summaryrefslogtreecommitdiffstats
path: root/kernel/bpf/verifier.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/bpf/verifier.c')
-rw-r--r--kernel/bpf/verifier.c516
1 files changed, 403 insertions, 113 deletions
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
index cb7ad1f795e1..719c633e500a 100644
--- a/kernel/bpf/verifier.c
+++ b/kernel/bpf/verifier.c
@@ -172,7 +172,7 @@ static bool bpf_global_percpu_ma_set;
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
struct bpf_verifier_stack_elem {
- /* verifer state is 'st'
+ /* verifier state is 'st'
* before processing instruction 'insn_idx'
* and after processing instruction 'prev_insn_idx'
*/
@@ -190,11 +190,6 @@ struct bpf_verifier_stack_elem {
#define BPF_MAP_KEY_POISON (1ULL << 63)
#define BPF_MAP_KEY_SEEN (1ULL << 62)
-#define BPF_MAP_PTR_UNPRIV 1UL
-#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
- POISON_POINTER_DELTA))
-#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
-
#define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512
static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
@@ -209,21 +204,22 @@ static bool is_trusted_reg(const struct bpf_reg_state *reg);
static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
{
- return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
+ return aux->map_ptr_state.poison;
}
static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
{
- return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
+ return aux->map_ptr_state.unpriv;
}
static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
- const struct bpf_map *map, bool unpriv)
+ struct bpf_map *map,
+ bool unpriv, bool poison)
{
- BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
unpriv |= bpf_map_ptr_unpriv(aux);
- aux->map_ptr_state = (unsigned long)map |
- (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
+ aux->map_ptr_state.unpriv = unpriv;
+ aux->map_ptr_state.poison = poison;
+ aux->map_ptr_state.map_ptr = map;
}
static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
@@ -336,6 +332,10 @@ struct bpf_kfunc_call_arg_meta {
u8 spi;
u8 frameno;
} iter;
+ struct {
+ struct bpf_map *ptr;
+ int uid;
+ } map;
u64 mem_size;
};
@@ -501,8 +501,12 @@ static bool is_dynptr_ref_function(enum bpf_func_id func_id)
}
static bool is_sync_callback_calling_kfunc(u32 btf_id);
+static bool is_async_callback_calling_kfunc(u32 btf_id);
+static bool is_callback_calling_kfunc(u32 btf_id);
static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
+static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id);
+
static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
{
return func_id == BPF_FUNC_for_each_map_elem ||
@@ -530,7 +534,8 @@ static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
static bool is_async_callback_calling_insn(struct bpf_insn *insn)
{
- return bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm);
+ return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) ||
+ (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm));
}
static bool is_may_goto_insn(struct bpf_insn *insn)
@@ -1429,6 +1434,8 @@ static int copy_verifier_state(struct bpf_verifier_state *dst_state,
}
dst_state->speculative = src->speculative;
dst_state->active_rcu_lock = src->active_rcu_lock;
+ dst_state->active_preempt_lock = src->active_preempt_lock;
+ dst_state->in_sleepable = src->in_sleepable;
dst_state->curframe = src->curframe;
dst_state->active_lock.ptr = src->active_lock.ptr;
dst_state->active_lock.id = src->active_lock.id;
@@ -1842,6 +1849,8 @@ static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
*/
if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
reg->map_uid = reg->id;
+ if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE))
+ reg->map_uid = reg->id;
} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
reg->type = PTR_TO_XDP_SOCK;
} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
@@ -2135,7 +2144,7 @@ static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
{
/* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
- * values on both sides of 64-bit range in hope to have tigher range.
+ * values on both sides of 64-bit range in hope to have tighter range.
* E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
* 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
* With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
@@ -2143,7 +2152,7 @@ static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
* _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
* better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
* We just need to make sure that derived bounds we are intersecting
- * with are well-formed ranges in respecitve s64 or u64 domain, just
+ * with are well-formed ranges in respective s64 or u64 domain, just
* like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
*/
__u64 new_umin, new_umax;
@@ -2402,7 +2411,7 @@ static void init_func_state(struct bpf_verifier_env *env,
/* Similar to push_stack(), but for async callbacks */
static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
int insn_idx, int prev_insn_idx,
- int subprog)
+ int subprog, bool is_sleepable)
{
struct bpf_verifier_stack_elem *elem;
struct bpf_func_state *frame;
@@ -2429,6 +2438,7 @@ static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
* Initialize it similar to do_check_common().
