diff options
Diffstat (limited to 'kernel/sched/fair.c')
-rw-r--r-- | kernel/sched/fair.c | 5622 |
1 files changed, 5622 insertions, 0 deletions
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c new file mode 100644 index 000000000000..aca16b843b7e --- /dev/null +++ b/kernel/sched/fair.c @@ -0,0 +1,5622 @@ +/* + * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) + * + * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> + * + * Interactivity improvements by Mike Galbraith + * (C) 2007 Mike Galbraith <efault@gmx.de> + * + * Various enhancements by Dmitry Adamushko. + * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> + * + * Group scheduling enhancements by Srivatsa Vaddagiri + * Copyright IBM Corporation, 2007 + * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> + * + * Scaled math optimizations by Thomas Gleixner + * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> + * + * Adaptive scheduling granularity, math enhancements by Peter Zijlstra + * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> + */ + +#include <linux/latencytop.h> +#include <linux/sched.h> +#include <linux/cpumask.h> +#include <linux/slab.h> +#include <linux/profile.h> +#include <linux/interrupt.h> + +#include <trace/events/sched.h> + +#include "sched.h" + +/* + * Targeted preemption latency for CPU-bound tasks: + * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) + * + * NOTE: this latency value is not the same as the concept of + * 'timeslice length' - timeslices in CFS are of variable length + * and have no persistent notion like in traditional, time-slice + * based scheduling concepts. + * + * (to see the precise effective timeslice length of your workload, + * run vmstat and monitor the context-switches (cs) field) + */ +unsigned int sysctl_sched_latency = 6000000ULL; +unsigned int normalized_sysctl_sched_latency = 6000000ULL; + +/* + * The initial- and re-scaling of tunables is configurable + * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) + * + * Options are: + * SCHED_TUNABLESCALING_NONE - unscaled, always *1 + * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) + * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus + */ +enum sched_tunable_scaling sysctl_sched_tunable_scaling + = SCHED_TUNABLESCALING_LOG; + +/* + * Minimal preemption granularity for CPU-bound tasks: + * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) + */ +unsigned int sysctl_sched_min_granularity = 750000ULL; +unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; + +/* + * is kept at sysctl_sched_latency / sysctl_sched_min_granularity + */ +static unsigned int sched_nr_latency = 8; + +/* + * After fork, child runs first. If set to 0 (default) then + * parent will (try to) run first. + */ +unsigned int sysctl_sched_child_runs_first __read_mostly; + +/* + * SCHED_OTHER wake-up granularity. + * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) + * + * This option delays the preemption effects of decoupled workloads + * and reduces their over-scheduling. Synchronous workloads will still + * have immediate wakeup/sleep latencies. + */ +unsigned int sysctl_sched_wakeup_granularity = 1000000UL; +unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; + +const_debug unsigned int sysctl_sched_migration_cost = 500000UL; + +/* + * The exponential sliding window over which load is averaged for shares + * distribution. + * (default: 10msec) + */ +unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; + +#ifdef CONFIG_CFS_BANDWIDTH +/* + * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool + * each time a cfs_rq requests quota. + * + * Note: in the case that the slice exceeds the runtime remaining (either due + * to consumption or the quota being specified to be smaller than the slice) + * we will always only issue the remaining available time. + * + * default: 5 msec, units: microseconds + */ +unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; +#endif + +/* + * Increase the granularity value when there are more CPUs, + * because with more CPUs the 'effective latency' as visible + * to users decreases. But the relationship is not linear, + * so pick a second-best guess by going with the log2 of the + * number of CPUs. + * + * This idea comes from the SD scheduler of Con Kolivas: + */ +static int get_update_sysctl_factor(void) +{ + unsigned int cpus = min_t(int, num_online_cpus(), 8); + unsigned int factor; + + switch (sysctl_sched_tunable_scaling) { + case SCHED_TUNABLESCALING_NONE: + factor = 1; + break; + case SCHED_TUNABLESCALING_LINEAR: + factor = cpus; + break; + case SCHED_TUNABLESCALING_LOG: + default: + factor = 1 + ilog2(cpus); + break; + } + + return factor; +} + +static void update_sysctl(void) +{ + unsigned int factor = get_update_sysctl_factor(); + +#define SET_SYSCTL(name) \ + (sysctl_##name = (factor) * normalized_sysctl_##name) + SET_SYSCTL(sched_min_granularity); + SET_SYSCTL(sched_latency); + SET_SYSCTL(sched_wakeup_granularity); +#undef SET_SYSCTL +} + +void sched_init_granularity(void) +{ + update_sysctl(); +} + +#if BITS_PER_LONG == 32 +# define WMULT_CONST (~0UL) +#else +# define WMULT_CONST (1UL << 32) +#endif + +#define WMULT_SHIFT 32 + +/* + * Shift right and round: + */ +#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) + +/* + * delta *= weight / lw + */ +static unsigned long +calc_delta_mine(unsigned long delta_exec, unsigned long weight, + struct load_weight *lw) +{ + u64 tmp; + + /* + * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched + * entities since MIN_SHARES = 2. Treat weight as 1 if less than + * 2^SCHED_LOAD_RESOLUTION. + */ + if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION))) + tmp = (u64)delta_exec * scale_load_down(weight); + else + tmp = (u64)delta_exec; + + if (!lw->inv_weight) { + unsigned long w = scale_load_down(lw->weight); + + if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) + lw->inv_weight = 1; + else if (unlikely(!w)) + lw->inv_weight = WMULT_CONST; + else + lw->inv_weight = WMULT_CONST / w; + } + + /* + * Check whether we'd overflow the 64-bit multiplication: + */ + if (unlikely(tmp > WMULT_CONST)) + tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, + WMULT_SHIFT/2); + else + tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); + + return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); +} + + +const struct sched_class fair_sched_class; + +/************************************************************** + * CFS operations on generic schedulable entities: + */ + +#ifdef CONFIG_FAIR_GROUP_SCHED + +/* cpu runqueue to which this cfs_rq is attached */ +static inline struct rq *rq_of(struct cfs_rq *cfs_rq) +{ + return cfs_rq->rq; +} + +/* An entity is a task if it doesn't "own" a runqueue */ +#define entity_is_task(se) (!se->my_q) + +static inline struct task_struct *task_of(struct sched_entity *se) +{ +#ifdef CONFIG_SCHED_DEBUG + WARN_ON_ONCE(!entity_is_task(se)); +#endif + return container_of(se, struct task_struct, se); +} + +/* Walk up scheduling entities hierarchy */ +#define for_each_sched_entity(se) \ + for (; se; se = se->parent) + +static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) +{ + return p->se.cfs_rq; +} + +/* runqueue on which this entity is (to be) queued */ +static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) +{ + return se->cfs_rq; +} + +/* runqueue "owned" by this group */ +static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) +{ + return grp->my_q; +} + +static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) +{ + if (!cfs_rq->on_list) { + /* + * Ensure we either appear before our parent (if already + * enqueued) or force our parent to appear after us when it is + * enqueued. The fact that we always enqueue bottom-up + * reduces this to two cases. + */ + if (cfs_rq->tg->parent && + cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { + list_add_rcu(&cfs_rq->leaf_cfs_rq_list, + &rq_of(cfs_rq)->leaf_cfs_rq_list); + } else { + list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, + &rq_of(cfs_rq)->leaf_cfs_rq_list); + } + + cfs_rq->on_list = 1; + } +} + +static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) +{ + if (cfs_rq->on_list) { + list_del_rcu(&cfs_rq->leaf_cfs_rq_list); + cfs_rq->on_list = 0; + } +} + +/* Iterate thr' all leaf cfs_rq's on a runqueue */ +#define for_each_leaf_cfs_rq(rq, cfs_rq) \ + list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) + +/* Do the two (enqueued) entities belong to the same group ? */ +static inline int +is_same_group(struct sched_entity *se, struct sched_entity *pse) +{ + if (se->cfs_rq == pse->cfs_rq) + return 1; + + return 0; +} + +static inline struct sched_entity *parent_entity(struct sched_entity *se) +{ + return se->parent; +} + +/* return depth at which a sched entity is present in the hierarchy */ +static inline int depth_se(struct sched_entity *se) +{ + int depth = 0; + + for_each_sched_entity(se) + depth++; + + return depth; +} + +static void +find_matching_se(struct sched_entity **se, struct sched_entity **pse) +{ + int se_depth, pse_depth; + + /* + * preemption test can be made between sibling entities who are in the + * same cfs_rq i.e who have a common parent. Walk up the hierarchy of + * both tasks until we find their ancestors who are siblings of common + * parent. + */ + + /* First walk up until both entities are at same depth */ + se_depth = depth_se(*se); + pse_depth = depth_se(*pse); + + while (se_depth > pse_depth) { + se_depth--; + *se = parent_entity(*se); + } + + while (pse_depth > se_depth) { + pse_depth--; + *pse = parent_entity(*pse); + } + + while (!is_same_group(*se, *pse)) { + *se = parent_entity(*se); + *pse = parent_entity(*pse); + } +} + +#else /* !CONFIG_FAIR_GROUP_SCHED */ + +static inline struct task_struct *task_of(struct sched_entity *se) +{ + return container_of(se, struct task_struct, se); +} + +static inline struct rq *rq_of(struct cfs_rq *cfs_rq) +{ + return container_of(cfs_rq, struct rq, cfs); +} + +#define entity_is_task(se) 1 + +#define for_each_sched_entity(se) \ + for (; se; se = NULL) + +static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) +{ + return &task_rq(p)->cfs; +} + +static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) +{ + struct task_struct *p = task_of(se); + struct rq *rq = task_rq(p); + + return &rq->cfs; +} + +/* runqueue "owned" by this group */ +static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) +{ + return NULL; +} + +static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) +{ +} + +static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) +{ +} + +#define for_each_leaf_cfs_rq(rq, cfs_rq) \ + for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) + +static inline int +is_same_group(struct sched_entity *se, struct sched_entity *pse) +{ + return 1; +} + +static inline struct sched_entity *parent_entity(struct sched_entity *se) +{ + return NULL; +} + +static inline void +find_matching_se(struct sched_entity **se, struct sched_entity **pse) +{ +} + +#endif /* CONFIG_FAIR_GROUP_SCHED */ + +static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, + unsigned long delta_exec); + +/************************************************************** + * Scheduling class tree data structure manipulation methods: + */ + +static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime) +{ + s64 delta = (s64)(vruntime - min_vruntime); + if (delta > 0) + min_vruntime = vruntime; + + return min_vruntime; +} + +static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) +{ + s64 delta = (s64)(vruntime - min_vruntime); + if (delta < 0) + min_vruntime = vruntime; + + return min_vruntime; +} + +static inline int entity_before(struct sched_entity *a, + struct sched_entity *b) +{ + return (s64)(a->vruntime - b->vruntime) < 0; +} + +static void update_min_vruntime(struct cfs_rq *cfs_rq) +{ + u64 vruntime = cfs_rq->min_vruntime; + + if (cfs_rq->curr) + vruntime = cfs_rq->curr->vruntime; + + if (cfs_rq->rb_leftmost) { + struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, + struct sched_entity, + run_node); + + if (!cfs_rq->curr) + vruntime = se->vruntime; + else + vruntime = min_vruntime(vruntime, se->vruntime); + } + + cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); +#ifndef CONFIG_64BIT + smp_wmb(); + cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; +#endif +} + +/* + * Enqueue an entity into the rb-tree: + */ +static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; + struct rb_node *parent = NULL; + struct sched_entity *entry; + int leftmost = 1; + + /* + * Find the right place in the rbtree: + */ + while (*link) { + parent = *link; + entry = rb_entry(parent, struct sched_entity, run_node); + /* + * We dont care about collisions. Nodes with + * the same key stay together. + */ + if (entity_before(se, entry)) { + link = &parent->rb_left; + } else { + link = &parent->rb_right; + leftmost = 0; + } + } + + /* + * Maintain a cache of leftmost tree entries (it is frequently + * used): + */ + if (leftmost) + cfs_rq->rb_leftmost = &se->run_node; + + rb_link_node(&se->run_node, parent, link); + rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); +} + +static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + if (cfs_rq->rb_leftmost == &se->run_node) { + struct rb_node *next_node; + + next_node = rb_next(&se->run_node); + cfs_rq->rb_leftmost = next_node; + } + + rb_erase(&se->run_node, &cfs_rq->tasks_timeline); +} + +struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) +{ + struct rb_node *left = cfs_rq->rb_leftmost; + + if (!left) + return NULL; + + return rb_entry(left, struct sched_entity, run_node); +} + +static struct sched_entity *__pick_next_entity(struct sched_entity *se) +{ + struct rb_node *next = rb_next(&se->run_node); + + if (!next) + return NULL; + + return rb_entry(next, struct sched_entity, run_node); +} + +#ifdef CONFIG_SCHED_DEBUG +struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) +{ + struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); + + if (!last) + return NULL; + + return rb_entry(last, struct sched_entity, run_node); +} + +/************************************************************** + * Scheduling class statistics methods: + */ + +int sched_proc_update_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *lenp, + loff_t *ppos) +{ + int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); + int factor = get_update_sysctl_factor(); + + if (ret || !write) + return ret; + + sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, + sysctl_sched_min_granularity); + +#define WRT_SYSCTL(name) \ + (normalized_sysctl_##name = sysctl_##name / (factor)) + WRT_SYSCTL(sched_min_granularity); + WRT_SYSCTL(sched_latency); + WRT_SYSCTL(sched_wakeup_granularity); +#undef WRT_SYSCTL + + return 0; +} +#endif + +/* + * delta /= w + */ +static inline unsigned long +calc_delta_fair(unsigned long delta, struct sched_entity *se) +{ + if (unlikely(se->load.weight != NICE_0_LOAD)) + delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); + + return delta; +} + +/* + * The idea is to set a period in which each task runs once. + * + * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch + * this period because otherwise the slices get too small. + * + * p = (nr <= nl) ? l : l*nr/nl + */ +static u64 __sched_period(unsigned long nr_running) +{ + u64 period = sysctl_sched_latency; + unsigned long nr_latency = sched_nr_latency; + + if (unlikely(nr_running > nr_latency)) { + period = sysctl_sched_min_granularity; + period *= nr_running; + } + + return period; +} + +/* + * We calculate the wall-time slice from the period by taking a part + * proportional to the weight. + * + * s = p*P[w/rw] + */ +static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); + + for_each_sched_entity(se) { + struct load_weight *load; + struct load_weight lw; + + cfs_rq = cfs_rq_of(se); + load = &cfs_rq->load; + + if (unlikely(!se->on_rq)) { + lw = cfs_rq->load; + + update_load_add(&lw, se->load.weight); + load = &lw; + } + slice = calc_delta_mine(slice, se->load.weight, load); + } + return slice; +} + +/* + * We calculate the vruntime slice of a to be inserted task + * + * vs = s/w + */ +static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + return calc_delta_fair(sched_slice(cfs_rq, se), se); +} + +static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update); +static void update_cfs_shares(struct cfs_rq *cfs_rq); + +/* + * Update the current task's runtime statistics. Skip current tasks that + * are not in our scheduling class. + */ +static inline void +__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, + unsigned long delta_exec) +{ + unsigned long delta_exec_weighted; + + schedstat_set(curr->statistics.exec_max, + max((u64)delta_exec, curr->statistics.exec_max)); + + curr->sum_exec_runtime += delta_exec; + schedstat_add(cfs_rq, exec_clock, delta_exec); + delta_exec_weighted = calc_delta_fair(delta_exec, curr); + + curr->vruntime += delta_exec_weighted; + update_min_vruntime(cfs_rq); + +#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED + cfs_rq->load_unacc_exec_time += delta_exec; +#endif +} + +static void update_curr(struct cfs_rq *cfs_rq) +{ + struct sched_entity *curr = cfs_rq->curr; + u64 now = rq_of(cfs_rq)->clock_task; + unsigned long delta_exec; + + if (unlikely(!curr)) + return; + + /* + * Get the amount of time the current task was running + * since the last time we changed load (this cannot + * overflow on 32 bits): + */ + delta_exec = (unsigned long)(now - curr->exec_start); + if (!delta_exec) + return; + + __update_curr(cfs_rq, curr, delta_exec); + curr->exec_start = now; + + if (entity_is_task(curr)) { + struct task_struct *curtask = task_of(curr); + + trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); + cpuacct_charge(curtask, delta_exec); + account_group_exec_runtime(curtask, delta_exec); + } + + account_cfs_rq_runtime(cfs_rq, delta_exec); +} + +static inline void +update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock); +} + +/* + * Task is being enqueued - update stats: + */ +static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + /* + * Are we enqueueing a waiting task? (for current tasks + * a dequeue/enqueue event is a NOP) + */ + if (se != cfs_rq->curr) + update_stats_wait_start(cfs_rq, se); +} + +static void +update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, + rq_of(cfs_rq)->clock - se->statistics.wait_start)); + schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); + schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + + rq_of(cfs_rq)->clock - se->statistics.wait_start); +#ifdef CONFIG_SCHEDSTATS + if (entity_is_task(se)) { + trace_sched_stat_wait(task_of(se), + rq_of(cfs_rq)->clock - se->statistics.wait_start); + } +#endif + schedstat_set(se->statistics.wait_start, 0); +} + +static inline void +update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + /* + * Mark the end of the wait period if dequeueing a + * waiting task: + */ + if (se != cfs_rq->curr) + update_stats_wait_end(cfs_rq, se); +} + +/* + * We are picking a new current task - update its stats: + */ +static inline void +update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + /* + * We are starting a new run period: + */ + se->exec_start = rq_of(cfs_rq)->clock_task; +} + +/************************************************** + * Scheduling class queueing methods: + */ + +#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED +static void +add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) +{ + cfs_rq->task_weight += weight; +} +#else +static inline void +add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) +{ +} +#endif + +static void +account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + update_load_add(&cfs_rq->load, se->load.weight); + if (!parent_entity(se)) + update_load_add(&rq_of(cfs_rq)->load, se->load.weight); + if (entity_is_task(se)) { + add_cfs_task_weight(cfs_rq, se->load.weight); + list_add(&se->group_node, &cfs_rq->tasks); + } + cfs_rq->nr_running++; +} + +static void +account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + update_load_sub(&cfs_rq->load, se->load.weight); + if (!parent_entity(se)) + update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); + if (entity_is_task(se)) { + add_cfs_task_weight(cfs_rq, -se->load.weight); + list_del_init(&se->group_node); + } + cfs_rq->nr_running--; +} + +#ifdef CONFIG_FAIR_GROUP_SCHED +/* we need this in update_cfs_load and load-balance functions below */ +static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); +# ifdef CONFIG_SMP +static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq, + int global_update) +{ + struct task_group *tg = cfs_rq->tg; + long load_avg; + + load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1); + load_avg -= cfs_rq->load_contribution; + + if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) { + atomic_add(load_avg, &tg->load_weight); + cfs_rq->load_contribution += load_avg; + } +} + +static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) +{ + u64 period = sysctl_sched_shares_window; + u64 now, delta; + unsigned long load = cfs_rq->load.weight; + + if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq)) + return; + + now = rq_of(cfs_rq)->clock_task; + delta = now - cfs_rq->load_stamp; + + /* truncate load history at 4 idle periods */ + if (cfs_rq->load_stamp > cfs_rq->load_last && + now - cfs_rq->load_last > 4 * period) { + cfs_rq->load_period = 0; + cfs_rq->load_avg = 0; + delta = period - 1; + } + + cfs_rq->load_stamp = now; + cfs_rq->load_unacc_exec_time = 0; + cfs_rq->load_period += delta; + if (load) { + cfs_rq->load_last = now; + cfs_rq->load_avg += delta * load; + } + + /* consider updating load contribution on each fold or truncate */ + if (global_update || cfs_rq->load_period > period + || !cfs_rq->load_period) + update_cfs_rq_load_contribution(cfs_rq, global_update); + + while (cfs_rq->load_period > period) { + /* + * Inline assembly required to prevent the compiler + * optimising this loop into a divmod call. + * See __iter_div_u64_rem() for another example of this. + */ + asm("" : "+rm" (cfs_rq->load_period)); + cfs_rq->load_period /= 2; + cfs_rq->load_avg /= 2; + } + + if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg) + list_del_leaf_cfs_rq(cfs_rq); +} + +static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) +{ + long tg_weight; + + /* + * Use this CPU's actual weight instead of the last load_contribution + * to gain a more accurate current total weight. See + * update_cfs_rq_load_contribution(). + */ + tg_weight = atomic_read(&tg->load_weight); + tg_weight -= cfs_rq->load_contribution; + tg_weight += cfs_rq->load.weight; + + return tg_weight; +} + +static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) +{ + long tg_weight, load, shares; + + tg_weight = calc_tg_weight(tg, cfs_rq); + load = cfs_rq->load.weight; + + shares = (tg->shares * load); + if (tg_weight) + shares /= tg_weight; + + if (shares < MIN_SHARES) + shares = MIN_SHARES; + if (shares > tg->shares) + shares = tg->shares; + + return shares; +} + +static void update_entity_shares_tick(struct cfs_rq *cfs_rq) +{ + if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) { + update_cfs_load(cfs_rq, 0); + update_cfs_shares(cfs_rq); + } +} +# else /* CONFIG_SMP */ +static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) +{ +} + +static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) +{ + return tg->shares; +} + +static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) +{ +} +# endif /* CONFIG_SMP */ +static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, + unsigned long weight) +{ + if (se->on_rq) { + /* commit outstanding execution time */ + if (cfs_rq->curr == se) + update_curr(cfs_rq); + account_entity_dequeue(cfs_rq, se); + } + + update_load_set(&se->load, weight); + + if (se->on_rq) + account_entity_enqueue(cfs_rq, se); +} + +static void update_cfs_shares(struct cfs_rq *cfs_rq) +{ + struct task_group *tg; + struct sched_entity *se; + long shares; + + tg = cfs_rq->tg; + se = tg->se[cpu_of(rq_of(cfs_rq))]; + if (!se || throttled_hierarchy(cfs_rq)) + return; +#ifndef CONFIG_SMP + if (likely(se->load.weight == tg->shares)) + return; +#endif + shares = calc_cfs_shares(cfs_rq, tg); + + reweight_entity(cfs_rq_of(se), se, shares); +} +#else /* CONFIG_FAIR_GROUP_SCHED */ +static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) +{ +} + +static inline void update_cfs_shares(struct cfs_rq *cfs_rq) +{ +} + +static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) +{ +} +#endif /* CONFIG_FAIR_GROUP_SCHED */ + +static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +#ifdef CONFIG_SCHEDSTATS + struct task_struct *tsk = NULL; + + if (entity_is_task(se)) + tsk = task_of(se); + + if (se->statistics.sleep_start) { + u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start; + + if ((s64)delta < 0) + delta = 0; + + if (unlikely(delta > se->statistics.sleep_max)) + se->statistics.sleep_max = delta; + + se->statistics.sleep_start = 0; + se->statistics.sum_sleep_runtime += delta; + + if (tsk) { + account_scheduler_latency(tsk, delta >> 10, 1); + trace_sched_stat_sleep(tsk, delta); + } + } + if (se->statistics.block_start) { + u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start; + + if ((s64)delta < 0) + delta = 0; + + if (unlikely(delta > se->statistics.block_max)) + se->statistics.block_max = delta; + + se->statistics.block_start = 0; + se->statistics.sum_sleep_runtime += delta; + + if (tsk) { + if (tsk->in_iowait) { + se->statistics.iowait_sum += delta; + se->statistics.iowait_count++; + trace_sched_stat_iowait(tsk, delta); + } + + trace_sched_stat_blocked(tsk, delta); + + /* + * Blocking time is in units of nanosecs, so shift by + * 20 to get a milliseconds-range estimation of the + * amount of time that the task spent sleeping: + */ + if (unlikely(prof_on == SLEEP_PROFILING)) { + profile_hits(SLEEP_PROFILING, + (void *)get_wchan(tsk), + delta >> 20); + } + account_scheduler_latency(tsk, delta >> 10, 0); + } + } +#endif +} + +static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +#ifdef CONFIG_SCHED_DEBUG + s64 d = se->vruntime - cfs_rq->min_vruntime; + + if (d < 0) + d = -d; + + if (d > 3*sysctl_sched_latency) + schedstat_inc(cfs_rq, nr_spread_over); +#endif +} + +static void +place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) +{ + u64 vruntime = cfs_rq->min_vruntime; + + /* + * The 'current' period is already promised to the current tasks, + * however the extra weight of the new task will slow them down a + * little, place the new task so that it fits in the slot that + * stays open at the end. + */ + if (initial && sched_feat(START_DEBIT)) + vruntime += sched_vslice(cfs_rq, se); + + /* sleeps up to a single latency don't count. */ + if (!initial) { + unsigned long thresh = sysctl_sched_latency; + + /* + * Halve their sleep time's effect, to allow + * for a gentler effect of sleepers: + */ + if (sched_feat(GENTLE_FAIR_SLEEPERS)) + thresh >>= 1; + + vruntime -= thresh; + } + + /* ensure we never gain time by being placed backwards. */ + vruntime = max_vruntime(se->vruntime, vruntime); + + se->vruntime = vruntime; +} + +static void check_enqueue_throttle(struct cfs_rq *cfs_rq); + +static void +enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) +{ + /* + * Update the normalized vruntime before updating min_vruntime + * through callig update_curr(). + */ + if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) + se->vruntime += cfs_rq->min_vruntime; + + /* + * Update run-time statistics of the 'current'. + */ + update_curr(cfs_rq); + update_cfs_load(cfs_rq, 0); + account_entity_enqueue(cfs_rq, se); + update_cfs_shares(cfs_rq); + + if (flags & ENQUEUE_WAKEUP) { + place_entity(cfs_rq, se, 0); + enqueue_sleeper(cfs_rq, se); + } + + update_stats_enqueue(cfs_rq, se); + check_spread(cfs_rq, se); + if (se != cfs_rq->curr) + __enqueue_entity(cfs_rq, se); + se->on_rq = 1; + + if (cfs_rq->nr_running == 1) { + list_add_leaf_cfs_rq(cfs_rq); + check_enqueue_throttle(cfs_rq); + } +} + +static void __clear_buddies_last(struct sched_entity *se) +{ + for_each_sched_entity(se) { + struct cfs_rq *cfs_rq = cfs_rq_of(se); + if (cfs_rq->last == se) + cfs_rq->last = NULL; + else + break; + } +} + +static void __clear_buddies_next(struct sched_entity *se) +{ + for_each_sched_entity(se) { + struct cfs_rq *cfs_rq = cfs_rq_of(se); + if (cfs_rq->next == se) + cfs_rq->next = NULL; + else + break; + } +} + +static void __clear_buddies_skip(struct sched_entity *se) +{ + for_each_sched_entity(se) { + struct cfs_rq *cfs_rq = cfs_rq_of(se); + if (cfs_rq->skip == se) + cfs_rq->skip = NULL; + else + break; + } +} + +static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + if (cfs_rq->last == se) + __clear_buddies_last(se); + + if (cfs_rq->next == se) + __clear_buddies_next(se); + + if (cfs_rq->skip == se) + __clear_buddies_skip(se); +} + +static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); + +static void +dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) +{ + /* + * Update run-time statistics of the 'current'. + */ + update_curr(cfs_rq); + + update_stats_dequeue(cfs_rq, se); + if (flags & DEQUEUE_SLEEP) { +#ifdef CONFIG_SCHEDSTATS + if (entity_is_task(se)) { + struct task_struct *tsk = task_of(se); + + if (tsk->state & TASK_INTERRUPTIBLE) + se->statistics.sleep_start = rq_of(cfs_rq)->clock; + if (tsk->state & TASK_UNINTERRUPTIBLE) + se->statistics.block_start = rq_of(cfs_rq)->clock; + } +#endif + } + + clear_buddies(cfs_rq, se); + + if (se != cfs_rq->curr) + __dequeue_entity(cfs_rq, se); + se->on_rq = 0; + update_cfs_load(cfs_rq, 0); + account_entity_dequeue(cfs_rq, se); + + /* + * Normalize the entity after updating the min_vruntime because the + * update can refer to the ->curr item and we need to reflect this + * movement in our normalized position. + */ + if (!(flags & DEQUEUE_SLEEP)) + se->vruntime -= cfs_rq->min_vruntime; + + /* return excess runtime on last dequeue */ + return_cfs_rq_runtime(cfs_rq); + + update_min_vruntime(cfs_rq); + update_cfs_shares(cfs_rq); +} + +/* + * Preempt the current task with a newly woken task if needed: + */ +static void +check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) +{ + unsigned long ideal_runtime, delta_exec; + struct sched_entity *se; + s64 delta; + + ideal_runtime = sched_slice(cfs_rq, curr); + delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; + if (delta_exec > ideal_runtime) { + resched_task(rq_of(cfs_rq)->curr); + /* + * The current task ran long enough, ensure it doesn't get + * re-elected due to buddy favours. + */ + clear_buddies(cfs_rq, curr); + return; + } + + /* + * Ensure that a task that missed wakeup preemption by a + * narrow margin doesn't have to wait for a full slice. + * This also mitigates buddy induced latencies under load. + */ + if (delta_exec < sysctl_sched_min_granularity) + return; + + se = __pick_first_entity(cfs_rq); + delta = curr->vruntime - se->vruntime; + + if (delta < 0) + return; + + if (delta > ideal_runtime) + resched_task(rq_of(cfs_rq)->curr); +} + +static void +set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + /* 'current' is not kept within the tree. */ + if (se->on_rq) { + /* + * Any task has to be enqueued before it get to execute on + * a CPU. So account for the time it spent waiting on the + * runqueue. + */ + update_stats_wait_end(cfs_rq, se); + __dequeue_entity(cfs_rq, se); + } + + update_stats_curr_start(cfs_rq, se); + cfs_rq->curr = se; +#ifdef CONFIG_SCHEDSTATS + /* + * Track our maximum slice length, if the CPU's load is at + * least twice that of our own weight (i.e. dont track it + * when there are only lesser-weight tasks around): + */ + if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { + se->statistics.slice_max = max(se->statistics.slice_max, + se->sum_exec_runtime - se->prev_sum_exec_runtime); + } +#endif + se->prev_sum_exec_runtime = se->sum_exec_runtime; +} + +static int +wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); + +/* + * Pick the next process, keeping these things in mind, in this order: + * 1) keep things fair between processes/task groups + * 2) pick the "next" process, since someone really wants that to run + * 3) pick the "last" process, for cache locality + * 4) do not run the "skip" process, if something else is available + */ +static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) +{ + struct sched_entity *se = __pick_first_entity(cfs_rq); + struct sched_entity *left = se; + + /* + * Avoid running the skip buddy, if running something else can + * be done without getting too unfair. + */ + if (cfs_rq->skip == se) { + struct sched_entity *second = __pick_next_entity(se); + if (second && wakeup_preempt_entity(second, left) < 1) + se = second; + } + + /* + * Prefer last buddy, try to return the CPU to a preempted task. + */ + if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) + se = cfs_rq->last; + + /* + * Someone really wants this to run. If it's not unfair, run it. + */ + if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) + se = cfs_rq->next; + + clear_buddies(cfs_rq, se); + + return se; +} + +static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq); + +static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) +{ + /* + * If still on the runqueue then deactivate_task() + * was not called and update_curr() has to be done: + */ + if (prev->on_rq) + update_curr(cfs_rq); + + /* throttle cfs_rqs exceeding runtime */ + check_cfs_rq_runtime(cfs_rq); + + check_spread(cfs_rq, prev); + if (prev->on_rq) { + update_stats_wait_start(cfs_rq, prev); + /* Put 'current' back into the tree. */ + __enqueue_entity(cfs_rq, prev); + } + cfs_rq->curr = NULL; +} + +static void +entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) +{ + /* + * Update run-time statistics of the 'current'. + */ + update_curr(cfs_rq); + + /* + * Update share accounting for long-running entities. + */ + update_entity_shares_tick(cfs_rq); + +#ifdef CONFIG_SCHED_HRTICK + /* + * queued ticks are scheduled to match the slice, so don't bother + * validating it and just reschedule. + */ + if (queued) { + resched_task(rq_of(cfs_rq)->curr); + return; + } + /* + * don't let the period tick interfere with the hrtick preemption + */ + if (!sched_feat(DOUBLE_TICK) && + hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) + return; +#endif + + if (cfs_rq->nr_running > 1) + check_preempt_tick(cfs_rq, curr); +} + + +/************************************************** + * CFS bandwidth control machinery + */ + +#ifdef CONFIG_CFS_BANDWIDTH + +#ifdef HAVE_JUMP_LABEL +static struct jump_label_key __cfs_bandwidth_used; + +static inline bool cfs_bandwidth_used(void) +{ + return static_branch(&__cfs_bandwidth_used); +} + +void account_cfs_bandwidth_used(int enabled, int was_enabled) +{ + /* only need to count groups transitioning between enabled/!enabled */ + if (enabled && !was_enabled) + jump_label_inc(&__cfs_bandwidth_used); + else if (!enabled && was_enabled) + jump_label_dec(&__cfs_bandwidth_used); +} +#else /* HAVE_JUMP_LABEL */ +static bool cfs_bandwidth_used(void) +{ + return true; +} + +void account_cfs_bandwidth_used(int enabled, int was_enabled) {} +#endif /* HAVE_JUMP_LABEL */ + +/* + * default period for cfs group bandwidth. + * default: 0.1s, units: nanoseconds + */ +static inline u64 default_cfs_period(void) +{ + return 100000000ULL; +} + +static inline u64 sched_cfs_bandwidth_slice(void) +{ + return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; +} + +/* + * Replenish runtime according to assigned quota and update expiration time. + * We use sched_clock_cpu directly instead of rq->clock to avoid adding + * additional synchronization around rq->lock. + * + * requires cfs_b->lock + */ +void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) +{ + u64 now; + + if (cfs_b->quota == RUNTIME_INF) + return; + + now = sched_clock_cpu(smp_processor_id()); + cfs_b->runtime = cfs_b->quota; + cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); +} + +static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) +{ + return &tg->cfs_bandwidth; +} + +/* returns 0 on failure to allocate runtime */ +static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) +{ + struct task_group *tg = cfs_rq->tg; + struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); + u64 amount = 0, min_amount, expires; + + /* note: this is a positive sum as runtime_remaining <= 0 */ + min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; + + raw_spin_lock(&cfs_b->lock); + if (cfs_b->quota == RUNTIME_INF) + amount = min_amount; + else { + /* + * If the bandwidth pool has become inactive, then at least one + * period must have elapsed since the last consumption. + * Refresh the global state and ensure bandwidth timer becomes + * active. + */ + if (!cfs_b->timer_active) { + __refill_cfs_bandwidth_runtime(cfs_b); + __start_cfs_bandwidth(cfs_b); + } + + if (cfs_b->runtime > 0) { + amount = min(cfs_b->runtime, min_amount); + cfs_b->runtime -= amount; + cfs_b->idle = 0; + } + } + expires = cfs_b->runtime_expires; + raw_spin_unlock(&cfs_b->lock); + + cfs_rq->runtime_remaining += amount; + /* + * we may have advanced our local expiration to account for allowed + * spread between our sched_clock and the one on which runtime was + * issued. + */ + if ((s64)(expires - cfs_rq->runtime_expires) > 0) + cfs_rq->runtime_expires = expires; + + return cfs_rq->runtime_remaining > 0; +} + +/* + * Note: This depends on the synchronization provided by sched_clock and the + * fact that rq->clock snapshots this value. + */ +static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) +{ + struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); + struct rq *rq = rq_of(cfs_rq); + + /* if the deadline is ahead of our clock, nothing to do */ + if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0)) + return; + + if (cfs_rq->runtime_remaining < 0) + return; + + /* + * If the local deadline has passed we have to consider the + * possibility that our sched_clock is 'fast' and the global deadline + * has not truly expired. + * + * Fortunately we can check determine whether this the case by checking + * whether the global deadline has advanced. + */ + + if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) { + /* extend local deadline, drift is bounded above by 2 ticks */ + cfs_rq->runtime_expires += TICK_NSEC; + } else { + /* global deadline is ahead, expiration has passed */ + cfs_rq->runtime_remaining = 0; + } +} + +static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, + unsigned long delta_exec) +{ + /* dock delta_exec before expiring quota (as it could span periods) */ + cfs_rq->runtime_remaining -= delta_exec; + expire_cfs_rq_runtime(cfs_rq); + + if (likely(cfs_rq->runtime_remaining > 0)) + return; + + /* + * if we're unable to extend our runtime we resched so that the active + * hierarchy can be throttled + */ + if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) + resched_task(rq_of(cfs_rq)->curr); +} + +static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, + unsigned long delta_exec) +{ + if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) + return; + + __account_cfs_rq_runtime(cfs_rq, delta_exec); +} + +static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) +{ + return cfs_bandwidth_used() && cfs_rq->throttled; +} + +/* check whether cfs_rq, or any parent, is throttled */ +static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) +{ + return cfs_bandwidth_used() && cfs_rq->throttle_count; +} + +/* + * Ensure that neither of the group entities corresponding to src_cpu or + * dest_cpu are members of a throttled hierarchy when performing group + * load-balance operations. + */ +static inline int throttled_lb_pair(struct task_group *tg, + int src_cpu, int dest_cpu) +{ + struct cfs_rq *src_cfs_rq, *dest_cfs_rq; + + src_cfs_rq = tg->cfs_rq[src_cpu]; + dest_cfs_rq = tg->cfs_rq[dest_cpu]; + + return throttled_hierarchy(src_cfs_rq) || + throttled_hierarchy(dest_cfs_rq); +} + +/* updated child weight may affect parent so we have to do this bottom up */ +static int tg_unthrottle_up(struct task_group *tg, void *data) +{ + struct rq *rq = data; + struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; + + cfs_rq->throttle_count--; +#ifdef CONFIG_SMP + if (!cfs_rq->throttle_count) { + u64 delta = rq->clock_task - cfs_rq->load_stamp; + + /* leaving throttled state, advance shares averaging windows */ + cfs_rq->load_stamp += delta; + cfs_rq->load_last += delta; + + /* update entity weight now that we are on_rq again */ + update_cfs_shares(cfs_rq); + } +#endif + + return 0; +} + +static int tg_throttle_down(struct task_group *tg, void *data) +{ + struct rq *rq = data; + struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; + + /* group is entering throttled state, record last load */ + if (!cfs_rq->throttle_count) + update_cfs_load(cfs_rq, 0); + cfs_rq->throttle_count++; + + return 0; +} + +static void throttle_cfs_rq(struct cfs_rq *cfs_rq) +{ + struct rq *rq = rq_of(cfs_rq); + struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); + struct sched_entity *se; + long task_delta, dequeue = 1; + + se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; + + /* account load preceding throttle */ + rcu_read_lock(); + walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); + rcu_read_unlock(); + + task_delta = cfs_rq->h_nr_running; + for_each_sched_entity(se) { + struct cfs_rq *qcfs_rq = cfs_rq_of(se); + /* throttled entity or throttle-on-deactivate */ + if (!se->on_rq) + break; + + if (dequeue) + dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); + qcfs_rq->h_nr_running -= task_delta; + + if (qcfs_rq->load.weight) + dequeue = 0; + } + + if (!se) + rq->nr_running -= task_delta; + + cfs_rq->throttled = 1; + cfs_rq->throttled_timestamp = rq->clock; + raw_spin_lock(&cfs_b->lock); + list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); + raw_spin_unlock(&cfs_b->lock); +} + +void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) +{ + struct rq *rq = rq_of(cfs_rq); + struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); + struct sched_entity *se; + int enqueue = 1; + long task_delta; + + se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; + + cfs_rq->throttled = 0; + raw_spin_lock(&cfs_b->lock); + cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp; + list_del_rcu(&cfs_rq->throttled_list); + raw_spin_unlock(&cfs_b->lock); + cfs_rq->throttled_timestamp = 0; + + update_rq_clock(rq); + /* update hierarchical throttle state */ + walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); + + if (!cfs_rq->load.weight) + return; + + task_delta = cfs_rq->h_nr_running; + for_each_sched_entity(se) { + if (se->on_rq) + enqueue = 0; + + cfs_rq = cfs_rq_of(se); + if (enqueue) + enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); + cfs_rq->h_nr_running += task_delta; + + if (cfs_rq_throttled(cfs_rq)) + break; + } + + if (!se) + rq->nr_running += task_delta; + + /* determine whether we need to wake up potentially idle cpu */ + if (rq->curr == rq->idle && rq->cfs.nr_running) + resched_task(rq->curr); +} + +static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, + u64 remaining, u64 expires) +{ + struct cfs_rq *cfs_rq; + u64 runtime = remaining; + + rcu_read_lock(); + list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, + throttled_list) { + struct rq *rq = rq_of(cfs_rq); + + raw_spin_lock(&rq->lock); + if (!cfs_rq_throttled(cfs_rq)) + goto next; + + runtime = -cfs_rq->runtime_remaining + 1; + if (runtime > remaining) + runtime = remaining; + remaining -= runtime; + + cfs_rq->runtime_remaining += runtime; + cfs_rq->runtime_expires = expires; + + /* we check whether we're throttled above */ + if (cfs_rq->runtime_remaining > 0) + unthrottle_cfs_rq(cfs_rq); + +next: + raw_spin_unlock(&rq->lock); + + if (!remaining) + break; + } + rcu_read_unlock(); + + return remaining; +} + +/* + * Responsible for refilling a task_group's bandwidth and unthrottling its + * cfs_rqs as appropriate. If there has been no activity within the last + * period the timer is deactivated until scheduling resumes; cfs_b->idle is + * used to track this state. + */ +static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) +{ + u64 runtime, runtime_expires; + int idle = 1, throttled; + + raw_spin_lock(&cfs_b->lock); + /* no need to continue the timer with no bandwidth constraint */ + if (cfs_b->quota == RUNTIME_INF) + goto out_unlock; + + throttled = !list_empty(&cfs_b->throttled_cfs_rq); + /* idle depends on !throttled (for the case of a large deficit) */ + idle = cfs_b->idle && !throttled; + cfs_b->nr_periods += overrun; + + /* if we're going inactive then everything else can be deferred */ + if (idle) + goto out_unlock; + + __refill_cfs_bandwidth_runtime(cfs_b); + + if (!throttled) { + /* mark as potentially idle for the upcoming period */ + cfs_b->idle = 1; + goto out_unlock; + } + + /* account preceding periods in which throttling occurred */ + cfs_b->nr_throttled += overrun; + + /* + * There are throttled entities so we must first use the new bandwidth + * to unthrottle them before making it generally available. This + * ensures that all existing debts will be paid before a new cfs_rq is + * allowed to run. + */ + runtime = cfs_b->runtime; + runtime_expires = cfs_b->runtime_expires; + cfs_b->runtime = 0; + + /* + * This check is repeated as we are holding onto the new bandwidth + * while we unthrottle. This can potentially race with an unthrottled + * group trying to acquire new bandwidth from the global pool. + */ + while (throttled && runtime > 0) { + raw_spin_unlock(&cfs_b->lock); + /* we can't nest cfs_b->lock while distributing bandwidth */ + runtime = distribute_cfs_runtime(cfs_b, runtime, + runtime_expires); + raw_spin_lock(&cfs_b->lock); + + throttled = !list_empty(&cfs_b->throttled_cfs_rq); + } + + /* return (any) remaining runtime */ + cfs_b->runtime = runtime; + /* + * While we are ensured activity in the period following an + * unthrottle, this also covers the case in which the new bandwidth is + * insufficient to cover the existing bandwidth deficit. (Forcing the + * timer to remain active while there are any throttled entities.) + */ + cfs_b->idle = 0; +out_unlock: + if (idle) + cfs_b->timer_active = 0; + raw_spin_unlock(&cfs_b->lock); + + return idle; +} + +/* a cfs_rq won't donate quota below this amount */ +static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; +/* minimum remaining period time to redistribute slack quota */ +static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; +/* how long we wait to gather additional slack before distributing */ +static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; + +/* are we near the end of the current quota period? */ +static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) +{ + struct hrtimer *refresh_timer = &cfs_b->period_timer; + u64 remaining; + + /* if the call-back is running a quota refresh is already occurring */ + if (hrtimer_callback_running(refresh_timer)) + return 1; + + /* is a quota refresh about to occur? */ + remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); + if (remaining < min_expire) + return 1; + + return 0; +} + +static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) +{ + u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; + + /* if there's a quota refresh soon don't bother with slack */ + if (runtime_refresh_within(cfs_b, min_left)) + return; + + start_bandwidth_timer(&cfs_b->slack_timer, + ns_to_ktime(cfs_bandwidth_slack_period)); +} + +/* we know any runtime found here is valid as update_curr() precedes return */ +static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) +{ + struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); + s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; + + if (slack_runtime <= 0) + return; + + raw_spin_lock(&cfs_b->lock); + if (cfs_b->quota != RUNTIME_INF && + cfs_rq->runtime_expires == cfs_b->runtime_expires) { + cfs_b->runtime += slack_runtime; + + /* we are under rq->lock, defer unthrottling using a timer */ + if (cfs_b->runtime > sched_cfs_bandwidth_slice() && + !list_empty(&cfs_b->throttled_cfs_rq)) + start_cfs_slack_bandwidth(cfs_b); + } + raw_spin_unlock(&cfs_b->lock); + + /* even if it's not valid for return we don't want to try again */ + cfs_rq->runtime_remaining -= slack_runtime; +} + +static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) +{ + if (!cfs_bandwidth_used()) + return; + + if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) + return; + + __return_cfs_rq_runtime(cfs_rq); +} + +/* + * This is done with a timer (instead of inline with bandwidth return) since + * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. + */ +static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) +{ + u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); + u64 expires; + + /* confirm we're still not at a refresh boundary */ + if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) + return; + + raw_spin_lock(&cfs_b->lock); + if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { + runtime = cfs_b->runtime; + cfs_b->runtime = 0; + } + expires = cfs_b->runtime_expires; + raw_spin_unlock(&cfs_b->lock); + + if (!runtime) + return; + + runtime = distribute_cfs_runtime(cfs_b, runtime, expires); + + raw_spin_lock(&cfs_b->lock); + if (expires == cfs_b->runtime_expires) + cfs_b->runtime = runtime; + raw_spin_unlock(&cfs_b->lock); +} + +/* + * When a group wakes up we want to make sure that its quota is not already + * expired/exceeded, otherwise it may be allowed to steal additional ticks of + * runtime as update_curr() throttling can not not trigger until it's on-rq. + */ +static void check_enqueue_throttle(struct cfs_rq *cfs_rq) +{ + if (!cfs_bandwidth_used()) + return; + + /* an active group must be handled by the update_curr()->put() path */ + if (!cfs_rq->runtime_enabled || cfs_rq->curr) + return; + + /* ensure the group is not already throttled */ + if (cfs_rq_throttled(cfs_rq)) + return; + + /* update runtime allocation */ + account_cfs_rq_runtime(cfs_rq, 0); + if (cfs_rq->runtime_remaining <= 0) + throttle_cfs_rq(cfs_rq); +} + +/* conditionally throttle active cfs_rq's from put_prev_entity() */ +static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) +{ + if (!cfs_bandwidth_used()) + return; + + if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) + return; + + /* + * it's possible for a throttled entity to be forced into a running + * state (e.g. set_curr_task), in this case we're finished. + */ + if (cfs_rq_throttled(cfs_rq)) + return; + + throttle_cfs_rq(cfs_rq); +} + +static inline u64 default_cfs_period(void); +static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun); +static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b); + +static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) +{ + struct cfs_bandwidth *cfs_b = + container_of(timer, struct cfs_bandwidth, slack_timer); + do_sched_cfs_slack_timer(cfs_b); + + return HRTIMER_NORESTART; +} + +static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) +{ + struct cfs_bandwidth *cfs_b = + container_of(timer, struct cfs_bandwidth, period_timer); + ktime_t now; + int overrun; + int idle = 0; + + for (;;) { + now = hrtimer_cb_get_time(timer); + overrun = hrtimer_forward(timer, now, cfs_b->period); + + if (!overrun) + break; + + idle = do_sched_cfs_period_timer(cfs_b, overrun); + } + + return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; +} + +void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) +{ + raw_spin_lock_init(&cfs_b->lock); + cfs_b->runtime = 0; + cfs_b->quota = RUNTIME_INF; + cfs_b->period = ns_to_ktime(default_cfs_period()); + + INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); + hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); + cfs_b->period_timer.function = sched_cfs_period_timer; + hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); + cfs_b->slack_timer.function = sched_cfs_slack_timer; +} + +static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) +{ + cfs_rq->runtime_enabled = 0; + INIT_LIST_HEAD(&cfs_rq->throttled_list); +} + +/* requires cfs_b->lock, may release to reprogram timer */ +void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) +{ + /* + * The timer may be active because we're trying to set a new bandwidth + * period or because we're racing with the tear-down path + * (timer_active==0 becomes visible before the hrtimer call-back + * terminates). In either case we ensure that it's re-programmed + */ + while (unlikely(hrtimer_active(&cfs_b->period_timer))) { + raw_spin_unlock(&cfs_b->lock); + /* ensure cfs_b->lock is available while we wait */ + hrtimer_cancel(&cfs_b->period_timer); + + raw_spin_lock(&cfs_b->lock); + /* if someone else restarted the timer then we're done */ + if (cfs_b->timer_active) + return; + } + + cfs_b->timer_active = 1; + start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); +} + +static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) +{ + hrtimer_cancel(&cfs_b->period_timer); + hrtimer_cancel(&cfs_b->slack_timer); +} + +void unthrottle_offline_cfs_rqs(struct rq *rq) +{ + struct cfs_rq *cfs_rq; + + for_each_leaf_cfs_rq(rq, cfs_rq) { + struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); + + if (!cfs_rq->runtime_enabled) + continue; + + /* + * clock_task is not advancing so we just need to make sure + * there's some valid quota amount + */ + cfs_rq->runtime_remaining = cfs_b->quota; + if (cfs_rq_throttled(cfs_rq)) + unthrottle_cfs_rq(cfs_rq); + } +} + +#else /* CONFIG_CFS_BANDWIDTH */ +static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, + unsigned long delta_exec) {} +static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} +static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} +static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} + +static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) +{ + return 0; +} + +static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) +{ + return 0; +} + +static inline int throttled_lb_pair(struct task_group *tg, + int src_cpu, int dest_cpu) +{ + return 0; +} + +void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} + +#ifdef CONFIG_FAIR_GROUP_SCHED +static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} +#endif + +static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) +{ + return NULL; +} +static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} +void unthrottle_offline_cfs_rqs(struct rq *rq) {} + +#endif /* CONFIG_CFS_BANDWIDTH */ + +/************************************************** + * CFS operations on tasks: + */ + +#ifdef CONFIG_SCHED_HRTICK +static void hrtick_start_fair(struct rq *rq, struct task_struct *p) +{ + struct sched_entity *se = &p->se; + struct cfs_rq *cfs_rq = cfs_rq_of(se); + + WARN_ON(task_rq(p) != rq); + + if (cfs_rq->nr_running > 1) { + u64 slice = sched_slice(cfs_rq, se); + u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; + s64 delta = slice - ran; + + if (delta < 0) { + if (rq->curr == p) + resched_task(p); + return; + } + + /* + * Don't schedule slices shorter than 10000ns, that just + * doesn't make sense. Rely on vruntime for fairness. + */ + if (rq->curr != p) + delta = max_t(s64, 10000LL, delta); + + hrtick_start(rq, delta); + } +} + +/* + * called from enqueue/dequeue and updates the hrtick when the + * current task is from our class and nr_running is low enough + * to matter. + */ +static void hrtick_update(struct rq *rq) +{ + struct task_struct *curr = rq->curr; + + if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) + return; + + if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) + hrtick_start_fair(rq, curr); +} +#else /* !CONFIG_SCHED_HRTICK */ +static inline void +hrtick_start_fair(struct rq *rq, struct task_struct *p) +{ +} + +static inline void hrtick_update(struct rq *rq) +{ +} +#endif + +/* + * The enqueue_task method is called before nr_running is + * increased. Here we update the fair scheduling stats and + * then put the task into the rbtree: + */ +static void +enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) +{ + struct cfs_rq *cfs_rq; + struct sched_entity *se = &p->se; + + for_each_sched_entity(se) { + if (se->on_rq) + break; + cfs_rq = cfs_rq_of(se); + enqueue_entity(cfs_rq, se, flags); + + /* + * end evaluation on encountering a throttled cfs_rq + * + * note: in the case of encountering a throttled cfs_rq we will + * post the final h_nr_running increment below. + */ + if (cfs_rq_throttled(cfs_rq)) + break; + cfs_rq->h_nr_running++; + + flags = ENQUEUE_WAKEUP; + } + + for_each_sched_entity(se) { + cfs_rq = cfs_rq_of(se); + cfs_rq->h_nr_running++; + + if (cfs_rq_throttled(cfs_rq)) + break; + + update_cfs_load(cfs_rq, 0); + update_cfs_shares(cfs_rq); + } + + if (!se) + inc_nr_running(rq); + hrtick_update(rq); +} + +static void set_next_buddy(struct sched_entity *se); + +/* + * The dequeue_task method is called before nr_running is + * decreased. We remove the task from the rbtree and + * update the fair scheduling stats: + */ +static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) +{ + struct cfs_rq *cfs_rq; + struct sched_entity *se = &p->se; + int task_sleep = flags & DEQUEUE_SLEEP; + + for_each_sched_entity(se) { + cfs_rq = cfs_rq_of(se); + dequeue_entity(cfs_rq, se, flags); + + /* + * end evaluation on encountering a throttled cfs_rq + * + * note: in the case of encountering a throttled cfs_rq we will + * post the final h_nr_running decrement below. + */ + if (cfs_rq_throttled(cfs_rq)) + break; + cfs_rq->h_nr_running--; + + /* Don't dequeue parent if it has other entities besides us */ + if (cfs_rq->load.weight) { + /* + * Bias pick_next to pick a task from this cfs_rq, as + * p is sleeping when it is within its sched_slice. + */ + if (task_sleep && parent_entity(se)) + set_next_buddy(parent_entity(se)); + + /* avoid re-evaluating load for this entity */ + se = parent_entity(se); + break; + } + flags |= DEQUEUE_SLEEP; + } + + for_each_sched_entity(se) { + cfs_rq = cfs_rq_of(se); + cfs_rq->h_nr_running--; + + if (cfs_rq_throttled(cfs_rq)) + break; + + update_cfs_load(cfs_rq, 0); + update_cfs_shares(cfs_rq); + } + + if (!se) + dec_nr_running(rq); + hrtick_update(rq); +} + +#ifdef CONFIG_SMP +/* Used instead of source_load when we know the type == 0 */ +static unsigned long weighted_cpuload(const int cpu) +{ + return cpu_rq(cpu)->load.weight; +} + +/* + * Return a low guess at the load of a migration-source cpu weighted + * according to the scheduling class and "nice" value. + * + * We want to under-estimate the load of migration sources, to + * balance conservatively. + */ +static unsigned long source_load(int cpu, int type) +{ + struct rq *rq = cpu_rq(cpu); + unsigned long total = weighted_cpuload(cpu); + + if (type == 0 || !sched_feat(LB_BIAS)) + return total; + + return min(rq->cpu_load[type-1], total); +} + +/* + * Return a high guess at the load of a migration-target cpu weighted + * according to the scheduling class and "nice" value. + */ +static unsigned long target_load(int cpu, int type) +{ + struct rq *rq = cpu_rq(cpu); + unsigned long total = weighted_cpuload(cpu); + + if (type == 0 || !sched_feat(LB_BIAS)) + return total; + + return max(rq->cpu_load[type-1], total); +} + +static unsigned long power_of(int cpu) +{ + return cpu_rq(cpu)->cpu_power; +} + +static unsigned long cpu_avg_load_per_task(int cpu) +{ + struct rq *rq = cpu_rq(cpu); + unsigned long nr_running = ACCESS_ONCE(rq->nr_running); + + if (nr_running) + return rq->load.weight / nr_running; + + return 0; +} + + +static void task_waking_fair(struct task_struct *p) +{ + struct sched_entity *se = &p->se; + struct cfs_rq *cfs_rq = cfs_rq_of(se); + u64 min_vruntime; + +#ifndef CONFIG_64BIT + u64 min_vruntime_copy; + + do { + min_vruntime_copy = cfs_rq->min_vruntime_copy; + smp_rmb(); + min_vruntime = cfs_rq->min_vruntime; + } while (min_vruntime != min_vruntime_copy); +#else + min_vruntime = cfs_rq->min_vruntime; +#endif + + se->vruntime -= min_vruntime; +} + +#ifdef CONFIG_FAIR_GROUP_SCHED +/* + * effective_load() calculates the load change as seen from the root_task_group + * + * Adding load to a group doesn't make a group heavier, but can cause movement + * of group shares between cpus. Assuming the shares were perfectly aligned one + * can calculate the shift in shares. + * + * Calculate the effective load difference if @wl is added (subtracted) to @tg + * on this @cpu and results in a total addition (subtraction) of @wg to the + * total group weight. + * + * Given a runqueue weight distribution (rw_i) we can compute a shares + * distribution (s_i) using: + * + * s_i = rw_i / \Sum rw_j (1) + * + * Suppose we have 4 CPUs and our @tg is a direct child of the root group and + * has 7 equal weight tasks, distributed as below (rw_i), with the resulting + * shares distribution (s_i): + * + * rw_i = { 2, 4, 1, 0 } + * s_i = { 2/7, 4/7, 1/7, 0 } + * + * As per wake_affine() we're interested in the load of two CPUs (the CPU the + * task used to run on and the CPU the waker is running on), we need to + * compute the effect of waking a task on either CPU and, in case of a sync + * wakeup, compute the effect of the current task going to sleep. + * + * So for a change of @wl to the local @cpu with an overall group weight change + * of @wl we can compute the new shares distribution (s'_i) using: + * + * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) + * + * Suppose we're interested in CPUs 0 and 1, and want to compute the load + * differences in waking a task to CPU 0. The additional task changes the + * weight and shares distributions like: + * + * rw'_i = { 3, 4, 1, 0 } + * s'_i = { 3/8, 4/8, 1/8, 0 } + * + * We can then compute the difference in effective weight by using: + * + * dw_i = S * (s'_i - s_i) (3) + * + * Where 'S' is the group weight as seen by its parent. + * + * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) + * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - + * 4/7) times the weight of the group. + */ +static long effective_load(struct task_group *tg, int cpu, long wl, long wg) +{ + struct sched_entity *se = tg->se[cpu]; + + if (!tg->parent) /* the trivial, non-cgroup case */ + return wl; + + for_each_sched_entity(se) { + long w, W; + + tg = se->my_q->tg; + + /* + * W = @wg + \Sum rw_j + */ + W = wg + calc_tg_weight(tg, se->my_q); + + /* + * w = rw_i + @wl + */ + w = se->my_q->load.weight + wl; + + /* + * wl = S * s'_i; see (2) + */ + if (W > 0 && w < W) + wl = (w * tg->shares) / W; + else + wl = tg->shares; + + /* + * Per the above, wl is the new se->load.weight value; since + * those are clipped to [MIN_SHARES, ...) do so now. See + * calc_cfs_shares(). + */ + if (wl < MIN_SHARES) + wl = MIN_SHARES; + + /* + * wl = dw_i = S * (s'_i - s_i); see (3) + */ + wl -= se->load.weight; + + /* + * Recursively apply this logic to all parent groups to compute + * the final effective load change on the root group. Since + * only the @tg group gets extra weight, all parent groups can + * only redistribute existing shares. @wl is the shift in shares + * resulting from this level per the above. + */ + wg = 0; + } + + return wl; +} +#else + +static inline unsigned long effective_load(struct task_group *tg, int cpu, + unsigned long wl, unsigned long wg) +{ + return wl; +} + +#endif + +static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) +{ + s64 this_load, load; + int idx, this_cpu, prev_cpu; + unsigned long tl_per_task; + struct task_group *tg; + unsigned long weight; + int balanced; + + idx = sd->wake_idx; + this_cpu = smp_processor_id(); + prev_cpu = task_cpu(p); + load = source_load(prev_cpu, idx); + this_load = target_load(this_cpu, idx); + + /* + * If sync wakeup then subtract the (maximum possible) + * effect of the currently running task from the load + * of the current CPU: + */ + if (sync) { + tg = task_group(current); + weight = current->se.load.weight; + + this_load += effective_load(tg, this_cpu, -weight, -weight); + load += effective_load(tg, prev_cpu, 0, -weight); + } + + tg = task_group(p); + weight = p->se.load.weight; + + /* + * In low-load situations, where prev_cpu is idle and this_cpu is idle + * due to the sync cause above having dropped this_load to 0, we'll + * always have an imbalance, but there's really nothing you can do + * about that, so that's good too. + * + * Otherwise check if either cpus are near enough in load to allow this + * task to be woken on this_cpu. + */ + if (this_load > 0) { + s64 this_eff_load, prev_eff_load; + + this_eff_load = 100; + this_eff_load *= power_of(prev_cpu); + this_eff_load *= this_load + + effective_load(tg, this_cpu, weight, weight); + + prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; + prev_eff_load *= power_of(this_cpu); + prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); + + balanced = this_eff_load <= prev_eff_load; + } else + balanced = true; + + /* + * If the currently running task will sleep within + * a reasonable amount of time then attract this newly + * woken task: + */ + if (sync && balanced) + return 1; + + schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); + tl_per_task = cpu_avg_load_per_task(this_cpu); + + if (balanced || + (this_load <= load && + this_load + target_load(prev_cpu, idx) <= tl_per_task)) { + /* + * This domain has SD_WAKE_AFFINE and + * p is cache cold in this domain, and + * there is no bad imbalance. + */ + schedstat_inc(sd, ttwu_move_affine); + schedstat_inc(p, se.statistics.nr_wakeups_affine); + + return 1; + } + return 0; +} + +/* + * find_idlest_group finds and returns the least busy CPU group within the + * domain. + */ +static struct sched_group * +find_idlest_group(struct sched_domain *sd, struct task_struct *p, + int this_cpu, int load_idx) +{ + struct sched_group *idlest = NULL, *group = sd->groups; + unsigned long min_load = ULONG_MAX, this_load = 0; + int imbalance = 100 + (sd->imbalance_pct-100)/2; + + do { + unsigned long load, avg_load; + int local_group; + int i; + + /* Skip over this group if it has no CPUs allowed */ + if (!cpumask_intersects(sched_group_cpus(group), + tsk_cpus_allowed(p))) + continue; + + local_group = cpumask_test_cpu(this_cpu, + sched_group_cpus(group)); + + /* Tally up the load of all CPUs in the group */ + avg_load = 0; + + for_each_cpu(i, sched_group_cpus(group)) { + /* Bias balancing toward cpus of our domain */ + if (local_group) + load = source_load(i, load_idx); + else + load = target_load(i, load_idx); + + avg_load += load; + } + + /* Adjust by relative CPU power of the group */ + avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; + + if (local_group) { + this_load = avg_load; + } else if (avg_load < min_load) { + min_load = avg_load; + idlest = group; + } + } while (group = group->next, group != sd->groups); + + if (!idlest || 100*this_load < imbalance*min_load) + return NULL; + return idlest; +} + +/* + * find_idlest_cpu - find the idlest cpu among the cpus in group. + */ +static int +find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) +{ + unsigned long load, min_load = ULONG_MAX; + int idlest = -1; + int i; + + /* Traverse only the allowed CPUs */ + for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { + load = weighted_cpuload(i); + + if (load < min_load || (load == min_load && i == this_cpu)) { + min_load = load; + idlest = i; + } + } + + return idlest; +} + +/* + * Try and locate an idle CPU in the sched_domain. + */ +static int select_idle_sibling(struct task_struct *p, int target) +{ + int cpu = smp_processor_id(); + int prev_cpu = task_cpu(p); + struct sched_domain *sd; + struct sched_group *sg; + int i; + + /* + * If the task is going to be woken-up on this cpu and if it is + * already idle, then it is the right target. + */ + if (target == cpu && idle_cpu(cpu)) + return cpu; + + /* + * If the task is going to be woken-up on the cpu where it previously + * ran and if it is currently idle, then it the right target. + */ + if (target == prev_cpu && idle_cpu(prev_cpu)) + return prev_cpu; + + /* + * Otherwise, iterate the domains and find an elegible idle cpu. + */ + rcu_read_lock(); + + sd = rcu_dereference(per_cpu(sd_llc, target)); + for_each_lower_domain(sd) { + sg = sd->groups; + do { + if (!cpumask_intersects(sched_group_cpus(sg), + tsk_cpus_allowed(p))) + goto next; + + for_each_cpu(i, sched_group_cpus(sg)) { + if (!idle_cpu(i)) + goto next; + } + + target = cpumask_first_and(sched_group_cpus(sg), + tsk_cpus_allowed(p)); + goto done; +next: + sg = sg->next; + } while (sg != sd->groups); + } +done: + rcu_read_unlock(); + + return target; +} + +/* + * sched_balance_self: balance the current task (running on cpu) in domains + * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and + * SD_BALANCE_EXEC. + * + * Balance, ie. select the least loaded group. + * + * Returns the target CPU number, or the same CPU if no balancing is needed. + * + * preempt must be disabled. + */ +static int +select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) +{ + struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; + int cpu = smp_processor_id(); + int prev_cpu = task_cpu(p); + int new_cpu = cpu; + int want_affine = 0; + int want_sd = 1; + int sync = wake_flags & WF_SYNC; + + if (p->rt.nr_cpus_allowed == 1) + return prev_cpu; + + if (sd_flag & SD_BALANCE_WAKE) { + if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) + want_affine = 1; + new_cpu = prev_cpu; + } + + rcu_read_lock(); + for_each_domain(cpu, tmp) { + if (!(tmp->flags & SD_LOAD_BALANCE)) + continue; + + /* + * If power savings logic is enabled for a domain, see if we + * are not overloaded, if so, don't balance wider. + */ + if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) { + unsigned long power = 0; + unsigned long nr_running = 0; + unsigned long capacity; + int i; + + for_each_cpu(i, sched_domain_span(tmp)) { + power += power_of(i); + nr_running += cpu_rq(i)->cfs.nr_running; + } + + capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE); + + if (tmp->flags & SD_POWERSAVINGS_BALANCE) + nr_running /= 2; + + if (nr_running < capacity) + want_sd = 0; + } + + /* + * If both cpu and prev_cpu are part of this domain, + * cpu is a valid SD_WAKE_AFFINE target. + */ + if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && + cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { + affine_sd = tmp; + want_affine = 0; + } + + if (!want_sd && !want_affine) + break; + + if (!(tmp->flags & sd_flag)) + continue; + + if (want_sd) + sd = tmp; + } + + if (affine_sd) { + if (cpu == prev_cpu || wake_affine(affine_sd, p, sync)) + prev_cpu = cpu; + + new_cpu = select_idle_sibling(p, prev_cpu); + goto unlock; + } + + while (sd) { + int load_idx = sd->forkexec_idx; + struct sched_group *group; + int weight; + + if (!