summaryrefslogtreecommitdiffstats
path: root/kernel/sched/fair.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched/fair.c')
-rw-r--r--kernel/sched/fair.c839
1 files changed, 565 insertions, 274 deletions
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index c1217bfe5e81..02f323b85b6d 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -86,6 +86,19 @@ static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
+int sched_thermal_decay_shift;
+static int __init setup_sched_thermal_decay_shift(char *str)
+{
+ int _shift = 0;
+
+ if (kstrtoint(str, 0, &_shift))
+ pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
+
+ sched_thermal_decay_shift = clamp(_shift, 0, 10);
+ return 1;
+}
+__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
+
#ifdef CONFIG_SMP
/*
* For asym packing, by default the lower numbered CPU has higher priority.
@@ -741,9 +754,7 @@ void init_entity_runnable_average(struct sched_entity *se)
* nothing has been attached to the task group yet.
*/
if (entity_is_task(se))
- sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
-
- se->runnable_weight = se->load.weight;
+ sa->load_avg = scale_load_down(se->load.weight);
/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
}
@@ -796,6 +807,8 @@ void post_init_entity_util_avg(struct task_struct *p)
}
}
+ sa->runnable_avg = cpu_scale;
+
if (p->sched_class != &fair_sched_class) {
/*
* For !fair tasks do:
@@ -1473,36 +1486,51 @@ bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
}
-static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
-
-static unsigned long cpu_runnable_load(struct rq *rq)
-{
- return cfs_rq_runnable_load_avg(&rq->cfs);
-}
+/*
+ * 'numa_type' describes the node at the moment of load balancing.
+ */
+enum numa_type {
+ /* The node has spare capacity that can be used to run more tasks. */
+ node_has_spare = 0,
+ /*
+ * The node is fully used and the tasks don't compete for more CPU
+ * cycles. Nevertheless, some tasks might wait before running.
+ */
+ node_fully_busy,
+ /*
+ * The node is overloaded and can't provide expected CPU cycles to all
+ * tasks.
+ */
+ node_overloaded
+};
/* Cached statistics for all CPUs within a node */
struct numa_stats {
unsigned long load;
-
+ unsigned long util;
/* Total compute capacity of CPUs on a node */
unsigned long compute_capacity;
+ unsigned int nr_running;
+ unsigned int weight;
+ enum numa_type node_type;
+ int idle_cpu;
};
-/*
- * XXX borrowed from update_sg_lb_stats
- */
-static void update_numa_stats(struct numa_stats *ns, int nid)
+static inline bool is_core_idle(int cpu)
{
- int cpu;
+#ifdef CONFIG_SCHED_SMT
+ int sibling;
- memset(ns, 0, sizeof(*ns));
- for_each_cpu(cpu, cpumask_of_node(nid)) {
- struct rq *rq = cpu_rq(cpu);
+ for_each_cpu(sibling, cpu_smt_mask(cpu)) {
+ if (cpu == sibling)
+ continue;
- ns->load += cpu_runnable_load(rq);
- ns->compute_capacity += capacity_of(cpu);
+ if (!idle_cpu(cpu))
+ return false;
}
+#endif
+ return true;
}
struct task_numa_env {
@@ -1521,20 +1549,128 @@ struct task_numa_env {
int best_cpu;
};
+static unsigned long cpu_load(struct rq *rq);
+static unsigned long cpu_util(int cpu);
+static inline long adjust_numa_imbalance(int imbalance, int src_nr_running);
+
+static inline enum
+numa_type numa_classify(unsigned int imbalance_pct,
+ struct numa_stats *ns)
+{
+ if ((ns->nr_running > ns->weight) &&
+ ((ns->compute_capacity * 100) < (ns->util * imbalance_pct)))
+ return node_overloaded;
+
+ if ((ns->nr_running < ns->weight) ||
+ ((ns->compute_capacity * 100) > (ns->util * imbalance_pct)))
+ return node_has_spare;
+
+ return node_fully_busy;
+}
+
+#ifdef CONFIG_SCHED_SMT
+/* Forward declarations of select_idle_sibling helpers */
+static inline bool test_idle_cores(int cpu, bool def);
+static inline int numa_idle_core(int idle_core, int cpu)
+{
+ if (!static_branch_likely(&sched_smt_present) ||
+ idle_core >= 0 || !test_idle_cores(cpu, false))
+ return idle_core;
+
+ /*
+ * Prefer cores instead of packing HT siblings
+ * and triggering future load balancing.
+ */
+ if (is_core_idle(cpu))
+ idle_core = cpu;
+
+ return idle_core;
+}
+#else
+static inline int numa_idle_core(int idle_core, int cpu)
+{
+ return idle_core;
+}
+#endif
+
+/*
+ * Gather all necessary information to make NUMA balancing placement
+ * decisions that are compatible with standard load balancer. This
+ * borrows code and logic from update_sg_lb_stats but sharing a
+ * common implementation is impractical.
