diff options
Diffstat (limited to 'kernel/sched/fair.c')
-rw-r--r-- | kernel/sched/fair.c | 428 |
1 files changed, 233 insertions, 195 deletions
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index 6e2e3483b1ec..824aa9f501a3 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -661,11 +661,12 @@ static unsigned long task_h_load(struct task_struct *p); /* * We choose a half-life close to 1 scheduling period. - * Note: The tables below are dependent on this value. + * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are + * dependent on this value. */ #define LOAD_AVG_PERIOD 32 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ -#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ +#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */ /* Give new sched_entity start runnable values to heavy its load in infant time */ void init_entity_runnable_average(struct sched_entity *se) @@ -682,7 +683,7 @@ void init_entity_runnable_average(struct sched_entity *se) sa->load_avg = scale_load_down(se->load.weight); sa->load_sum = sa->load_avg * LOAD_AVG_MAX; sa->util_avg = scale_load_down(SCHED_LOAD_SCALE); - sa->util_sum = LOAD_AVG_MAX; + sa->util_sum = sa->util_avg * LOAD_AVG_MAX; /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ } @@ -2069,7 +2070,7 @@ void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) int local = !!(flags & TNF_FAULT_LOCAL); int priv; - if (!numabalancing_enabled) + if (!static_branch_likely(&sched_numa_balancing)) return; /* for example, ksmd faulting in a user's mm */ @@ -2157,7 +2158,7 @@ void task_numa_work(struct callback_head *work) struct vm_area_struct *vma; unsigned long start, end; unsigned long nr_pte_updates = 0; - long pages; + long pages, virtpages; WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); @@ -2203,9 +2204,11 @@ void task_numa_work(struct callback_head *work) start = mm->numa_scan_offset; pages = sysctl_numa_balancing_scan_size; pages <<= 20 - PAGE_SHIFT; /* MB in pages */ + virtpages = pages * 8; /* Scan up to this much virtual space */ if (!pages) return; + down_read(&mm->mmap_sem); vma = find_vma(mm, start); if (!vma) { @@ -2240,18 +2243,22 @@ void task_numa_work(struct callback_head *work) start = max(start, vma->vm_start); end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); end = min(end, vma->vm_end); - nr_pte_updates += change_prot_numa(vma, start, end); + nr_pte_updates = change_prot_numa(vma, start, end); /* - * Scan sysctl_numa_balancing_scan_size but ensure that - * at least one PTE is updated so that unused virtual - * address space is quickly skipped. + * Try to scan sysctl_numa_balancing_size worth of + * hpages that have at least one present PTE that + * is not already pte-numa. If the VMA contains + * areas that are unused or already full of prot_numa + * PTEs, scan up to virtpages, to skip through those + * areas faster. */ if (nr_pte_updates) pages -= (end - start) >> PAGE_SHIFT; + virtpages -= (end - start) >> PAGE_SHIFT; start = end; - if (pages <= 0) + if (pages <= 0 || virtpages <= 0) goto out; cond_resched(); @@ -2363,7 +2370,7 @@ static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) */ tg_weight = atomic_long_read(&tg->load_avg); tg_weight -= cfs_rq->tg_load_avg_contrib; - tg_weight += cfs_rq_load_avg(cfs_rq); + tg_weight += cfs_rq->load.weight; return tg_weight; } @@ -2373,7 +2380,7 @@ static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) long tg_weight, load, shares; tg_weight = calc_tg_weight(tg, cfs_rq); - load = cfs_rq_load_avg(cfs_rq); + load = cfs_rq->load.weight; shares = (tg->shares * load); if (tg_weight) @@ -2515,6 +2522,12 @@ static u32 __compute_runnable_contrib(u64 n) return contrib + runnable_avg_yN_sum[n]; } +#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10 +#error "load tracking assumes 2^10 as unit" +#endif + +#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) + /* * We can represent the historical contribution to runnable average as the * coefficients of a geometric series. To do this we sub-divide our runnable @@ -2547,10 +2560,10 @@ static __always_inline int __update_load_avg(u64 now, int cpu, struct sched_avg *sa, unsigned long weight, int running, struct cfs_rq *cfs_rq) { - u64 delta, periods; + u64 delta, scaled_delta, periods; u32 contrib; - int delta_w, decayed = 0; - unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu); + unsigned int delta_w, scaled_delta_w, decayed = 0; + unsigned long