diff options
Diffstat (limited to 'kernel/rcu')
-rw-r--r-- | kernel/rcu/tree_plugin.h | 33 |
1 files changed, 16 insertions, 17 deletions
diff --git a/kernel/rcu/tree_plugin.h b/kernel/rcu/tree_plugin.h index b241c4b20549..f0019c2a2cbc 100644 --- a/kernel/rcu/tree_plugin.h +++ b/kernel/rcu/tree_plugin.h @@ -1857,22 +1857,24 @@ static void zero_cpu_stall_ticks(struct rcu_data *rdp) /* * Offload callback processing from the boot-time-specified set of CPUs - * specified by rcu_nocb_mask. For each CPU in the set, there is a - * kthread created that pulls the callbacks from the corresponding CPU, - * waits for a grace period to elapse, and invokes the callbacks. - * The no-CBs CPUs do a wake_up() on their kthread when they insert - * a callback into any empty list, unless the rcu_nocb_poll boot parameter - * has been specified, in which case each kthread actively polls its - * CPU. (Which isn't so great for energy efficiency, but which does - * reduce RCU's overhead on that CPU.) + * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads + * created that pull the callbacks from the corresponding CPU, wait for + * a grace period to elapse, and invoke the callbacks. These kthreads + * are organized into leaders, which manage incoming callbacks, wait for + * grace periods, and awaken followers, and the followers, which only + * invoke callbacks. Each leader is its own follower. The no-CBs CPUs + * do a wake_up() on their kthread when they insert a callback into any + * empty list, unless the rcu_nocb_poll boot parameter has been specified, + * in which case each kthread actively polls its CPU. (Which isn't so great + * for energy efficiency, but which does reduce RCU's overhead on that CPU.) * * This is intended to be used in conjunction with Frederic Weisbecker's * adaptive-idle work, which would seriously reduce OS jitter on CPUs * running CPU-bound user-mode computations. * - * Offloading of callback processing could also in theory be used as - * an energy-efficiency measure because CPUs with no RCU callbacks - * queued are more aggressive about entering dyntick-idle mode. + * Offloading of callbacks can also be used as an energy-efficiency + * measure because CPUs with no RCU callbacks queued are more aggressive + * about entering dyntick-idle mode. */ @@ -1976,10 +1978,7 @@ static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype, raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); } -/* - * Does the specified CPU need an RCU callback for this invocation - * of rcu_barrier()? - */ +/* Does rcu_barrier need to queue an RCU callback on the specified CPU? */ static bool rcu_nocb_cpu_needs_barrier(int cpu) { struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); @@ -1995,8 +1994,8 @@ static bool rcu_nocb_cpu_needs_barrier(int cpu) * callbacks would be posted. In the worst case, the first * barrier in rcu_barrier() suffices (but the caller cannot * necessarily rely on this, not a substitute for the caller - * getting the concurrency design right!). There must also be - * a barrier between the following load an posting of a callback + * getting the concurrency design right!). There must also be a + * barrier between the following load and posting of a callback * (if a callback is in fact needed). This is associated with an * atomic_inc() in the caller. */ |