(sd->flags & sd_flag)) { + sd = sd->child; + continue; + } + + if (sd_flag & SD_BALANCE_WAKE) + load_idx = sd->wake_idx; + + group = find_idlest_group(sd, p, cpu, load_idx); + if (!group) { + sd = sd->child; + continue; + } + + new_cpu = find_idlest_cpu(group, p, cpu); + if (new_cpu == -1 || new_cpu == cpu) { + /* Now try balancing at a lower domain level of cpu */ + sd = sd->child; + continue; + } + + /* Now try balancing at a lower domain level of new_cpu */ + cpu = new_cpu; + weight = sd->span_weight; + sd = NULL; + for_each_domain(cpu, tmp) { + if (weight <= tmp->span_weight) + break; + if (tmp->flags & sd_flag) + sd = tmp; + } + /* while loop will break here if sd == NULL */ + } +unlock: + rcu_read_unlock(); + + return new_cpu; +} +#endif /* CONFIG_SMP */ + +static unsigned long +wakeup_gran(struct sched_entity *curr, struct sched_entity *se) +{ + unsigned long gran = sysctl_sched_wakeup_granularity; + + /* + * Since its curr running now, convert the gran from real-time + * to virtual-time in his units. + * + * By using 'se' instead of 'curr' we penalize light tasks, so + * they get preempted easier. That is, if 'se' < 'curr' then + * the resulting gran will be larger, therefore penalizing the + * lighter, if otoh 'se' > 'curr' then the resulting gran will + * be smaller, again penalizing the lighter task. + * + * This is especially important for buddies when the leftmost + * task is higher priority than the buddy. + */ + return calc_delta_fair(gran, se); +} + +/* + * Should 'se' preempt 'curr'. + * + * |s1 + * |s2 + * |s3 + * g + * |<--->|c + * + * w(c, s1) = -1 + * w(c, s2) = 0 + * w(c, s3) = 1 + * + */ +static int +wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) +{ + s64 gran, vdiff = curr->vruntime - se->vruntime; + + if (vdiff <= 0) + return -1; + + gran = wakeup_gran(curr, se); + if (vdiff > gran) + return 1; + + return 0; +} + +static void set_last_buddy(struct sched_entity *se) +{ + if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) + return; + + for_each_sched_entity(se) + cfs_rq_of(se)->last = se; +} + +static void set_next_buddy(struct sched_entity *se) +{ + if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) + return; + + for_each_sched_entity(se) + cfs_rq_of(se)->next = se; +} + +static void set_skip_buddy(struct sched_entity *se) +{ + for_each_sched_entity(se) + cfs_rq_of(se)->skip = se; +} + +/* + * Preempt the current task with a newly woken task if needed: + */ +static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) +{ + struct task_struct *curr = rq->curr; + struct sched_entity *se = &curr->se, *pse = &p->se; + struct cfs_rq *cfs_rq = task_cfs_rq(curr); + int scale = cfs_rq->nr_running >= sched_nr_latency; + int next_buddy_marked = 0; + + if (unlikely(se == pse)) + return; + + /* + * This is possible from callers such as pull_task(), in which we + * unconditionally check_prempt_curr() after an enqueue (which may have + * lead to a throttle). This both saves work and prevents false + * next-buddy nomination below. + */ + if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) + return; + + if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { + set_next_buddy(pse); + next_buddy_marked = 1; + } + + /* + * We can come here with TIF_NEED_RESCHED already set from new task + * wake up path. + * + * Note: this also catches the edge-case of curr being in a throttled + * group (e.g. via set_curr_task), since update_curr() (in the + * enqueue of curr) will have resulted in resched being set. This + * prevents us from potentially nominating it as a false LAST_BUDDY + * below. + */ + if (test_tsk_need_resched(curr)) + return; + + /* Idle tasks are by definition preempted by non-idle tasks. */ + if (unlikely(curr->policy == SCHED_IDLE) && + likely(p->policy != SCHED_IDLE)) + goto preempt; + + /* + * Batch and idle tasks do not preempt non-idle tasks (their preemption + * is driven by the tick): + */ + if (unlikely(p->policy != SCHED_NORMAL)) + return; + + find_matching_se(&se, &pse); + update_curr(cfs_rq_of(se)); + BUG_ON(!pse); + if (wakeup_preempt_entity(se, pse) == 1) { + /* + * Bias pick_next to pick the sched entity that is + * triggering this preemption. + */ + if (!next_buddy_marked) + set_next_buddy(pse); + goto preempt; + } + + return; + +preempt: + resched_task(curr); + /* + * Only set the backward buddy when the current task is still + * on the rq. This can happen when a wakeup gets interleaved + * with schedule on the ->pre_schedule() or idle_balance() + * point, either of which can * drop the rq lock. + * + * Also, during early boot the idle thread is in the fair class, + * for obvious reasons its a bad idea to schedule back to it. + */ + if (unlikely(!se->on_rq || curr == rq->idle)) + return; + + if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) + set_last_buddy(se); +} + +static struct task_struct *pick_next_task_fair(struct rq *rq) +{ + struct task_struct *p; + struct cfs_rq *cfs_rq = &rq->cfs; + struct sched_entity *se; + + if (!cfs_rq->nr_running) + return NULL; + + do { + se = pick_next_entity(cfs_rq); + set_next_entity(cfs_rq, se); + cfs_rq = group_cfs_rq(se); + } while (cfs_rq); + + p = task_of(se); + if (hrtick_enabled(rq)) + hrtick_start_fair(rq, p); + + return p; +} + +/* + * Account for a descheduled task: + */ +static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) +{ + struct sched_entity *se = &prev->se; + struct cfs_rq *cfs_rq; + + for_each_sched_entity(se) { + cfs_rq = cfs_rq_of(se); + put_prev_entity(cfs_rq, se); + } +} + +/* + * sched_yield() is very simple + * + * The magic of dealing with the ->skip buddy is in pick_next_entity. + */ +static void yield_task_fair(struct rq *rq) +{ + struct task_struct *curr = rq->curr; + struct cfs_rq *cfs_rq = task_cfs_rq(curr); + struct sched_entity *se = &curr->se; + + /* + * Are we the only task in the tree? + */ + if (unlikely(rq->nr_running == 1)) + return; + + clear_buddies(cfs_rq, se); + + if (curr->policy != SCHED_BATCH) { + update_rq_clock(rq); + /* + * Update run-time statistics of the 'current'. + */ + update_curr(cfs_rq); + /* + * Tell update_rq_clock() that we've just updated, + * so we don't do microscopic update in schedule() + * and double the fastpath cost. + */ + rq->skip_clock_update = 1; + } + + set_skip_buddy(se); +} + +static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) +{ + struct sched_entity *se = &p->se; + + /* throttled hierarchies are not runnable */ + if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) + return false; + + /* Tell the scheduler that we'd really like pse to run next. */ + set_next_buddy(se); + + yield_task_fair(rq); + + return true; +} + +#ifdef CONFIG_SMP +/************************************************** + * Fair scheduling class load-balancing methods: + */ + +/* + * pull_task - move a task from a remote runqueue to the local runqueue. + * Both runqueues must be locked. + */ +static void pull_task(struct rq *src_rq, struct task_struct *p, + struct rq *this_rq, int this_cpu) +{ + deactivate_task(src_rq, p, 0); + set_task_cpu(p, this_cpu); + activate_task(this_rq, p, 0); + check_preempt_curr(this_rq, p, 0); +} + +/* + * Is this task likely cache-hot: + */ +static int +task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) +{ + s64 delta; + + if (p->sched_class != &fair_sched_class) + return 0; + + if (unlikely(p->policy == SCHED_IDLE)) + return 0; + + /* + * Buddy candidates are cache hot: + */ + if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && + (&p->se == cfs_rq_of(&p->se)->next || + &p->se == cfs_rq_of(&p->se)->last)) + return 1; + + if (sysctl_sched_migration_cost == -1) + return 1; + if (sysctl_sched_migration_cost == 0) + return 0; + + delta = now - p->se.exec_start; + + return delta < (s64)sysctl_sched_migration_cost; +} + +#define LBF_ALL_PINNED 0x01 +#define LBF_NEED_BREAK 0x02 /* clears into HAD_BREAK */ +#define LBF_HAD_BREAK 0x04 +#define LBF_HAD_BREAKS 0x0C /* count HAD_BREAKs overflows into ABORT */ +#define LBF_ABORT 0x10 + +/* + * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? + */ +static +int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, + struct sched_domain *sd, enum cpu_idle_type idle, + int *lb_flags) +{ + int tsk_cache_hot = 0; + /* + * We do not migrate tasks that are: + * 1) running (obviously), or + * 2) cannot be migrated to this CPU due to cpus_allowed, or + * 3) are cache-hot on their current CPU. + */ + if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) { + schedstat_inc(p, se.statistics.nr_failed_migrations_affine); + return 0; + } + *lb_flags &= ~LBF_ALL_PINNED; + + if (task_running(rq, p)) { + schedstat_inc(p, se.statistics.nr_failed_migrations_running); + return 0; + } + + /* + * Aggressive migration if: + * 1) task is cache cold, or + * 2) too many balance attempts have failed. + */ + + tsk_cache_hot = task_hot(p, rq->clock_task, sd); + if (!tsk_cache_hot || + sd->nr_balance_failed > sd->cache_nice_tries) { +#ifdef CONFIG_SCHEDSTATS + if (tsk_cache_hot) { + schedstat_inc(sd, lb_hot_gained[idle]); + schedstat_inc(p, se.statistics.nr_forced_migrations); + } +#endif + return 1; + } + + if (tsk_cache_hot) { + schedstat_inc(p, se.statistics.nr_failed_migrations_hot); + return 0; + } + return 1; +} + +/* + * move_one_task tries to move exactly one task from busiest to this_rq, as + * part of active balancing operations within "domain". + * Returns 1 if successful and 0 otherwise. + * + * Called with both runqueues locked. + */ +static int +move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, + struct sched_domain *sd, enum cpu_idle_type idle) +{ + struct task_struct *p, *n; + struct cfs_rq *cfs_rq; + int pinned = 0; + + for_each_leaf_cfs_rq(busiest, cfs_rq) { + list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) { + if (throttled_lb_pair(task_group(p), + busiest->cpu, this_cpu)) + break; + + if (!can_migrate_task(p, busiest, this_cpu, + sd, idle, &pinned)) + continue; + + pull_task(busiest, p, this_rq, this_cpu); + /* + * Right now, this is only the second place pull_task() + * is called, so we can safely collect pull_task() + * stats here rather than inside pull_task(). + */ + schedstat_inc(sd, lb_gained[idle]); + return 1; + } + } + + return 0; +} + +static unsigned long +balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, + unsigned long max_load_move, struct sched_domain *sd, + enum cpu_idle_type idle, int *lb_flags, + struct cfs_rq *busiest_cfs_rq) +{ + int loops = 0, pulled = 0; + long rem_load_move = max_load_move; + struct task_struct *p, *n; + + if (max_load_move == 0) + goto out; + + list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) { + if (loops++ > sysctl_sched_nr_migrate) { + *lb_flags |= LBF_NEED_BREAK; + break; + } + + if ((p->se.load.weight >> 1) > rem_load_move || + !can_migrate_task(p, busiest, this_cpu, sd, idle, + lb_flags)) + continue; + + pull_task(busiest, p, this_rq, this_cpu); + pulled++; + rem_load_move -= p->se.load.weight; + +#ifdef CONFIG_PREEMPT + /* + * NEWIDLE balancing is a source of latency, so preemptible + * kernels will stop after the first task is pulled to minimize + * the critical section. + */ + if (idle == CPU_NEWLY_IDLE) { + *lb_flags |= LBF_ABORT; + break; + } +#endif + + /* + * We only want to steal up to the prescribed amount of + * weighted load. + */ + if (rem_load_move <= 0) + break; + } +out: + /* + * Right now, this is one of only two places pull_task() is called, + * so we can safely collect pull_task() stats here rather than + * inside pull_task(). + */ + schedstat_add(sd, lb_gained[idle], pulled); + + return max_load_move - rem_load_move; +} + +#ifdef CONFIG_FAIR_GROUP_SCHED +/* + * update tg->load_weight by folding this cpu's load_avg + */ +static int update_shares_cpu(struct task_group *tg, int cpu) +{ + struct cfs_rq *cfs_rq; + unsigned long flags; + struct rq *rq; + + if (!tg->se[cpu]) + return 0; + + rq = cpu_rq(cpu); + cfs_rq = tg->cfs_rq[cpu]; + + raw_spin_lock_irqsave(&rq->lock, flags); + + update_rq_clock(rq); + update_cfs_load(cfs_rq, 1); + + /* + * We need to update shares after updating tg->load_weight in + * order to adjust the weight of groups with long running tasks. + */ + update_cfs_shares(cfs_rq); + + raw_spin_unlock_irqrestore(&rq->lock, flags); + + return 0; +} + +static void update_shares(int cpu) +{ + struct cfs_rq *cfs_rq; + struct rq *rq = cpu_rq(cpu); + + rcu_read_lock(); + /* + * Iterates the task_group tree in a bottom up fashion, see + * list_add_leaf_cfs_rq() for details. + */ + for_each_leaf_cfs_rq(rq, cfs_rq) { + /* throttled entities do not contribute to load */ + if (throttled_hierarchy(cfs_rq)) + continue; + + update_shares_cpu(cfs_rq->tg, cpu); + } + rcu_read_unlock(); +} + +/* + * Compute the cpu's hierarchical load factor for each task group. + * This needs to be done in a top-down fashion because the load of a child + * group is a fraction of its parents load. + */ +static int tg_load_down(struct task_group *tg, void *data) +{ + unsigned long load; + long cpu = (long)data; + + if (!tg->parent) { + load = cpu_rq(cpu)->load.weight; + } else { + load = tg->parent->cfs_rq[cpu]->h_load; + load *= tg->se[cpu]->load.weight; + load /= tg->parent->cfs_rq[cpu]->load.weight + 1; + } + + tg->cfs_rq[cpu]->h_load = load; + + return 0; +} + +static void update_h_load(long cpu) +{ + walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); +} + +static unsigned long +load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, + unsigned long max_load_move, + struct sched_domain *sd, enum cpu_idle_type idle, + int *lb_flags) +{ + long rem_load_move = max_load_move; + struct cfs_rq *busiest_cfs_rq; + + rcu_read_lock(); + update_h_load(cpu_of(busiest)); + + for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) { + unsigned long busiest_h_load = busiest_cfs_rq->h_load; + unsigned long busiest_weight = busiest_cfs_rq->load.weight; + u64 rem_load, moved_load; + + if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT)) + break; + + /* + * empty group or part of a throttled hierarchy + */ + if (!busiest_cfs_rq->task_weight || + throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu)) + continue; + + rem_load = (u64)rem_load_move * busiest_weight; + rem_load = div_u64(rem_load, busiest_h_load + 1); + + moved_load = balance_tasks(this_rq, this_cpu, busiest, + rem_load, sd, idle, lb_flags, + busiest_cfs_rq); + + if (!moved_load) + continue; + + moved_load *= busiest_h_load; + moved_load = div_u64(moved_load, busiest_weight + 1); + + rem_load_move -= moved_load; + if (rem_load_move < 0) + break; + } + rcu_read_unlock(); + + return max_load_move - rem_load_move; +} +#else +static inline void update_shares(int cpu) +{ +} + +static unsigned long +load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, + unsigned long max_load_move, + struct sched_domain *sd, enum cpu_idle_type idle, + int *lb_flags) +{ + return balance_tasks(this_rq, this_cpu, busiest, + max_load_move, sd, idle, lb_flags, + &busiest->cfs); +} +#endif + +/* + * move_tasks tries to move up to max_load_move weighted load from busiest to + * this_rq, as part of a balancing operation within domain "sd". + * Returns 1 if successful and 0 otherwise. + * + * Called with both runqueues locked. + */ +static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, + unsigned long max_load_move, + struct sched_domain *sd, enum cpu_idle_type idle, + int *lb_flags) +{ + unsigned long total_load_moved = 0, load_moved; + + do { + load_moved = load_balance_fair(this_rq, this_cpu, busiest, + max_load_move - total_load_moved, + sd, idle, lb_flags); + + total_load_moved += load_moved; + + if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT)) + break; + +#ifdef CONFIG_PREEMPT + /* + * NEWIDLE balancing is a source of latency, so preemptible + * kernels will stop after the first task is pulled to minimize + * the critical section. + */ + if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) { + *lb_flags |= LBF_ABORT; + break; + } +#endif + } while (load_moved && max_load_move > total_load_moved); + + return total_load_moved > 0; +} + +/********** Helpers for find_busiest_group ************************/ +/* + * sd_lb_stats - Structure to store the statistics of a sched_domain + * during load balancing. + */ +struct sd_lb_stats { + struct sched_group *busiest; /* Busiest group in this sd */ + struct sched_group *this; /* Local group in this sd */ + unsigned long total_load; /* Total load of all groups in sd */ + unsigned long total_pwr; /* Total power of all groups in sd */ + unsigned long avg_load; /* Average load across all groups in sd */ + + /** Statistics of this group */ + unsigned long this_load; + unsigned long this_load_per_task; + unsigned long this_nr_running; + unsigned long this_has_capacity; + unsigned int this_idle_cpus; + + /* Statistics of the busiest group */ + unsigned int busiest_idle_cpus; + unsigned long max_load; + unsigned long busiest_load_per_task; + unsigned long busiest_nr_running; + unsigned long busiest_group_capacity; + unsigned long busiest_has_capacity; + unsigned int busiest_group_weight; + + int group_imb; /* Is there imbalance in this sd */ +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) + int power_savings_balance; /* Is powersave balance needed for this sd */ + struct sched_group *group_min; /* Least loaded group in sd */ + struct sched_group *group_leader; /* Group which relieves group_min */ + unsigned long min_load_per_task; /* load_per_task in group_min */ + unsigned long leader_nr_running; /* Nr running of group_leader */ + unsigned long min_nr_running; /* Nr running of group_min */ +#endif +}; + +/* + * sg_lb_stats - stats of a sched_group required for load_balancing + */ +struct sg_lb_stats { + unsigned long avg_load; /*Avg load across the CPUs of the group */ + unsigned long group_load; /* Total load over the CPUs of the group */ + unsigned long sum_nr_running; /* Nr tasks running in the group */ + unsigned long sum_weighted_load; /* Weighted load of group's tasks */ + unsigned long group_capacity; + unsigned long idle_cpus; + unsigned long group_weight; + int group_imb; /* Is there an imbalance in the group ? */ + int group_has_capacity; /* Is there extra capacity in the group? */ +}; + +/** + * get_sd_load_idx - Obtain the load index for a given sched domain. + * @sd: The sched_domain whose load_idx is to be obtained. + * @idle: The Idle status of the CPU for whose sd load_icx is obtained. + */ +static inline int get_sd_load_idx(struct sched_domain *sd, + enum cpu_idle_type idle) +{ + int load_idx; + + switch (idle) { + case CPU_NOT_IDLE: + load_idx = sd->busy_idx; + break; + + case CPU_NEWLY_IDLE: + load_idx = sd->newidle_idx; + break; + default: + load_idx = sd->idle_idx; + break; + } + + return load_idx; +} + + +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) +/** + * init_sd_power_savings_stats - Initialize power savings statistics for + * the given sched_domain, during load balancing. + * + * @sd: Sched domain whose power-savings statistics are to be initialized. + * @sds: Variable containing the statistics for sd. + * @idle: Idle status of the CPU at which we're performing load-balancing. + */ +static inline void init_sd_power_savings_stats(struct sched_domain *sd, + struct sd_lb_stats *sds, enum cpu_idle_type idle) +{ + /* + * Busy processors will not participate in power savings + * balance. + */ + if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) + sds->power_savings_balance = 0; + else { + sds->power_savings_balance = 1; + sds->min_nr_running = ULONG_MAX; + sds->leader_nr_running = 0; + } +} + +/** + * update_sd_power_savings_stats - Update the power saving stats for a + * sched_domain while performing load balancing. + * + * @group: sched_group belonging to the sched_domain under consideration. + * @sds: Variable containing the statistics of the sched_domain + * @local_group: Does group contain the CPU for which we're performing + * load balancing ? + * @sgs: Variable containing the statistics of the group. + */ +static inline void update_sd_power_savings_stats(struct sched_group *group, + struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) +{ + + if (!sds->power_savings_balance) + return; + + /* + * If the local group is idle or completely loaded + * no need to do power savings balance at this domain + */ + if (local_group && (sds->this_nr_running >= sgs->group_capacity || + !sds->this_nr_running)) + sds->power_savings_balance = 0; + + /* + * If a group is already running at full capacity or idle, + * don't include that group in power savings calculations + */ + if (!sds->power_savings_balance || + sgs->sum_nr_running >= sgs->group_capacity || + !sgs->sum_nr_running) + return; + + /* + * Calculate the group which has the least non-idle load. + * This is the group from where we need to pick up the load + * for saving power + */ + if ((sgs->sum_nr_running < sds->min_nr_running) || + (sgs->sum_nr_running == sds->min_nr_running && + group_first_cpu(group) > group_first_cpu(sds->group_min))) { + sds->group_min = group; + sds->min_nr_running = sgs->sum_nr_running; + sds->min_load_per_task = sgs->sum_weighted_load / + sgs->sum_nr_running; + } + + /* + * Calculate the group which is almost near its + * capacity but still has some space to pick up some load + * from other group and save more power + */ + if (sgs->sum_nr_running + 1 > sgs->group_capacity) + return; + + if (sgs->sum_nr_running > sds->leader_nr_running || + (sgs->sum_nr_running == sds->leader_nr_running && + group_first_cpu(group) < group_first_cpu(sds->group_leader))) { + sds->group_leader = group; + sds->leader_nr_running = sgs->sum_nr_running; + } +} + +/** + * check_power_save_busiest_group - see if there is potential for some power-savings balance + * @sds: Variable containing the statistics of the sched_domain + * under consideration. + * @this_cpu: Cpu at which we're currently performing load-balancing. + * @imbalance: Variable to store the imbalance. + * + * Description: + * Check if we have potential to perform some power-savings balance. + * If yes, set the busiest group to be the least loaded group in the + * sched_domain, so that it's CPUs can be put to idle. + * + * Returns 1 if there is potential to perform power-savings balance. + * Else returns 0. + */ +static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, + int this_cpu, unsigned long *imbalance) +{ + if (!sds->power_savings_balance) + return 0; + + if (sds->this != sds->group_leader || + sds->group_leader == sds->group_min) + return 0; + + *imbalance = sds->min_load_per_task; + sds->busiest = sds->group_min; + + return 1; + +} +#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ +static inline void init_sd_power_savings_stats(struct sched_domain *sd, + struct sd_lb_stats *sds, enum cpu_idle_type idle) +{ + return; +} + +static inline void update_sd_power_savings_stats(struct sched_group *group, + struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) +{ + return; +} + +static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, + int this_cpu, unsigned long *imbalance) +{ + return 0; +} +#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ + + +unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) +{ + return SCHED_POWER_SCALE; +} + +unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) +{ + return default_scale_freq_power(sd, cpu); +} + +unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) +{ + unsigned long weight = sd->span_weight; + unsigned long smt_gain = sd->smt_gain; + + smt_gain /= weight; + + return smt_gain; +} + +unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) +{ + return default_scale_smt_power(sd, cpu); +} + +unsigned long scale_rt_power(int cpu) +{ + struct rq *rq = cpu_rq(cpu); + u64 total, available; + + total = sched_avg_period() + (rq->clock - rq->age_stamp); + + if (unlikely(total < rq->rt_avg)) { + /* Ensures that power won't end up being negative */ + available = 0; + } else { + available = total - rq->rt_avg; + } + + if (unlikely((s64)total < SCHED_POWER_SCALE)) + total = SCHED_POWER_SCALE; + + total >>= SCHED_POWER_SHIFT; + + return div_u64(available, total); +} + +static void update_cpu_power(struct sched_domain *sd, int cpu) +{ + unsigned long weight = sd->span_weight; + unsigned long power = SCHED_POWER_SCALE; + struct sched_group *sdg = sd->groups; + + if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { + if (sched_feat(ARCH_POWER)) + power *= arch_scale_smt_power(sd, cpu); + else + power *= default_scale_smt_power(sd, cpu); + + power >>= SCHED_POWER_SHIFT; + } + + sdg->sgp->power_orig = power; + + if (sched_feat(ARCH_POWER)) + power *= arch_scale_freq_power(sd, cpu); + else + power *= default_scale_freq_power(sd, cpu); + + power >>= SCHED_POWER_SHIFT; + + power *= scale_rt_power(cpu); + power >>= SCHED_POWER_SHIFT; + + if (!power) + power = 1; + + cpu_rq(cpu)->cpu_power = power; + sdg->sgp->power = power; +} + +void update_group_power(struct sched_domain *sd, int cpu) +{ + struct sched_domain *child = sd->child; + struct sched_group *group, *sdg = sd->groups; + unsigned long power; + + if (!child) { + update_cpu_power(sd, cpu); + return; + } + + power = 0; + + group = child->groups; + do { + power += group->sgp->power; + group = group->next; + } while (group != child->groups); + + sdg->sgp->power = power; +} + +/* + * Try and fix up capacity for tiny siblings, this is needed when + * things like SD_ASYM_PACKING need f_b_g to select another sibling + * which on its own isn't powerful enough. + * + * See update_sd_pick_busiest() and check_asym_packing(). + */ +static inline int +fix_small_capacity(struct sched_domain *sd, struct sched_group *group) +{ + /* + * Only siblings can have significantly less than SCHED_POWER_SCALE + */ + if (!(sd->flags & SD_SHARE_CPUPOWER)) + return 0; + + /* + * If ~90% of the cpu_power is still there, we're good. + */ + if (group->sgp->power * 32 > group->sgp->power_orig * 29) + return 1; + + return 0; +} + +/** + * update_sg_lb_stats - Update sched_group's statistics for load balancing. + * @sd: The sched_domain whose statistics are to be updated. + * @group: sched_group whose statistics are to be updated. + * @this_cpu: Cpu for which load balance is currently performed. + * @idle: Idle status of this_cpu + * @load_idx: Load index of sched_domain of this_cpu for load calc. + * @local_group: Does group contain this_cpu. + * @cpus: Set of cpus considered for load balancing. + * @balance: Should we balance. + * @sgs: variable to hold the statistics for this group. + */ +static inline void update_sg_lb_stats(struct sched_domain *sd, + struct sched_group *group, int this_cpu, + enum cpu_idle_type idle, int load_idx, + int local_group, const struct cpumask *cpus, + int *balance, struct sg_lb_stats *sgs) +{ + unsigned long load, max_cpu_load, min_cpu_load, max_nr_running; + int i; + unsigned int balance_cpu = -1, first_idle_cpu = 0; + unsigned long avg_load_per_task = 0; + + if (local_group) + balance_cpu = group_first_cpu(group); + + /* Tally up the load of all CPUs in the group */ + max_cpu_load = 0; + min_cpu_load = ~0UL; + max_nr_running = 0; + + for_each_cpu_and(i, sched_group_cpus(group), cpus) { + struct rq *rq = cpu_rq(i); + + /* Bias balancing toward cpus of our domain */ + if (local_group) { + if (idle_cpu(i) && !first_idle_cpu) { + first_idle_cpu = 1; + balance_cpu = i; + } + + load = target_load(i, load_idx); + } else { + load = source_load(i, load_idx); + if (load > max_cpu_load) { + max_cpu_load = load; + max_nr_running = rq->nr_running; + } + if (min_cpu_load > load) + min_cpu_load = load; + } + + sgs->group_load += load; + sgs->sum_nr_running += rq->nr_running; + sgs->sum_weighted_load += weighted_cpuload(i); + if (idle_cpu(i)) + sgs->idle_cpus++; + } + + /* + * First idle cpu or the first cpu(busiest) in this sched group + * is eligible for doing load balancing at this and above + * domains. In the newly idle case, we will allow all the cpu's + * to do the newly idle load balance. + */ + if (idle != CPU_NEWLY_IDLE && local_group) { + if (balance_cpu != this_cpu) { + *balance = 0; + return; + } + update_group_power(sd, this_cpu); + } + + /* Adjust by relative CPU power of the group */ + sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power; + + /* + * Consider the group unbalanced when the imbalance is larger + * than the average weight of a task. + * + * APZ: with cgroup the avg task weight can vary wildly and + * might not be a suitable number - should we keep a + * normalized nr_running number somewhere that negates + * the hierarchy? + */ + if (sgs->sum_nr_running) + avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; + + if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1) + sgs->group_imb = 1; + + sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power, + SCHED_POWER_SCALE); + if (!sgs->group_capacity) + sgs->group_capacity = fix_small_capacity(sd, group); + sgs->group_weight = group->group_weight; + + if (sgs->group_capacity > sgs->sum_nr_running) + sgs->group_has_capacity = 1; +} + +/** + * update_sd_pick_busiest - return 1 on busiest group + * @sd: sched_domain whose statistics are to be checked + * @sds: sched_domain statistics + * @sg: sched_group candidate to be checked for being the busiest + * @sgs: sched_group statistics + * @this_cpu: the current cpu + * + * Determine if @sg is a busier group than the previously selected + * busiest group. + */ +static bool update_sd_pick_busiest(struct sched_domain *sd, + struct sd_lb_stats *sds, + struct sched_group *sg, + struct sg_lb_stats *sgs, + int this_cpu) +{ + if (sgs->avg_load <= sds->max_load) + return false; + + if (sgs->sum_nr_running > sgs->group_capacity) + return true; + + if (sgs->group_imb) + return true; + + /* + * ASYM_PACKING needs to move all the work to the lowest + * numbered CPUs in the group, therefore mark all groups + * higher than ourself as busy. + */ + if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && + this_cpu < group_first_cpu(sg)) { + if (!sds->busiest) + return true; + + if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) + return true; + } + + return false; +} + +/** + * update_sd_lb_stats - Update sched_domain's statistics for load balancing. + * @sd: sched_domain whose statistics are to be updated. + * @this_cpu: Cpu for which load balance is currently performed. + * @idle: Idle status of this_cpu + * @cpus: Set of cpus considered for load balancing. + * @balance: Should we balance. + * @sds: variable to hold the statistics for this sched_domain. + */ +static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, + enum cpu_idle_type idle, const struct cpumask *cpus, + int *balance, struct sd_lb_stats *sds) +{ + struct sched_domain *child = sd->child; + struct sched_group *sg = sd->groups; + struct sg_lb_stats sgs; + int load_idx, prefer_sibling = 0; + + if (child && child->flags & SD_PREFER_SIBLING) + prefer_sibling = 1; + + init_sd_power_savings_stats(sd, sds, idle); + load_idx = get_sd_load_idx(sd, idle); + + do { + int local_group; + + local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg)); + memset(&sgs, 0, sizeof(sgs)); + update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, + local_group, cpus, balance, &sgs); + + if (local_group && !(*balance)) + return; + + sds->total_load += sgs.group_load; + sds->total_pwr += sg->sgp->power; + + /* + * In case the child domain prefers tasks go to siblings + * first, lower the sg capacity to one so that we'll try + * and move all the excess tasks away. We lower the capacity + * of a group only if the local group has the capacity to fit + * these excess tasks, i.e. nr_running < group_capacity. The + * extra check prevents the case where you always pull from the + * heaviest group when it is already under-utilized (possible + * with a large weight task outweighs the tasks on the system). + */ + if (prefer_sibling && !local_group && sds->this_has_capacity) + sgs.group_capacity = min(sgs.group_capacity, 1UL); + + if (local_group) { + sds->this_load = sgs.avg_load; + sds->this = sg; + sds->this_nr_running = sgs.sum_nr_running; + sds->this_load_per_task = sgs.sum_weighted_load; + sds->this_has_capacity = sgs.group_has_capacity; + sds->this_idle_cpus = sgs.idle_cpus; + } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) { + sds->max_load = sgs.avg_load; + sds->busiest = sg; + sds->busiest_nr_running = sgs.sum_nr_running; + sds->busiest_idle_cpus = sgs.idle_cpus; + sds->busiest_group_capacity = sgs.group_capacity; + sds->busiest_load_per_task = sgs.sum_weighted_load; + sds->busiest_has_capacity = sgs.group_has_capacity; + sds->busiest_group_weight = sgs.group_weight; + sds->group_imb = sgs.group_imb; + } + + update_sd_power_savings_stats(sg, sds, local_group, &sgs); + sg = sg->next; + } while (sg != sd->groups); +} + +/** + * check_asym_packing - Check to see if the group is packed into the + * sched doman. + * + * This is primarily intended to used at the sibling level. Some + * cores like POWER7 prefer to use lower numbered SMT threads. In the + * case of POWER7, it can move to lower SMT modes only when higher + * threads are idle. When in lower SMT modes, the threads will + * perform better since they share less core resources. Hence when we + * have idle threads, we want them to be the higher ones. + * + * This packing function is run on idle threads. It checks to see if + * the busiest CPU in this domain (core in the P7 case) has a higher + * CPU number than the packing function is being run on. Here we are + * assuming lower CPU number will be equivalent to lower a SMT thread + * number. + * + * Returns 1 when packing is required and a task should be moved to + * this CPU. The amount of the imbalance is returned in *imbalance. + * + * @sd: The sched_domain whose packing is to be checked. + * @sds: Statistics of the sched_domain which is to be packed + * @this_cpu: The cpu at whose sched_domain we're performing load-balance. + * @imbalance: returns amount of imbalanced due to packing. + */ +static int check_asym_packing(struct sched_domain *sd, + struct sd_lb_stats *sds, + int this_cpu, unsigned long *imbalance) +{ + int busiest_cpu; + + if (!(sd->flags & SD_ASYM_PACKING)) + return 0; + + if (!sds->busiest) + return 0; + + busiest_cpu = group_first_cpu(sds->busiest); + if (this_cpu > busiest_cpu) + return 0; + + *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power, + SCHED_POWER_SCALE); + return 1; +} + +/** + * fix_small_imbalance - Calculate the minor imbalance that exists + * amongst the groups of a sched_domain, during + * load balancing. + * @sds: Statistics of the sched_domain whose imbalance is to be calculated. + * @this_cpu: The cpu at whose sched_domain we're performing load-balance. + * @imbalance: Variable to store the imbalance. + */ +static inline void fix_small_imbalance(struct sd_lb_stats *sds, + int this_cpu, unsigned long *imbalance) +{ + unsigned long tmp, pwr_now = 0, pwr_move = 0; + unsigned int imbn = 2; + unsigned long scaled_busy_load_per_task; + + if (sds->this_nr_running) { + sds->this_load_per_task /= sds->this_nr_running; + if (sds->busiest_load_per_task > + sds->this_load_per_task) + imbn = 1; + } else + sds->this_load_per_task = + cpu_avg_load_per_task(this_cpu); + + scaled_busy_load_per_task = sds->busiest_load_per_task + * SCHED_POWER_SCALE; + scaled_busy_load_per_task /= sds->busiest->sgp->power; + + if (sds->max_load - sds->this_load + scaled_busy_load_per_task >= + (scaled_busy_load_per_task * imbn)) { + *imbalance = sds->busiest_load_per_task; + return; + } + + /* + * OK, we don't have enough imbalance to justify moving tasks, + * however we may be able to increase total CPU power used by + * moving them. + */ + + pwr_now += sds->busiest->sgp->power * + min(sds->busiest_load_per_task, sds->max_load); + pwr_now += sds->this->sgp->power * + min(sds->this_load_per_task, sds->this_load); + pwr_now /= SCHED_POWER_SCALE; + + /* Amount of load we'd subtract */ + tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / + sds->busiest->sgp->power; + if (sds->max_load > tmp) + pwr_move += sds->busiest->sgp->power * + min(sds->busiest_load_per_task, sds->max_load - tmp); + + /* Amount of load we'd add */ + if (sds->max_load * sds->busiest->sgp->power < + sds->busiest_load_per_task * SCHED_POWER_SCALE) + tmp = (sds->max_load * sds->busiest->sgp->power) / + sds->this->sgp->power; + else + tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / + sds->this->sgp->power; + pwr_move += sds->this->sgp->power * + min(sds->this_load_per_task, sds->this_load + tmp); + pwr_move /= SCHED_POWER_SCALE; + + /* Move if we gain throughput */ + if (pwr_move > pwr_now) + *imbalance = sds->busiest_load_per_task; +} + +/** + * calculate_imbalance - Calculate the amount of imbalance present within the + * groups of a given sched_domain during load balance. + * @sds: statistics of the sched_domain whose imbalance is to be calculated. + * @this_cpu: Cpu for which currently load balance is being performed. + * @imbalance: The variable to store the imbalance. + */ +static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, + unsigned long *imbalance) +{ + unsigned long max_pull, load_above_capacity = ~0UL; + + sds->busiest_load_per_task /= sds->busiest_nr_running; + if (sds->group_imb) { + sds->busiest_load_per_task = + min(sds->busiest_load_per_task, sds->avg_load); + } + + /* + * In the presence of smp nice balancing, certain scenarios can have + * max load less than avg load(as we skip the groups at or below + * its cpu_power, while calculating max_load..) + */ + if (sds->max_load < sds->avg_load) { + *imbalance = 0; + return fix_small_imbalance(sds, this_cpu, imbalance); + } + + if (!sds->group_imb) { + /* + * Don't want to pull so many tasks that a group would go idle. + */ + load_above_capacity = (sds->busiest_nr_running - + sds->busiest_group_capacity); + + load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); + + load_above_capacity /= sds->busiest->sgp->power; + } + + /* + * We're trying to get all the cpus to the average_load, so we don't + * want to push ourselves above the average load, nor do we wish to + * reduce the max loaded cpu below the average load. At the same time, + * we also don't want to reduce the group load below the group capacity + * (so that we can implement power-savings policies etc). Thus we look + * for the minimum possible imbalance. + * Be careful of negative numbers as they'll appear as very large values + * with unsigned longs. + */ + max_pull = min(sds->max_load - sds->avg_load, load_above_capacity); + + /* How much load to actually move to equalise the imbalance */ + *imbalance = min(max_pull * sds->busiest->sgp->power, + (sds->avg_load - sds->this_load) * sds->this->sgp->power) + / SCHED_POWER_SCALE; + + /* + * if *imbalance is less than the average load per runnable task + * there is no guarantee that any tasks will be moved so we'll have + * a think about bumping its value to force at least one task to be + * moved + */ + if (*imbalance < sds->busiest_load_per_task) + return fix_small_imbalance(sds, this_cpu, imbalance); + +} + +/******* find_busiest_group() helpers end here *********************/ + +/** + * find_busiest_group - Returns the busiest group within the sched_domain + * if there is an imbalance. If there isn't an imbalance, and + * the user has opted for power-savings, it returns a group whose + * CPUs can be put to idle by rebalancing those tasks elsewhere, if + * such a group exists. + * + * Also calculates the amount of weighted load which should be moved + * to restore balance. + * + * @sd: The sched_domain whose busiest group is to be returned. + * @this_cpu: The cpu for which load balancing is currently being performed. + * @imbalance: Variable which stores amount of weighted load which should + * be moved to restore balance/put a group to idle. + * @idle: The idle status of this_cpu. + * @cpus: The set of CPUs under consideration for load-balancing. + * @balance: Pointer to a variable indicating if this_cpu + * is the appropriate cpu to perform load balancing at this_level. + * + * Returns: - the busiest group if imbalance exists. + * - If no imbalance and user has opted for power-savings balance, + * return the least loaded group whose CPUs can be + * put to idle by rebalancing its tasks onto our group. + */ +static struct sched_group * +find_busiest_group(struct sched_domain *sd, int this_cpu, + unsigned long *imbalance, enum cpu_idle_type idle, + const struct cpumask *cpus, int *balance) +{ + struct sd_lb_stats sds; + + memset(&sds, 0, sizeof(sds)); + + /* + * Compute the various statistics relavent for load balancing at + * this level. + */ + update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds); + + /* + * this_cpu is not the appropriate cpu to perform load balancing at + * this level. + */ + if (!