*/
elem->st.branches = 1;
+ elem->st.in_sleepable = is_sleepable;
frame = kzalloc(sizeof(*frame), GFP_KERNEL);
if (!frame)
goto err;
@@ -3615,7 +3625,8 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
* sreg needs precision before this insn
*/
bt_clear_reg(bt, dreg);
- bt_set_reg(bt, sreg);
+ if (sreg != BPF_REG_FP)
+ bt_set_reg(bt, sreg);
} else {
/* dreg = K
* dreg needs precision after this insn.
@@ -3631,7 +3642,8 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
* both dreg and sreg need precision
* before this insn
*/
- bt_set_reg(bt, sreg);
+ if (sreg != BPF_REG_FP)
+ bt_set_reg(bt, sreg);
} /* else dreg += K
* dreg still needs precision before this insn
*/
@@ -5274,7 +5286,8 @@ bad_type:
static bool in_sleepable(struct bpf_verifier_env *env)
{
- return env->prog->sleepable;
+ return env->prog->sleepable ||
+ (env->cur_state && env->cur_state->in_sleepable);
}
/* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
@@ -5297,6 +5310,7 @@ BTF_ID(struct, cgroup)
BTF_ID(struct, bpf_cpumask)
#endif
BTF_ID(struct, task_struct)
+BTF_ID(struct, bpf_crypto_ctx)
BTF_SET_END(rcu_protected_types)
static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
@@ -6972,6 +6986,9 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
return err;
}
+static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
+ bool allow_trust_mismatch);
+
static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
{
int load_reg;
@@ -7032,7 +7049,7 @@ static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_i
is_pkt_reg(env, insn->dst_reg) ||
is_flow_key_reg(env, insn->dst_reg) ||
is_sk_reg(env, insn->dst_reg) ||
- is_arena_reg(env, insn->dst_reg)) {
+ (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) {
verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
insn->dst_reg,
reg_type_str(env, reg_state(env, insn->dst_reg)->type));
@@ -7068,6 +7085,11 @@ static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_i
if (err)
return err;
+ if (is_arena_reg(env, insn->dst_reg)) {
+ err = save_aux_ptr_type(env, PTR_TO_ARENA, false);
+ if (err)
+ return err;
+ }
/* Check whether we can write into the same memory. */
err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
@@ -7590,6 +7612,23 @@ static int process_timer_func(struct bpf_verifier_env *env, int regno,
return 0;
}
+static int process_wq_func(struct bpf_verifier_env *env, int regno,
+ struct bpf_kfunc_call_arg_meta *meta)
+{
+ struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
+ struct bpf_map *map = reg->map_ptr;
+ u64 val = reg->var_off.value;
+
+ if (map->record->wq_off != val + reg->off) {
+ verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n",
+ val + reg->off, map->record->wq_off);
+ return -EINVAL;
+ }
+ meta->map.uid = reg->map_uid;
+ meta->map.ptr = map;
+ return 0;
+}
+
static int process_kptr_func(struct bpf_verifier_env *env, int regno,
struct bpf_call_arg_meta *meta)
{
@@ -9484,7 +9523,7 @@ static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *ins
*/
env->subprog_info[subprog].is_cb = true;
if (bpf_pseudo_kfunc_call(insn) &&
- !is_sync_callback_calling_kfunc(insn->imm)) {
+ !is_callback_calling_kfunc(insn->imm)) {
verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
func_id_name(insn->imm), insn->imm);
return -EFAULT;
@@ -9498,10 +9537,11 @@ static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *ins
if (is_async_callback_calling_insn(insn)) {
struct bpf_verifier_state *async_cb;
- /* there is no real recursion here. timer callbacks are async */
+ /* there is no real recursion here. timer and workqueue callbacks are async */
env->subprog_info[subprog].is_async_cb = true;
async_cb = push_async_cb(env, env->subprog_info[subprog].start,
- insn_idx, subprog);
+ insn_idx, subprog,
+ is_bpf_wq_set_callback_impl_kfunc(insn->imm));
if (!async_cb)
return -EFAULT;
callee = async_cb->frame[0];
@@ -9561,6 +9601,13 @@ static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
return -EINVAL;
}
+ /* Only global subprogs cannot be called with preemption disabled. */
+ if (env->cur_state->active_preempt_lock) {
+ verbose(env, "global function calls are not allowed with preemption disabled,\n"
+ "use static function instead\n");
+ return -EINVAL;
+ }
+
if (err) {
verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
subprog, sub_name);
@@ -9653,12 +9700,8 @@ static int set_map_elem_callback_state(struct bpf_verifier_env *env,
struct bpf_map *map;
int err;
- if (bpf_map_ptr_poisoned(insn_aux)) {
- verbose(env, "tail_call abusing map_ptr\n");
- return -EINVAL;
- }
-
- map = BPF_MAP_PTR(insn_aux->map_ptr_state);
+ /* valid map_ptr and poison value does not matter */
+ map = insn_aux->map_ptr_state.map_ptr;
if (!map->ops->map_set_for_each_callback_args ||
