diff options
Diffstat (limited to 'kernel/sched.c')
-rw-r--r-- | kernel/sched.c | 1380 |
1 files changed, 1016 insertions, 364 deletions
diff --git a/kernel/sched.c b/kernel/sched.c index 3df84ea6aba9..524285e46fa7 100644 --- a/kernel/sched.c +++ b/kernel/sched.c @@ -22,6 +22,8 @@ * by Peter Williams * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri + * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, + * Thomas Gleixner, Mike Kravetz */ #include <linux/mm.h> @@ -63,6 +65,7 @@ #include <linux/reciprocal_div.h> #include <linux/unistd.h> #include <linux/pagemap.h> +#include <linux/hrtimer.h> #include <asm/tlb.h> #include <asm/irq_regs.h> @@ -96,10 +99,9 @@ unsigned long long __attribute__((weak)) sched_clock(void) #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) /* - * Some helpers for converting nanosecond timing to jiffy resolution + * Helpers for converting nanosecond timing to jiffy resolution */ #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) -#define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ)) #define NICE_0_LOAD SCHED_LOAD_SCALE #define NICE_0_SHIFT SCHED_LOAD_SHIFT @@ -159,6 +161,8 @@ struct rt_prio_array { struct cfs_rq; +static LIST_HEAD(task_groups); + /* task group related information */ struct task_group { #ifdef CONFIG_FAIR_CGROUP_SCHED @@ -168,10 +172,50 @@ struct task_group { struct sched_entity **se; /* runqueue "owned" by this group on each cpu */ struct cfs_rq **cfs_rq; + + struct sched_rt_entity **rt_se; + struct rt_rq **rt_rq; + + unsigned int rt_ratio; + + /* + * shares assigned to a task group governs how much of cpu bandwidth + * is allocated to the group. The more shares a group has, the more is + * the cpu bandwidth allocated to it. + * + * For ex, lets say that there are three task groups, A, B and C which + * have been assigned shares 1000, 2000 and 3000 respectively. Then, + * cpu bandwidth allocated by the scheduler to task groups A, B and C + * should be: + * + * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66% + * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33% + * Bw(C) = 3000/(1000+2000+3000) * 100 = 50% + * + * The weight assigned to a task group's schedulable entities on every + * cpu (task_group.se[a_cpu]->load.weight) is derived from the task + * group's shares. For ex: lets say that task group A has been + * assigned shares of 1000 and there are two CPUs in a system. Then, + * + * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000; + * + * Note: It's not necessary that each of a task's group schedulable + * entity have the same weight on all CPUs. If the group + * has 2 of its tasks on CPU0 and 1 task on CPU1, then a + * better distribution of weight could be: + * + * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333 + * tg_A->se[1]->load.weight = 1/2 * 2000 = 667 + * + * rebalance_shares() is responsible for distributing the shares of a + * task groups like this among the group's schedulable entities across + * cpus. + * + */ unsigned long shares; - /* spinlock to serialize modification to shares */ - spinlock_t lock; + struct rcu_head rcu; + struct list_head list; }; /* Default task group's sched entity on each cpu */ @@ -179,24 +223,51 @@ static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); /* Default task group's cfs_rq on each cpu */ static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; +static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); +static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; + static struct sched_entity *init_sched_entity_p[NR_CPUS]; static struct cfs_rq *init_cfs_rq_p[NR_CPUS]; +static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS]; +static struct rt_rq *init_rt_rq_p[NR_CPUS]; + +/* task_group_mutex serializes add/remove of task groups and also changes to + * a task group's cpu shares. + */ +static DEFINE_MUTEX(task_group_mutex); + +/* doms_cur_mutex serializes access to doms_cur[] array */ +static DEFINE_MUTEX(doms_cur_mutex); + +#ifdef CONFIG_SMP +/* kernel thread that runs rebalance_shares() periodically */ +static struct task_struct *lb_monitor_task; +static int load_balance_monitor(void *unused); +#endif + +static void set_se_shares(struct sched_entity *se, unsigned long shares); + /* Default task group. * Every task in system belong to this group at bootup. */ struct task_group init_task_group = { - .se = init_sched_entity_p, + .se = init_sched_entity_p, .cfs_rq = init_cfs_rq_p, + + .rt_se = init_sched_rt_entity_p, + .rt_rq = init_rt_rq_p, }; #ifdef CONFIG_FAIR_USER_SCHED -# define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD +# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) #else -# define INIT_TASK_GRP_LOAD NICE_0_LOAD +# define INIT_TASK_GROUP_LOAD NICE_0_LOAD #endif -static int init_task_group_load = INIT_TASK_GRP_LOAD; +#define MIN_GROUP_SHARES 2 + +static int init_task_group_load = INIT_TASK_GROUP_LOAD; /* return group to which a task belongs */ static inline struct task_group *task_group(struct task_struct *p) @@ -215,15 +286,42 @@ static inline struct task_group *task_group(struct task_struct *p) } /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ -static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) +static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; p->se.parent = task_group(p)->se[cpu]; + + p->rt.rt_rq = task_group(p)->rt_rq[cpu]; + p->rt.parent = task_group(p)->rt_se[cpu]; +} + +static inline void lock_task_group_list(void) +{ + mutex_lock(&task_group_mutex); +} + +static inline void unlock_task_group_list(void) +{ + mutex_unlock(&task_group_mutex); +} + +static inline void lock_doms_cur(void) +{ + mutex_lock(&doms_cur_mutex); +} + +static inline void unlock_doms_cur(void) +{ + mutex_unlock(&doms_cur_mutex); } #else -static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { } +static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } +static inline void lock_task_group_list(void) { } +static inline void unlock_task_group_list(void) { } +static inline void lock_doms_cur(void) { } +static inline void unlock_doms_cur(void) { } #endif /* CONFIG_FAIR_GROUP_SCHED */ @@ -264,10 +362,56 @@ struct cfs_rq { /* Real-Time classes' related field in a runqueue: */ struct rt_rq { struct rt_prio_array active; - int rt_load_balance_idx; - struct list_head *rt_load_balance_head, *rt_load_balance_curr; + unsigned long rt_nr_running; +#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED + int highest_prio; /* highest queued rt task prio */ +#endif +#ifdef CONFIG_SMP + unsigned long rt_nr_migratory; + int overloaded; +#endif + int rt_throttled; + u64 rt_time; + +#ifdef CONFIG_FAIR_GROUP_SCHED + struct rq *rq; + struct list_head leaf_rt_rq_list; + struct task_group *tg; + struct sched_rt_entity *rt_se; +#endif }; +#ifdef CONFIG_SMP + +/* + * We add the notion of a root-domain which will be used to define per-domain + * variables. Each exclusive cpuset essentially defines an island