+ */
+static void update_numa_stats(struct task_numa_env *env,
+ struct numa_stats *ns, int nid,
+ bool find_idle)
+{
+ int cpu, idle_core = -1;
+
+ memset(ns, 0, sizeof(*ns));
+ ns->idle_cpu = -1;
+
+ rcu_read_lock();
+ for_each_cpu(cpu, cpumask_of_node(nid)) {
+ struct rq *rq = cpu_rq(cpu);
+
+ ns->load += cpu_load(rq);
+ ns->util += cpu_util(cpu);
+ ns->nr_running += rq->cfs.h_nr_running;
+ ns->compute_capacity += capacity_of(cpu);
+
+ if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
+ if (READ_ONCE(rq->numa_migrate_on) ||
+ !cpumask_test_cpu(cpu, env->p->cpus_ptr))
+ continue;
+
+ if (ns->idle_cpu == -1)
+ ns->idle_cpu = cpu;
+
+ idle_core = numa_idle_core(idle_core, cpu);
+ }
+ }
+ rcu_read_unlock();
+
+ ns->weight = cpumask_weight(cpumask_of_node(nid));
+
+ ns->node_type = numa_classify(env->imbalance_pct, ns);
+
+ if (idle_core >= 0)
+ ns->idle_cpu = idle_core;
+}
+
static void task_numa_assign(struct task_numa_env *env,
struct task_struct *p, long imp)
{
struct rq *rq = cpu_rq(env->dst_cpu);
- /* Bail out if run-queue part of active NUMA balance. */
- if (xchg(&rq->numa_migrate_on, 1))
+ /* Check if run-queue part of active NUMA balance. */
+ if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
+ int cpu;
+ int start = env->dst_cpu;
+
+ /* Find alternative idle CPU. */
+ for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
+ if (cpu == env->best_cpu || !idle_cpu(cpu) ||
+ !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
+ continue;
+ }
+
+ env->dst_cpu = cpu;
+ rq = cpu_rq(env->dst_cpu);
+ if (!xchg(&rq->numa_migrate_on, 1))
+ goto assign;
+ }
+
+ /* Failed to find an alternative idle CPU */
return;
+ }
+assign:
/*
* Clear previous best_cpu/rq numa-migrate flag, since task now
* found a better CPU to move/swap.
*/
- if (env->best_cpu != -1) {
+ if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
rq = cpu_rq(env->best_cpu);
WRITE_ONCE(rq->numa_migrate_on, 0);
}
@@ -1590,7 +1726,7 @@ static bool load_too_imbalanced(long src_load, long dst_load,
* into account that it might be best if task running on the dst_cpu should
* be exchanged with the source task
*/
-static void task_numa_compare(struct task_numa_env *env,
+static bool task_numa_compare(struct task_numa_env *env,
long taskimp, long groupimp, bool maymove)
{
struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
@@ -1601,9 +1737,10 @@ static void task_numa_compare(struct task_numa_env *env,
int dist = env->dist;
long moveimp = imp;
long load;
+ bool stopsearch = false;
if (READ_ONCE(dst_rq->numa_migrate_on))
- return;
+ return false;
rcu_read_lock();
cur = rcu_dereference(dst_rq->curr);
@@ -1614,8 +1751,10 @@ static void task_numa_compare(struct task_numa_env *env,
* Because we have preemption enabled we can get migrated around and
* end try selecting ourselves (current == env->p) as a swap candidate.
*/
- if (cur == env->p)
+ if (cur == env->p) {
+ stopsearch = true;
goto unlock;
+ }
if (!cur) {
if (maymove && moveimp >= env->best_imp)
@@ -1624,18 +1763,27 @@ static void task_numa_compare(struct task_numa_env *env,
goto unlock;
}
+ /* Skip this swap candidate if cannot move to the source cpu. */
+ if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
+ goto unlock;
+
+ /*
+ * Skip this swap candidate if it is not moving to its preferred
+ * node and the best task is.
+ */
+ if (env->best_task &&
+ env->best_task->numa_preferred_nid == env->src_nid &&
+ cur->numa_preferred_nid != env->src_nid) {
+ goto unlock;
+ }
+
/*
* "imp" is the fault differential for the source task between the
* source and destination node. Calculate the total differential for
* the source task and potential destination task. The more negative
* the value is, the more remote accesses that would be expected to
* be incurred if the tasks were swapped.
- */
- /* Skip this swap candidate if cannot move to the source cpu */
- if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
- goto unlock;
-
- /*
+ *
* If dst and source tasks are in the same NUMA group, or not
* in any group then look only at task weights.
*/
@@ -1662,6 +1810,19 @@ static void task_numa_compare(struct task_numa_env *env,
task_weight(cur, env->dst_nid, dist);
}
+ /* Discourage picking a task already on its preferred node */
+ if (cur->numa_preferred_nid == env->dst_nid)
+ imp -= imp / 16;
+
+ /*
+ * Encourage picking a task that moves to its preferred node.
+ * This potentially makes imp larger than it's maximum of
+ * 1998 (see SMALLIMP and task_weight for why) but in this
+ * case, it does not matter.
+ */
+ if (cur->numa_preferred_nid == env->src_nid)
+ imp += imp / 8;
+
if (maymove && moveimp > imp && moveimp > env->best_imp) {
imp = moveimp;
cur = NULL;
@@ -1669,6 +1830,15 @@ static void task_numa_compare(struct task_numa_env *env,
}
/*
+ * Prefer swapping with a task moving to its preferred node over a
+ * task that is not.
+ */
+ if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
+ env->best_task->numa_preferred_nid != env->src_nid) {
+ goto assign;
+ }
+
+ /*
* If the NUMA importance is less than SMALLIMP,
* task migration might only result in ping pong
* of tasks and also hurt performance due to cache
@@ -1691,42 +1861,95 @@ static void task_numa_compare(struct task_numa_env *env,
goto unlock;
assign:
- /*
- * One idle CPU per node is evaluated for a task numa move.
- * Call select_idle_sibling to maybe find a better one.
- */
+ /* Evaluate an idle CPU for a task numa move. */
if (!cur) {
+ int cpu = env->dst_stats.idle_cpu;
+
+ /* Nothing cached so current CPU went idle since the search. */
+ if (cpu < 0)
+ cpu = env->dst_cpu;
+
/*
- * select_idle_siblings() uses an per-CPU cpumask that
- * can be used from IRQ context.