!map->ops->map_for_each_callback) {
verbose(env, "callback function not allowed for map\n");
@@ -10017,12 +10060,12 @@ record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
return -EACCES;
}
- if (!BPF_MAP_PTR(aux->map_ptr_state))
+ if (!aux->map_ptr_state.map_ptr)
+ bpf_map_ptr_store(aux, meta->map_ptr,
+ !meta->map_ptr->bypass_spec_v1, false);
+ else if (aux->map_ptr_state.map_ptr != meta->map_ptr)
bpf_map_ptr_store(aux, meta->map_ptr,
- !meta->map_ptr->bypass_spec_v1);
- else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
- bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
- !meta->map_ptr->bypass_spec_v1);
+ !meta->map_ptr->bypass_spec_v1, true);
return 0;
}
@@ -10201,8 +10244,8 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
if (env->ops->get_func_proto)
fn = env->ops->get_func_proto(func_id, env->prog);
if (!fn) {
- verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
- func_id);
+ verbose(env, "program of this type cannot use helper %s#%d\n",
+ func_id_name(func_id), func_id);
return -EINVAL;
}
@@ -10251,6 +10294,17 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
}
+ if (env->cur_state->active_preempt_lock) {
+ if (fn->might_sleep) {
+ verbose(env, "sleepable helper %s#%d in non-preemptible region\n",
+ func_id_name(func_id), func_id);
+ return -EINVAL;
+ }
+
+ if (in_sleepable(env) && is_storage_get_function(func_id))
+ env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
+ }
+
meta.func_id = func_id;
/* check args */
for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
@@ -10839,6 +10893,7 @@ enum {
KF_ARG_LIST_NODE_ID,
KF_ARG_RB_ROOT_ID,
KF_ARG_RB_NODE_ID,
+ KF_ARG_WORKQUEUE_ID,
};
BTF_ID_LIST(kf_arg_btf_ids)
@@ -10847,6 +10902,7 @@ BTF_ID(struct, bpf_list_head)
BTF_ID(struct, bpf_list_node)
BTF_ID(struct, bpf_rb_root)
BTF_ID(struct, bpf_rb_node)
+BTF_ID(struct, bpf_wq)
static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
const struct btf_param *arg, int type)
@@ -10890,6 +10946,11 @@ static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_par
return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
}
+static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg)
+{
+ return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID);
+}
+
static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
const struct btf_param *arg)
{
@@ -10959,6 +11020,7 @@ enum kfunc_ptr_arg_type {
KF_ARG_PTR_TO_NULL,
KF_ARG_PTR_TO_CONST_STR,
KF_ARG_PTR_TO_MAP,
+ KF_ARG_PTR_TO_WORKQUEUE,
};
enum special_kfunc_type {
@@ -10984,6 +11046,9 @@ enum special_kfunc_type {
KF_bpf_percpu_obj_new_impl,
KF_bpf_percpu_obj_drop_impl,
KF_bpf_throw,
+ KF_bpf_wq_set_callback_impl,
+ KF_bpf_preempt_disable,
+ KF_bpf_preempt_enable,
KF_bpf_iter_css_task_new,
};
@@ -11008,6 +11073,7 @@ BTF_ID(func, bpf_dynptr_clone)
BTF_ID(func, bpf_percpu_obj_new_impl)
BTF_ID(func, bpf_percpu_obj_drop_impl)
BTF_ID(func, bpf_throw)
+BTF_ID(func, bpf_wq_set_callback_impl)
#ifdef CONFIG_CGROUPS
BTF_ID(func, bpf_iter_css_task_new)
#endif
@@ -11036,6 +11102,9 @@ BTF_ID(func, bpf_dynptr_clone)
BTF_ID(func, bpf_percpu_obj_new_impl)
BTF_ID(func, bpf_percpu_obj_drop_impl)
BTF_ID(func, bpf_throw)
+BTF_ID(func, bpf_wq_set_callback_impl)
+BTF_ID(func, bpf_preempt_disable)
+BTF_ID(func, bpf_preempt_enable)
#ifdef CONFIG_CGROUPS
BTF_ID(func, bpf_iter_css_task_new)
#else
@@ -11062,6 +11131,16 @@ static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
}
+static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta)
+{
+ return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable];
+}
+
+static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta)
+{
+ return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable];
+}
+
static enum kfunc_ptr_arg_type
get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
struct bpf_kfunc_call_arg_meta *meta,
@@ -11115,6 +11194,9 @@ get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
if (is_kfunc_arg_map(meta->btf, &args[argno]))
return KF_ARG_PTR_TO_MAP;
+ if (is_kfunc_arg_wq(meta->btf, &args[argno]))
+ return KF_ARG_PTR_TO_WORKQUEUE;
+
if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
if (!btf_type_is_struct(ref_t)) {
verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
@@ -11366,12 +11448,28 @@ static bool is_sync_callback_calling_kfunc(u32 btf_id)
return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
}
+static bool is_async_callback_calling_kfunc(u32 btf_id)
+{
+ return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
+}
+
static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
{
return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
insn->imm == special_kfunc_list[KF_bpf_throw];
}
+static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)
