summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_log.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/xfs/xfs_log.c')
-rw-r--r--fs/xfs/xfs_log.c376
1 files changed, 161 insertions, 215 deletions
diff --git a/fs/xfs/xfs_log.c b/fs/xfs/xfs_log.c
index 3e5ba1ecc080..b9c9c848146b 100644
--- a/fs/xfs/xfs_log.c
+++ b/fs/xfs/xfs_log.c
@@ -869,7 +869,7 @@ xfs_log_unmount_write(xfs_mount_t *mp)
return 0;
}
- error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
+ error = xfs_log_force(mp, XFS_LOG_SYNC);
ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
#ifdef DEBUG
@@ -1149,7 +1149,7 @@ xlog_assign_tail_lsn_locked(
struct xfs_log_item *lip;
xfs_lsn_t tail_lsn;
- assert_spin_locked(&mp->m_ail->xa_lock);
+ assert_spin_locked(&mp->m_ail->ail_lock);
/*
* To make sure we always have a valid LSN for the log tail we keep
@@ -1172,9 +1172,9 @@ xlog_assign_tail_lsn(
{
xfs_lsn_t tail_lsn;
- spin_lock(&mp->m_ail->xa_lock);
+ spin_lock(&mp->m_ail->ail_lock);
tail_lsn = xlog_assign_tail_lsn_locked(mp);
- spin_unlock(&mp->m_ail->xa_lock);
+ spin_unlock(&mp->m_ail->ail_lock);
return tail_lsn;
}
@@ -3304,269 +3304,215 @@ xlog_state_switch_iclogs(
* not in the active nor dirty state.
*/
int
-_xfs_log_force(
+xfs_log_force(
struct xfs_mount *mp,
- uint flags,
- int *log_flushed)
+ uint flags)
{
struct xlog *log = mp->m_log;
struct xlog_in_core *iclog;
xfs_lsn_t lsn;
XFS_STATS_INC(mp, xs_log_force);
+ trace_xfs_log_force(mp, 0, _RET_IP_);
xlog_cil_force(log);
spin_lock(&log->l_icloglock);
-
iclog = log->l_iclog;
- if (iclog->ic_state & XLOG_STATE_IOERROR) {
- spin_unlock(&log->l_icloglock);
- return -EIO;
- }
+ if (iclog->ic_state & XLOG_STATE_IOERROR)
+ goto out_error;
- /* If the head iclog is not active nor dirty, we just attach
- * ourselves to the head and go to sleep.
- */
- if (iclog->ic_state == XLOG_STATE_ACTIVE ||
- iclog->ic_state == XLOG_STATE_DIRTY) {
+ if (iclog->ic_state == XLOG_STATE_DIRTY ||
+ (iclog->ic_state == XLOG_STATE_ACTIVE &&
+ atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
/*
- * If the head is dirty or (active and empty), then
- * we need to look at the previous iclog. If the previous
- * iclog is active or dirty we are done. There is nothing
- * to sync out. Otherwise, we attach ourselves to the
+ * If the head is dirty or (active and empty), then we need to
+ * look at the previous iclog.
+ *
+ * If the previous iclog is active or dirty we are done. There
+ * is nothing to sync out. Otherwise, we attach ourselves to the
* previous iclog and go to sleep.
*/
- if (iclog->ic_state == XLOG_STATE_DIRTY ||
- (atomic_read(&iclog->ic_refcnt) == 0
- && iclog->ic_offset == 0)) {
- iclog = iclog->ic_prev;
- if (iclog->ic_state == XLOG_STATE_ACTIVE ||
- iclog->ic_state == XLOG_STATE_DIRTY)
- goto no_sleep;
- else
- goto maybe_sleep;
- } else {
- if (atomic_read(&iclog->ic_refcnt) == 0) {
- /* We are the only one with access to this
- * iclog. Flush it out now. There should
- * be a roundoff of zero to show that someone
- * has already taken care of the roundoff from
- * the previous sync.