(*balance)) + goto ret; + + if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) && + check_asym_packing(sd, &sds, this_cpu, imbalance)) + return sds.busiest; + + /* There is no busy sibling group to pull tasks from */ + if (!sds.busiest || sds.busiest_nr_running == 0) + goto out_balanced; + + sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; + + /* + * If the busiest group is imbalanced the below checks don't + * work because they assumes all things are equal, which typically + * isn't true due to cpus_allowed constraints and the like. + */ + if (sds.group_imb) + goto force_balance; + + /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ + if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity && + !sds.busiest_has_capacity) + goto force_balance; + + /* + * If the local group is more busy than the selected busiest group + * don't try and pull any tasks. + */ + if (sds.this_load >= sds.max_load) + goto out_balanced; + + /* + * Don't pull any tasks if this group is already above the domain + * average load. + */ + if (sds.this_load >= sds.avg_load) + goto out_balanced; + + if (idle == CPU_IDLE) { + /* + * This cpu is idle. If the busiest group load doesn't + * have more tasks than the number of available cpu's and + * there is no imbalance between this and busiest group + * wrt to idle cpu's, it is balanced. + */ + if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) && + sds.busiest_nr_running <= sds.busiest_group_weight) + goto out_balanced; + } else { + /* + * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use + * imbalance_pct to be conservative. + */ + if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) + goto out_balanced; + } + +force_balance: + /* Looks like there is an imbalance. Compute it */ + calculate_imbalance(&sds, this_cpu, imbalance); + return sds.busiest; + +out_balanced: + /* + * There is no obvious imbalance. But check if we can do some balancing + * to save power. + */ + if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) + return sds.busiest; +ret: + *imbalance = 0; + return NULL; +} + +/* + * find_busiest_queue - find the busiest runqueue among the cpus in group. + */ +static struct rq * +find_busiest_queue(struct sched_domain *sd, struct sched_group *group, + enum cpu_idle_type idle, unsigned long imbalance, + const struct cpumask *cpus) +{ + struct rq *busiest = NULL, *rq; + unsigned long max_load = 0; + int i; + + for_each_cpu(i, sched_group_cpus(group)) { + unsigned long power = power_of(i); + unsigned long capacity = DIV_ROUND_CLOSEST(power, + SCHED_POWER_SCALE); + unsigned long wl; + + if (!capacity) + capacity = fix_small_capacity(sd, group); + + if (!cpumask_test_cpu(i, cpus)) + continue; + + rq = cpu_rq(i); + wl = weighted_cpuload(i); + + /* + * When comparing with imbalance, use weighted_cpuload() + * which is not scaled with the cpu power. + */ + if (capacity && rq->nr_running == 1 && wl > imbalance) + continue; + + /* + * For the load comparisons with the other cpu's, consider + * the weighted_cpuload() scaled with the cpu power, so that + * the load can be moved away from the cpu that is potentially + * running at a lower capacity. + */ + wl = (wl * SCHED_POWER_SCALE) / power; + + if (wl > max_load) { + max_load = wl; + busiest = rq; + } + } + + return busiest; +} + +/* + * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but + * so long as it is large enough. + */ +#define MAX_PINNED_INTERVAL 512 + +/* Working cpumask for load_balance and load_balance_newidle. */ +DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); + +static int need_active_balance(struct sched_domain *sd, int idle, + int busiest_cpu, int this_cpu) +{ + if (idle == CPU_NEWLY_IDLE) { + + /* + * ASYM_PACKING needs to force migrate tasks from busy but + * higher numbered CPUs in order to pack all tasks in the + * lowest numbered CPUs. + */ + if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu) + return 1; + + /* + * The only task running in a non-idle cpu can be moved to this + * cpu in an attempt to completely freeup the other CPU + * package. + * + * The package power saving logic comes from + * find_busiest_group(). If there are no imbalance, then + * f_b_g() will return NULL. However when sched_mc={1,2} then + * f_b_g() will select a group from which a running task may be + * pulled to this cpu in order to make the other package idle. + * If there is no opportunity to make a package idle and if + * there are no imbalance, then f_b_g() will return NULL and no + * action will be taken in load_balance_newidle(). + * + * Under normal task pull operation due to imbalance, there + * will be more than one task in the source run queue and + * move_tasks() will succeed. ld_moved will be true and this + * active balance code will not be triggered. + */ + if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) + return 0; + } + + return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); +} + +static int active_load_balance_cpu_stop(void *data); + +/* + * Check this_cpu to ensure it is balanced within domain. Attempt to move + * tasks if there is an imbalance. + */ +static int load_balance(int this_cpu, struct rq *this_rq, + struct sched_domain *sd, enum cpu_idle_type idle, + int *balance) +{ + int ld_moved, lb_flags = 0, active_balance = 0; + struct sched_group *group; + unsigned long imbalance; + struct rq *busiest; + unsigned long flags; + struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); + + cpumask_copy(cpus, cpu_active_mask); + + schedstat_inc(sd, lb_count[idle]); + +redo: + group = find_busiest_group(sd, this_cpu, &imbalance, idle, + cpus, balance); + + if (*balance == 0) + goto out_balanced; + + if (!group) { + schedstat_inc(sd, lb_nobusyg[idle]); + goto out_balanced; + } + + busiest = find_busiest_queue(sd, group, idle, imbalance, cpus); + if (!busiest) { + schedstat_inc(sd, lb_nobusyq[idle]); + goto out_balanced; + } + + BUG_ON(busiest == this_rq); + + schedstat_add(sd, lb_imbalance[idle], imbalance); + + ld_moved = 0; + if (busiest->nr_running > 1) { + /* + * Attempt to move tasks. If find_busiest_group has found + * an imbalance but busiest->nr_running <= 1, the group is + * still unbalanced. ld_moved simply stays zero, so it is + * correctly treated as an imbalance. + */ + lb_flags |= LBF_ALL_PINNED; + local_irq_save(flags); + double_rq_lock(this_rq, busiest); + ld_moved = move_tasks(this_rq, this_cpu, busiest, + imbalance, sd, idle, &lb_flags); + double_rq_unlock(this_rq, busiest); + local_irq_restore(flags); + + /* + * some other cpu did the load balance for us. + */ + if (ld_moved && this_cpu != smp_processor_id()) + resched_cpu(this_cpu); + + if (lb_flags & LBF_ABORT) + goto out_balanced; + + if (lb_flags & LBF_NEED_BREAK) { + lb_flags += LBF_HAD_BREAK - LBF_NEED_BREAK; + if (lb_flags & LBF_ABORT) + goto out_balanced; + goto redo; + } + + /* All tasks on this runqueue were pinned by CPU affinity */ + if (unlikely(lb_flags & LBF_ALL_PINNED)) { + cpumask_clear_cpu(cpu_of(busiest), cpus); + if (!cpumask_empty(cpus)) + goto redo; + goto out_balanced; + } + } + + if (!ld_moved) { + schedstat_inc(sd, lb_failed[idle]); + /* + * Increment the failure counter only on periodic balance. + * We do not want newidle balance, which can be very + * frequent, pollute the failure counter causing + * excessive cache_hot migrations and active balances. + */ + if (idle != CPU_NEWLY_IDLE) + sd->nr_balance_failed++; + + if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) { + raw_spin_lock_irqsave(&busiest->lock, flags); + + /* don't kick the active_load_balance_cpu_stop, + * if the curr task on busiest cpu can't be + * moved to this_cpu + */ + if (!cpumask_test_cpu(this_cpu, + tsk_cpus_allowed(busiest->curr))) { + raw_spin_unlock_irqrestore(&busiest->lock, + flags); + lb_flags |= LBF_ALL_PINNED; + goto out_one_pinned; + } + + /* + * ->active_balance synchronizes accesses to + * ->active_balance_work. Once set, it's cleared + * only after active load balance is finished. + */ + if (!busiest->active_balance) { + busiest->active_balance = 1; + busiest->push_cpu = this_cpu; + active_balance = 1; + } + raw_spin_unlock_irqrestore(&busiest->lock, flags); + + if (active_balance) + stop_one_cpu_nowait(cpu_of(busiest), + active_load_balance_cpu_stop, busiest, + &busiest->active_balance_work); + + /* + * We've kicked active balancing, reset the failure + * counter. + */ + sd->nr_balance_failed = sd->cache_nice_tries+1; + } + } else + sd->nr_balance_failed = 0; + + if (likely(!active_balance)) { + /* We were unbalanced, so reset the balancing interval */ + sd->balance_interval = sd->min_interval; + } else { + /* + * If we've begun active balancing, start to back off. This + * case may not be covered by the all_pinned logic if there + * is only 1 task on the busy runqueue (because we don't call + * move_tasks). + */ + if (sd->balance_interval < sd->max_interval) + sd->balance_interval *= 2; + } + + goto out; + +out_balanced: + schedstat_inc(sd, lb_balanced[idle]); + + sd->nr_balance_failed = 0; + +out_one_pinned: + /* tune up the balancing interval */ + if (((lb_flags & LBF_ALL_PINNED) && + sd->balance_interval < MAX_PINNED_INTERVAL) || + (sd->balance_interval < sd->max_interval)) + sd->balance_interval *= 2; + + ld_moved = 0; +out: + return ld_moved; +} + +/* + * idle_balance is called by schedule() if this_cpu is about to become + * idle. Attempts to pull tasks from other CPUs. + */ +void idle_balance(int this_cpu, struct rq *this_rq) +{ + struct sched_domain *sd; + int pulled_task = 0; + unsigned long next_balance = jiffies + HZ; + + this_rq->idle_stamp = this_rq->clock; + + if (this_rq->avg_idle < sysctl_sched_migration_cost) + return; + + /* + * Drop the rq->lock, but keep IRQ/preempt disabled. + */ + raw_spin_unlock(&this_rq->lock); + + update_shares(this_cpu); + rcu_read_lock(); + for_each_domain(this_cpu, sd) { + unsigned long interval; + int balance = 1; + + if (!(sd->flags & SD_LOAD_BALANCE)) + continue; + + if (sd->flags & SD_BALANCE_NEWIDLE) { + /* If we've pulled tasks over stop searching: */ + pulled_task = load_balance(this_cpu, this_rq, + sd, CPU_NEWLY_IDLE, &balance); + } + + interval = msecs_to_jiffies(sd->balance_interval); + if (time_after(next_balance, sd->last_balance + interval)) + next_balance = sd->last_balance + interval; + if (pulled_task) { + this_rq->idle_stamp = 0; + break; + } + } + rcu_read_unlock(); + + raw_spin_lock(&this_rq->lock); + + if (pulled_task || time_after(jiffies, this_rq->next_balance)) { + /* + * We are going idle. next_balance may be set based on + * a busy processor. So reset next_balance. + */ + this_rq->next_balance = next_balance; + } +} + +/* + * active_load_balance_cpu_stop is run by cpu stopper. It pushes + * running tasks off the busiest CPU onto idle CPUs. It requires at + * least 1 task to be running on each physical CPU where possible, and + * avoids physical / logical imbalances. + */ +static int active_load_balance_cpu_stop(void *data) +{ + struct rq *busiest_rq = data; + int busiest_cpu = cpu_of(busiest_rq); + int target_cpu = busiest_rq->push_cpu; + struct rq *target_rq = cpu_rq(target_cpu); + struct sched_domain *sd; + + raw_spin_lock_irq(&busiest_rq->lock); + + /* make sure the requested cpu hasn't gone down in the meantime */ + if (unlikely(busiest_cpu != smp_processor_id() || + !busiest_rq->active_balance)) + goto out_unlock; + + /* Is there any task to move? */ + if (busiest_rq->nr_running <= 1) + goto out_unlock; + + /* + * This condition is "impossible", if it occurs + * we need to fix it. Originally reported by + * Bjorn Helgaas on a 128-cpu setup. + */ + BUG_ON(busiest_rq == target_rq); + + /* move a task from busiest_rq to target_rq */ + double_lock_balance(busiest_rq, target_rq); + + /* Search for an sd spanning us and the target CPU. */ + rcu_read_lock(); + for_each_domain(target_cpu, sd) { + if ((sd->flags & SD_LOAD_BALANCE) && + cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) + break; + } + + if (likely(sd)) { + schedstat_inc(sd, alb_count); + + if (move_one_task(target_rq, target_cpu, busiest_rq, + sd, CPU_IDLE)) + schedstat_inc(sd, alb_pushed); + else + schedstat_inc(sd, alb_failed); + } + rcu_read_unlock(); + double_unlock_balance(busiest_rq, target_rq); +out_unlock: + busiest_rq->active_balance = 0; + raw_spin_unlock_irq(&busiest_rq->lock); + return 0; +} + +#ifdef CONFIG_NO_HZ +/* + * idle load balancing details + * - When one of the busy CPUs notice that there may be an idle rebalancing + * needed, they will kick the idle load balancer, which then does idle + * load balancing for all the idle CPUs. + */ +static struct { + cpumask_var_t idle_cpus_mask; + atomic_t nr_cpus; + unsigned long next_balance; /* in jiffy units */ +} nohz ____cacheline_aligned; + +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) +/** + * lowest_flag_domain - Return lowest sched_domain containing flag. + * @cpu: The cpu whose lowest level of sched domain is to + * be returned. + * @flag: The flag to check for the lowest sched_domain + * for the given cpu. + * + * Returns the lowest sched_domain of a cpu which contains the given flag. + */ +static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) +{ + struct sched_domain *sd; + + for_each_domain(cpu, sd) + if (sd->flags & flag) + break; + + return sd; +} + +/** + * for_each_flag_domain - Iterates over sched_domains containing the flag. + * @cpu: The cpu whose domains we're iterating over. + * @sd: variable holding the value of the power_savings_sd + * for cpu. + * @flag: The flag to filter the sched_domains to be iterated. + * + * Iterates over all the scheduler domains for a given cpu that has the 'flag' + * set, starting from the lowest sched_domain to the highest. + */ +#define for_each_flag_domain(cpu, sd, flag) \ + for (sd = lowest_flag_domain(cpu, flag); \ + (sd && (sd->flags & flag)); sd = sd->parent) + +/** + * find_new_ilb - Finds the optimum idle load balancer for nomination. + * @cpu: The cpu which is nominating a new idle_load_balancer. + * + * Returns: Returns the id of the idle load balancer if it exists, + * Else, returns >= nr_cpu_ids. + * + * This algorithm picks the idle load balancer such that it belongs to a + * semi-idle powersavings sched_domain. The idea is to try and avoid + * completely idle packages/cores just for the purpose of idle load balancing + * when there are other idle cpu's which are better suited for that job. + */ +static int find_new_ilb(int cpu) +{ + int ilb = cpumask_first(nohz.idle_cpus_mask); + struct sched_group *ilbg; + struct sched_domain *sd; + + /* + * Have idle load balancer selection from semi-idle packages only + * when power-aware load balancing is enabled + */ + if (!