summaryrefslogtreecommitdiffstats
path: root/fs/ext3/fsync.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/ext3/fsync.c')
-rw-r--r--fs/ext3/fsync.c109
1 files changed, 0 insertions, 109 deletions
diff --git a/fs/ext3/fsync.c b/fs/ext3/fsync.c
deleted file mode 100644
index 1cb9c7e10c6f..000000000000
--- a/fs/ext3/fsync.c
+++ /dev/null
@@ -1,109 +0,0 @@
-/*
- * linux/fs/ext3/fsync.c
- *
- * Copyright (C) 1993 Stephen Tweedie (sct@redhat.com)
- * from
- * Copyright (C) 1992 Remy Card (card@masi.ibp.fr)
- * Laboratoire MASI - Institut Blaise Pascal
- * Universite Pierre et Marie Curie (Paris VI)
- * from
- * linux/fs/minix/truncate.c Copyright (C) 1991, 1992 Linus Torvalds
- *
- * ext3fs fsync primitive
- *
- * Big-endian to little-endian byte-swapping/bitmaps by
- * David S. Miller (davem@caip.rutgers.edu), 1995
- *
- * Removed unnecessary code duplication for little endian machines
- * and excessive __inline__s.
- * Andi Kleen, 1997
- *
- * Major simplications and cleanup - we only need to do the metadata, because
- * we can depend on generic_block_fdatasync() to sync the data blocks.
- */
-
-#include <linux/blkdev.h>
-#include <linux/writeback.h>
-#include "ext3.h"
-
-/*
- * akpm: A new design for ext3_sync_file().
- *
- * This is only called from sys_fsync(), sys_fdatasync() and sys_msync().
- * There cannot be a transaction open by this task.
- * Another task could have dirtied this inode. Its data can be in any
- * state in the journalling system.
- *
- * What we do is just kick off a commit and wait on it. This will snapshot the
- * inode to disk.
- */
-
-int ext3_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
-{
- struct inode *inode = file->f_mapping->host;
- struct ext3_inode_info *ei = EXT3_I(inode);
- journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
- int ret, needs_barrier = 0;
- tid_t commit_tid;
-
- trace_ext3_sync_file_enter(file, datasync);
-
- if (inode->i_sb->s_flags & MS_RDONLY) {
- /* Make sure that we read updated state */
- smp_rmb();
- if (EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS)
- return -EROFS;
- return 0;
- }
- ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
- if (ret)
- goto out;
-
- J_ASSERT(ext3_journal_current_handle() == NULL);
-
- /*
- * data=writeback,ordered:
- * The caller's filemap_fdatawrite()/wait will sync the data.
- * Metadata is in the journal, we wait for a proper transaction
- * to commit here.
- *
- * data=journal:
- * filemap_fdatawrite won't do anything (the buffers are clean).
- * ext3_force_commit will write the file data into the journal and
- * will wait on that.
- * filemap_fdatawait() will encounter a ton of newly-dirtied pages
- * (they were dirtied by commit). But that's OK - the blocks are
- * safe in-journal, which is all fsync() needs to ensure.
- */
- if (ext3_should_journal_data(inode)) {
- ret = ext3_force_commit(inode->i_sb);
- goto out;
- }
-
- if (datasync)
- commit_tid = atomic_read(&ei->i_datasync_tid);
- else
- commit_tid = atomic_read(&ei->i_sync_tid);
-
- if (test_opt(inode->i_sb, BARRIER) &&
- !journal_trans_will_send_data_barrier(journal, commit_tid))
- needs_barrier = 1;
- log_start_commit(journal, commit_tid);
- ret = log_wait_commit(journal, commit_tid);
-
- /*
- * In case we didn't commit a transaction, we have to flush
- * disk caches manually so that data really is on persistent
- * storage
- */
- if (needs_barrier) {
- int err;
-
- err = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
- if (!ret)
- ret = err;
- }
-out:
- trace_ext3_sync_file_exit(inode, ret);
- return ret;
-}