+ * If the CPU is no longer truly idle and the previous best CPU
+ * is, keep using it.
*/
- local_irq_disable();
- env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
- env->dst_cpu);
- local_irq_enable();
+ if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
+ idle_cpu(env->best_cpu)) {
+ cpu = env->best_cpu;
+ }
+
+ env->dst_cpu = cpu;
}
task_numa_assign(env, cur, imp);
+
+ /*
+ * If a move to idle is allowed because there is capacity or load
+ * balance improves then stop the search. While a better swap
+ * candidate may exist, a search is not free.
+ */
+ if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
+ stopsearch = true;
+
+ /*
+ * If a swap candidate must be identified and the current best task
+ * moves its preferred node then stop the search.
+ */
+ if (!maymove && env->best_task &&
+ env->best_task->numa_preferred_nid == env->src_nid) {
+ stopsearch = true;
+ }
unlock:
rcu_read_unlock();
+
+ return stopsearch;
}
static void task_numa_find_cpu(struct task_numa_env *env,
long taskimp, long groupimp)
{
- long src_load, dst_load, load;
bool maymove = false;
int cpu;
- load = task_h_load(env->p);
- dst_load = env->dst_stats.load + load;
- src_load = env->src_stats.load - load;
-
/*
- * If the improvement from just moving env->p direction is better
- * than swapping tasks around, check if a move is possible.
+ * If dst node has spare capacity, then check if there is an
+ * imbalance that would be overruled by the load balancer.
*/
- maymove = !load_too_imbalanced(src_load, dst_load, env);
+ if (env->dst_stats.node_type == node_has_spare) {
+ unsigned int imbalance;
+ int src_running, dst_running;
+
+ /*
+ * Would movement cause an imbalance? Note that if src has
+ * more running tasks that the imbalance is ignored as the
+ * move improves the imbalance from the perspective of the
+ * CPU load balancer.
+ * */
+ src_running = env->src_stats.nr_running - 1;
+ dst_running = env->dst_stats.nr_running + 1;
+ imbalance = max(0, dst_running - src_running);
+ imbalance = adjust_numa_imbalance(imbalance, src_running);
+
+ /* Use idle CPU if there is no imbalance */
+ if (!imbalance) {
+ maymove = true;
+ if (env->dst_stats.idle_cpu >= 0) {
+ env->dst_cpu = env->dst_stats.idle_cpu;
+ task_numa_assign(env, NULL, 0);
+ return;
+ }
+ }
+ } else {
+ long src_load, dst_load, load;
+ /*
+ * If the improvement from just moving env->p direction is better
+ * than swapping tasks around, check if a move is possible.
+ */
+ load = task_h_load(env->p);
+ dst_load = env->dst_stats.load + load;
+ src_load = env->src_stats.load - load;
+ maymove = !load_too_imbalanced(src_load, dst_load, env);
+ }
for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
/* Skip this CPU if the source task cannot migrate */
@@ -1734,7 +1957,8 @@ static void task_numa_find_cpu(struct task_numa_env *env,
continue;
env->dst_cpu = cpu;
- task_numa_compare(env, taskimp, groupimp, maymove);
+ if (task_numa_compare(env, taskimp, groupimp, maymove))
+ break;
}
}
@@ -1788,10 +2012,10 @@ static int task_numa_migrate(struct task_struct *p)
dist = env.dist = node_distance(env.src_nid, env.dst_nid);
taskweight = task_weight(p, env.src_nid, dist);
groupweight = group_weight(p, env.src_nid, dist);
- update_numa_stats(&env.src_stats, env.src_nid);
+ update_numa_stats(&env, &env.src_stats, env.src_nid, false);
taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
- update_numa_stats(&env.dst_stats, env.dst_nid);
+ update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
/* Try to find a spot on the preferred nid. */
task_numa_find_cpu(&env, taskimp, groupimp);
@@ -1824,7 +2048,7 @@ static int task_numa_migrate(struct task_struct *p)
env.dist = dist;
env.dst_nid = nid;
- update_numa_stats(&env.dst_stats, env.dst_nid);
+ update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
task_numa_find_cpu(&env, taskimp, groupimp);
}
}
@@ -1848,15 +2072,17 @@ static int task_numa_migrate(struct task_struct *p)
}
/* No better CPU than the current one was found. */
- if (env.best_cpu == -1)
+ if (env.best_cpu == -1) {
+ trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
return -EAGAIN;
+ }
best_rq = cpu_rq(env.best_cpu);
if (env.best_task == NULL) {
ret = migrate_task_to(p, env.best_cpu);
WRITE_ONCE(best_rq->numa_migrate_on, 0);
if (ret != 0)
- trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
+ trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
return ret;
}
@@ -1864,7 +2090,7 @@ static int task_numa_migrate(struct task_struct *p)
WRITE_ONCE(best_rq->numa_migrate_on, 0);
if (ret != 0)
- trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
+ trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
put_task_struct(env.best_task);
return ret;
}
@@ -2573,7 +2799,7 @@ static void task_numa_work(struct callback_head *work)
* Skip inaccessible VMAs to avoid any confusion between
* PROT_NONE and NUMA hinting ptes
*/
- if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
+ if (!vma_is_accessible(vma))
continue;
do {
@@ -2835,25 +3061,6 @@ account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
#ifdef CONFIG_SMP
static inline void
-enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
- cfs_rq->runnable_weight += se->runnable_weight;
-
- cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
- cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
-}
-
-static inline void
-dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