(sched_smt_power_savings || sched_mc_power_savings)) + goto out_done; + + /* + * Optimize for the case when we have no idle CPUs or only one + * idle CPU. Don't walk the sched_domain hierarchy in such cases + */ + if (cpumask_weight(nohz.idle_cpus_mask) < 2) + goto out_done; + + rcu_read_lock(); + for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { + ilbg = sd->groups; + + do { + if (ilbg->group_weight != + atomic_read(&ilbg->sgp->nr_busy_cpus)) { + ilb = cpumask_first_and(nohz.idle_cpus_mask, + sched_group_cpus(ilbg)); + goto unlock; + } + + ilbg = ilbg->next; + + } while (ilbg != sd->groups); + } +unlock: + rcu_read_unlock(); + +out_done: + if (ilb < nr_cpu_ids && idle_cpu(ilb)) + return ilb; + + return nr_cpu_ids; +} +#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ +static inline int find_new_ilb(int call_cpu) +{ + return nr_cpu_ids; +} +#endif + +/* + * Kick a CPU to do the nohz balancing, if it is time for it. We pick the + * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle + * CPU (if there is one). + */ +static void nohz_balancer_kick(int cpu) +{ + int ilb_cpu; + + nohz.next_balance++; + + ilb_cpu = find_new_ilb(cpu); + + if (ilb_cpu >= nr_cpu_ids) + return; + + if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) + return; + /* + * Use smp_send_reschedule() instead of resched_cpu(). + * This way we generate a sched IPI on the target cpu which + * is idle. And the softirq performing nohz idle load balance + * will be run before returning from the IPI. + */ + smp_send_reschedule(ilb_cpu); + return; +} + +static inline void clear_nohz_tick_stopped(int cpu) +{ + if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { + cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); + atomic_dec(&nohz.nr_cpus); + clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); + } +} + +static inline void set_cpu_sd_state_busy(void) +{ + struct sched_domain *sd; + int cpu = smp_processor_id(); + + if (!test_bit(NOHZ_IDLE, nohz_flags(cpu))) + return; + clear_bit(NOHZ_IDLE, nohz_flags(cpu)); + + rcu_read_lock(); + for_each_domain(cpu, sd) + atomic_inc(&sd->groups->sgp->nr_busy_cpus); + rcu_read_unlock(); +} + +void set_cpu_sd_state_idle(void) +{ + struct sched_domain *sd; + int cpu = smp_processor_id(); + + if (test_bit(NOHZ_IDLE, nohz_flags(cpu))) + return; + set_bit(NOHZ_IDLE, nohz_flags(cpu)); + + rcu_read_lock(); + for_each_domain(cpu, sd) + atomic_dec(&sd->groups->sgp->nr_busy_cpus); + rcu_read_unlock(); +} + +/* + * This routine will record that this cpu is going idle with tick stopped. + * This info will be used in performing idle load balancing in the future. + */ +void select_nohz_load_balancer(int stop_tick) +{ + int cpu = smp_processor_id(); + + /* + * If this cpu is going down, then nothing needs to be done. + */ + if (!cpu_active(cpu)) + return; + + if (stop_tick) { + if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) + return; + + cpumask_set_cpu(cpu, nohz.idle_cpus_mask); + atomic_inc(&nohz.nr_cpus); + set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); + } + return; +} + +static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb, + unsigned long action, void *hcpu) +{ + switch (action & ~CPU_TASKS_FROZEN) { + case CPU_DYING: + clear_nohz_tick_stopped(smp_processor_id()); + return NOTIFY_OK; + default: + return NOTIFY_DONE; + } +} +#endif + +static DEFINE_SPINLOCK(balancing); + +static unsigned long __read_mostly max_load_balance_interval = HZ/10; + +/* + * Scale the max load_balance interval with the number of CPUs in the system. + * This trades load-balance latency on larger machines for less cross talk. + */ +void update_max_interval(void) +{ + max_load_balance_interval = HZ*num_online_cpus()/10; +} + +/* + * It checks each scheduling domain to see if it is due to be balanced, + * and initiates a balancing operation if so. + * + * Balancing parameters are set up in arch_init_sched_domains. + */ +static void rebalance_domains(int cpu, enum cpu_idle_type idle) +{ + int balance = 1; + struct rq *rq = cpu_rq(cpu); + unsigned long interval; + struct sched_domain *sd; + /* Earliest time when we have to do rebalance again */ + unsigned long next_balance = jiffies + 60*HZ; + int update_next_balance = 0; + int need_serialize; + + update_shares(cpu); + + rcu_read_lock(); + for_each_domain(cpu, sd) { + if (!(sd->flags & SD_LOAD_BALANCE)) + continue; + + interval = sd->balance_interval; + if (idle != CPU_IDLE) + interval *= sd->busy_factor; + + /* scale ms to jiffies */ + interval = msecs_to_jiffies(interval); + interval = clamp(interval, 1UL, max_load_balance_interval); + + need_serialize = sd->flags & SD_SERIALIZE; + + if (need_serialize) { + if (!spin_trylock(&balancing)) + goto out; + } + + if (time_after_eq(jiffies, sd->last_balance + interval)) { + if (load_balance(cpu, rq, sd, idle, &balance)) { + /* + * We've pulled tasks over so either we're no + * longer idle. + */ + idle = CPU_NOT_IDLE; + } + sd->last_balance = jiffies; + } + if (need_serialize) + spin_unlock(&balancing); +out: + if (time_after(next_balance, sd->last_balance + interval)) { + next_balance = sd->last_balance + interval; + update_next_balance = 1; + } + + /* + * Stop the load balance at this level. There is another + * CPU in our sched group which is doing load balancing more + * actively. + */ + if (!balance) + break; + } + rcu_read_unlock(); + + /* + * next_balance will be updated only when there is a need. + * When the cpu is attached to null domain for ex, it will not be + * updated. + */ + if (likely(update_next_balance)) + rq->next_balance = next_balance; +} + +#ifdef CONFIG_NO_HZ +/* + * In CONFIG_NO_HZ case, the idle balance kickee will do the + * rebalancing for all the cpus for whom scheduler ticks are stopped. + */ +static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) +{ + struct rq *this_rq = cpu_rq(this_cpu); + struct rq *rq; + int balance_cpu; + + if (idle != CPU_IDLE || + !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) + goto end; + + for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { + if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) + continue; + + /* + * If this cpu gets work to do, stop the load balancing + * work being done for other cpus. Next load + * balancing owner will pick it up. + */ + if (need_resched()) + break; + + raw_spin_lock_irq(&this_rq->lock); + update_rq_clock(this_rq); + update_cpu_load(this_rq); + raw_spin_unlock_irq(&this_rq->lock); + + rebalance_domains(balance_cpu, CPU_IDLE); + + rq = cpu_rq(balance_cpu); + if (time_after(this_rq->next_balance, rq->next_balance)) + this_rq->next_balance = rq->next_balance; + } + nohz.next_balance = this_rq->next_balance; +end: + clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); +} + +/* + * Current heuristic for kicking the idle load balancer in the presence + * of an idle cpu is the system. + * - This rq has more than one task. + * - At any scheduler domain level, this cpu's scheduler group has multiple + * busy cpu's exceeding the group's power. + * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler + * domain span are idle. + */ +static inline int nohz_kick_needed(struct rq *rq, int cpu) +{ + unsigned long now = jiffies; + struct sched_domain *sd; + + if (unlikely(idle_cpu(cpu))) + return 0; + + /* + * We may be recently in ticked or tickless idle mode. At the first + * busy tick after returning from idle, we will update the busy stats. + */ + set_cpu_sd_state_busy(); + clear_nohz_tick_stopped(cpu); + + /* + * None are in tickless mode and hence no need for NOHZ idle load + * balancing. + */ + if (likely(!atomic_read(&nohz.nr_cpus))) + return 0; + + if (time_before(now, nohz.next_balance)) + return 0; + + if (rq->nr_running >= 2) + goto need_kick; + + rcu_read_lock(); + for_each_domain(cpu, sd) { + struct sched_group *sg = sd->groups; + struct sched_group_power *sgp = sg->sgp; + int nr_busy = atomic_read(&sgp->nr_busy_cpus); + + if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1) + goto need_kick_unlock; + + if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight + && (cpumask_first_and(nohz.idle_cpus_mask, + sched_domain_span(sd)) < cpu)) + goto need_kick_unlock; + + if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING))) + break; + } + rcu_read_unlock(); + return 0; + +need_kick_unlock: + rcu_read_unlock(); +need_kick: + return 1; +} +#else +static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } +#endif + +/* + * run_rebalance_domains is triggered when needed from the scheduler tick. + * Also triggered for nohz idle balancing (with nohz_balancing_kick set). + */ +static void run_rebalance_domains(struct softirq_action *h) +{ + int this_cpu = smp_processor_id(); + struct rq *this_rq = cpu_rq(this_cpu); + enum cpu_idle_type idle = this_rq->idle_balance ? + CPU_IDLE : CPU_NOT_IDLE; + + rebalance_domains(this_cpu, idle); + + /* + * If this cpu has a pending nohz_balance_kick, then do the + * balancing on behalf of the other idle cpus whose ticks are + * stopped. + */ + nohz_idle_balance(this_cpu, idle); +} + +static inline int on_null_domain(int cpu) +{ + return !rcu_dereference_sched(cpu_rq(cpu)->sd); +} + +/* + * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. + */ +void trigger_load_balance(struct rq *rq, int cpu) +{ + /* Don't need to rebalance while attached to NULL domain */ + if (time_after_eq(jiffies, rq->next_balance) && + likely(!on_null_domain(cpu))) + raise_softirq(SCHED_SOFTIRQ); +#ifdef CONFIG_NO_HZ + if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) + nohz_balancer_kick(cpu); +#endif +} + +static void rq_online_fair(struct rq *rq) +{ + update_sysctl(); +} + +static void rq_offline_fair(struct rq *rq) +{ + update_sysctl(); +} + +#endif /* CONFIG_SMP */ + +/* + * scheduler tick hitting a task of our scheduling class: + */ +static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) +{ + struct cfs_rq *cfs_rq; + struct sched_entity *se = &curr->se; + + for_each_sched_entity(se) { + cfs_rq = cfs_rq_of(se); + entity_tick(cfs_rq, se, queued); + } +} + +/* + * called on fork with the child task as argument from the parent's context + * - child not yet on the tasklist + * - preemption disabled + */ +static void task_fork_fair(struct task_struct *p) +{ + struct cfs_rq *cfs_rq; + struct sched_entity *se = &p->se, *curr; + int this_cpu = smp_processor_id(); + struct rq *rq = this_rq(); + unsigned long flags; + + raw_spin_lock_irqsave(&rq->lock, flags); + + update_rq_clock(rq); + + cfs_rq = task_cfs_rq(current); + curr = cfs_rq->curr; + + if (unlikely(task_cpu(p) != this_cpu)) { + rcu_read_lock(); + __set_task_cpu(p, this_cpu); + rcu_read_unlock(); + } + + update_curr(cfs_rq); + + if (curr) + se->vruntime = curr->vruntime; + place_entity(cfs_rq, se, 1); + + if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { + /* + * Upon rescheduling, sched_class::put_prev_task() will place + * 'current' within the tree based on its new key value. + */ + swap(curr->vruntime, se->vruntime); + resched_task(rq->curr); + } + + se->vruntime -= cfs_rq->min_vruntime; + + raw_spin_unlock_irqrestore(&rq->lock, flags); +} + +/* + * Priority of the task has changed. Check to see if we preempt + * the current task. + */ +static void +prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) +{ + if (!p->se.on_rq) + return; + + /* + * Reschedule if we are currently running on this runqueue and + * our priority decreased, or if we are not currently running on + * this runqueue and our priority is higher than the current's + */ + if (rq->curr == p) { + if (p->prio > oldprio) + resched_task(rq->curr); + } else + check_preempt_curr(rq, p, 0); +} + +static void switched_from_fair(struct rq *rq, struct task_struct *p) +{ + struct sched_entity *se = &p->se; + struct cfs_rq *cfs_rq = cfs_rq_of(se); + + /* + * Ensure the task's vruntime is normalized, so that when its + * switched back to the fair class the enqueue_entity(.flags=0) will + * do the right thing. + * + * If it was on_rq, then the dequeue_entity(.flags=0) will already + * have normalized the vruntime, if it was !on_rq, then only when + * the task is sleeping will it still have non-normalized vruntime. + */ + if (!se->on_rq && p->state != TASK_RUNNING) { + /* + * Fix up our vruntime so that the current sleep doesn't + * cause 'unlimited' sleep bonus. + */ + place_entity(cfs_rq, se, 0); + se->vruntime -= cfs_rq->min_vruntime; + } +} + +/* + * We switched to the sched_fair class. + */ +static void switched_to_fair(struct rq *rq, struct task_struct *p) +{ + if (!p->se.on_rq) + return; + + /* + * We were most likely switched from sched_rt, so + * kick off the schedule if running, otherwise just see + * if we can still preempt the current task. + */ + if (rq->curr == p) + resched_task(rq->curr); + else + check_preempt_curr(rq, p, 0); +} + +/* Account for a task changing its policy or group. + * + * This routine is mostly called to set cfs_rq->curr field when a task + * migrates between groups/classes. + */ +static void set_curr_task_fair(struct rq *rq) +{ + struct sched_entity *se = &rq->curr->se; + + for_each_sched_entity(se) { + struct cfs_rq *cfs_rq = cfs_rq_of(se); + + set_next_entity(cfs_rq, se); + /* ensure bandwidth has been allocated on our new cfs_rq */ + account_cfs_rq_runtime(cfs_rq, 0); + } +} + +void init_cfs_rq(struct cfs_rq *cfs_rq) +{ + cfs_rq->tasks_timeline = RB_ROOT; + INIT_LIST_HEAD(&cfs_rq->tasks); + cfs_rq->min_vruntime = (u64)(-(1LL << 20)); +#ifndef CONFIG_64BIT + cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; +#endif +} + +#ifdef CONFIG_FAIR_GROUP_SCHED +static void task_move_group_fair(struct task_struct *p, int on_rq) +{ + /* + * If the task was not on the rq at the time of this cgroup movement + * it must have been asleep, sleeping tasks keep their ->vruntime + * absolute on their old rq until wakeup (needed for the fair sleeper + * bonus in place_entity()). + * + * If it was on the rq, we've just 'preempted' it, which does convert + * ->vruntime to a relative base. + * + * Make sure both cases convert their relative position when migrating + * to another cgroup's rq. This does somewhat interfere with the + * fair sleeper stuff for the first placement, but who cares. + */ + /* + * When !on_rq, vruntime of the task has usually NOT been normalized. + * But there are some cases where it has already been normalized: + * + * - Moving a forked child which is waiting for being woken up by + * wake_up_new_task(). + * - Moving a task which has been woken up by try_to_wake_up() and + * waiting for actually being woken up by sched_ttwu_pending(). + * + * To prevent boost or penalty in the new cfs_rq caused by delta + * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. + */ + if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING)) + on_rq = 1; + + if (!on_rq) + p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; + set_task_rq(p, task_cpu(p)); + if (!on_rq) + p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime; +} + +void free_fair_sched_group(struct task_group *tg) +{ + int i; + + destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); + + for_each_possible_cpu(i) { + if (tg->cfs_rq) + kfree(tg->cfs_rq[i]); + if (tg->se) + kfree(tg->se[i]); + } + + kfree(tg->cfs_rq); + kfree(tg->se); +} + +int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) +{ + struct cfs_rq *cfs_rq; + struct sched_entity *se; + int i; + + tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); + if (!tg->cfs_rq) + goto err; + tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); + if (!tg->se) + goto err; + + tg->shares = NICE_0_LOAD; + + init_cfs_bandwidth(tg_cfs_bandwidth(tg)); + + for_each_possible_cpu(i) { + cfs_rq = kzalloc_node(sizeof(struct cfs_rq), + GFP_KERNEL, cpu_to_node(i)); + if (!cfs_rq) + goto err; + + se = kzalloc_node(sizeof(struct sched_entity), + GFP_KERNEL, cpu_to_node(i)); + if (!se) + goto err_free_rq; + + init_cfs_rq(cfs_rq); + init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); + } + + return 1; + +err_free_rq: + kfree(cfs_rq); +err: + return 0; +} + +void unregister_fair_sched_group(struct task_group *tg, int cpu) +{ + struct rq *rq = cpu_rq(cpu); + unsigned long flags; + + /* + * Only empty task groups can be destroyed; so we can speculatively + * check on_list without danger of it being re-added. + */ + if (!tg->cfs_rq[cpu]->on_list) + return; + + raw_spin_lock_irqsave(&rq->lock, flags); + list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); + raw_spin_unlock_irqrestore(&rq->lock, flags); +} + +void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, + struct sched_entity *se, int cpu, + struct sched_entity *parent) +{ + struct rq *rq = cpu_rq(cpu); + + cfs_rq->tg = tg; + cfs_rq->rq = rq; +#ifdef CONFIG_SMP + /* allow initial update_cfs_load() to truncate */ + cfs_rq->load_stamp = 1; +#endif + init_cfs_rq_runtime(cfs_rq); + + tg->cfs_rq[cpu] = cfs_rq; + tg->se[cpu] = se; + + /* se could be NULL for root_task_group */ + if (!se) + return; + + if (!parent) + se->cfs_rq = &rq->cfs; + else + se->cfs_rq = parent->my_q; + + se->my_q = cfs_rq; + update_load_set(&se->load, 0); + se->parent = parent; +} + +static DEFINE_MUTEX(shares_mutex); + +int sched_group_set_shares(struct task_group *tg, unsigned long shares) +{ + int i; + unsigned long flags; + + /* + * We can't change the weight of the root cgroup. + */ + if (!tg->se[0]) + return -EINVAL; + + shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); + + mutex_lock(&shares_mutex); + if (tg->shares == shares) + goto done; + + tg->shares = shares; + for_each_possible_cpu(i) { + struct rq *rq = cpu_rq(i); + struct sched_entity *se; + + se = tg->se[i]; + /* Propagate contribution to hierarchy */ + raw_spin_lock_irqsave(&rq->lock, flags); + for_each_sched_entity(se) + update_cfs_shares(group_cfs_rq(se)); + raw_spin_unlock_irqrestore(&rq->lock, flags); + } + +done: + mutex_unlock(&shares_mutex); + return 0; +} +#else /* CONFIG_FAIR_GROUP_SCHED */ + +void free_fair_sched_group(struct task_group *tg) { } + +int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) +{ + return 1; +} + +void unregister_fair_sched_group(struct task_group *tg, int cpu) { } + +#endif /* CONFIG_FAIR_GROUP_SCHED */ + + +static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) +{ + struct sched_entity *se = &task->se; + unsigned int rr_interval = 0; + + /* + * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise + * idle runqueue: + */ + if (rq->cfs.load.weight) + rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); + + return rr_interval; +} + +/* + * All the scheduling class methods: + */ +const struct sched_class fair_sched_class = { + .next = &idle_sched_class, + .enqueue_task = enqueue_task_fair, + .dequeue_task = dequeue_task_fair, + .yield_task = yield_task_fair, + .yield_to_task = yield_to_task_fair, + + .check_preempt_curr = check_preempt_wakeup, + + .pick_next_task = pick_next_task_fair, + .put_prev_task = put_prev_task_fair, + +#ifdef CONFIG_SMP + .select_task_rq = select_task_rq_fair, + + .rq_online = rq_online_fair, + .rq_offline = rq_offline_fair, + + .task_waking = task_waking_fair, +#endif + + .set_curr_task = set_curr_task_fair, + .task_tick = task_tick_fair, + .task_fork = task_fork_fair, + + .prio_changed = prio_changed_fair, + .switched_from = switched_from_fair, + .switched_to = switched_to_fair, + + .get_rr_interval = get_rr_interval_fair, + +#ifdef CONFIG_FAIR_GROUP_SCHED + .task_move_group = task_move_group_fair, +#endif +}; + +#ifdef CONFIG_SCHED_DEBUG +void print_cfs_stats(struct seq_file *m, int cpu) +{ + struct cfs_rq *cfs_rq; + + rcu_read_lock(); + for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) + print_cfs_rq(m, cpu, cfs_rq); + rcu_read_unlock(); +} +#endif + +__init void init_sched_fair_class(void) +{ +#ifdef CONFIG_SMP + open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); + +#ifdef CONFIG_NO_HZ + zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); + cpu_notifier(sched_ilb_notifier, 0); +#endif +#endif /* SMP */ + +} |