddr = (unsigned long) chip->IO_ADDR_W;
- unsigned long flags;
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct xway_nand_data *data = nand_get_controller_data(chip);
- nandaddr &= ~NAND_WRITE_ADDR;
- nandaddr |= NAND_WRITE_CMD;
+ return readb(data->nandaddr + op);
+}
- /* finish with a reset */
- spin_lock_irqsave(&ebu_lock, flags);
- writeb(NAND_WRITE_CMD_RESET, (void __iomem *) nandaddr);
- while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0)
- ;
- spin_unlock_irqrestore(&ebu_lock, flags);
+static void xway_writeb(struct mtd_info *mtd, int op, u8 value)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct xway_nand_data *data = nand_get_controller_data(chip);
+
+ writeb(value, data->nandaddr + op);
}
-static void xway_select_chip(struct mtd_info *mtd, int chip)
+static void xway_select_chip(struct mtd_info *mtd, int select)
{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct xway_nand_data *data = nand_get_controller_data(chip);
- switch (chip) {
+ switch (select) {
case -1:
ltq_ebu_w32_mask(NAND_CON_CE, 0, EBU_NAND_CON);
ltq_ebu_w32_mask(NAND_CON_NANDM, 0, EBU_NAND_CON);
+ spin_unlock_irqrestore(&ebu_lock, data->csflags);
break;
case 0:
+ spin_lock_irqsave(&ebu_lock, data->csflags);
ltq_ebu_w32_mask(0, NAND_CON_NANDM, EBU_NAND_CON);
ltq_ebu_w32_mask(0, NAND_CON_CE, EBU_NAND_CON);
break;
@@ -89,26 +108,16 @@ static void xway_select_chip(struct mtd_info *mtd, int chip)
static void xway_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
- struct nand_chip *this = mtd_to_nand(mtd);
- unsigned long nandaddr = (unsigned long) this->IO_ADDR_W;
- unsigned long flags;
-
- if (ctrl & NAND_CTRL_CHANGE) {
- nandaddr &= ~(NAND_WRITE_CMD | NAND_WRITE_ADDR);
- if (ctrl & NAND_CLE)
- nandaddr |= NAND_WRITE_CMD;
- else
- nandaddr |= NAND_WRITE_ADDR;
- this->IO_ADDR_W = (void __iomem *) nandaddr;
- }
+ if (cmd == NAND_CMD_NONE)
+ return;
- if (cmd != NAND_CMD_NONE) {
- spin_lock_irqsave(&ebu_lock, flags);
- writeb(cmd, this->IO_ADDR_W);
- while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0)
- ;
- spin_unlock_irqrestore(&ebu_lock, flags);
- }
+ if (ctrl & NAND_CLE)
+ xway_writeb(mtd, NAND_WRITE_CMD, cmd);
+ else if (ctrl & NAND_ALE)
+ xway_writeb(mtd, NAND_WRITE_ADDR, cmd);
+
+ while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0)
+ ;
}
static int xway_dev_ready(struct mtd_info *mtd)
@@ -118,80 +127,122 @@ static int xway_dev_ready(struct mtd_info *mtd)
static unsigned char xway_read_byte(struct mtd_info *mtd)
{
- struct nand_chip *this = mtd_to_nand(mtd);
- unsigned long nandaddr = (unsigned long) this->IO_ADDR_R;
- unsigned long flags;
- int ret;
+ return xway_readb(mtd, NAND_READ_DATA);
+}
+
+static void xway_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+ int i;
- spin_lock_irqsave(&ebu_lock, flags);
- ret = ltq_r8((void __iomem *)(nandaddr + NAND_READ_DATA));
- spin_unlock_irqrestore(&ebu_lock, flags);
+ for (i = 0; i < len; i++)
+ buf[i] = xway_readb(mtd, NAND_WRITE_DATA);
+}
- return ret;
+static void xway_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ xway_writeb(mtd, NAND_WRITE_DATA, buf[i]);
}
+/*
+ * Probe for the NAND device.