+{
+ return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
+}
+
+static bool is_callback_calling_kfunc(u32 btf_id)
+{
+ return is_sync_callback_calling_kfunc(btf_id) ||
+ is_async_callback_calling_kfunc(btf_id);
+}
+
static bool is_rbtree_lock_required_kfunc(u32 btf_id)
{
return is_bpf_rbtree_api_kfunc(btf_id);
@@ -11716,6 +11814,34 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
case KF_ARG_PTR_TO_NULL:
continue;
case KF_ARG_PTR_TO_MAP:
+ if (!reg->map_ptr) {
+ verbose(env, "pointer in R%d isn't map pointer\n", regno);
+ return -EINVAL;
+ }
+ if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) {
+ /* Use map_uid (which is unique id of inner map) to reject:
+ * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
+ * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
+ * if (inner_map1 && inner_map2) {
+ * wq = bpf_map_lookup_elem(inner_map1);
+ * if (wq)
+ * // mismatch would have been allowed
+ * bpf_wq_init(wq, inner_map2);
+ * }
+ *
+ * Comparing map_ptr is enough to distinguish normal and outer maps.
+ */
+ if (meta->map.ptr != reg->map_ptr ||
+ meta->map.uid != reg->map_uid) {
+ verbose(env,
+ "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
+ meta->map.uid, reg->map_uid);
+ return -EINVAL;
+ }
+ }
+ meta->map.ptr = reg->map_ptr;
+ meta->map.uid = reg->map_uid;
+ fallthrough;
case KF_ARG_PTR_TO_ALLOC_BTF_ID:
case KF_ARG_PTR_TO_BTF_ID:
if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
@@ -11748,6 +11874,7 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
case KF_ARG_PTR_TO_CALLBACK:
case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
case KF_ARG_PTR_TO_CONST_STR:
+ case KF_ARG_PTR_TO_WORKQUEUE:
/* Trusted by default */
break;
default:
@@ -12034,6 +12161,15 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
if (ret)
return ret;
break;
+ case KF_ARG_PTR_TO_WORKQUEUE:
+ if (reg->type != PTR_TO_MAP_VALUE) {
+ verbose(env, "arg#%d doesn't point to a map value\n", i);
+ return -EINVAL;
+ }
+ ret = process_wq_func(env, regno, meta);
+ if (ret < 0)
+ return ret;
+ break;
}
}
@@ -12093,11 +12229,11 @@ static int check_return_code(struct bpf_verifier_env *env, int regno, const char
static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
int *insn_idx_p)
{
- const struct btf_type *t, *ptr_type;
+ bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable;
u32 i, nargs, ptr_type_id, release_ref_obj_id;
struct bpf_reg_state *regs = cur_regs(env);
const char *func_name, *ptr_type_name;
- bool sleepable, rcu_lock, rcu_unlock;
+ const struct btf_type *t, *ptr_type;
struct bpf_kfunc_call_arg_meta meta;
struct bpf_insn_aux_data *insn_aux;
int err, insn_idx = *insn_idx_p;
@@ -12145,9 +12281,22 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
}
}
+ if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) {
+ err = push_callback_call(env, insn, insn_idx, meta.subprogno,
+ set_timer_callback_state);
+ if (err) {
+ verbose(env, "kfunc %s#%d failed callback verification\n",
+ func_name, meta.func_id);
+ return err;
+ }
+ }
+
rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
+ preempt_disable = is_kfunc_bpf_preempt_disable(&meta);
+ preempt_enable = is_kfunc_bpf_preempt_enable(&meta);
+
if (env->cur_state->active_rcu_lock) {
struct bpf_func_state *state;
struct bpf_reg_state *reg;
@@ -12180,6 +12329,22 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
return -EINVAL;
}
+ if (env->cur_state->active_preempt_lock) {
+ if (preempt_disable) {
+ env->cur_state->active_preempt_lock++;
+ } else if (preempt_enable) {
+ env->cur_state->active_preempt_lock--;
+ } else if (sleepable) {
+ verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name);
+ return -EACCES;
+ }
+ } else if (preempt_disable) {
+ env->cur_state->active_preempt_lock++;
+ } else if (preempt_enable) {
+ verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name);
+ return -EINVAL;
+ }
+
/* In case of release function, we get register number of refcounted
* PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
*/
@@ -13318,7 +13483,6 @@ static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
bool src_known = tnum_subreg_is_const(src_reg->var_off);
bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
struct tnum var32_off = tnum_subreg(dst_reg->var_off);
- s32 smin_val = src_reg->s32_min_value;
u32 umax_val = src_reg->u32_max_value;
if (src_known && dst_known) {
@@ -13331,18 +13495,16 @@ static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
*/
dst_reg->u32_min_value = var32_off.value;
dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
- if (dst_reg->s32_min_value < 0 || smin_val < 0) {
- /* Lose signed bounds when ANDing negative numbers,
- * ain't nobody got time for that.
