diff options
Diffstat (limited to 'kernel/dma/direct.c')
-rw-r--r-- | kernel/dma/direct.c | 270 |
1 files changed, 171 insertions, 99 deletions
diff --git a/kernel/dma/direct.c b/kernel/dma/direct.c index db6ef07aec3b..06c111544f61 100644 --- a/kernel/dma/direct.c +++ b/kernel/dma/direct.c @@ -1,21 +1,22 @@ // SPDX-License-Identifier: GPL-2.0 /* - * Copyright (C) 2018 Christoph Hellwig. + * Copyright (C) 2018-2020 Christoph Hellwig. * * DMA operations that map physical memory directly without using an IOMMU. */ #include <linux/memblock.h> /* for max_pfn */ #include <linux/export.h> #include <linux/mm.h> -#include <linux/dma-direct.h> +#include <linux/dma-map-ops.h> #include <linux/scatterlist.h> -#include <linux/dma-contiguous.h> #include <linux/pfn.h> #include <linux/vmalloc.h> #include <linux/set_memory.h> +#include <linux/slab.h> +#include "direct.h" /* - * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it + * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use * it for entirely different regions. In that case the arch code needs to * override the variable below for dma-direct to work properly. */ @@ -25,7 +26,7 @@ static inline dma_addr_t phys_to_dma_direct(struct device *dev, phys_addr_t phys) { if (force_dma_unencrypted(dev)) - return __phys_to_dma(dev, phys); + return phys_to_dma_unencrypted(dev, phys); return phys_to_dma(dev, phys); } @@ -48,11 +49,6 @@ static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, { u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit); - if (force_dma_unencrypted(dev)) - *phys_limit = __dma_to_phys(dev, dma_limit); - else - *phys_limit = dma_to_phys(dev, dma_limit); - /* * Optimistically try the zone that the physical address mask falls * into first. If that returns memory that isn't actually addressable @@ -61,6 +57,7 @@ static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding * zones. */ + *phys_limit = dma_to_phys(dev, dma_limit); if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits)) return GFP_DMA; if (*phys_limit <= DMA_BIT_MASK(32)) @@ -70,45 +67,16 @@ static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) { - return phys_to_dma_direct(dev, phys) + size - 1 <= - min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); -} - -/* - * Decrypting memory is allowed to block, so if this device requires - * unencrypted memory it must come from atomic pools. - */ -static inline bool dma_should_alloc_from_pool(struct device *dev, gfp_t gfp, - unsigned long attrs) -{ - if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)) - return false; - if (gfpflags_allow_blocking(gfp)) - return false; - if (force_dma_unencrypted(dev)) - return true; - if (!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP)) - return false; - if (dma_alloc_need_uncached(dev, attrs)) - return true; - return false; -} + dma_addr_t dma_addr = phys_to_dma_direct(dev, phys); -static inline bool dma_should_free_from_pool(struct device *dev, - unsigned long attrs) -{ - if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL)) - return true; - if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && - !force_dma_unencrypted(dev)) + if (dma_addr == DMA_MAPPING_ERROR) return false; - if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP)) - return true; - return false; + return dma_addr + size - 1 <= + min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); } static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, - gfp_t gfp, unsigned long attrs) + gfp_t gfp) { int node = dev_to_node(dev); struct page *page = NULL; @@ -116,11 +84,6 @@ static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, WARN_ON_ONCE(!PAGE_ALIGNED(size)); - if (attrs & DMA_ATTR_NO_WARN) - gfp |= __GFP_NOWARN; - - /* we always manually zero the memory once we are done: */ - gfp &= ~__GFP_ZERO; gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, &phys_limit); page = dma_alloc_contiguous(dev, size, gfp); @@ -151,7 +114,23 @@ again: return page; } -void *dma_direct_alloc_pages(struct device *dev, size_t size, +static void *dma_direct_alloc_from_pool(struct device *dev, size_t size, + dma_addr_t *dma_handle, gfp_t gfp) +{ + struct page *page; + u64 phys_mask; + void *ret; + + gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, + &phys_mask); + page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok); + if (!page) + return NULL; + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); + return