- */
- atomic_inc(&iclog->ic_refcnt);
- lsn = be64_to_cpu(iclog->ic_header.h_lsn);
- xlog_state_switch_iclogs(log, iclog, 0);
- spin_unlock(&log->l_icloglock);
+ iclog = iclog->ic_prev;
+ if (iclog->ic_state == XLOG_STATE_ACTIVE ||
+ iclog->ic_state == XLOG_STATE_DIRTY)
+ goto out_unlock;
+ } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
+ if (atomic_read(&iclog->ic_refcnt) == 0) {
+ /*
+ * We are the only one with access to this iclog.
+ *
+ * Flush it out now. There should be a roundoff of zero
+ * to show that someone has already taken care of the
+ * roundoff from the previous sync.
+ */
+ atomic_inc(&iclog->ic_refcnt);
+ lsn = be64_to_cpu(iclog->ic_header.h_lsn);
+ xlog_state_switch_iclogs(log, iclog, 0);
+ spin_unlock(&log->l_icloglock);
- if (xlog_state_release_iclog(log, iclog))
- return -EIO;
-
- if (log_flushed)
- *log_flushed = 1;
- spin_lock(&log->l_icloglock);
- if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
- iclog->ic_state != XLOG_STATE_DIRTY)
- goto maybe_sleep;
- else
- goto no_sleep;
- } else {
- /* Someone else is writing to this iclog.
- * Use its call to flush out the data. However,
- * the other thread may not force out this LR,
- * so we mark it WANT_SYNC.
- */
- xlog_state_switch_iclogs(log, iclog, 0);
- goto maybe_sleep;
- }
- }
- }
+ if (xlog_state_release_iclog(log, iclog))
+ return -EIO;
- /* By the time we come around again, the iclog could've been filled
- * which would give it another lsn. If we have a new lsn, just
- * return because the relevant data has been flushed.
- */
-maybe_sleep:
- if (flags & XFS_LOG_SYNC) {
- /*
- * We must check if we're shutting down here, before
- * we wait, while we're holding the l_icloglock.
- * Then we check again after waking up, in case our
- * sleep was disturbed by a bad news.
- */
- if (iclog->ic_state & XLOG_STATE_IOERROR) {
- spin_unlock(&log->l_icloglock);
- return -EIO;
+ spin_lock(&log->l_icloglock);
+ if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
+ iclog->ic_state == XLOG_STATE_DIRTY)
+ goto out_unlock;
+ } else {
+ /*
+ * Someone else is writing to this iclog.
+ *
+ * Use its call to flush out the data. However, the
+ * other thread may not force out this LR, so we mark
+ * it WANT_SYNC.
+ */
+ xlog_state_switch_iclogs(log, iclog, 0);
}
- XFS_STATS_INC(mp, xs_log_force_sleep);
- xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
+ } else {
/*
- * No need to grab the log lock here since we're
- * only deciding whether or not to return EIO
- * and the memory read should be atomic.
+ * If the head iclog is not active nor dirty, we just attach
+ * ourselves to the head and go to sleep if necessary.
*/
- if (iclog->ic_state & XLOG_STATE_IOERROR)
- return -EIO;
- } else {
-
-no_sleep:
- spin_unlock(&log->l_icloglock);
+ ;
}
+
+ if (!(flags & XFS_LOG_SYNC))
+ goto out_unlock;
+
+ if (iclog->ic_state & XLOG_STATE_IOERROR)
+ goto out_error;
+ XFS_STATS_INC(mp, xs_log_force_sleep);
+ xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
+ if (iclog->ic_state & XLOG_STATE_IOERROR)
+ return -EIO;
return 0;
-}
-/*
- * Wrapper for _xfs_log_force(), to be used when caller doesn't care
- * about errors or whether the log was flushed or not. This is the normal
- * interface to use when trying to unpin items or move the log forward.