- cfs_rq->runnable_weight -= se->runnable_weight;
-
- sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
- sub_positive(&cfs_rq->avg.runnable_load_sum,
- se_runnable(se) * se->avg.runnable_load_sum);
-}
-
-static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
cfs_rq->avg.load_avg += se->avg.load_avg;
@@ -2868,28 +3075,22 @@ dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
}
#else
static inline void
-enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
-static inline void
-dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
-static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
#endif
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
- unsigned long weight, unsigned long runnable)
+ unsigned long weight)
{
if (se->on_rq) {
/* commit outstanding execution time */
if (cfs_rq->curr == se)
update_curr(cfs_rq);
account_entity_dequeue(cfs_rq, se);
- dequeue_runnable_load_avg(cfs_rq, se);
}
dequeue_load_avg(cfs_rq, se);
- se->runnable_weight = runnable;
update_load_set(&se->load, weight);
#ifdef CONFIG_SMP
@@ -2897,16 +3098,13 @@ static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
- se->avg.runnable_load_avg =
- div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
} while (0);
#endif
enqueue_load_avg(cfs_rq, se);
- if (se->on_rq) {
+ if (se->on_rq)
account_entity_enqueue(cfs_rq, se);
- enqueue_runnable_load_avg(cfs_rq, se);
- }
+
}
void reweight_task(struct task_struct *p, int prio)
@@ -2916,7 +3114,7 @@ void reweight_task(struct task_struct *p, int prio)
struct load_weight *load = &se->load;
unsigned long weight = scale_load(sched_prio_to_weight[prio]);
- reweight_entity(cfs_rq, se, weight, weight);
+ reweight_entity(cfs_rq, se, weight);
load->inv_weight = sched_prio_to_wmult[prio];
}
@@ -3028,50 +3226,6 @@ static long calc_group_shares(struct cfs_rq *cfs_rq)
*/
return clamp_t(long, shares, MIN_SHARES, tg_shares);
}
-
-/*
- * This calculates the effective runnable weight for a group entity based on
- * the group entity weight calculated above.
- *
- * Because of the above approximation (2), our group entity weight is
- * an load_avg based ratio (3). This means that it includes blocked load and
- * does not represent the runnable weight.
- *
- * Approximate the group entity's runnable weight per ratio from the group
- * runqueue:
- *
- * grq->avg.runnable_load_avg
- * ge->runnable_weight = ge->load.weight * -------------------------- (7)
- * grq->avg.load_avg
- *
- * However, analogous to above, since the avg numbers are slow, this leads to
- * transients in the from-idle case. Instead we use:
- *
- * ge->runnable_weight = ge->load.weight *
- *
- * max(grq->avg.runnable_load_avg, grq->runnable_weight)
- * ----------------------------------------------------- (8)
- * max(grq->avg.load_avg, grq->load.weight)
- *
- * Where these max() serve both to use the 'instant' values to fix the slow
- * from-idle and avoid the /0 on to-idle, similar to (6).
- */
-static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
-{
- long runnable, load_avg;
-
- load_avg = max(cfs_rq->avg.load_avg,
- scale_load_down(cfs_rq->load.weight));
-
- runnable = max(cfs_rq->avg.runnable_load_avg,
- scale_load_down(cfs_rq->runnable_weight));
-
- runnable *= shares;
- if (load_avg)
- runnable /= load_avg;
-
- return clamp_t(long, runnable, MIN_SHARES, shares);
-}
#endif /* CONFIG_SMP */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
@@ -3083,7 +3237,7 @@ static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
static void update_cfs_group(struct sched_entity *se)
{
struct cfs_rq *gcfs_rq = group_cfs_rq(se);
- long shares, runnable;
+ long shares;
if (!gcfs_rq)
return;
@@ -3092,16 +3246,15 @@ static void update_cfs_group(struct sched_entity *se)
return;
#ifndef CONFIG_SMP
- runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
+ shares = READ_ONCE(gcfs_rq->tg->shares);
if (likely(se->load.weight == shares))
return;
#else
shares = calc_group_shares(gcfs_rq);
- runnable = calc_group_runnable(gcfs_rq, shares);
#endif
- reweight_entity(cfs_rq_of(se), se, shares, runnable);
+ reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
@@ -3226,11 +3379,11 @@ void set_task_rq_fair(struct sched_entity *se,
* _IFF_ we look at the pure running and runnable sums. Because they
* represent the very same entity, just at different points in the hierarchy.
*
- * Per the above update_tg_cfs_util() is trivial and simply copies the running
- * sum over (but still wrong, because the group entity and group rq do not have
- * their PELT windows aligned).
+ * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
+ * and simply copies the running/runnable sum over (but still wrong, because
+ * the group entity and group rq do not have their PELT windows aligned).
*
- * However, update_tg_cfs_runnable() is more complex. So we have:
+ * However, update_tg_cfs_load() is more complex. So we have:
*
* ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
*
@@ -3313,9 +3466,35 @@ update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq
static inline void
update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
{
+ long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
+
+ /* Nothing to update */
+ if (!delta)
+ return;
+
+ /*
+ * The relation between sum and avg is:
+ *
+ * LOAD_AVG_MAX - 1024 + sa->period_contrib
+ *
+ * however, the PELT windows are not aligned between grq and gse.