- */
- dst_reg->s32_min_value = S32_MIN;
- dst_reg->s32_max_value = S32_MAX;
- } else {
- /* ANDing two positives gives a positive, so safe to
- * cast result into s64.
- */
+
+ /* Safe to set s32 bounds by casting u32 result into s32 when u32
+ * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
+ */
+ if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
dst_reg->s32_min_value = dst_reg->u32_min_value;
dst_reg->s32_max_value = dst_reg->u32_max_value;
+ } else {
+ dst_reg->s32_min_value = S32_MIN;
+ dst_reg->s32_max_value = S32_MAX;
}
}
@@ -13351,7 +13513,6 @@ static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
{
bool src_known = tnum_is_const(src_reg->var_off);
bool dst_known = tnum_is_const(dst_reg->var_off);
- s64 smin_val = src_reg->smin_value;
u64 umax_val = src_reg->umax_value;
if (src_known && dst_known) {
@@ -13364,18 +13525,16 @@ static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
*/
dst_reg->umin_value = dst_reg->var_off.value;
dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
- if (dst_reg->smin_value < 0 || smin_val < 0) {
- /* Lose signed bounds when ANDing negative numbers,
- * ain't nobody got time for that.
- */
- dst_reg->smin_value = S64_MIN;
- dst_reg->smax_value = S64_MAX;
- } else {
- /* ANDing two positives gives a positive, so safe to
- * cast result into s64.
- */
+
+ /* Safe to set s64 bounds by casting u64 result into s64 when u64
+ * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
+ */
+ if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
dst_reg->smin_value = dst_reg->umin_value;
dst_reg->smax_value = dst_reg->umax_value;
+ } else {
+ dst_reg->smin_value = S64_MIN;
+ dst_reg->smax_value = S64_MAX;
}
/* We may learn something more from the var_off */
__update_reg_bounds(dst_reg);
@@ -13387,7 +13546,6 @@ static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
bool src_known = tnum_subreg_is_const(src_reg->var_off);
bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
struct tnum var32_off = tnum_subreg(dst_reg->var_off);
- s32 smin_val = src_reg->s32_min_value;
u32 umin_val = src_reg->u32_min_value;
if (src_known && dst_known) {
@@ -13400,18 +13558,16 @@ static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
*/
dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
dst_reg->u32_max_value = var32_off.value | var32_off.mask;
- if (dst_reg->s32_min_value < 0 || smin_val < 0) {
- /* Lose signed bounds when ORing negative numbers,
- * ain't nobody got time for that.
- */
- dst_reg->s32_min_value = S32_MIN;
- dst_reg->s32_max_value = S32_MAX;
- } else {
- /* ORing two positives gives a positive, so safe to
- * cast result into s64.
- */
+
+ /* Safe to set s32 bounds by casting u32 result into s32 when u32
+ * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
+ */
+ if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
dst_reg->s32_min_value = dst_reg->u32_min_value;
dst_reg->s32_max_value = dst_reg->u32_max_value;
+ } else {
+ dst_reg->s32_min_value = S32_MIN;
+ dst_reg->s32_max_value = S32_MAX;
}
}
@@ -13420,7 +13576,6 @@ static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
{
bool src_known = tnum_is_const(src_reg->var_off);
bool dst_known = tnum_is_const(dst_reg->var_off);
- s64 smin_val = src_reg->smin_value;
u64 umin_val = src_reg->umin_value;
if (src_known && dst_known) {
@@ -13433,18 +13588,16 @@ static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
*/
dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
- if (dst_reg->smin_value < 0 || smin_val < 0) {
- /* Lose signed bounds when ORing negative numbers,
- * ain't nobody got time for that.
