summaryrefslogtreecommitdiffstats
path: root/init/Kconfig
diff options
context:
space:
mode:
Diffstat (limited to 'init/Kconfig')
-rw-r--r--init/Kconfig371
1 files changed, 21 insertions, 350 deletions
diff --git a/init/Kconfig b/init/Kconfig
index 1d3475fc9496..8514b25db21c 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -472,354 +472,7 @@ config TASK_IO_ACCOUNTING
endmenu # "CPU/Task time and stats accounting"
-menu "RCU Subsystem"
-
-config TREE_RCU
- bool
- default y if !PREEMPT && SMP
- help
- This option selects the RCU implementation that is
- designed for very large SMP system with hundreds or
- thousands of CPUs. It also scales down nicely to
- smaller systems.
-
-config PREEMPT_RCU
- bool
- default y if PREEMPT
- help
- This option selects the RCU implementation that is
- designed for very large SMP systems with hundreds or
- thousands of CPUs, but for which real-time response
- is also required. It also scales down nicely to
- smaller systems.
-
- Select this option if you are unsure.
-
-config TINY_RCU
- bool
- default y if !PREEMPT && !SMP
- help
- This option selects the RCU implementation that is
- designed for UP systems from which real-time response
- is not required. This option greatly reduces the
- memory footprint of RCU.
-
-config RCU_EXPERT
- bool "Make expert-level adjustments to RCU configuration"
- default n
- help
- This option needs to be enabled if you wish to make
- expert-level adjustments to RCU configuration. By default,
- no such adjustments can be made, which has the often-beneficial
- side-effect of preventing "make oldconfig" from asking you all
- sorts of detailed questions about how you would like numerous
- obscure RCU options to be set up.
-
- Say Y if you need to make expert-level adjustments to RCU.
-
- Say N if you are unsure.
-
-config SRCU
- bool
- default y
- help
- This option selects the sleepable version of RCU. This version
- permits arbitrary sleeping or blocking within RCU read-side critical
- sections.
-
-config CLASSIC_SRCU
- bool "Use v4.11 classic SRCU implementation"
- default n
- depends on RCU_EXPERT && SRCU
- help
- This option selects the traditional well-tested classic SRCU
- implementation from v4.11, as might be desired for enterprise
- Linux distributions. Without this option, the shiny new
- Tiny SRCU and Tree SRCU implementations are used instead.
- At some point, it is hoped that Tiny SRCU and Tree SRCU
- will accumulate enough test time and confidence to allow
- Classic SRCU to be dropped entirely.
-
- Say Y if you need a rock-solid SRCU.
-
- Say N if you would like help test Tree SRCU.
-
-config TINY_SRCU
- bool
- default y if SRCU && TINY_RCU && !CLASSIC_SRCU
- help
- This option selects the single-CPU non-preemptible version of SRCU.
-
-config TREE_SRCU
- bool
- default y if SRCU && !TINY_RCU && !CLASSIC_SRCU
- help
- This option selects the full-fledged version of SRCU.
-
-config TASKS_RCU
- bool
- default n
- select SRCU
- help
- This option enables a task-based RCU implementation that uses
- only voluntary context switch (not preemption!), idle, and
- user-mode execution as quiescent states.
-
-config RCU_STALL_COMMON
- def_bool ( TREE_RCU || PREEMPT_RCU || RCU_TRACE )
- help
- This option enables RCU CPU stall code that is common between
- the TINY and TREE variants of RCU. The purpose is to allow
- the tiny variants to disable RCU CPU stall warnings, while
- making these warnings mandatory for the tree variants.
-
-config RCU_NEED_SEGCBLIST
- def_bool ( TREE_RCU || PREEMPT_RCU || TINY_SRCU || TREE_SRCU )
-
-config CONTEXT_TRACKING
- bool
-
-config CONTEXT_TRACKING_FORCE
- bool "Force context tracking"
- depends on CONTEXT_TRACKING
- default y if !NO_HZ_FULL
- help
- The major pre-requirement for full dynticks to work is to
- support the context tracking subsystem. But there are also
- other dependencies to provide in order to make the full
- dynticks working.
-
- This option stands for testing when an arch implements the
- context tracking backend but doesn't yet fullfill all the
- requirements to make the full dynticks feature working.
- Without the full dynticks, there is no way to test the support
- for context tracking and the subsystems that rely on it: RCU
- userspace extended quiescent state and tickless cputime
- accounting. This option copes with the absence of the full
- dynticks subsystem by forcing the context tracking on all
- CPUs in the system.
-
- Say Y only if you're working on the development of an
- architecture backend for the context tracking.
-
- Say N otherwise, this option brings an overhead that you
- don't want in production.
-
-
-config RCU_FANOUT
- int "Tree-based hierarchical RCU fanout value"
- range 2 64 if 64BIT
- range 2 32 if !64BIT
- depends on (TREE_RCU || PREEMPT_RCU) && RCU_EXPERT
- default 64 if 64BIT
- default 32 if !64BIT
- help
- This option controls the fanout of hierarchical implementations
- of RCU, allowing RCU to work efficiently on machines with
- large numbers of CPUs. This value must be at least the fourth
- root of NR_CPUS, which allows NR_CPUS to be insanely large.