scale_freq, scale_cpu; delta = now - sa->last_update_time; /* @@ -2571,6 +2584,9 @@ __update_load_avg(u64 now, int cpu, struct sched_avg *sa, return 0; sa->last_update_time = now; + scale_freq = arch_scale_freq_capacity(NULL, cpu); + scale_cpu = arch_scale_cpu_capacity(NULL, cpu); + /* delta_w is the amount already accumulated against our next period */ delta_w = sa->period_contrib; if (delta + delta_w >= 1024) { @@ -2585,13 +2601,16 @@ __update_load_avg(u64 now, int cpu, struct sched_avg *sa, * period and accrue it. */ delta_w = 1024 - delta_w; + scaled_delta_w = cap_scale(delta_w, scale_freq); if (weight) { - sa->load_sum += weight * delta_w; - if (cfs_rq) - cfs_rq->runnable_load_sum += weight * delta_w; + sa->load_sum += weight * scaled_delta_w; + if (cfs_rq) { + cfs_rq->runnable_load_sum += + weight * scaled_delta_w; + } } if (running) - sa->util_sum += delta_w * scale_freq >> SCHED_CAPACITY_SHIFT; + sa->util_sum += scaled_delta_w * scale_cpu; delta -= delta_w; @@ -2608,23 +2627,25 @@ __update_load_avg(u64 now, int cpu, struct sched_avg *sa, /* Efficiently calculate \sum (1..n_period) 1024*y^i */ contrib = __compute_runnable_contrib(periods); + contrib = cap_scale(contrib, scale_freq); if (weight) { sa->load_sum += weight * contrib; if (cfs_rq) cfs_rq->runnable_load_sum += weight * contrib; } if (running) - sa->util_sum += contrib * scale_freq >> SCHED_CAPACITY_SHIFT; + sa->util_sum += contrib * scale_cpu; } /* Remainder of delta accrued against u_0` */ + scaled_delta = cap_scale(delta, scale_freq); if (weight) { - sa->load_sum += weight * delta; + sa->load_sum += weight * scaled_delta; if (cfs_rq) - cfs_rq->runnable_load_sum += weight * delta; + cfs_rq->runnable_load_sum += weight * scaled_delta; } if (running) - sa->util_sum += delta * scale_freq >> SCHED_CAPACITY_SHIFT; + sa->util_sum += scaled_delta * scale_cpu; sa->period_contrib += delta; @@ -2634,7 +2655,7 @@ __update_load_avg(u64 now, int cpu, struct sched_avg *sa, cfs_rq->runnable_load_avg = div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX); } - sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX; + sa->util_avg = sa->util_sum / LOAD_AVG_MAX; } return decayed; @@ -2664,20 +2685,20 @@ static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */ static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) { - int decayed; struct sched_avg *sa = &cfs_rq->avg; + int decayed, removed = 0; if (atomic_long_read(&cfs_rq->removed_load_avg)) { long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0); sa->load_avg = max_t(long, sa->load_avg - r, 0); sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0); + removed = 1; } if (atomic_long_read(&cfs_rq->removed_util_avg)) { long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0); sa->util_avg = max_t(long, sa->util_avg - r, 0); - sa->util_sum = max_t(s32, sa->util_sum - - ((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0); + sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0); } decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, @@ -2688,40 +2709,77 @@ static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) cfs_rq->load_last_update_time_copy = sa->last_update_time; #endif - return decayed; + return decayed || removed; } /* Update task and its cfs_rq load average */ static inline void update_load_avg(struct sched_entity *se, int update_tg) { struct cfs_rq *cfs_rq = cfs_rq_of(se); - int cpu = cpu_of(rq_of(cfs_rq)); u64 now = cfs_rq_clock_task(cfs_rq); + int cpu = cpu_of(rq_of(cfs_rq)); /* * Track task load average for carrying it to new CPU after migrated, and * track group sched_entity load average for task_h_load calc in migration */ __update_load_avg(now, cpu, &se->avg, - se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL); + se->on_rq * scale_load_down(se->load.weight), + cfs_rq->curr == se, NULL); if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg) update_tg_load_avg(cfs_rq, 0); } +static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + if (!sched_feat(ATTACH_AGE_LOAD)) + goto skip_aging; + + /* + * If we got migrated (either between CPUs or between cgroups) we'll + * have aged the average right before clearing @last_update_time. + */ + if (se->avg.last_update_time) { + __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)), + &se->avg, 0, 0, NULL); + + /* + * XXX: we could have just aged the entire load away if we've been + * absent from the fair class for too