+ */
+
+ /* Set new sched_entity's runnable */
+ se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
+ se->avg.runnable_sum = se->avg.runnable_avg * LOAD_AVG_MAX;
+
+ /* Update parent cfs_rq runnable */
+ add_positive(&cfs_rq->avg.runnable_avg, delta);
+ cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * LOAD_AVG_MAX;
+}
+
+static inline void
+update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
+{
long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
- unsigned long runnable_load_avg, load_avg;
- u64 runnable_load_sum, load_sum = 0;
+ unsigned long load_avg;
+ u64 load_sum = 0;
s64 delta_sum;
if (!runnable_sum)
@@ -3363,20 +3542,6 @@ update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cf
se->avg.load_avg = load_avg;
add_positive(&cfs_rq->avg.load_avg, delta_avg);
add_positive(&cfs_rq->avg.load_sum, delta_sum);
-
- runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
- runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
-
- if (se->on_rq) {
- delta_sum = runnable_load_sum -
- se_weight(se) * se->avg.runnable_load_sum;
- delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
- add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
- add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
- }
-
- se->avg.runnable_load_sum = runnable_sum;
- se->avg.runnable_load_avg = runnable_load_avg;
}
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
@@ -3405,6 +3570,7 @@ static inline int propagate_entity_load_avg(struct sched_entity *se)
update_tg_cfs_util(cfs_rq, se, gcfs_rq);
update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
+ update_tg_cfs_load(cfs_rq, se, gcfs_rq);
trace_pelt_cfs_tp(cfs_rq);
trace_pelt_se_tp(se);
@@ -3474,7 +3640,7 @@ static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
{
- unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
+ unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
struct sched_avg *sa = &cfs_rq->avg;
int decayed = 0;
@@ -3485,7 +3651,7 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
raw_spin_lock(&cfs_rq->removed.lock);
swap(cfs_rq->removed.util_avg, removed_util);
swap(cfs_rq->removed.load_avg, removed_load);
- swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
+ swap(cfs_rq->removed.runnable_avg, removed_runnable);
cfs_rq->removed.nr = 0;
raw_spin_unlock(&cfs_rq->removed.lock);
@@ -3497,7 +3663,16 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
sub_positive(&sa->util_avg, r);
sub_positive(&sa->util_sum, r * divider);
- add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
+ r = removed_runnable;
+ sub_positive(&sa->runnable_avg, r);
+ sub_positive(&sa->runnable_sum, r * divider);
+
+ /*
+ * removed_runnable is the unweighted version of removed_load so we
+ * can use it to estimate removed_load_sum.
+ */
+ add_tg_cfs_propagate(cfs_rq,
+ -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
decayed = 1;
}
@@ -3542,17 +3717,19 @@ static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *s
*/
se->avg.util_sum = se->avg.util_avg * divider;
+ se->avg.runnable_sum = se->avg.runnable_avg * divider;
+
se->avg.load_sum = divider;
if (se_weight(se)) {
se->avg.load_sum =
div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
}
- se->avg.runnable_load_sum = se->avg.load_sum;
-
enqueue_load_avg(cfs_rq, se);
cfs_rq->avg.util_avg += se->avg.util_avg;
cfs_rq->avg.util_sum += se->avg.util_sum;
+ cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
+ cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
@@ -3574,6 +3751,8 @@ static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *s
dequeue_load_avg(cfs_rq, se);
sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
+ sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
+ sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
@@ -3680,13 +3859,13 @@ static void remove_entity_load_avg(struct sched_entity *se)
++cfs_rq->removed.nr;
cfs_rq->removed.util_avg += se->avg.util_avg;
cfs_rq->removed.load_avg += se->avg.load_avg;
- cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
+ cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
}
-static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
+static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
{
- return cfs_rq->avg.runnable_load_avg;
+ return cfs_rq->avg.runnable_avg;
}
static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
@@ -3957,6 +4136,7 @@ static inline void check_schedstat_required(void)
#endif
}
+static inline bool cfs_bandwidth_used(void);
/*
* MIGRATION
@@ -4021,8 +4201,8 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
* - Add its new weight to cfs_rq->load.weight
*/
update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
+ se_update_runnable(se);
update_cfs_group(se);
- enqueue_runnable_load_avg(cfs_rq, se);
account_entity_enqueue(cfs_rq, se);
if (flags & ENQUEUE_WAKEUP)
@@ -4035,10 +4215,16 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
__enqueue_entity(cfs_rq, se);
se->on_rq = 1;
- if (cfs_rq->nr_running == 1) {
+ /*
+ * When bandwidth control is enabled, cfs might have been removed
+ * because of a parent been throttled but cfs->nr_running > 1. Try to
+ * add it unconditionnally.
+ */
+ if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
list_add_leaf_cfs_rq(cfs_rq);
+
+ if (cfs_rq->nr_running == 1)
check_enqueue_throttle(cfs_rq);
- }
}
static void __clear_buddies_last(struct sched_entity *se)
@@ -4105,7 +4291,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
* of its group cfs_rq.
*/
update_load_avg(cfs_rq, se, UPDATE_TG);
- dequeue_runnable_load_avg(cfs_rq, se);
+ se_update_runnable(se);
update_stats_dequeue(cfs_rq, se, flags);
@@ -4541,8 +4727,13 @@ static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
if (!se->on_rq)
break;
- if (dequeue)
+ if (dequeue) {
dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
+ } else {
+ update_load_avg(qcfs_rq, se, 0);
+ se_update_runnable(se);
+ }
+
qcfs_rq->h_nr_running -= task_delta;
qcfs_rq->idle_h_nr_running -= idle_task_delta;
@@ -4610,8 +4801,13 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
enqueue = 0;
cfs_rq = cfs_rq_of(se);
- if (enqueue)
+ if (enqueue) {
enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
+ } else {
+ update_load_avg(cfs_rq, se, 0);
+ se_update_runnable(se);
+ }
+
cfs_rq->h_nr_running += task_delta;
cfs_rq->idle_h_nr_running += idle_task_delta;
@@ -4619,21 +4815,31 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
break;
}
- assert_list_leaf_cfs_rq(rq);
-
if (!se)
add_nr_running(rq, task_delta);
+ /*
+ * The cfs_rq_throttled() breaks in the above iteration can result in
+ * incomplete leaf list maintenance, resulting in triggering the
+ * assertion below.