- The default value of RCU_FANOUT should be used for production
- systems, but if you are stress-testing the RCU implementation
- itself, small RCU_FANOUT values allow you to test large-system
- code paths on small(er) systems.
-
- Select a specific number if testing RCU itself.
- Take the default if unsure.
-
-config RCU_FANOUT_LEAF
- int "Tree-based hierarchical RCU leaf-level fanout value"
- range 2 64 if 64BIT
- range 2 32 if !64BIT
- depends on (TREE_RCU || PREEMPT_RCU) && RCU_EXPERT
- default 16
- help
- This option controls the leaf-level fanout of hierarchical
- implementations of RCU, and allows trading off cache misses
- against lock contention. Systems that synchronize their
- scheduling-clock interrupts for energy-efficiency reasons will
- want the default because the smaller leaf-level fanout keeps
- lock contention levels acceptably low. Very large systems
- (hundreds or thousands of CPUs) will instead want to set this
- value to the maximum value possible in order to reduce the
- number of cache misses incurred during RCU's grace-period
- initialization. These systems tend to run CPU-bound, and thus
- are not helped by synchronized interrupts, and thus tend to
- skew them, which reduces lock contention enough that large
- leaf-level fanouts work well. That said, setting leaf-level
- fanout to a large number will likely cause problematic
- lock contention on the leaf-level rcu_node structures unless
- you boot with the skew_tick kernel parameter.
-
- Select a specific number if testing RCU itself.
-
- Select the maximum permissible value for large systems, but
- please understand that you may also need to set the skew_tick
- kernel boot parameter to avoid contention on the rcu_node
- structure's locks.
-
- Take the default if unsure.
-
-config RCU_FAST_NO_HZ
- bool "Accelerate last non-dyntick-idle CPU's grace periods"
- depends on NO_HZ_COMMON && SMP && RCU_EXPERT
- default n
- help
- This option permits CPUs to enter dynticks-idle state even if
- they have RCU callbacks queued, and prevents RCU from waking
- these CPUs up more than roughly once every four jiffies (by
- default, you can adjust this using the rcutree.rcu_idle_gp_delay
- parameter), thus improving energy efficiency. On the other
- hand, this option increases the duration of RCU grace periods,
- for example, slowing down synchronize_rcu().
-
- Say Y if energy efficiency is critically important, and you
- don't care about increased grace-period durations.
-
- Say N if you are unsure.
-
-config TREE_RCU_TRACE
- def_bool RCU_TRACE && ( TREE_RCU || PREEMPT_RCU )
- select DEBUG_FS
- help
- This option provides tracing for the TREE_RCU and
- PREEMPT_RCU implementations, permitting Makefile to
- trivially select kernel/rcutree_trace.c.
-
-config RCU_BOOST
- bool "Enable RCU priority boosting"
- depends on RT_MUTEXES && PREEMPT_RCU && RCU_EXPERT
- default n
- help
- This option boosts the priority of preempted RCU readers that
- block the current preemptible RCU grace period for too long.
- This option also prevents heavy loads from blocking RCU
- callback invocation for all flavors of RCU.
-
- Say Y here if you are working with real-time apps or heavy loads
- Say N here if you are unsure.
-
-config RCU_KTHREAD_PRIO
- int "Real-time priority to use for RCU worker threads"
- range 1 99 if RCU_BOOST
- range 0 99 if !RCU_BOOST
- default 1 if RCU_BOOST
- default 0 if !RCU_BOOST
- depends on RCU_EXPERT
- help
- This option specifies the SCHED_FIFO priority value that will be
- assigned to the rcuc/n and rcub/n threads and is also the value
- used for RCU_BOOST (if enabled). If you are working with a
- real-time application that has one or more CPU-bound threads
- running at a real-time priority level, you should set
- RCU_KTHREAD_PRIO to a priority higher than the highest-priority
- real-time CPU-bound application thread. The default RCU_KTHREAD_PRIO
- value of 1 is appropriate in the common case, which is real-time
- applications that do not have any CPU-bound threads.
-
- Some real-time applications might not have a single real-time
- thread that saturates a given CPU, but instead might have
- multiple real-time threads that, taken together, fully utilize
- that CPU. In this case, you should set RCU_KTHREAD_PRIO to
- a priority higher than the lowest-priority thread that is
- conspiring to prevent the CPU from running any non-real-time
- tasks. For example, if one thread at priority 10 and another
- thread at priority 5 are between themselves fully consuming
- the CPU time on a given CPU, then RCU_KTHREAD_PRIO should be
- set to priority 6 or higher.
-
- Specify the real-time priority, or take the default if unsure.
-
-config RCU_BOOST_DELAY
- int "Milliseconds to delay boosting after RCU grace-period start"
- range 0 3000
- depends on RCU_BOOST
- default 500
- help
- This option specifies the time to wait after the beginning of
- a given grace period before priority-boosting preempted RCU
- readers blocking that grace period. Note that any RCU reader
- blocking an expedited RCU grace period is boosted immediately.