ret; +} + +void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { struct page *page; @@ -159,35 +138,44 @@ void *dma_direct_alloc_pages(struct device *dev, size_t size, int err; size = PAGE_ALIGN(size); - - if (dma_should_alloc_from_pool(dev, gfp, attrs)) { - u64 phys_mask; - - gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, - &phys_mask); - page = dma_alloc_from_pool(dev, size, &ret, gfp, - dma_coherent_ok); - if (!page) - return NULL; - goto done; - } - - page = __dma_direct_alloc_pages(dev, size, gfp, attrs); - if (!page) - return NULL; + if (attrs & DMA_ATTR_NO_WARN) + gfp |= __GFP_NOWARN; if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && !force_dma_unencrypted(dev)) { + page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO); + if (!page) + return NULL; /* remove any dirty cache lines on the kernel alias */ if (!PageHighMem(page)) arch_dma_prep_coherent(page, size); + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); /* return the page pointer as the opaque cookie */ - ret = page; - goto done; + return page; } + if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && + !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && + !dev_is_dma_coherent(dev)) + return arch_dma_alloc(dev, size, dma_handle, gfp, attrs); + + /* + * Remapping or decrypting memory may block. If either is required and + * we can't block, allocate the memory from the atomic pools. + */ + if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && + !gfpflags_allow_blocking(gfp) && + (force_dma_unencrypted(dev) || + (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev)))) + return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); + + /* we always manually zero the memory once we are done */ + page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO); + if (!page) + return NULL; + if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && - dma_alloc_need_uncached(dev, attrs)) || + !dev_is_dma_coherent(dev)) || (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) { /* remove any dirty cache lines on the kernel alias */ arch_dma_prep_coherent(page, size); @@ -230,17 +218,14 @@ void *dma_direct_alloc_pages(struct device *dev, size_t size, memset(ret, 0, size); if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && - dma_alloc_need_uncached(dev, attrs)) { + !dev_is_dma_coherent(dev)) { arch_dma_prep_coherent(page, size); ret = arch_dma_set_uncached(ret, size); if (IS_ERR(ret)) goto out_encrypt_pages; } done: - if (force_dma_unencrypted(dev)) - *dma_handle = __phys_to_dma(dev, page_to_phys(page)); - else - *dma_handle = phys_to_dma(dev, page_to_phys(page)); + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); return ret; out_encrypt_pages: @@ -256,16 +241,11 @@ out_free_pages: return NULL; } -void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr, - dma_addr_t dma_addr, unsigned long attrs) +void dma_direct_free(struct device *dev, size_t size, + void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) { unsigned int page_order = get_order(size); - /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ - if (dma_should_free_from_pool(dev, attrs) && - dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size))) - return; - if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && !force_dma_unencrypted(dev)) { /* cpu_addr is a struct page cookie, not a kernel address */ @@ -273,6 +253,18 @@ void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr, return; } + if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && + !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && + !dev_is_dma_coherent(dev)) { + arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); + return; + } + + /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ + if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && + dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size))) + return; + if (force_dma_unencrypted(dev)) set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); @@ -284,25 +276,60 @@ void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr, dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size); } -void *dma_direct_alloc(struct device *dev, size_t size, - dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) +struct page *dma_direct_alloc_pages(struct device *dev, size_t size, + dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) { - if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && - !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && - dma_alloc_need_uncached(dev, attrs)) - return arch_dma_alloc(dev, size, dma_handle, gfp, attrs); - return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs); + struct page *page; + void *ret; + + if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && + force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp)) + return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); + + page = __dma_direct_alloc_pages(dev, size, gfp); + if (!page) + return NULL; + if (PageHighMem(page)) { + /* + * Depending on the cma= arguments and per-arch setup + * dma_alloc_contiguous could return highmem pages. + * Without remapping there is no way to return them here, + * so log an error and fail. + */ + dev_info(dev, "Rejecting highmem page from CMA.\n"); + goto out_free_pages; + } + + ret = page_address(page); + if (force_dma_unencrypted(dev)) { + if (set_memory_decrypted((unsigned long)ret, + 1 << get_order(size))) + goto out_free_pages; + } + memset(ret, 0, size); + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); + return page; +out_free_pages: + dma_free_contiguous(dev, page, size); + return NULL; } -void dma_direct_free(struct device *dev, size_t size, - void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) +void dma_direct_free_pages(struct device *dev, size_t size, + struct page *page, dma_addr_t dma_addr, + enum dma_data_direction dir) { - if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && - !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && - dma_alloc_need_uncached(dev, attrs)) - arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); - else - dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs); + unsigned int page_order = get_order(size); + void *vaddr = page_address(page); + + /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ + if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && + dma_free_from_pool(dev, vaddr, size)) + return; + + if (force_dma_unencrypted(dev)) + set_memory_encrypted((unsigned long)vaddr, 1 << page_order); + + dma_free_contiguous(dev, page, size); } #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ @@ -345,6 +372,9 @@ void dma_direct_sync_sg_for_cpu(struct device *dev, if (unlikely(is_swiotlb_buffer(paddr))) swiotlb_tbl_sync_single(dev, paddr, sg->length, dir, SYNC_FOR_CPU); + + if (dir == DMA_FROM_DEVICE) + arch_dma_mark_clean(paddr, sg->length); } if (!dev_is_dma_coherent(dev)) @@ -453,13 +483,13 @@ int dma_direct_supported(struct device *dev, u64 mask) return 1; /* - * This check needs to be against the actual bit mask value, so - * use __phys_to_dma() here so that the SME encryption mask isn't + * This check needs to be against the actual bit mask value, so use + * phys_to_dma_unencrypted() here so that the SME encryption mask isn't * part of the check. */ if (IS_ENABLED(CONFIG_ZONE_DMA)) min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits)); - return mask >= __phys_to_dma(dev, min_mask); + return mask >= phys_to_dma_unencrypted(dev, min_mask); } size_t dma_direct_max_mapping_size(struct device *dev) @@ -476,3 +506,45 @@ bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr) return !dev_is_dma_coherent(dev) || is_swiotlb_buffer(dma_to_phys(dev, dma_addr)); } + +/** + * dma_direct_set_offset - Assign scalar offset for a single DMA range. + * @dev: device pointer; needed to "own" the alloced memory. + * @cpu_start: beginning of memory region covered by this offset. + * @dma_start: beginning of DMA/PCI region covered by this offset. + * @size: size of the region. + * + * This is for the simple case of a uniform offset which cannot + * be discovered by "dma-ranges". + * + * It returns -ENOMEM if out of memory, -EINVAL if a map + * already exists, 0 otherwise. + * + * Note: any call to this from a driver is a bug. The mapping needs + * to be described by the device tree or other firmware interfaces. + */ +int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, + dma_addr_t dma_start, u64 size) +{ + struct bus_dma_region *map; + u64 offset = (u64)cpu_start - (u64)dma_start; + + if (dev->dma_range_map) { + dev_err(dev, "attempt to add DMA range to existing map\n"); + return -EINVAL; + } + + if (!offset) + return 0; + + map = kcalloc(2, sizeof(*map), GFP_KERNEL); + if (!map) + return -ENOMEM; + map[0].cpu_start = cpu_start; + map[0].dma_start = dma_start; + map[0].offset = offset; + map[0].size = size; + dev->dma_range_map = map; + return 0; +} +EXPORT_SYMBOL_GPL(dma_direct_set_offset); |