+ */
+ for_each_sched_entity(se) {
+ cfs_rq = cfs_rq_of(se);
+
+ list_add_leaf_cfs_rq(cfs_rq);
+ }
+
+ assert_list_leaf_cfs_rq(rq);
+
/* Determine whether we need to wake up potentially idle CPU: */
if (rq->curr == rq->idle && rq->cfs.nr_running)
resched_curr(rq);
}
-static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining)
+static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
{
struct cfs_rq *cfs_rq;
- u64 runtime;
- u64 starting_runtime = remaining;
+ u64 runtime, remaining = 1;
rcu_read_lock();
list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
@@ -4648,10 +4854,13 @@ static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining)
/* By the above check, this should never be true */
SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
+ raw_spin_lock(&cfs_b->lock);
runtime = -cfs_rq->runtime_remaining + 1;
- if (runtime > remaining)
- runtime = remaining;
- remaining -= runtime;
+ if (runtime > cfs_b->runtime)
+ runtime = cfs_b->runtime;
+ cfs_b->runtime -= runtime;
+ remaining = cfs_b->runtime;
+ raw_spin_unlock(&cfs_b->lock);
cfs_rq->runtime_remaining += runtime;
@@ -4666,8 +4875,6 @@ next:
break;
}
rcu_read_unlock();
-
- return starting_runtime - remaining;
}
/*
@@ -4678,7 +4885,6 @@ next:
*/
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
{
- u64 runtime;
int throttled;
/* no need to continue the timer with no bandwidth constraint */
@@ -4707,24 +4913,17 @@ static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, u
cfs_b->nr_throttled += overrun;
/*
- * This check is repeated as we are holding onto the new bandwidth while
- * we unthrottle. This can potentially race with an unthrottled group
- * trying to acquire new bandwidth from the global pool. This can result
- * in us over-using our runtime if it is all used during this loop, but
- * only by limited amounts in that extreme case.
+ * This check is repeated as we release cfs_b->lock while we unthrottle.
*/
while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
- runtime = cfs_b->runtime;
cfs_b->distribute_running = 1;
raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
/* we can't nest cfs_b->lock while distributing bandwidth */
- runtime = distribute_cfs_runtime(cfs_b, runtime);
+ distribute_cfs_runtime(cfs_b);
raw_spin_lock_irqsave(&cfs_b->lock, flags);
cfs_b->distribute_running = 0;
throttled = !list_empty(&cfs_b->throttled_cfs_rq);
-
- lsub_positive(&cfs_b->runtime, runtime);
}
/*
@@ -4858,10 +5057,9 @@ static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
if (!runtime)
return;
- runtime = distribute_cfs_runtime(cfs_b, runtime);
+ distribute_cfs_runtime(cfs_b);
raw_spin_lock_irqsave(&cfs_b->lock, flags);
- lsub_positive(&cfs_b->runtime, runtime);
cfs_b->distribute_running = 0;
raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
}
@@ -5258,32 +5456,32 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
cfs_rq = cfs_rq_of(se);
enqueue_entity(cfs_rq, se, flags);
- /*
- * end evaluation on encountering a throttled cfs_rq
- *
- * note: in the case of encountering a throttled cfs_rq we will
- * post the final h_nr_running increment below.
- */
- if (cfs_rq_throttled(cfs_rq))
- break;
cfs_rq->h_nr_running++;
cfs_rq->idle_h_nr_running += idle_h_nr_running;
+ /* end evaluation on encountering a throttled cfs_rq */
+ if (cfs_rq_throttled(cfs_rq))
+ goto enqueue_throttle;
+
flags = ENQUEUE_WAKEUP;
}
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
+
+ update_load_avg(cfs_rq, se, UPDATE_TG);
+ se_update_runnable(se);
+ update_cfs_group(se);
+
cfs_rq->h_nr_running++;
cfs_rq->idle_h_nr_running += idle_h_nr_running;
+ /* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(cfs_rq))
- break;
-
- update_load_avg(cfs_rq, se, UPDATE_TG);
- update_cfs_group(se);
+ goto enqueue_throttle;
}
+enqueue_throttle:
if (!se) {
add_nr_running(rq, 1);
/*
@@ -5344,17 +5542,13 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
cfs_rq = cfs_rq_of(se);
dequeue_entity(cfs_rq, se, flags);
- /*
- * end evaluation on encountering a throttled cfs_rq
- *
- * note: in the case of encountering a throttled cfs_rq we will
- * post the final h_nr_running decrement below.