- */
- dst_reg->smin_value = S64_MIN;
- dst_reg->smax_value = S64_MAX;
- } else {
- /* ORing two positives gives a positive, so safe to
- * cast result into s64.
- */
+
+ /* Safe to set s64 bounds by casting u64 result into s64 when u64
+ * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
+ */
+ if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
dst_reg->smin_value = dst_reg->umin_value;
dst_reg->smax_value = dst_reg->umax_value;
+ } else {
+ dst_reg->smin_value = S64_MIN;
+ dst_reg->smax_value = S64_MAX;
}
/* We may learn something more from the var_off */
__update_reg_bounds(dst_reg);
@@ -13456,7 +13609,6 @@ static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
bool src_known = tnum_subreg_is_const(src_reg->var_off);
bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
struct tnum var32_off = tnum_subreg(dst_reg->var_off);
- s32 smin_val = src_reg->s32_min_value;
if (src_known && dst_known) {
__mark_reg32_known(dst_reg, var32_off.value);
@@ -13467,10 +13619,10 @@ static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
dst_reg->u32_min_value = var32_off.value;
dst_reg->u32_max_value = var32_off.value | var32_off.mask;
- if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
- /* XORing two positive sign numbers gives a positive,
- * so safe to cast u32 result into s32.
- */
+ /* Safe to set s32 bounds by casting u32 result into s32 when u32
+ * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
+ */
+ if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
dst_reg->s32_min_value = dst_reg->u32_min_value;
dst_reg->s32_max_value = dst_reg->u32_max_value;
} else {
@@ -13484,7 +13636,6 @@ static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
{
bool src_known = tnum_is_const(src_reg->var_off);
bool dst_known = tnum_is_const(dst_reg->var_off);
- s64 smin_val = src_reg->smin_value;
if (src_known && dst_known) {
/* dst_reg->var_off.value has been updated earlier */
@@ -13496,10 +13647,10 @@ static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
dst_reg->umin_value = dst_reg->var_off.value;
dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
- if (dst_reg->smin_value >= 0 && smin_val >= 0) {
- /* XORing two positive sign numbers gives a positive,
- * so safe to cast u64 result into s64.
- */
+ /* Safe to set s64 bounds by casting u64 result into s64 when u64
+ * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
+ */
+ if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
dst_reg->smin_value = dst_reg->umin_value;
dst_reg->smax_value = dst_reg->umax_value;
} else {
@@ -14564,7 +14715,19 @@ static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state
struct tnum t;
u64 val;
-again:
+ /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */
+ switch (opcode) {
+ case BPF_JGE:
+ case BPF_JGT:
+ case BPF_JSGE:
+ case BPF_JSGT:
+ opcode = flip_opcode(opcode);
+ swap(reg1, reg2);
+ break;
+ default:
+ break;
+ }
+
switch (opcode) {
case BPF_JEQ:
if (is_jmp32) {
@@ -14707,14 +14870,6 @@ again:
reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
}
break;
- case BPF_JGE:
- case BPF_JGT:
- case BPF_JSGE:
- case BPF_JSGT:
- /* just reuse LE/LT logic above */
- opcode = flip_opcode(opcode);
- swap(reg1, reg2);
- goto again;
default:
return;
}
@@ -14722,7 +14877,7 @@ again:
/* Adjusts the register min/max values in the case that the dst_reg and
* src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
- * check, in which case we havea fake SCALAR_VALUE representing insn->imm).
+ * check, in which case we have a fake SCALAR_VALUE representing insn->imm).
* Technically we can do similar adjustments for pointers to the same object,
* but we don't support that right now.
*/
@@ -15337,6 +15492,11 @@ static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
return -EINVAL;
}
+ if (env->cur_state->active_preempt_lock) {
+ verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_preempt_disable-ed region\n");
+ return -EINVAL;
+ }
+
if (regs[ctx_reg].type != PTR_TO_CTX) {
verbose(env,
"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
@@ -16904,6 +17064,12 @@ static bool states_equal(struct bpf_verifier_env *env,
if (old->active_rcu_lock != cur->active_rcu_lock)
return false;
+ if (old->active_preempt_lock != cur->active_preempt_lock)
+ return false;
+
+ if (old->in_sleepable != cur->in_sleepable)
+ return false;
+
/* for states to be equal callsites have to be the same
* and all frame states need to be equivalent
*/
@@ -17360,7 +17526,7 @@ hit:
err = propagate_liveness(env, &sl->state, cur);
/* if previous state reached the exit with precision and
- * current state is equivalent to it (except precsion marks)
+ * current state is equivalent to it (except precision marks)
* the precision needs to be propagated back in
* the current state.