+ */
static int xway_nand_probe(struct platform_device *pdev)
{
- struct nand_chip *this = platform_get_drvdata(pdev);
- unsigned long nandaddr = (unsigned long) this->IO_ADDR_W;
- const __be32 *cs = of_get_property(pdev->dev.of_node,
- "lantiq,cs", NULL);
+ struct xway_nand_data *data;
+ struct mtd_info *mtd;
+ struct resource *res;
+ int err;
+ u32 cs;
u32 cs_flag = 0;
+ /* Allocate memory for the device structure (and zero it) */
+ data = devm_kzalloc(&pdev->dev, sizeof(struct xway_nand_data),
+ GFP_KERNEL);
+ if (!data)
+ return -ENOMEM;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ data->nandaddr = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(data->nandaddr))
+ return PTR_ERR(data->nandaddr);
+
+ nand_set_flash_node(&data->chip, pdev->dev.of_node);
+ mtd = nand_to_mtd(&data->chip);
+ mtd->dev.parent = &pdev->dev;
+
+ data->chip.cmd_ctrl = xway_cmd_ctrl;
+ data->chip.dev_ready = xway_dev_ready;
+ data->chip.select_chip = xway_select_chip;
+ data->chip.write_buf = xway_write_buf;
+ data->chip.read_buf = xway_read_buf;
+ data->chip.read_byte = xway_read_byte;
+ data->chip.chip_delay = 30;
+
+ data->chip.ecc.mode = NAND_ECC_SOFT;
+ data->chip.ecc.algo = NAND_ECC_HAMMING;
+
+ platform_set_drvdata(pdev, data);
+ nand_set_controller_data(&data->chip, data);
+
/* load our CS from the DT. Either we find a valid 1 or default to 0 */
- if (cs && (*cs == 1))
+ err = of_property_read_u32(pdev->dev.of_node, "lantiq,cs", &cs);
+ if (!err && cs == 1)
cs_flag = NAND_CON_IN_CS1 | NAND_CON_OUT_CS1;
/* setup the EBU to run in NAND mode on our base addr */
- ltq_ebu_w32(CPHYSADDR(nandaddr)
- | ADDSEL1_MASK(3) | ADDSEL1_REGEN, EBU_ADDSEL1);
+ ltq_ebu_w32(CPHYSADDR(data->nandaddr)
+ | ADDSEL1_MASK(3) | ADDSEL1_REGEN, EBU_ADDSEL1);
ltq_ebu_w32(BUSCON1_SETUP | BUSCON1_BCGEN_RES | BUSCON1_WAITWRC2
- | BUSCON1_WAITRDC2 | BUSCON1_HOLDC1 | BUSCON1_RECOVC1
- | BUSCON1_CMULT4, LTQ_EBU_BUSCON1);
+ | BUSCON1_WAITRDC2 | BUSCON1_HOLDC1 | BUSCON1_RECOVC1
+ | BUSCON1_CMULT4, LTQ_EBU_BUSCON1);
ltq_ebu_w32(NAND_CON_NANDM | NAND_CON_CSMUX | NAND_CON_CS_P
- | NAND_CON_SE_P | NAND_CON_WP_P | NAND_CON_PRE_P
- | cs_flag, EBU_NAND_CON);
+ | NAND_CON_SE_P | NAND_CON_WP_P | NAND_CON_PRE_P
+ | cs_flag, EBU_NAND_CON);
- /* finish with a reset */
- xway_reset_chip(this);
+ /* Scan to find existence of the device */
+ err = nand_scan(mtd, 1);
+ if (err)
+ return err;
- return 0;
-}
+ err = mtd_device_register(mtd, NULL, 0);
+ if (err)
+ nand_release(mtd);
-static struct platform_nand_data xway_nand_data = {
- .chip = {
- .nr_chips = 1,
- .chip_delay = 30,
- },
- .ctrl = {
- .probe = xway_nand_probe,
- .cmd_ctrl = xway_cmd_ctrl,
- .dev_ready = xway_dev_ready,
- .select_chip = xway_select_chip,
- .read_byte = xway_read_byte,
- }
-};
+ return err;
+}
/*
- * Try to find the node inside the DT. If it is available attach out
- * platform_nand_data
+ * Remove a NAND device.
*/
-static int __init xway_register_nand(void)
+static int xway_nand_remove(struct platform_device *pdev)
{
- struct device_node *node;
- struct platform_device *pdev;
-
- node = of_find_compatible_node(NULL, NULL, "lantiq,nand-xway");
- if (!node)
- return -ENOENT;
- pdev = of_find_device_by_node(node);
- if (!pdev)
- return -EINVAL;
- pdev->dev.platform_data = &xway_nand_data;
- of_node_put(node);
+ struct xway_nand_data *data = platform_get_drvdata(pdev);
+
+ nand_release(nand_to_mtd(&data->chip));
+
return 0;
}
-subsys_initcall(xway_register_nand);
+static const struct of_device_id xway_nand_match[] = {
+ { .compatible = "lantiq,nand-xway" },
+ {},
+};
+MODULE_DEVICE_TABLE(of, xway_nand_match);
+
+static struct platform_driver xway_nand_driver = {
+ .probe = xway_nand_probe,
+ .remove = xway_nand_remove,
+ .driver = {
+ .name = "lantiq,nand-xway",
+ .of_match_table = xway_nand_match,
+ },
+};
+
+module_platform_driver(xway_nand_driver);
+
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/tests/nandbiterrs.c b/drivers/mtd/tests/nandbiterrs.c
index 09a4ccac53a2..f26dec896afa 100644
--- a/drivers/mtd/tests/nandbiterrs.c
+++ b/drivers/mtd/tests/nandbiterrs.c
@@ -290,7 +290,7 @@ static int overwrite_test(void)
while (opno < max_overwrite) {
- err = rewrite_page(0);
+ err = write_page(0);
if (err)
break;