- */
- if (cfs_rq_throttled(cfs_rq))
- break;
cfs_rq->h_nr_running--;
cfs_rq->idle_h_nr_running -= idle_h_nr_running;
+ /* end evaluation on encountering a throttled cfs_rq */
+ if (cfs_rq_throttled(cfs_rq))
+ goto dequeue_throttle;
+
/* Don't dequeue parent if it has other entities besides us */
if (cfs_rq->load.weight) {
/* Avoid re-evaluating load for this entity: */
@@ -5372,16 +5566,21 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
+
+ update_load_avg(cfs_rq, se, UPDATE_TG);
+ se_update_runnable(se);
+ update_cfs_group(se);
+
cfs_rq->h_nr_running--;
cfs_rq->idle_h_nr_running -= idle_h_nr_running;
+ /* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(cfs_rq))
- break;
+ goto dequeue_throttle;
- update_load_avg(cfs_rq, se, UPDATE_TG);
- update_cfs_group(se);
}
+dequeue_throttle:
if (!se)
sub_nr_running(rq, 1);
@@ -5447,6 +5646,29 @@ static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
return load;
}
+static unsigned long cpu_runnable(struct rq *rq)
+{
+ return cfs_rq_runnable_avg(&rq->cfs);
+}
+
+static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
+{
+ struct cfs_rq *cfs_rq;
+ unsigned int runnable;
+
+ /* Task has no contribution or is new */
+ if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
+ return cpu_runnable(rq);
+
+ cfs_rq = &rq->cfs;
+ runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
+
+ /* Discount task's runnable from CPU's runnable */
+ lsub_positive(&runnable, p->se.avg.runnable_avg);
+
+ return runnable;
+}
+
static unsigned long capacity_of(int cpu)
{
return cpu_rq(cpu)->cpu_capacity;
@@ -5786,10 +6008,12 @@ static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int
bool idle = true;
for_each_cpu(cpu, cpu_smt_mask(core)) {
- __cpumask_clear_cpu(cpu, cpus);
- if (!available_idle_cpu(cpu))
+ if (!available_idle_cpu(cpu)) {
idle = false;
+ break;
+ }
}
+ cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
if (idle)
return core;
@@ -5847,8 +6071,7 @@ static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int t
struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
struct sched_domain *this_sd;
u64 avg_cost, avg_idle;
- u64 time, cost;
- s64 delta;
+ u64 time;
int this = smp_processor_id();
int cpu, nr = INT_MAX;
@@ -5886,14 +6109,46 @@ static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int t
}
time = cpu_clock(this) - time;
- cost = this_sd->avg_scan_cost;
- delta = (s64)(time - cost) / 8;
- this_sd->avg_scan_cost += delta;
+ update_avg(&this_sd->avg_scan_cost, time);
return cpu;
}
/*
+ * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
+ * the task fits. If no CPU is big enough, but there are idle ones, try to
+ * maximize capacity.
+ */
+static int
+select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
+{
+ unsigned long best_cap = 0;
+ int cpu, best_cpu = -1;
+ struct cpumask *cpus;
+
+ sync_entity_load_avg(&p->se);
+
+ cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
+ cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
+
+ for_each_cpu_wrap(cpu, cpus, target) {
+ unsigned long cpu_cap = capacity_of(cpu);
+
+ if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
+ continue;
+ if (task_fits_capacity(p, cpu_cap))
+ return cpu;
+
+ if (cpu_cap > best_cap) {
+ best_cap = cpu_cap;
+ best_cpu = cpu;
+ }
+ }
+
+ return best_cpu;
+}
+
+/*
* Try and locate an idle core/thread in the LLC cache domain.
*/
static int select_idle_sibling(struct task_struct *p, int prev, int target)
@@ -5901,6 +6156,28 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target)
struct sched_domain *sd;
int i, recent_used_cpu;
+ /*
+ * For asymmetric CPU capacity systems, our domain of interest is
+ * sd_asym_cpucapacity rather than sd_llc.
+ */
+ if (static_branch_unlikely(&sched_asym_cpucapacity)) {
+ sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
+ /*
+ * On an asymmetric CPU capacity system where an exclusive
+ * cpuset defines a symmetric island (i.e. one unique
+ * capacity_orig value through the cpuset), the key will be set
+ * but the CPUs within that cpuset will not have a domain with
+ * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
+ * capacity path.
+ */
+ if (!sd)
+ goto symmetric;
+
+ i = select_idle_capacity(p, sd, target);
+ return ((unsigned)i < nr_cpumask_bits) ? i : target;
+ }
+
+symmetric:
if (available_idle_cpu(target) || sched_idle_cpu(target))
return target;
@@ -6101,33 +6378,6 @@ static unsigned long cpu_util_without(int cpu, struct task_struct *p)
}
/*
- * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
- * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
- *
- * In that case WAKE_AFFINE doesn't make sense and we'll let
- * BALANCE_WAKE sort things out.
- */
-static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
-{
- long min_cap, max_cap;
-
- if (!static_branch_unlikely(&sched_asym_cpucapacity))
- return 0;
-
- min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
- max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
-
- /* Minimum capacity is close to max, no need to abort wake_affine */
- if (max_cap - min_cap < max_cap >> 3)
- return 0;
-
- /* Bring task utilization in sync with prev_cpu */
- sync_entity_load_avg(&p->se);
-
- return !task_fits_capacity(p, min_cap);
-}
-
-/*
* Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
* to @dst_cpu.