domain by + * fully partitioning the member cpus from any other cpuset. Whenever a new + * exclusive cpuset is created, we also create and attach a new root-domain + * object. + * + */ +struct root_domain { + atomic_t refcount; + cpumask_t span; + cpumask_t online; + + /* + * The "RT overload" flag: it gets set if a CPU has more than + * one runnable RT task. + */ + cpumask_t rto_mask; + atomic_t rto_count; +}; + +/* + * By default the system creates a single root-domain with all cpus as + * members (mimicking the global state we have today). + */ +static struct root_domain def_root_domain; + +#endif + /* * This is the main, per-CPU runqueue data structure. * @@ -296,11 +440,15 @@ struct rq { u64 nr_switches; struct cfs_rq cfs; + struct rt_rq rt; + u64 rt_period_expire; + int rt_throttled; + #ifdef CONFIG_FAIR_GROUP_SCHED /* list of leaf cfs_rq on this cpu: */ struct list_head leaf_cfs_rq_list; + struct list_head leaf_rt_rq_list; #endif - struct rt_rq rt; /* * This is part of a global counter where only the total sum @@ -317,7 +465,7 @@ struct rq { u64 clock, prev_clock_raw; s64 clock_max_delta; - unsigned int clock_warps, clock_overflows; + unsigned int clock_warps, clock_overflows, clock_underflows; u64 idle_clock; unsigned int clock_deep_idle_events; u64 tick_timestamp; @@ -325,6 +473,7 @@ struct rq { atomic_t nr_iowait; #ifdef CONFIG_SMP + struct root_domain *rd; struct sched_domain *sd; /* For active balancing */ @@ -337,6 +486,12 @@ struct rq { struct list_head migration_queue; #endif +#ifdef CONFIG_SCHED_HRTICK + unsigned long hrtick_flags; + ktime_t hrtick_expire; + struct hrtimer hrtick_timer; +#endif + #ifdef CONFIG_SCHEDSTATS /* latency stats */ struct sched_info rq_sched_info; @@ -363,7 +518,6 @@ struct rq { }; static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); -static DEFINE_MUTEX(sched_hotcpu_mutex); static inline void check_preempt_curr(struct rq *rq, struct task_struct *p) { @@ -441,6 +595,23 @@ static void update_rq_clock(struct rq *rq) #define task_rq(p) cpu_rq(task_cpu(p)) #define cpu_curr(cpu) (cpu_rq(cpu)->curr) +unsigned long rt_needs_cpu(int cpu) +{ + struct rq *rq = cpu_rq(cpu); + u64 delta; + + if (!rq->rt_throttled) + return 0; + + if (rq->clock > rq->rt_period_expire) + return 1; + + delta = rq->rt_period_expire - rq->clock; + do_div(delta, NSEC_PER_SEC / HZ); + + return (unsigned long)delta; +} + /* * Tunables that become constants when CONFIG_SCHED_DEBUG is off: */ @@ -459,6 +630,8 @@ enum { SCHED_FEAT_START_DEBIT = 4, SCHED_FEAT_TREE_AVG = 8, SCHED_FEAT_APPROX_AVG = 16, + SCHED_FEAT_HRTICK = 32, + SCHED_FEAT_DOUBLE_TICK = 64, }; const_debug unsigned int sysctl_sched_features = @@ -466,7 +639,9 @@ const_debug unsigned int sysctl_sched_features = SCHED_FEAT_WAKEUP_PREEMPT * 1 | SCHED_FEAT_START_DEBIT * 1 | SCHED_FEAT_TREE_AVG * 0 | - SCHED_FEAT_APPROX_AVG * 0; + SCHED_FEAT_APPROX_AVG * 0 | + SCHED_FEAT_HRTICK * 1 | + SCHED_FEAT_DOUBLE_TICK * 0; #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x) @@ -477,6 +652,21 @@ const_debug unsigned int sysctl_sched_features = const_debug unsigned int sysctl_sched_nr_migrate = 32; /* + * period over which we measure -rt task cpu usage in ms. + * default: 1s + */ +const_debug unsigned int sysctl_sched_rt_period = 1000; + +#define SCHED_RT_FRAC_SHIFT 16 +#define SCHED_RT_FRAC (1UL << SCHED_RT_FRAC_SHIFT) + +/* + * ratio of time -rt tasks may consume. + * default: 95% + */ +const_debug unsigned int sysctl_sched_rt_ratio = 62259; + +/* * For kernel-internal use: high-speed (but slightly incorrect) per-cpu * clock constructed from sched_clock(): */ @@ -668,7 +858,6 @@ void sched_clock_idle_wakeup_event(u64 delta_ns) struct rq *rq = cpu_rq(smp_processor_id()); u64 now = sched_clock(); - touch_softlockup_watchdog(); rq->idle_clock += delta_ns; /* * Override the previous timestamp and ignore all @@ -680,9 +869,177 @@ void sched_clock_idle_wakeup_event(u64 delta_ns) rq->prev_clock_raw = now; rq->clock += delta_ns; spin_unlock(&rq->lock); + touch_softlockup_watchdog(); } EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); +static void __resched_task(struct task_struct *p, int tif_bit); + +static inline void resched_task(struct task_struct *p) +{ + __resched_task(p, TIF_NEED_RESCHED); +} + +#ifdef CONFIG_SCHED_HRTICK +/* + * Use HR-timers to deliver accurate preemption points. + * + * Its all a bit involved since we cannot program an hrt while holding the + * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a + * reschedule event. + * + * When we get rescheduled we reprogram the hrtick_timer outside of the + * rq->lock. + */ +static inline void resched_hrt(struct task_struct *p) +{ + __resched_task(p, TIF_HRTICK_RESCHED); +} + +static inline void resched_rq(struct rq *rq) +{ + unsigned long flags; + + spin_lock_irqsave(&rq->lock, flags); + resched_task(rq->curr); + spin_unlock_irqrestore(&rq->lock, flags); +} + +enum { + HRTICK_SET, /* re-programm hrtick_timer */ + HRTICK_RESET, /* not a new slice */ +}; + +/* + * Use hrtick when: + * - enabled by features + * - hrtimer is actually high res + */ +static inline int hrtick_enabled(struct rq *rq) +{ + if (!sched_feat(HRTICK)) + return 0; + return hrtimer_is_hres_active(&rq->hrtick_timer); +} + +/* + * Called to set the hrtick timer state. + * + * called with rq->lock held and irqs disabled + */ +static void hrtick_start(struct rq *rq, u64 delay, int reset) +{ + assert_spin_locked(&rq->lock); + + /* + * preempt at: now + delay + */ + rq->hrtick_expire = + ktime_add_ns(rq->hrtick_timer.base->get_time(), delay); + /* + * indicate we need to program the timer + */ + __set_bit(HRTICK_SET, &rq->hrtick_flags); + if (reset) + __set_bit(HRTICK_RESET, &rq->hrtick_flags); + + /* + * New slices are called from the schedule path and don't need a + * forced reschedule. + */ + if (reset) + resched_hrt(rq->curr); +} + +static void hrtick_clear(struct rq *rq) +{ + if (hrtimer_active(&rq->hrtick_timer)) + hrtimer_cancel(&rq->hrtick_timer); +} + +/* + * Update the timer from the possible pending state. + */ +static void hrtick_set(struct rq *rq) +{ + ktime_t time; + int set, reset; + unsigned long flags; + + WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); + + spin_lock_irqsave(&rq->lock, flags); + set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags); + reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags); + time = rq->hrtick_expire; + clear_thread_flag(TIF_HRTICK_RESCHED); + spin_unlock_irqrestore(&rq->lock, flags); + + if (set) { + hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS); + if (reset && !hrtimer_active(&rq->hrtick_timer)) + resched_rq(rq); + } else + hrtick_clear(rq); +} + +/* + * High-resolution timer tick. + * Runs from hardirq context with interrupts disabled. + */ +static enum hrtimer_restart hrtick(struct hrtimer *timer) +{ + struct rq *rq = container_of(timer, struct