- */
-void
-xfs_log_force(
- xfs_mount_t *mp,
- uint flags)
-{
- trace_xfs_log_force(mp, 0, _RET_IP_);
- _xfs_log_force(mp, flags, NULL);
+out_unlock:
+ spin_unlock(&log->l_icloglock);
+ return 0;
+out_error:
+ spin_unlock(&log->l_icloglock);
+ return -EIO;
}
-/*
- * Force the in-core log to disk for a specific LSN.
- *
- * Find in-core log with lsn.
- * If it is in the DIRTY state, just return.
- * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
- * state and go to sleep or return.
- * If it is in any other state, go to sleep or return.
- *
- * Synchronous forces are implemented with a signal variable. All callers
- * to force a given lsn to disk will wait on a the sv attached to the
- * specific in-core log. When given in-core log finally completes its
- * write to disk, that thread will wake up all threads waiting on the
- * sv.
- */
-int
-_xfs_log_force_lsn(
+static int
+__xfs_log_force_lsn(
struct xfs_mount *mp,
xfs_lsn_t lsn,
uint flags,
- int *log_flushed)
+ int *log_flushed,
+ bool already_slept)
{
struct xlog *log = mp->m_log;
struct xlog_in_core *iclog;
- int already_slept = 0;
- ASSERT(lsn != 0);
-
- XFS_STATS_INC(mp, xs_log_force);
-
- lsn = xlog_cil_force_lsn(log, lsn);
- if (lsn == NULLCOMMITLSN)
- return 0;
-
-try_again:
spin_lock(&log->l_icloglock);
iclog = log->l_iclog;
- if (iclog->ic_state & XLOG_STATE_IOERROR) {
- spin_unlock(&log->l_icloglock);
- return -EIO;
- }
+ if (iclog->ic_state & XLOG_STATE_IOERROR)
+ goto out_error;
- do {
- if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
- iclog = iclog->ic_next;
- continue;
- }
+ while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
+ iclog = iclog->ic_next;
+ if (iclog == log->l_iclog)
+ goto out_unlock;
+ }
- if (iclog->ic_state == XLOG_STATE_DIRTY) {
- spin_unlock(&log->l_icloglock);
- return 0;
- }
+ if (iclog->ic_state == XLOG_STATE_DIRTY)
+ goto out_unlock;
- if (iclog->ic_state == XLOG_STATE_ACTIVE) {
- /*
- * We sleep here if we haven't already slept (e.g.
- * this is the first time we've looked at the correct
- * iclog buf) and the buffer before us is going to
- * be sync'ed. The reason for this is that if we
- * are doing sync transactions here, by waiting for
- * the previous I/O to complete, we can allow a few
- * more transactions into this iclog before we close
- * it down.
- *
- * Otherwise, we mark the buffer WANT_SYNC, and bump
- * up the refcnt so we can release the log (which
- * drops the ref count). The state switch keeps new
- * transaction commits from using this buffer. When
- * the current commits finish writing into the buffer,
- * the refcount will drop to zero and the buffer will
- * go out then.
- */
- if (!already_slept &&
- (iclog->ic_prev->ic_state &
- (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
- ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
+ if (iclog->ic_state == XLOG_STATE_ACTIVE) {
+ /*
+ * We sleep here if we haven't already slept (e.g. this is the
+ * first time we've looked at the correct iclog buf) and the
+ * buffer before us is going to be sync'ed. The reason for this
+ * is that if we are doing sync transactions here, by waiting
+ * for the previous I/O to complete, we can allow a few more
+ * transactions into this iclog before we close it down.
+ *
+ * Otherwise, we mark the buffer WANT_SYNC, and bump up the
+ * refcnt so we can release the log (which drops the ref count).
+ * The state switch keeps new transaction commits from using
+ * this buffer. When the current commits finish writing into
+ * the buffer, the refcount will drop to zero and the buffer
+ * will go out then.