long. + */ + } + +skip_aging: + se->avg.last_update_time = cfs_rq->avg.last_update_time; + cfs_rq->avg.load_avg += se->avg.load_avg; + cfs_rq->avg.load_sum += se->avg.load_sum; + cfs_rq->avg.util_avg += se->avg.util_avg; + cfs_rq->avg.util_sum += se->avg.util_sum; +} + +static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)), + &se->avg, se->on_rq * scale_load_down(se->load.weight), + cfs_rq->curr == se, NULL); + + cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0); + cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0); + cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0); + cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0); +} + /* Add the load generated by se into cfs_rq's load average */ static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { struct sched_avg *sa = &se->avg; u64 now = cfs_rq_clock_task(cfs_rq); - int migrated = 0, decayed; + int migrated, decayed; - if (sa->last_update_time == 0) { - sa->last_update_time = now; - migrated = 1; - } - else { + migrated = !sa->last_update_time; + if (!migrated) { __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL); @@ -2732,12 +2790,8 @@ enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) cfs_rq->runnable_load_avg += sa->load_avg; cfs_rq->runnable_load_sum += sa->load_sum; - if (migrated) { - cfs_rq->avg.load_avg += sa->load_avg; - cfs_rq->avg.load_sum += sa->load_sum; - cfs_rq->avg.util_avg += sa->util_avg; - cfs_rq->avg.util_sum += sa->util_sum; - } + if (migrated) + attach_entity_load_avg(cfs_rq, se); if (decayed || migrated) update_tg_load_avg(cfs_rq, 0); @@ -2752,7 +2806,7 @@ dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) cfs_rq->runnable_load_avg = max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0); cfs_rq->runnable_load_sum = - max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0); + max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0); } /* @@ -2820,6 +2874,11 @@ static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} static inline void remove_entity_load_avg(struct sched_entity *se) {} +static inline void +attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} +static inline void +detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} + static inline int idle_balance(struct rq *rq) { return 0; @@ -4816,32 +4875,39 @@ next: done: return target; } + /* - * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS + * cpu_util returns the amount of capacity of a CPU that is used by CFS * tasks. The unit of the return value must be the one of capacity so we can - * compare the usage with the capacity of the CPU that is available for CFS - * task (ie cpu_capacity). - * cfs.avg.util_avg is the sum of running time of runnable tasks on a - * CPU. It represents the amount of utilization of a CPU in the range - * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full - * capacity of the CPU because it's about the running time on this CPU. - * Nevertheless, cfs.avg.util_avg can be higher than SCHED_LOAD_SCALE - * because of unfortunate rounding in util_avg or just - * after migrating tasks until the average stabilizes with the new running - * time. So we need to check that the usage stays into the range - * [0..cpu_capacity_orig] and cap if necessary. - * Without capping the usage, a group could be seen as overloaded (CPU0 usage - * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity + * compare the utilization with the capacity of the CPU that is available for + * CFS task (ie cpu_capacity). + * + * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the + * recent utilization of currently non-runnable tasks on a CPU. It represents + * the amount of utilization of a CPU in the range [0..capacity_orig] where + * capacity_orig is the cpu_capacity available at the highest frequency + * (arch_scale_freq_capacity()). + * The utilization of a CPU converges towards a sum equal to or less than the + * current capacity (capacity_curr <= capacity_orig) of the CPU because it is + * the running time on this CPU scaled by capacity_curr. + * + * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even + * higher than capacity_orig because of unfortunate rounding in + * cfs.avg.util_avg or just after migrating tasks and new task wakeups until + * the average stabilizes with the new running time. We need to check that the + * utilization stays within the range of [0..capacity_orig] and cap it if + * necessary. Without