rq, hrtick_timer); + + WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); + + spin_lock(&rq->lock); + __update_rq_clock(rq); + rq->curr->sched_class->task_tick(rq, rq->curr, 1); + spin_unlock(&rq->lock); + + return HRTIMER_NORESTART; +} + +static inline void init_rq_hrtick(struct rq *rq) +{ + rq->hrtick_flags = 0; + hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); + rq->hrtick_timer.function = hrtick; + rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; +} + +void hrtick_resched(void) +{ + struct rq *rq; + unsigned long flags; + + if (!test_thread_flag(TIF_HRTICK_RESCHED)) + return; + + local_irq_save(flags); + rq = cpu_rq(smp_processor_id()); + hrtick_set(rq); + local_irq_restore(flags); +} +#else +static inline void hrtick_clear(struct rq *rq) +{ +} + +static inline void hrtick_set(struct rq *rq) +{ +} + +static inline void init_rq_hrtick(struct rq *rq) +{ +} + +void hrtick_resched(void) +{ +} +#endif + /* * resched_task - mark a task 'to be rescheduled now'. * @@ -696,16 +1053,16 @@ EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) #endif -static void resched_task(struct task_struct *p) +static void __resched_task(struct task_struct *p, int tif_bit) { int cpu; assert_spin_locked(&task_rq(p)->lock); - if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) + if (unlikely(test_tsk_thread_flag(p, tif_bit))) return; - set_tsk_thread_flag(p, TIF_NEED_RESCHED); + set_tsk_thread_flag(p, tif_bit); cpu = task_cpu(p); if (cpu == smp_processor_id()) @@ -728,10 +1085,10 @@ static void resched_cpu(int cpu) spin_unlock_irqrestore(&rq->lock, flags); } #else -static inline void resched_task(struct task_struct *p) +static void __resched_task(struct task_struct *p, int tif_bit) { assert_spin_locked(&task_rq(p)->lock); - set_tsk_need_resched(p); + set_tsk_thread_flag(p, tif_bit); } #endif @@ -871,6 +1228,23 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime); static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} #endif +static inline void inc_cpu_load(struct rq *rq, unsigned long load) +{ + update_load_add(&rq->load, load); +} + +static inline void dec_cpu_load(struct rq *rq, unsigned long load) +{ + update_load_sub(&rq->load, load); +} + +#ifdef CONFIG_SMP +static unsigned long source_load(int cpu, int type); +static unsigned long target_load(int cpu, int type); +static unsigned long cpu_avg_load_per_task(int cpu); +static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); +#endif /* CONFIG_SMP */ + #include "sched_stats.h" #include "sched_idletask.c" #include "sched_fair.c" @@ -881,41 +1255,14 @@ static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} #define sched_class_highest (&rt_sched_class) -/* - * Update delta_exec, delta_fair fields for rq. - * - * delta_fair clock advances at a rate inversely proportional to - * total load (rq->load.weight) on the runqueue, while - * delta_exec advances at the same rate as wall-clock (provided - * cpu is not idle). - * - * delta_exec / delta_fair is a measure of the (smoothened) load on this - * runqueue over any given interval. This (smoothened) load is used - * during load balance. - * - * This function is called /before/ updating rq->load - * and when switching tasks. - */ -static inline void inc_load(struct rq *rq, const struct task_struct *p) -{ - update_load_add(&rq->load, p->se.load.weight); -} - -static inline void dec_load(struct rq *rq, const struct task_struct *p) -{ - update_load_sub(&rq->load, p->se.load.weight); -} - static void inc_nr_running(struct task_struct *p, struct rq *rq) { rq->nr_running++; - inc_load(rq, p); } static void dec_nr_running(struct task_struct *p, struct rq *rq) { rq->nr_running--; - dec_load(rq, p); } static void set_load_weight(struct task_struct *p) @@ -1039,7 +1386,7 @@ unsigned long weighted_cpuload(const int cpu) static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) { - set_task_cfs_rq(p, cpu); + set_task_rq(p, cpu); #ifdef CONFIG_SMP /* * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be @@ -1051,12 +1398,24 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) #endif } +static inline void check_class_changed(struct rq *rq, struct task_struct *p, + const struct sched_class *prev_class, + int oldprio, int running) +{ + if (prev_class != p->sched_class) { + if (prev_class->switched_from) + prev_class->switched_from(rq, p, running); + p->sched_class->switched_to(rq, p, running); + } else + p->sched_class->prio_changed(rq, p, oldprio, running); +} + #ifdef CONFIG_SMP /* * Is this task likely cache-hot: */ -static inline int +static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) { s64 delta; @@ -1281,7 +1640,7 @@ static unsigned long target_load(int cpu, int type) /* * Return the average load per task on the cpu's run queue */ -static inline unsigned long cpu_avg_load_per_task(int cpu) +static unsigned long cpu_avg_load_per_task(int cpu) { struct rq *rq = cpu_rq(cpu); unsigned long total = weighted_cpuload(cpu); @@ -1438,58 +1797,6 @@ static int sched_balance_self(int cpu, int flag) #endif /* CONFIG_SMP */ -/* - * wake_idle() will wake a task on an idle cpu if task->cpu is - * not idle and an idle cpu is available. The span of cpus to - * search starts with cpus closest then further out as needed, - * so we always favor a closer, idle cpu. - * - * Returns the CPU we should wake onto. - */ -#if defined(ARCH_HAS_SCHED_WAKE_IDLE) -static int wake_idle(int cpu, struct task_struct *p) -{ - cpumask_t tmp; - struct sched_domain *sd; - int i; - - /* - * If it is idle, then it is the best cpu to run this task. - * - * This cpu is also the best, if it has more than one task already. - * Siblings must be also busy(in most cases) as they didn't already - * pickup the extra load from this cpu and hence we need not check - * sibling runqueue info. This will avoid the checks and cache miss - * penalities associated with that. - */ - if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1) - return cpu; - - for_each_domain(cpu, sd) { - if (sd->flags & SD_WAKE_IDLE) { - cpus_and(tmp, sd->span, p->cpus_allowed); - for_each_cpu_mask(i, tmp) { - if (idle_cpu(i)) { - if (i != task_cpu(p)) { - schedstat_inc(p, - se.nr_wakeups_idle); - } - return i; - } - } - } else { - break; - } - } - return cpu; -} -#else -static inline int wake_idle(int cpu, struct task_struct *p) -{ - return cpu; -} -#endif - /*** * try_to_wake_up - wake up a thread * @p: the to-be-woken-up thread @@ -1510,11 +1817,6 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) unsigned long flags; long old_state; struct rq *rq; -#ifdef CONFIG_SMP - struct sched_domain *sd, *this_sd = NULL; - unsigned long load, this_load; - int new_cpu; -#endif rq = task_rq_lock(p, &flags); old_state = p->state; @@ -1532,92 +1834,9 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) if (unlikely(task_running(rq, p))) goto out_activate; - new_cpu = cpu; - - schedstat_inc(rq, ttwu_count); - if (cpu == this_cpu) { - schedstat_inc(rq, ttwu_local); - goto out_set_cpu; - } - - for_each_domain(this_cpu, sd) { - if (cpu_isset(cpu, sd->span)) { - schedstat_inc(sd, ttwu_wake_remote); - this_sd = sd; - break; - } - } - - if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed))) - goto out_set_cpu; - - /* - * Check for affine wakeup and passive balancing possibilities. - */ - if (this_sd) { - int idx = this_sd->wake_idx; - unsigned int imbalance; - - imbalance = 100 + (this_sd->imbalance_pct - 100) / 2; - - load = source_load(cpu, idx); - this_load = target_load(this_cpu, idx); - - new_cpu = this_cpu; /* Wake to this CPU if we can */ - - if (this_sd->flags & SD_WAKE_AFFINE) { - unsigned long tl = this_load; - unsigned long tl_per_task; - - /* - * Attract cache-cold tasks on sync wakeups: - */ - if (sync && !task_hot(p, rq->clock, this_sd)) - goto out_set_cpu; - - schedstat_inc(p, se.nr_wakeups_affine_attempts); - tl_per_task = cpu_avg_load_per_task(this_cpu); - - /* - * If sync wakeup then subtract the (maximum possible) - * effect of the currently running task from the load - * of the current CPU: - */ - if (sync) - tl -= current->se.load.weight; - - if ((tl <= load && - tl + target_load(cpu, idx) <= tl_per_task) || - 100*(tl + p->se.load.weight) <= imbalance*load) { - /* - * This domain has SD_WAKE_AFFINE and - * p is cache cold in this domain, and - * there is no bad imbalance. - */ - schedstat_inc(this_sd, ttwu_move_affine); - schedstat_inc(p, se.nr_wakeups_affine); - goto out_set_cpu; - } - } - - /* - * Start passive balancing when half the imbalance_pct - * limit is reached. - */ - if (this_sd->flags & SD_WAKE_BALANCE) { - if (imbalance*this_load <= 100*load) { - schedstat_inc(this_sd, ttwu_move_balance); - schedstat_inc(p, se.nr_wakeups_passive); - goto out_set_cpu; - } - } - } - - new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */ -out_set_cpu: - new_cpu = wake_idle(new_cpu, p); - if (new_cpu != cpu) { - set_task_cpu(p, new_cpu); + cpu = p->sched_class->select_task_rq(p, sync); + if (cpu != orig_cpu) { + set_task_cpu(p, cpu); task_rq_unlock(rq, &flags); /* might preempt at this point */ rq = task_rq_lock(p, &flags); @@ -1631,6 +1850,21 @@ out_set_cpu: cpu = task_cpu(p); } +#ifdef CONFIG_SCHEDSTATS + schedstat_inc(rq, ttwu_count); + if (cpu == this_cpu) + schedstat_inc(rq, ttwu_local); + else { + struct sched_domain *sd; + for_each_domain(this_cpu, sd) { + if (cpu_isset(cpu, sd->span)) { + schedstat_inc(sd, ttwu_wake_remote); + break; + } + } + } +#endif + out_activate: #endif /* CONFIG_SMP */ schedstat_inc(p, se.nr_wakeups); @@ -1649,6 +1883,10 @@ out_activate: out_running: p->state = TASK_RUNNING; +#ifdef CONFIG_SMP + if (p->sched_class->task_wake_up) + p->sched_class->task_wake_up(rq, p); +#endif out: task_rq_unlock(rq, &flags); @@ -1691,7 +1929,7 @@ static void __sched_fork(struct task_struct *p) p->se.wait_max = 0; #endif - INIT_LIST_HEAD(&p->run_list); + INIT_LIST_HEAD(&p->rt.run_list); p->se.on_rq = 0; #ifdef CONFIG_PREEMPT_NOTIFIERS @@ -1771,6 +2009,10 @@ void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags) inc_nr_running(p, rq); } check_preempt_curr(rq, p); +#ifdef CONFIG_SMP + if (p->sched_class->task_wake_up) + p->sched_class->task_wake_up(rq, p); +#endif task_rq_unlock(rq, &flags); } @@ -1891,6 +2133,11 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) prev_state = prev->state; finish_arch_switch(prev); finish_lock_switch(rq, prev); +#ifdef CONFIG_SMP + if (current->sched_class->post_schedule) + current->sched_class->post_schedule(rq); +#endif + fire_sched_in_preempt_notifiers(current); if (mm) mmdrop(mm); @@ -2124,11 +2371,13 @@ static void double_rq_unlock(struct rq *rq1, struct rq *rq2) /* * double_lock_balance - lock the busiest runqueue, this_rq is locked already. */ -static void double_lock_balance(struct rq *this_rq, struct rq *busiest) +static int double_lock_balance(struct rq *this_rq, struct rq *busiest) __releases(this_rq->lock) __acquires(busiest->lock) __acquires(this_rq->lock) { + int ret = 0; + if (unlikely(!irqs_disabled())) { /* printk() doesn't work good under rq->lock */ spin_unlock(&this_rq->lock); @@ -2139,9 +2388,11 @@ static void double_lock_balance(struct rq *this_rq, struct rq *busiest) spin_unlock(&this_rq->lock); spin_lock(&busiest->lock); spin_lock(&this_rq->lock); + ret = 1; } else spin_lock(&busiest->lock); } + return ret; } /* @@ -3485,12 +3736,14 @@ void scheduler_tick(void) /* * Let rq->clock advance by at least TICK_NSEC: */ - if (unlikely(rq->clock < next_tick)) + if (unlikely(rq->clock < next_tick)) { rq->clock = next_tick; + rq->clock_underflows++; + } rq->tick_timestamp = rq->clock; update_cpu_load(rq); - if (curr != rq->idle) /* FIXME: needed? */ - curr->sched_class->task_tick(rq, curr); + curr->sched_class->task_tick(rq, curr, 0); + update_sched_rt_period(rq); spin_unlock(&rq->lock); #ifdef CONFIG_SMP @@ -3636,6 +3889,8 @@ need_resched_nonpreemptible: schedule_debug(prev); + hrtick_clear(rq); + /* * Do the rq-clock update outside the rq lock: */ @@ -3654,6 +3909,11 @@ need_resched_nonpreemptible: switch_count = &prev->nvcsw; } +#ifdef CONFIG_SMP + if (prev->sched_class->pre_schedule) + prev->sched_class->pre_schedule(rq, prev); +#endif + if (unlikely(!rq->nr_running)) idle_balance(cpu, rq); @@ -3668,14 +3928,20 @@ need_resched_nonpreemptible: ++*switch_count; context_switch(rq, prev, next); /* unlocks the rq */ + /* + * the context switch might have flipped the stack from under + * us, hence refresh the local variables. + */ + cpu = smp_processor_id(); + rq = cpu_rq(cpu); } else spin_unlock_irq(&rq->lock); - if (unlikely(reacquire_kernel_lock(current) < 0)) { - cpu = smp_processor_id(); - rq = cpu_rq(cpu); + hrtick_set(rq); + + if (unlikely(reacquire_kernel_lock(current) < 0)) goto need_resched_nonpreemptible; - } + preempt_enable_no_resched(); if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) goto need_resched; @@ -3691,10 +3957,9 @@ EXPORT_SYMBOL(schedule); asmlinkage void __sched preempt_schedule(void) { struct thread_info *ti = current_thread_info(); -#ifdef CONFIG_PREEMPT_BKL struct task_struct *task = current; int saved_lock_depth; -#endif + /* * If there is a non-zero preempt_count or interrupts are disabled, * we do not want to preempt the current task. Just return.. @@ -3710,14 +3975,10 @@ asmlinkage void __sched preempt_schedule(void) * clear ->lock_depth so that schedule() doesnt * auto-release the semaphore: */ -#ifdef CONFIG_PREEMPT_BKL saved_lock_depth = task->lock_depth; task->lock_depth = -1; -#endif schedule(); -#ifdef CONFIG_PREEMPT_BKL task->lock_depth = saved_lock_depth; -#endif sub_preempt_count(PREEMPT_ACTIVE); /* @@ -3738,10 +3999,9 @@ EXPORT_SYMBOL(preempt_schedule); asmlinkage void __sched preempt_schedule_irq(void) { struct thread_info *ti = current_thread_info(); -#ifdef CONFIG_PREEMPT_BKL struct task_struct *task = current; int saved_lock_depth; -#endif + /* Catch callers which need to be fixed */ BUG_ON(ti->preempt_count || !irqs_disabled()); @@ -3753,16 +4013,12 @@ asmlinkage void __sched preempt_schedule_irq(void) * clear ->lock_depth so that schedule() doesnt * auto-release the semaphore: */ -#ifdef CONFIG_PREEMPT_BKL saved_lock_depth = task->lock_depth; task->lock_depth = -1; -#endif local_irq_enable(); schedule(); local_irq_disable(); -#ifdef CONFIG_PREEMPT_BKL task->lock_depth = saved_lock_depth; -#endif sub_preempt_count(PREEMPT_ACTIVE); /* @@ -4019,6 +4275,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) unsigned long flags; int oldprio, on_rq, running; struct rq *rq; + const struct sched_class *prev_class = p->sched_class; BUG_ON(prio < 0 || prio > MAX_PRIO); @@ -4044,18 +4301,10 @@ void rt_mutex_setprio(struct task_struct *p, int prio) if (on_rq) { if (running) p->sched_class->set_curr_task(rq); + enqueue_task(rq, p, 0); - /* - * Reschedule if we are currently running on this runqueue and - * our priority decreased, or if we are not currently running on - * this runqueue and our priority is higher than the current's - */ - if (running) { - if (p->prio > oldprio) - resched_task(rq->curr); - } else { - check_preempt_curr(rq, p); - } + + check_class_changed(rq, p, prev_class, oldprio, running); } task_rq_unlock(rq, &flags); } @@ -4087,10 +4336,8 @@ void set_user_nice(struct task_struct *p, long nice) goto out_unlock; } on_rq = p->se.on_rq; - if (on_rq) { + if (on_rq) dequeue_task(rq, p, 0); - dec_load(rq, p); - } p->static_prio = NICE_TO_PRIO(nice); set_load_weight(p); @@ -4100,7 +4347,6 @@ void set_user_nice(struct task_struct *p, long nice) if (on_rq) { enqueue_task(rq, p, 0); - inc_load(rq, p); /* * If the task increased its priority or is running and * lowered its priority, then reschedule its CPU: @@ -4258,6 +4504,7 @@ int sched_setscheduler(struct task_struct *p, int policy, { int retval, oldprio, oldpolicy = -1, on_rq, running; unsigned long flags; + const struct sched_class *prev_class = p->sched_class; struct rq *rq; /* may grab non-irq protected spin_locks */ @@ -4351,18 +4598,10 @@ recheck: if (on_rq) { if (running) p->sched_class->set_curr_task(rq); + activate_task(rq, p, 0); - /* - * Reschedule if we are currently running on this runqueue and - * our priority decreased, or if we are not currently running on - * this runqueue and our priority is higher than the current's - */ - if (running) { - if (p->prio > oldprio) - resched_task(rq->curr); - } else { - check_preempt_curr(rq, p); - } + + check_class_changed(rq, p, prev_class, oldprio, running); } __task_rq_unlock(rq); spin_unlock_irqrestore(&p->pi_lock, flags); @@ -4490,13 +4729,13 @@ long sched_setaffinity(pid_t pid, cpumask_t new_mask) struct task_struct *p; int retval; - mutex_lock(&sched_hotcpu_mutex); + get_online_cpus(); read_lock(&tasklist_lock); p = find_process_by_pid(pid); if (!p) { read_unlock(&tasklist_lock); - mutex_unlock(&sched_hotcpu_mutex); + put_online_cpus(); return -ESRCH; } @@ -4536,7 +4775,7 @@ long sched_setaffinity(pid_t pid, cpumask_t new_mask) } out_unlock: put_task_struct(p); - mutex_unlock(&sched_hotcpu_mutex); + put_online_cpus(); return retval; } @@ -4593,7 +4832,7 @@ long sched_getaffinity(pid_t pid, cpumask_t *mask) struct task_struct *p; int retval; - mutex_lock(&sched_hotcpu_mutex); + get_online_cpus(); read_lock(&tasklist_lock); retval = -ESRCH; @@ -4609,7 +4848,7 @@ long sched_getaffinity(pid_t pid, cpumask_t *mask) out_unlock: read_unlock(&tasklist_lock); - mutex_unlock(&sched_hotcpu_mutex); + put_online_cpus(); return retval; } @@ -4683,7 +4922,8 @@ static void __cond_resched(void) } while (need_resched()); } -int __sched cond_resched(void) +#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY) +int __sched _cond_resched(void) { if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) && system_state == SYSTEM_RUNNING) { @@ -4692,7 +4932,8 @@ int __sched cond_resched(void) } return 0; } -EXPORT_SYMBOL(cond_resched); +EXPORT_SYMBOL(_cond_resched); +#endif /* * cond_resched_lock() - if a reschedule is pending, drop the given lock, @@ -4890,7 +5131,7 @@ out_unlock: static const char stat_nam[] = "RSDTtZX"; -static void show_task(struct task_struct *p) +void sched_show_task(struct task_struct *p) { unsigned long free = 0; unsigned state; @@ -4918,10 +5159,9 @@ static void show_task(struct task_struct *p) } #endif printk(KERN_CONT "%5lu %5d %6d\n", free, - task_pid_nr(p), task_pid_nr(p->parent)); + task_pid_nr(p), task_pid_nr(p->real_parent)); - if (state != TASK_RUNNING) - show_stack(p, NULL); + show_stack(p, NULL); } void show_state_filter(unsigned long state_filter) @@ -4943,7 +5183,7 @@ void show_state_filter(unsigned long state_filter) */ touch_nmi_watchdog(); if (!state_filter || (p->state & state_filter)) - show_task(p); + sched_show_task(p); } while_each_thread(g, p); touch_all_softlockup_watchdogs(); @@ -4992,11 +5232,8 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu) spin_unlock_irqrestore(&rq->lock, flags); /* Set the preempt count _outside_ the spinlocks! */ -#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL) - task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); -#else task_thread_info(idle)->preempt_count = 0; -#endif + /* * The idle tasks have their own, simple scheduling class: */ @@ -5077,7 +5314,13 @@ int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) goto out; } - p->cpus_allowed = new_mask; + if (p->sched_class->set_cpus_allowed) + p->sched_class->set_cpus_allowed(p, &new_mask); + else { + p->cpus_allowed = new_mask; + p->rt.nr_cpus_allowed = cpus_weight(new_mask); + } + /* Can the task run on the task's current CPU? If so, we're done */ if (cpu_isset(task_cpu(p), new_mask)) goto out; @@ -5569,9 +5812,6 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) struct rq *rq; switch (action) { - case CPU_LOCK_ACQUIRE: - mutex_lock(&sched_hotcpu_mutex); - break; case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: @@ -5590,6 +5830,15 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) case CPU_ONLINE_FROZEN: /* Strictly unnecessary, as first user will wake it. */ wake_up_process(cpu_rq(cpu)->migration_thread); + + /* Update our root-domain */ + rq = cpu_rq(cpu); + spin_lock_irqsave(&rq->lock, flags); + if (rq->rd) { + BUG_ON(!cpu_isset(cpu, rq->rd->span)); + cpu_set(cpu, rq->rd->online); + } + spin_unlock_irqrestore(&rq->lock, flags); break; #ifdef CONFIG_HOTPLUG_CPU @@ -5640,10 +5889,18 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) } spin_unlock_irq(&rq->lock); break; -#endif - case CPU_LOCK_RELEASE: - mutex_unlock(&sched_hotcpu_mutex); + + case CPU_DOWN_PREPARE: + /* Update our root-domain */ + rq = cpu_rq(cpu); + spin_lock_irqsave(&rq->lock, flags); + if (rq->rd) { + BUG_ON(!cpu_isset(cpu, rq->rd->span)); + cpu_clear(cpu, rq->rd->online); + } + spin_unlock_irqrestore(&rq->lock, flags); break; +#endif } return NOTIFY_OK; } @@ -5831,11 +6088,76 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) return 1; } +static void rq_attach_root(struct rq *rq, struct root_domain *rd) +{ + unsigned long flags; + const struct sched_class *class; + + spin_lock_irqsave(&rq->lock, flags); + + if (rq->rd) { + struct root_domain *old_rd = rq->rd; + + for (class = sched_class_highest; class; class = class->next) { + if (class->leave_domain) + class->leave_domain(rq); + } + + cpu_clear(rq->cpu, old_rd->span); + cpu_clear(rq->cpu, old_rd->online); + + if (atomic_dec_and_test(&old_rd->refcount)) + kfree(old_rd); + } + + atomic_inc(&rd->refcount); + rq->rd = rd; + + cpu_set(rq->cpu, rd->span); + if (cpu_isset(rq->cpu, cpu_online_map)) + cpu_set(rq->cpu, rd->online); + + for (class = sched_class_highest; class; class = class->next) { + if (class->join_domain) + class->join_domain(rq); + } + + spin_unlock_irqrestore(&rq->lock, flags); +} + +static void init_rootdomain(struct root_domain *rd) +{ + memset(rd, 0, sizeof(*rd)); + + cpus_clear(rd->span); + cpus_clear(rd->online); +} + +static void init_defrootdomain(void) +{ + init_rootdomain(&def_root_domain); + atomic_set(&def_root_domain.refcount, 1); +} + +static struct root_domain *alloc_rootdomain(void) +{ + struct root_domain *rd; + + rd = kmalloc(sizeof(*rd), GFP_KERNEL); + if (!rd) + return NULL; + + init_rootdomain(rd); + + return rd; +} + /* - * Attach the domain 'sd' to 'cpu' as its base domain. Callers must + * Attach the domain 'sd' to 'cpu' as its base domain. Callers must * hold the hotplug lock. */ -static void cpu_attach_domain(struct sched_domain *sd, int cpu) +static void +cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) { struct rq *rq = cpu_rq(cpu); struct sched_domain *tmp; @@ -5860,6 +6182,7 @@ static void cpu_attach_domain(struct sched_domain *sd, int cpu) sched_domain_debug(sd, cpu); + rq_attach_root(rq, rd); rcu_assign_pointer(rq->sd, sd); } @@ -6228,6 +6551,7 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd) static int build_sched_domains(const cpumask_t *cpu_map) { int i; + struct root_domain *rd; #ifdef CONFIG_NUMA struct sched_group **sched_group_nodes = NULL; int sd_allnodes = 0; @@ -6244,6 +6568,12 @@ static int build_sched_domains(const cpumask_t *cpu_map) sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes; #endif + rd = alloc_rootdomain(); + if (!rd) { + printk(KERN_WARNING "Cannot alloc root domain\n"); + return -ENOMEM; + } + /* * Set up domains for cpus specified by the cpu_map. */ @@ -6460,7 +6790,7 @@ static int build_sched_domains(const cpumask_t *cpu_map) #else sd = &per_cpu(phys_domains, i); #endif - cpu_attach_domain(sd, i); + cpu_attach_domain(sd, rd, i); } return 0; @@ -6518,7 +6848,7 @@ static void detach_destroy_domains(const cpumask_t *cpu_map) unregister_sched_domain_sysctl(); for_each_cpu_mask(i, *cpu_map) - cpu_attach_domain(NULL, i); + cpu_attach_domain(NULL, &def_root_domain, i); synchronize_sched(); arch_destroy_sched_domains(cpu_map); } @@ -6548,6 +6878,8 @@ void partition_sched_domains(int ndoms_new, cpumask_t *doms_new) { int i, j; + lock_doms_cur(); + /* always unregister in case we don't destroy any domains */ unregister_sched_domain_sysctl(); @@ -6588,6 +6920,8 @@ match2: ndoms_cur = ndoms_new; register_sched_domain_sysctl(); + + unlock_doms_cur(); } #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) @@ -6595,10 +6929,10 @@ static int arch_reinit_sched_domains(void) { int err; - mutex_lock(&sched_hotcpu_mutex); + get_online_cpus(); detach_destroy_domains(&cpu_online_map); err = arch_init_sched_domains(&cpu_online_map); - mutex_unlock(&sched_hotcpu_mutex); + put_online_cpus(); return err; } @@ -6709,12 +7043,12 @@ void __init sched_init_smp(void) { cpumask_t non_isolated_cpus; - mutex_lock(&sched_hotcpu_mutex); + get_online_cpus(); arch_init_sched_domains(&cpu_online_map); cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map); if (cpus_empty(non_isolated_cpus)) cpu_set(smp_processor_id(), non_isolated_cpus); - mutex_unlock(&sched_hotcpu_mutex); + put_online_cpus(); /* XXX: Theoretical race here - CPU may be hotplugged now */ hotcpu_notifier(update_sched_domains, 0); @@ -6722,6 +7056,21 @@ void __init sched_init_smp(void) if (set_cpus_allowed(current, non_isolated_cpus) < 0) BUG(); sched_init_granularity(); + +#ifdef CONFIG_FAIR_GROUP_SCHED + if (nr_cpu_ids == 1) + return; + + lb_monitor_task = kthread_create(load_balance_monitor, NULL, + "group_balance"); + if (!IS_ERR(lb_monitor_task)) { + lb_monitor_task->flags |= PF_NOFREEZE; + wake_up_process(lb_monitor_task); + } else { + printk(KERN_ERR "Could not create load balance monitor thread" + "(error = %ld) \n", PTR_ERR(lb_monitor_task)); + } +#endif } #else void __init sched_init_smp(void) @@ -6746,13 +7095,87 @@ static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) cfs_rq->min_vruntime = (u64)(-(1LL << 20)); } +static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) +{ + struct rt_prio_array *array; + int i; + + array = &rt_rq->active; + for (i = 0; i < MAX_RT_PRIO; i++) { + INIT_LIST_HEAD(array->queue + i); + __clear_bit(i, array->bitmap); + } + /* delimiter for bitsearch: */ + __set_bit(MAX_RT_PRIO, array->bitmap); + +#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED + rt_rq->highest_prio = MAX_RT_PRIO; +#endif +#ifdef CONFIG_SMP + rt_rq->rt_nr_migratory = 0; + rt_rq->overloaded = 0; +#endif + + rt_rq->rt_time = 0; + rt_rq->rt_throttled = 0; + +#ifdef CONFIG_FAIR_GROUP_SCHED + rt_rq->rq = rq; +#endif +} + +#ifdef CONFIG_FAIR_GROUP_SCHED +static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg, + struct cfs_rq *cfs_rq, struct sched_entity *se, + int cpu, int add) +{ + tg->cfs_rq[cpu] = cfs_rq; + init_cfs_rq(cfs_rq, rq); + cfs_rq->tg = tg; + if (add) + list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); + + tg->se[cpu] = se; + se->cfs_rq = &rq->cfs; + se->my_q = cfs_rq; + se->load.weight = tg->shares; + se->load.inv_weight = div64_64(1ULL<<32, se->load.weight); + se->parent = NULL; +} + +static void init_tg_rt_entry(struct rq *rq, struct task_group *tg, + struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, + int cpu, int add) +{ + tg->rt_rq[cpu] = rt_rq; + init_rt_rq(rt_rq, rq); + rt_rq->tg = tg; + rt_rq->rt_se = rt_se; + if (add) + list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); + + tg->rt_se[cpu] = rt_se; + rt_se->rt_rq = &rq->rt; + rt_se->my_q = rt_rq; + rt_se->parent = NULL; + INIT_LIST_HEAD(&rt_se->run_list); +} +#endif + void __init sched_init(void) { int highest_cpu = 0; int i, j; +#ifdef CONFIG_SMP + init_defrootdomain(); +#endif + +#ifdef CONFIG_FAIR_GROUP_SCHED + list_add(&init_task_group.list, &task_groups); +#endif + for_each_possible_cpu(i) { - struct rt_prio_array *array; struct rq *rq; rq = cpu_rq(i); @@ -6761,52 +7184,39 @@ void __init sched_init(void) rq->nr_running = 0; rq->clock = 1; init_cfs_rq(&rq->cfs, rq); + init_rt_rq(&rq->rt, rq); #ifdef CONFIG_FAIR_GROUP_SCHED - INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); - { - struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i); - struct sched_entity *se = - &per_cpu(init_sched_entity, i); - - init_cfs_rq_p[i] = cfs_rq; - init_cfs_rq(cfs_rq, rq); - cfs_rq->tg = &init_task_group; - list_add(&cfs_rq->leaf_cfs_rq_list, - &rq->leaf_cfs_rq_list); - - init_sched_entity_p[i] = se; - se->cfs_rq = &rq->cfs; - se->my_q = cfs_rq; - se->load.weight = init_task_group_load; - se->load.inv_weight = - div64_64(1ULL<<32, init_task_group_load); - se->parent = NULL; - } init_task_group.shares = init_task_group_load; - spin_lock_init(&init_task_group.lock); + INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); + init_tg_cfs_entry(rq, &init_task_group, + &per_cpu(init_cfs_rq, i), + &per_cpu(init_sched_entity, i), i, 1); + + init_task_group.rt_ratio = sysctl_sched_rt_ratio; /* XXX */ + INIT_LIST_HEAD(&rq->leaf_rt_rq_list); + init_tg_rt_entry(rq, &init_task_group, + &per_cpu(init_rt_rq, i), + &per_cpu(init_sched_rt_entity, i), i, 1); #endif + rq->rt_period_expire = 0; + rq->rt_throttled = 0; for (j = 0; j < CPU_LOAD_IDX_MAX; j++) rq->cpu_load[j] = 0; #ifdef CONFIG_SMP rq->sd = NULL; + rq->rd = NULL; rq->active_balance = 0; rq->next_balance = jiffies; rq->push_cpu = 0; rq->cpu = i; rq->migration_thread = NULL; INIT_LIST_HEAD(&rq->migration_queue); + rq_attach_root(rq, &def_root_domain); #endif + init_rq_hrtick(rq); atomic_set(&rq->nr_iowait, 0); - - array = &rq->rt.active; - for (j = 0; j < MAX_RT_PRIO; j++) { - INIT_LIST_HEAD(array->queue + j); - __clear_bit(j, array->bitmap); - } highest_cpu = i; - /* delimiter for bitsearch: */ - __set_bit(MAX_RT_PRIO, array->bitmap); } set_load_weight(&init_task); @@ -6975,12 +7385,187 @@ void set_curr_task(int cpu, struct task_struct *p) #ifdef CONFIG_FAIR_GROUP_SCHED +#ifdef CONFIG_SMP +/* + * distribute shares of all task groups among their schedulable entities, + * to reflect load distribution across cpus. + */ +static int rebalance_shares(struct sched_domain *sd, int this_cpu) +{ + struct cfs_rq *cfs_rq; + struct rq *rq = cpu_rq(this_cpu); + cpumask_t sdspan = sd->span; + int balanced = 1; + + /* Walk thr' all the task groups that we have */ + for_each_leaf_cfs_rq(rq, cfs_rq) { + int i; + unsigned long total_load = 0, total_shares; + struct task_group *tg = cfs_rq->tg; + + /* Gather total task load of this group across cpus */ + for_each_cpu_mask(i, sdspan) + total_load += tg->cfs_rq[i]->load.weight; + + /* Nothing to do if this group has no load */ + if (!total_load) + continue; + + /* + * tg->shares represents the number of cpu shares the task group + * is eligible to hold on a single cpu. On N cpus, it is + * eligible to hold (N * tg->shares) number of cpu shares. + */ + total_shares = tg->shares * cpus_weight(sdspan); + + /* + * redistribute total_shares across cpus as per the task load + * distribution. + */ + for_each_cpu_mask(i, sdspan) { + unsigned long local_load, local_shares; + + local_load = tg->cfs_rq[i]->load.weight; + local_shares = (local_load * total_shares) / total_load; + if (!local_shares) + local_shares = MIN_GROUP_SHARES; + if (local_shares == tg->se[i]->load.weight) + continue; + + spin_lock_irq(&cpu_rq(i)->lock); + set_se_shares(tg->se[i], local_shares); + spin_unlock_irq(&cpu_rq(i)->lock); + balanced = 0; + } + } + + return balanced; +} + +/* + * How frequently should we rebalance_shares() across cpus? + * + * The more frequently we rebalance shares, the more accurate is the fairness + * of cpu bandwidth distribution between task groups. However higher frequency + * also implies increased scheduling overhead. + * + * sysctl_sched_min_bal_int_shares represents the minimum interval between + * consecutive calls to rebalance_shares() in the same sched domain. + * + * sysctl_sched_max_bal_int_shares represents the maximum interval between + * consecutive calls to rebalance_shares() in the same sched domain. + * + * These settings allows for the appropriate trade-off between accuracy of + * fairness and the associated overhead. + * + */ + +/* default: 8ms, units: milliseconds */ +const_debug unsigned int sysctl_sched_min_bal_int_shares = 8; + +/* default: 128ms, units: milliseconds */ +const_debug unsigned int sysctl_sched_max_bal_int_shares = 128; + +/* kernel thread that runs rebalance_shares() periodically */ +static int load_balance_monitor(void *unused) +{ + unsigned int timeout = sysctl_sched_min_bal_int_shares; + struct sched_param schedparm; + int ret; + + /* + * We don't want this thread's execution to be limited by the shares + * assigned to default group (init_task_group). Hence make it run + * as a SCHED_RR RT task at the lowest priority. + */ + schedparm.sched_priority = 1; + ret = sched_setscheduler(current, SCHED_RR, &schedparm); + if (ret) + printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance" + " monitor thread (error = %d) \n", ret); + + while (!kthread_should_stop()) { + int i, cpu, balanced = 1; + + /* Prevent cpus going down or coming up */ + get_online_cpus(); + /* lockout changes to doms_cur[] array */ + lock_doms_cur(); + /* + * Enter a rcu read-side critical section to safely walk rq->sd + * chain on various cpus and to walk task group list + * (rq->leaf_cfs_rq_list) in rebalance_shares(). + */ + rcu_read_lock(); + + for (i = 0; i < ndoms_cur; i++) { + cpumask_t cpumap = doms_cur[i]; + struct sched_domain *sd = NULL, *sd_prev = NULL; + + cpu = first_cpu(cpumap); + + /* Find the highest domain at which to balance shares */ + for_each_domain(cpu, sd) { + if (!(sd->flags & SD_LOAD_BALANCE)) + continue; + sd_prev = sd; + } + + sd = sd_prev; + /* sd == NULL? No load balance reqd in this domain */ + if (!sd) + continue; + + balanced &= rebalance_shares(sd, cpu); + } + + rcu_read_unlock(); + + unlock_doms_cur(); + put_online_cpus(); + + if (!balanced) + timeout = sysctl_sched_min_bal_int_shares; + else if (timeout < sysctl_sched_max_bal_int_shares) + timeout *= 2; + + msleep_interruptible(timeout); + } + + return 0; +} +#endif /* CONFIG_SMP */ + +static void free_sched_group(struct task_group *tg) +{ + int i; + + for_each_possible_cpu(i) { + if (tg->cfs_rq) + kfree(tg->cfs_rq[i]); + if (tg->se) + kfree(tg->se[i]); + if (tg->rt_rq) + kfree(tg->rt_rq[i]); + if (tg->rt_se) + kfree(tg->rt_se[i]); + } + + kfree(tg->cfs_rq); + kfree(tg->se); + kfree(tg->rt_rq); + kfree(tg->rt_se); + kfree(tg); +} + /* allocate runqueue etc for a new task group */ struct task_group *sched_create_group(void) { struct task_group *tg; struct cfs_rq *cfs_rq; struct sched_entity *se; + struct rt_rq *rt_rq; + struct sched_rt_entity *rt_se; struct rq *rq; int i; @@ -6994,97 +7579,89 @@ struct task_group *sched_create_group(void) tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL); if (!tg->se) goto err; + tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL); + if (!tg->rt_rq) + goto err; + tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL); + if (!tg->rt_se) + goto err; + + tg->shares = NICE_0_LOAD; + tg->rt_ratio = 0; /* XXX */ for_each_possible_cpu(i) { rq = cpu_rq(i); - cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL, - cpu_to_node(i)); + cfs_rq = kmalloc_node(sizeof(struct cfs_rq), + GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); if (!cfs_rq) goto err; - se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL, - cpu_to_node(i)); + se = kmalloc_node(sizeof(struct sched_entity), + GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); if (!se) goto err; - memset(cfs_rq, 0, sizeof(struct cfs_rq)); - memset(se, 0, sizeof(struct sched_entity)); + rt_rq = kmalloc_node(sizeof(struct rt_rq), + GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); + if (!rt_rq) + goto err; - tg->cfs_rq[i] = cfs_rq; - init_cfs_rq(cfs_rq, rq); - cfs_rq->tg = tg; + rt_se = kmalloc_node(sizeof(struct sched_rt_entity), + GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); + if (!rt_se) + goto err; - tg->se[i] = se; - se->cfs_rq = &rq->cfs; - se->my_q = cfs_rq; - se->load.weight = NICE_0_LOAD; - se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD); - se->parent = NULL; + init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0); + init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0); } + lock_task_group_list(); for_each_possible_cpu(i) { rq = cpu_rq(i); cfs_rq = tg->cfs_rq[i]; list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); + rt_rq = tg->rt_rq[i]; + list_add_rcu(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); } - - tg->shares = NICE_0_LOAD; - spin_lock_init(&tg->lock); + list_add_rcu(&tg->list, &task_groups); + unlock_task_group_list(); return tg; err: - for_each_possible_cpu(i) { - if (tg->cfs_rq) - kfree(tg->cfs_rq[i]); - if (tg->se) - kfree(tg->se[i]); - } - kfree(tg->cfs_rq); - kfree(tg->se); - kfree(tg); - + free_sched_group(tg); return ERR_PTR(-ENOMEM); } /* rcu callback to free various structures associated with a task group */ -static void free_sched_group(struct rcu_head *rhp) +static void free_sched_group_rcu(struct rcu_head *rhp) { - struct task_group *tg = container_of(rhp, struct task_group, rcu); - struct cfs_rq *cfs_rq; - struct sched_entity *se; - int i; - /* now it should be safe to free those cfs_rqs */ - for_each_possible_cpu(i) { - cfs_rq = tg->cfs_rq[i]; - kfree(cfs_rq); - - se = tg->se[i]; - kfree(se); - } - - kfree(tg->cfs_rq); - kfree(tg->se); - kfree(tg); + free_sched_group(container_of(rhp, struct task_group, rcu)); } /* Destroy runqueue etc associated with a task group */ void sched_destroy_group(struct task_group *tg) { struct cfs_rq *cfs_rq = NULL; + struct rt_rq *rt_rq = NULL; int i; + lock_task_group_list(); for_each_possible_cpu(i) { cfs_rq = tg->cfs_rq[i]; list_del_rcu(&cfs_rq->leaf_cfs_rq_list); + rt_rq = tg->rt_rq[i]; + list_del_rcu(&rt_rq->leaf_rt_rq_list); } + list_del_rcu(&tg->list); + unlock_task_group_list(); BUG_ON(!cfs_rq); /* wait for possible concurrent references to cfs_rqs complete */ - call_rcu(&tg->rcu, free_sched_group); + call_rcu(&tg->rcu, free_sched_group_rcu); } /* change task's runqueue when it moves between groups. @@ -7100,11 +7677,6 @@ void sched_move_task(struct task_struct *tsk) rq = task_rq_lock(tsk, &flags); - if (tsk->sched_class != &fair_sched_class) { - set_task_cfs_rq(tsk, task_cpu(tsk)); - goto done; - } - update_rq_clock(rq); running = task_current(rq, tsk); @@ -7116,7 +7688,7 @@ void sched_move_task(struct task_struct *tsk) tsk->sched_class->put_prev_task(rq, tsk); } - set_task_cfs_rq(tsk, task_cpu(tsk)); + set_task_rq(tsk, task_cpu(tsk)); if (on_rq) { if (unlikely(running)) @@ -7124,45 +7696,82 @@ void sched_move_task(struct task_struct *tsk) enqueue_task(rq, tsk, 0); } -done: task_rq_unlock(rq, &flags); } +/* rq->lock to be locked by caller */ static void set_se_shares(struct sched_entity *se, unsigned long shares) { struct cfs_rq *cfs_rq = se->cfs_rq; struct rq *rq = cfs_rq->rq; int on_rq; - spin_lock_irq(&rq->lock); + if (!shares) + shares = MIN_GROUP_SHARES; on_rq = se->on_rq; - if (on_rq) + if (on_rq) { dequeue_entity(cfs_rq, se, 0); + dec_cpu_load(rq, se->load.weight); + } se->load.weight = shares; se->load.inv_weight = div64_64((1ULL<<32), shares); - if (on_rq) + if (on_rq) { enqueue_entity(cfs_rq, se, 0); - - spin_unlock_irq(&rq->lock); + inc_cpu_load(rq, se->load.weight); + } } int sched_group_set_shares(struct task_group *tg, unsigned long shares) { int i; + struct cfs_rq *cfs_rq; + struct rq *rq; - spin_lock(&tg->lock); + lock_task_group_list(); if (tg->shares == shares) goto done; + if (shares < MIN_GROUP_SHARES) + shares = MIN_GROUP_SHARES; + + /* + * Prevent any load balance activity (rebalance_shares, + * load_balance_fair) from referring to this group first, + * by taking it off the rq->leaf_cfs_rq_list on each cpu. + */ + for_each_possible_cpu(i) { + cfs_rq = tg->cfs_rq[i]; + list_del_rcu(&cfs_rq->leaf_cfs_rq_list); + } + + /* wait for any ongoing reference to this group to finish */ + synchronize_sched(); + + /* + * Now we are free to modify the group's share on each cpu + * w/o tripping rebalance_share or load_balance_fair. + */ tg->shares = shares; - for_each_possible_cpu(i) + for_each_possible_cpu(i) { + spin_lock_irq(&cpu_rq(i)->lock); set_se_shares(tg->se[i], shares); + spin_unlock_irq(&cpu_rq(i)->lock); + } + /* + * Enable load balance activity on this group, by inserting it back on + * each cpu's rq->leaf_cfs_rq_list. + */ + for_each_possible_cpu(i) { + rq = cpu_rq(i); + cfs_rq = tg->cfs_rq[i]; + list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); + } done: - spin_unlock(&tg->lock); + unlock_task_group_list(); return 0; } @@ -7171,6 +7780,31 @@ unsigned long sched_group_shares(struct task_group *tg) return tg->shares; } +/* + * Ensure the total rt_ratio <= sysctl_sched_rt_ratio + */ +int sched_group_set_rt_ratio(struct task_group *tg, unsigned long rt_ratio) +{ + struct task_group *tgi; + unsigned long total = 0; + + rcu_read_lock(); + list_for_each_entry_rcu(tgi, &task_groups, list) + total += tgi->rt_ratio; + rcu_read_unlock(); + + if (total + rt_ratio - tg->rt_ratio > sysctl_sched_rt_ratio) + return -EINVAL; + + tg->rt_ratio = rt_ratio; + return 0; +} + +unsigned long sched_group_rt_ratio(struct task_group *tg) +{ + return tg->rt_ratio; +} + #endif /* CONFIG_FAIR_GROUP_SCHED */ #ifdef CONFIG_FAIR_CGROUP_SCHED @@ -7246,12 +7880,30 @@ static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft) return (u64) tg->shares; } +static int cpu_rt_ratio_write_uint(struct cgroup *cgrp, struct cftype *cftype, + u64 rt_ratio_val) +{ + return sched_group_set_rt_ratio(cgroup_tg(cgrp), rt_ratio_val); +} + +static u64 cpu_rt_ratio_read_uint(struct cgroup *cgrp, struct cftype *cft) +{ + struct task_group *tg = cgroup_tg(cgrp); + + return (u64) tg->rt_ratio; +} + static struct cftype cpu_files[] = { { .name = "shares", .read_uint = cpu_shares_read_uint, .write_uint = cpu_shares_write_uint, }, + { + .name = "rt_ratio", + .read_uint = cpu_rt_ratio_read_uint, + .write_uint = cpu_rt_ratio_write_uint, + }, }; static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) |