*/
@@ -17538,7 +17704,7 @@ static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
}
static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
- bool allow_trust_missmatch)
+ bool allow_trust_mismatch)
{
enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
@@ -17556,7 +17722,7 @@ static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type typ
* src_reg == stack|map in some other branch.
* Reject it.
*/
- if (allow_trust_missmatch &&
+ if (allow_trust_mismatch &&
base_type(type) == PTR_TO_BTF_ID &&
base_type(*prev_type) == PTR_TO_BTF_ID) {
/*
@@ -17852,6 +18018,13 @@ process_bpf_exit_full:
return -EINVAL;
}
+ if (env->cur_state->active_preempt_lock && !env->cur_state->curframe) {
+ verbose(env, "%d bpf_preempt_enable%s missing\n",
+ env->cur_state->active_preempt_lock,
+ env->cur_state->active_preempt_lock == 1 ? " is" : "(s) are");
+ return -EINVAL;
+ }
+
/* We must do check_reference_leak here before
* prepare_func_exit to handle the case when
* state->curframe > 0, it may be a callback
@@ -18149,6 +18322,13 @@ static int check_map_prog_compatibility(struct bpf_verifier_env *env,
}
}
+ if (btf_record_has_field(map->record, BPF_WORKQUEUE)) {
+ if (is_tracing_prog_type(prog_type)) {
+ verbose(env, "tracing progs cannot use bpf_wq yet\n");
+ return -EINVAL;
+ }
+ }
+
if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
!bpf_offload_prog_map_match(prog, map)) {
verbose(env, "offload device mismatch between prog and map\n");
@@ -18343,6 +18523,8 @@ static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
}
if (env->used_map_cnt >= MAX_USED_MAPS) {
+ verbose(env, "The total number of maps per program has reached the limit of %u\n",
+ MAX_USED_MAPS);
fdput(f);
return -E2BIG;
}
@@ -18957,6 +19139,12 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env)
insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
type = BPF_WRITE;
+ } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) ||
+ insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) &&
+ env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) {
+ insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code);
+ env->prog->aux->num_exentries++;
+ continue;
} else {
continue;
}
@@ -19143,12 +19331,19 @@ static int jit_subprogs(struct bpf_verifier_env *env)
env->insn_aux_data[i].call_imm = insn->imm;
/* point imm to __bpf_call_base+1 from JITs point of view */
insn->imm = 1;
- if (bpf_pseudo_func(insn))
+ if (bpf_pseudo_func(insn)) {
+#if defined(MODULES_VADDR)
+ u64 addr = MODULES_VADDR;
+#else
+ u64 addr = VMALLOC_START;
+#endif
/* jit (e.g. x86_64) may emit fewer instructions
* if it learns a u32 imm is the same as a u64 imm.
- * Force a non zero here.
+ * Set close enough to possible prog address.
*/
- insn[1].imm = 1;
+ insn[0].imm = (u32)addr;
+ insn[1].imm = addr >> 32;
+ }
}
err = bpf_prog_alloc_jited_linfo(prog);
@@ -19180,6 +19375,7 @@ static int jit_subprogs(struct bpf_verifier_env *env)
if (bpf_prog_calc_tag(func[i]))
goto out_free;
func[i]->is_func = 1;
+ func[i]->sleepable = prog->sleepable;
func[i]->aux->func_idx = i;
/* Below members will be freed only at prog->aux */
func[i]->aux->btf = prog->aux->btf;
@@ -19220,6 +19416,9 @@ static int jit_subprogs(struct bpf_verifier_env *env)
BPF_CLASS(insn->code) == BPF_ST) &&
BPF_MODE(insn->code) == BPF_PROBE_MEM32)
num_exentries++;
+ if (BPF_CLASS(insn->code) == BPF_STX &&
+ BPF_MODE(insn->code) == BPF_PROBE_ATOMIC)
+ num_exentries++;
}
func[i]->aux->num_exentries = num_exentries;
func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
@@ -19284,10 +19483,14 @@ static int jit_subprogs(struct bpf_verifier_env *env)
* bpf_prog_load will add the kallsyms for the main program.
*/
for (i = 1; i < env->subprog_cnt; i++) {
- bpf_prog_lock_ro(func[i]);
- bpf_prog_kallsyms_add(func[i]);
+ err = bpf_prog_lock_ro(func[i]);
+ if (err)
+ goto out_free;
}
+ for (i = 1; i < env->subprog_cnt; i++)
+ bpf_prog_kallsyms_add(func[i]);
+
/* Last step: make now unused interpreter insns from main
* prog consistent for later dump requests, so they can
* later look the same as if they were interpreted only.