*/
@@ -6391,8 +6641,7 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
new_cpu = prev_cpu;
}
- want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
- cpumask_test_cpu(cpu, p->cpus_ptr);
+ want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
}
rcu_read_lock();
@@ -7506,6 +7755,9 @@ static inline bool others_have_blocked(struct rq *rq)
if (READ_ONCE(rq->avg_dl.util_avg))
return true;
+ if (thermal_load_avg(rq))
+ return true;
+
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
if (READ_ONCE(rq->avg_irq.util_avg))
return true;
@@ -7531,6 +7783,7 @@ static bool __update_blocked_others(struct rq *rq, bool *done)
{
const struct sched_class *curr_class;
u64 now = rq_clock_pelt(rq);
+ unsigned long thermal_pressure;
bool decayed;
/*
@@ -7539,8 +7792,11 @@ static bool __update_blocked_others(struct rq *rq, bool *done)
*/
curr_class = rq->curr->sched_class;
+ thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
+
decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
+ update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
update_irq_load_avg(rq, 0);
if (others_have_blocked(rq))
@@ -7562,7 +7818,7 @@ static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
if (cfs_rq->avg.util_sum)
return false;
- if (cfs_rq->avg.runnable_load_sum)
+ if (cfs_rq->avg.runnable_sum)
return false;
return true;
@@ -7700,7 +7956,8 @@ struct sg_lb_stats {
unsigned long avg_load; /*Avg load across the CPUs of the group */
unsigned long group_load; /* Total load over the CPUs of the group */
unsigned long group_capacity;
- unsigned long group_util; /* Total utilization of the group */
+ unsigned long group_util; /* Total utilization over the CPUs of the group */
+ unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
unsigned int sum_nr_running; /* Nr of tasks running in the group */
unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
unsigned int idle_cpus;
@@ -7763,8 +8020,15 @@ static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
if (unlikely(irq >= max))
return 1;
+ /*
+ * avg_rt.util_avg and avg_dl.util_avg track binary signals
+ * (running and not running) with weights 0 and 1024 respectively.
+ * avg_thermal.load_avg tracks thermal pressure and the weighted
+ * average uses the actual delta max capacity(load).
+ */
used = READ_ONCE(rq->avg_rt.util_avg);
used += READ_ONCE(rq->avg_dl.util_avg);
+ used += thermal_load_avg(rq);
if (unlikely(used >= max))
return 1;
@@ -7921,6 +8185,10 @@ group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
if (sgs->sum_nr_running < sgs->group_weight)
return true;
+ if ((sgs->group_capacity * imbalance_pct) <
+ (sgs->group_runnable * 100))
+ return false;
+
if ((sgs->group_capacity * 100) >
(sgs->group_util * imbalance_pct))
return true;
@@ -7946,6 +8214,10 @@ group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
(sgs->group_util * imbalance_pct))
return true;
+ if ((sgs->group_capacity * imbalance_pct) <
+ (sgs->group_runnable * 100))
+ return true;
+
return false;
}
@@ -8040,6 +8312,7 @@ static inline void update_sg_lb_stats(struct lb_env *env,
sgs->group_load += cpu_load(rq);
sgs->group_util += cpu_util(i);
+ sgs->group_runnable += cpu_runnable(rq);
sgs->sum_h_nr_running += rq->cfs.h_nr_running;
nr_running = rq->nr_running;
@@ -8315,6 +8588,7 @@ static inline void update_sg_wakeup_stats(struct sched_domain *sd,
sgs->group_load += cpu_load_without(rq, p);
sgs->group_util += cpu_util_without(i, p);
+ sgs->group_runnable += cpu_runnable_without(rq, p);
local = task_running_on_cpu(i, p);
sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
@@ -8345,7 +8619,8 @@ static inline void update_sg_wakeup_stats(struct sched_domain *sd,
* Computing avg_load makes sense only when group is fully busy or
* overloaded
*/
- if (sgs->group_type < group_fully_busy)
+ if (sgs->group_type == group_fully_busy ||
+ sgs->group_type == group_overloaded)
sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
sgs->group_capacity;
}
@@ -8628,6 +8903,21 @@ next_group:
}
}
+static inline long adjust_numa_imbalance(int imbalance, int src_nr_running)
+{
+ unsigned int imbalance_min;
+
+ /*
+ * Allow a small imbalance based on a simple pair of communicating
+ * tasks that remain local when the source domain is almost idle.
+ */
+ imbalance_min = 2;
+ if (src_nr_running <= imbalance_min)
+ return 0;
+
+ return imbalance;
+}
+
/**
* calculate_imbalance - Calculate the amount of imbalance present within the
* groups of a given sched_domain during load balance.
@@ -8724,24 +9014,9 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
}
/* Consider allowing a small imbalance between NUMA groups */
- if (env->sd->flags & SD_NUMA) {
- unsigned int imbalance_min;
-
- /*
- * Compute an allowed imbalance based on a simple
- * pair of communicating tasks that should remain
- * local and ignore them.
- *
- * NOTE: Generally this would have been based on
- * the domain size and this was evaluated. However,
- * the benefit is similar across a range of workloads
- * and machines but scaling by the domain size adds
- * the risk that lower domains have to be rebalanced.
- */
- imbalance_min = 2;
- if (busiest->sum_nr_running <= imbalance_min)
- env->imbalance = 0;
- }
+ if (env->sd->flags & SD_NUMA)
+ env->imbalance = adjust_numa_imbalance(env->imbalance,
+ busiest->sum_nr_running);
return;
}
@@ -8761,6 +9036,14 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
sds->total_capacity;
+ /*
+ * If the local group is more loaded than the selected
+ * busiest group don't try to pull any tasks.
+ */
+ if (local->avg_load >= busiest->avg_load) {
+ env->imbalance = 0;
+ return;
+ }
}
/*
@@ -9027,6 +9310,14 @@ static struct rq *find_busiest_queue(struct lb_env *env,
case migrate_util:
util = cpu_util(cpu_of(rq));
+ /*
+ * Don't try to pull utilization from a CPU with one
+ * running task. Whatever its utilization, we will fail
+ * detach the task.
+ */
+ if (nr_running <= 1)
+ continue;
+
if (busiest_util < util) {
busiest_util = util;
busiest = rq;