+ */
+ if (!already_slept &&
+ (iclog->ic_prev->ic_state &
+ (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
+ ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
- XFS_STATS_INC(mp, xs_log_force_sleep);
+ XFS_STATS_INC(mp, xs_log_force_sleep);
- xlog_wait(&iclog->ic_prev->ic_write_wait,
- &log->l_icloglock);
- already_slept = 1;
- goto try_again;
- }
- atomic_inc(&iclog->ic_refcnt);
- xlog_state_switch_iclogs(log, iclog, 0);
- spin_unlock(&log->l_icloglock);
- if (xlog_state_release_iclog(log, iclog))
- return -EIO;
- if (log_flushed)
- *log_flushed = 1;
- spin_lock(&log->l_icloglock);
+ xlog_wait(&iclog->ic_prev->ic_write_wait,
+ &log->l_icloglock);
+ return -EAGAIN;
}
+ atomic_inc(&iclog->ic_refcnt);
+ xlog_state_switch_iclogs(log, iclog, 0);
+ spin_unlock(&log->l_icloglock);
+ if (xlog_state_release_iclog(log, iclog))
+ return -EIO;
+ if (log_flushed)
+ *log_flushed = 1;
+ spin_lock(&log->l_icloglock);
+ }
- if ((flags & XFS_LOG_SYNC) && /* sleep */
- !(iclog->ic_state &
- (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
- /*
- * Don't wait on completion if we know that we've
- * gotten a log write error.
- */
- if (iclog->ic_state & XLOG_STATE_IOERROR) {
- spin_unlock(&log->l_icloglock);
- return -EIO;
- }
- XFS_STATS_INC(mp, xs_log_force_sleep);
- xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
- /*
- * No need to grab the log lock here since we're
- * only deciding whether or not to return EIO
- * and the memory read should be atomic.
- */
- if (iclog->ic_state & XLOG_STATE_IOERROR)
- return -EIO;
- } else { /* just return */
- spin_unlock(&log->l_icloglock);
- }
+ if (!(flags & XFS_LOG_SYNC) ||
+ (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY)))
+ goto out_unlock;
- return 0;
- } while (iclog != log->l_iclog);
+ if (iclog->ic_state & XLOG_STATE_IOERROR)
+ goto out_error;
+
+ XFS_STATS_INC(mp, xs_log_force_sleep);
+ xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
+ if (iclog->ic_state & XLOG_STATE_IOERROR)
+ return -EIO;
+ return 0;
+out_unlock:
spin_unlock(&log->l_icloglock);
return 0;
+out_error:
+ spin_unlock(&log->l_icloglock);
+ return -EIO;
}
/*
- * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
- * about errors or whether the log was flushed or not. This is the normal
- * interface to use when trying to unpin items or move the log forward.
+ * Force the in-core log to disk for a specific LSN.
+ *
+ * Find in-core log with lsn.
+ * If it is in the DIRTY state, just return.
+ * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
+ * state and go to sleep or return.
+ * If it is in any other state, go to sleep or return.
+ *
+ * Synchronous forces are implemented with a wait queue. All callers trying
+ * to force a given lsn to disk must wait on the queue attached to the
+ * specific in-core log. When given in-core log finally completes its write
+ * to disk, that thread will wake up all threads waiting on the queue.
*/
-void
+int
xfs_log_force_lsn(
- xfs_mount_t *mp,
- xfs_lsn_t lsn,
- uint flags)
+ struct xfs_mount *mp,
+ xfs_lsn_t lsn,
+ uint flags,
+ int *log_flushed)
{
+ int ret;
+ ASSERT(lsn != 0);
+
+ XFS_STATS_INC(mp, xs_log_force);
trace_xfs_log_force(mp, lsn, _RET_IP_);
- _xfs_log_force_lsn(mp, lsn, flags, NULL);
+
+ lsn = xlog_cil_force_lsn(mp->m_log, lsn);
+ if (lsn == NULLCOMMITLSN)
+ return 0;
+
+ ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
+ if (ret == -EAGAIN)
+ ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
+ return ret;
}
/*
@@ -4035,7 +3981,7 @@ xfs_log_force_umount(
* to guarantee this.
*/
if (!logerror)
- _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
+ xfs_log_force(mp, XFS_LOG_SYNC);
/*
* mark the filesystem and the as in a shutdown state and wake