@@ -19547,6 +19750,13 @@ static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
*cnt = 1;
+ } else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) {
+ struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) };
+
+ insn_buf[0] = ld_addrs[0];
+ insn_buf[1] = ld_addrs[1];
+ insn_buf[2] = *insn;
+ *cnt = 3;
}
return 0;
}
@@ -19852,7 +20062,7 @@ static int do_misc_fixups(struct bpf_verifier_env *env)
!bpf_map_ptr_unpriv(aux)) {
struct bpf_jit_poke_descriptor desc = {
.reason = BPF_POKE_REASON_TAIL_CALL,
- .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
+ .tail_call.map = aux->map_ptr_state.map_ptr,
.tail_call.key = bpf_map_key_immediate(aux),
.insn_idx = i + delta,
};
@@ -19881,7 +20091,7 @@ static int do_misc_fixups(struct bpf_verifier_env *env)
return -EINVAL;
}
- map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
+ map_ptr = aux->map_ptr_state.map_ptr;
insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
map_ptr->max_entries, 2);
insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
@@ -19989,7 +20199,7 @@ static int do_misc_fixups(struct bpf_verifier_env *env)
if (bpf_map_ptr_poisoned(aux))
goto patch_call_imm;
- map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
+ map_ptr = aux->map_ptr_state.map_ptr;
ops = map_ptr->ops;
if (insn->imm == BPF_FUNC_map_lookup_elem &&
ops->map_gen_lookup) {
@@ -20095,6 +20305,30 @@ patch_map_ops_generic:
goto next_insn;
}
+#ifdef CONFIG_X86_64
+ /* Implement bpf_get_smp_processor_id() inline. */
+ if (insn->imm == BPF_FUNC_get_smp_processor_id &&
+ prog->jit_requested && bpf_jit_supports_percpu_insn()) {
+ /* BPF_FUNC_get_smp_processor_id inlining is an
+ * optimization, so if pcpu_hot.cpu_number is ever
+ * changed in some incompatible and hard to support
+ * way, it's fine to back out this inlining logic
+ */
+ insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number);
+ insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
+ insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0);
+ cnt = 3;
+
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ delta += cnt - 1;
+ env->prog = prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ goto next_insn;
+ }
+#endif
/* Implement bpf_get_func_arg inline. */
if (prog_type == BPF_PROG_TYPE_TRACING &&
insn->imm == BPF_FUNC_get_func_arg) {
@@ -20178,6 +20412,62 @@ patch_map_ops_generic:
goto next_insn;
}
+ /* Implement bpf_get_branch_snapshot inline. */
+ if (IS_ENABLED(CONFIG_PERF_EVENTS) &&
+ prog->jit_requested && BITS_PER_LONG == 64 &&
+ insn->imm == BPF_FUNC_get_branch_snapshot) {
+ /* We are dealing with the following func protos:
+ * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags);
+ * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt);
+ */
+ const u32 br_entry_size = sizeof(struct perf_branch_entry);
+
+ /* struct perf_branch_entry is part of UAPI and is
+ * used as an array element, so extremely unlikely to
+ * ever grow or shrink
+ */
+ BUILD_BUG_ON(br_entry_size != 24);
+
+ /* if (unlikely(flags)) return -EINVAL */
+ insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7);
+
+ /* Transform size (bytes) into number of entries (cnt = size / 24).
+ * But to avoid expensive division instruction, we implement
+ * divide-by-3 through multiplication, followed by further
+ * division by 8 through 3-bit right shift.
+ * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr.,
+ * p. 227, chapter "Unsigned Division by 3" for details and proofs.
+ *
+ * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab.
+ */
+ insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab);
+ insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0);
+ insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36);
+
+ /* call perf_snapshot_branch_stack implementation */
+ insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack));
+ /* if (entry_cnt == 0) return -ENOENT */
+ insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4);
+ /* return entry_cnt * sizeof(struct perf_branch_entry) */
+ insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size);
+ insn_buf[7] = BPF_JMP_A(3);
+ /* return -EINVAL; */
+ insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
+ insn_buf[9] = BPF_JMP_A(1);
+ /* return -ENOENT; */
+ insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT);
+ cnt = 11;
+
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ delta += cnt - 1;
+ env->prog = prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ continue;
+ }
+
/* Implement bpf_kptr_xchg inline */
if (prog->jit_requested && BITS_PER_LONG == 64 &&
insn->imm == BPF_FUNC_kptr_xchg &&