-
- Accept the default if unsure.
-
-config RCU_NOCB_CPU
- bool "Offload RCU callback processing from boot-selected CPUs"
- depends on TREE_RCU || PREEMPT_RCU
- depends on RCU_EXPERT || NO_HZ_FULL
- default n
- help
- Use this option to reduce OS jitter for aggressive HPC or
- real-time workloads. It can also be used to offload RCU
- callback invocation to energy-efficient CPUs in battery-powered
- asymmetric multiprocessors.
-
- This option offloads callback invocation from the set of
- CPUs specified at boot time by the rcu_nocbs parameter.
- For each such CPU, a kthread ("rcuox/N") will be created to
- invoke callbacks, where the "N" is the CPU being offloaded,
- and where the "x" is "b" for RCU-bh, "p" for RCU-preempt, and
- "s" for RCU-sched. Nothing prevents this kthread from running
- on the specified CPUs, but (1) the kthreads may be preempted
- between each callback, and (2) affinity or cgroups can be used
- to force the kthreads to run on whatever set of CPUs is desired.
-
- Say Y here if you want to help to debug reduced OS jitter.
- Say N here if you are unsure.
-
-choice
- prompt "Build-forced no-CBs CPUs"
- default RCU_NOCB_CPU_NONE
- depends on RCU_NOCB_CPU
- help
- This option allows no-CBs CPUs (whose RCU callbacks are invoked
- from kthreads rather than from softirq context) to be specified
- at build time. Additional no-CBs CPUs may be specified by
- the rcu_nocbs= boot parameter.
-
-config RCU_NOCB_CPU_NONE
- bool "No build_forced no-CBs CPUs"
- help
- This option does not force any of the CPUs to be no-CBs CPUs.
- Only CPUs designated by the rcu_nocbs= boot parameter will be
- no-CBs CPUs, whose RCU callbacks will be invoked by per-CPU
- kthreads whose names begin with "rcuo". All other CPUs will
- invoke their own RCU callbacks in softirq context.
-
- Select this option if you want to choose no-CBs CPUs at
- boot time, for example, to allow testing of different no-CBs
- configurations without having to rebuild the kernel each time.
-
-config RCU_NOCB_CPU_ZERO
- bool "CPU 0 is a build_forced no-CBs CPU"
- help
- This option forces CPU 0 to be a no-CBs CPU, so that its RCU
- callbacks are invoked by a per-CPU kthread whose name begins
- with "rcuo". Additional CPUs may be designated as no-CBs
- CPUs using the rcu_nocbs= boot parameter will be no-CBs CPUs.
- All other CPUs will invoke their own RCU callbacks in softirq
- context.
-
- Select this if CPU 0 needs to be a no-CBs CPU for real-time
- or energy-efficiency reasons, but the real reason it exists
- is to ensure that randconfig testing covers mixed systems.
-
-config RCU_NOCB_CPU_ALL
- bool "All CPUs are build_forced no-CBs CPUs"
- help
- This option forces all CPUs to be no-CBs CPUs. The rcu_nocbs=
- boot parameter will be ignored. All CPUs' RCU callbacks will
- be executed in the context of per-CPU rcuo kthreads created for
- this purpose. Assuming that the kthreads whose names start with
- "rcuo" are bound to "housekeeping" CPUs, this reduces OS jitter
- on the remaining CPUs, but might decrease memory locality during
- RCU-callback invocation, thus potentially degrading throughput.
-
- Select this if all CPUs need to be no-CBs CPUs for real-time
- or energy-efficiency reasons.
-
-endchoice
-
-endmenu # "RCU Subsystem"
+source "kernel/rcu/Kconfig"
config BUILD_BIN2C
bool
@@ -1156,6 +809,7 @@ config CGROUP_HUGETLB
config CPUSETS
bool "Cpuset controller"
+ depends on SMP
help
This option will let you create and manage CPUSETs which
allow dynamically partitioning a system into sets of CPUs and
@@ -1205,11 +859,14 @@ config CGROUP_BPF
inet sockets.
config CGROUP_DEBUG
- bool "Example controller"
+ bool "Debug controller"
default n
+ depends on DEBUG_KERNEL
help
This option enables a simple controller that exports
- debugging information about the cgroups framework.
+ debugging information about the cgroups framework. This
+ controller is for control cgroup debugging only. Its
+ interfaces are not stable.
Say N.
@@ -1891,6 +1548,20 @@ config SLOB
endchoice
+config SLAB_MERGE_DEFAULT
+ bool "Allow slab caches to be merged"
+ default y
+ help
+ For reduced kernel memory fragmentation, slab caches can be
+ merged when they share the same size and other characteristics.
+ This carries a risk of kernel heap overflows being able to
+ overwrite objects from merged caches (and more easily control
+ cache layout), which makes such heap attacks easier to exploit
+ by attackers. By keeping caches unmerged, these kinds of exploits
+ can usually only damage objects in the same cache. To disable
+ merging at runtime, "slab_nomerge" can be passed on the kernel
+ command line.
+
config SLAB_FREELIST_RANDOM
default n
depends on SLAB || SLUB