utilization capping, a group could be seen as overloaded + * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of + * available capacity. We allow utilization to overshoot capacity_curr (but not + * capacity_orig) as it useful for predicting the capacity required after task + * migrations (scheduler-driven DVFS). */ -static int get_cpu_usage(int cpu) +static int cpu_util(int cpu) { - unsigned long usage = cpu_rq(cpu)->cfs.avg.util_avg; + unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; unsigned long capacity = capacity_orig_of(cpu); - if (usage >= SCHED_LOAD_SCALE) - return capacity; - - return (usage * capacity) >> SCHED_LOAD_SHIFT; + return (util >= capacity) ? capacity : util; } /* @@ -4944,7 +5010,7 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f * previous cpu. However, the caller only guarantees p->pi_lock is held; no * other assumptions, including the state of rq->lock, should be made. */ -static void migrate_task_rq_fair(struct task_struct *p, int next_cpu) +static void migrate_task_rq_fair(struct task_struct *p) { /* * We are supposed to update the task to "current" time, then its up to date @@ -5524,10 +5590,10 @@ static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) unsigned long src_faults, dst_faults; int src_nid, dst_nid; - if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) + if (!static_branch_likely(&sched_numa_balancing)) return -1; - if (!sched_feat(NUMA)) + if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) return -1; src_nid = cpu_to_node(env->src_cpu); @@ -5933,7 +5999,7 @@ struct sg_lb_stats { unsigned long sum_weighted_load; /* Weighted load of group's tasks */ unsigned long load_per_task; unsigned long group_capacity; - unsigned long group_usage; /* Total usage of the group */ + unsigned long group_util; /* Total utilization of the group */ unsigned int sum_nr_running; /* Nr tasks running in the group */ unsigned int idle_cpus; unsigned int group_weight; @@ -6009,19 +6075,6 @@ static inline int get_sd_load_idx(struct sched_domain *sd, return load_idx; } -static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu) -{ - if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1)) - return sd->smt_gain / sd->span_weight; - - return SCHED_CAPACITY_SCALE; -} - -unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu) -{ - return default_scale_cpu_capacity(sd, cpu); -} - static unsigned long scale_rt_capacity(int cpu) { struct rq *rq = cpu_rq(cpu); @@ -6051,16 +6104,9 @@ static unsigned long scale_rt_capacity(int cpu) static void update_cpu_capacity(struct sched_domain *sd, int cpu) { - unsigned long capacity = SCHED_CAPACITY_SCALE; + unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); struct sched_group *sdg = sd->groups; - if (sched_feat(ARCH_CAPACITY)) - capacity *= arch_scale_cpu_capacity(sd, cpu); - else - capacity *= default_scale_cpu_capacity(sd, cpu); - - capacity >>= SCHED_CAPACITY_SHIFT; - cpu_rq(cpu)->cpu_capacity_orig = capacity; capacity *= scale_rt_capacity(cpu); @@ -6186,8 +6232,8 @@ static inline int sg_imbalanced(struct sched_group *group) * group_has_capacity returns true if the group has spare capacity that could * be used by some tasks. * We consider that a group has spare capacity if the * number of task is - * smaller than the number of CPUs or if the usage is lower than the available - * capacity for CFS tasks. + * smaller than the number of CPUs or if the utilization is lower than the + * available capacity for CFS tasks. * For the latter, we use a threshold to stabilize the state, to take into * account the variance of the tasks' load and to return true if the available * capacity in meaningful for the load balancer. @@ -6201,7 +6247,7 @@ group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) return true; if ((sgs->group_capacity * 100) > - (sgs->group_usage * env->sd->imbalance_pct)) + (sgs->group_util * env->sd->imbalance_pct)) return true; return false; @@ -6222,15 +6268,15 @@ group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) return false; if ((sgs->group_capacity * 100) < - (sgs->group_usage * env->sd->imbalance_pct)) + (sgs->group_util * env->sd->imbalance_pct)) return true; return false; } -static enum group_type group_classify(struct lb_env *env, - struct sched_group *group, - struct sg_lb_stats *sgs) +static inline enum +group_type group_classify(struct sched_group *group, + struct sg_lb_stats *sgs) { if (sgs->group_no_capacity) return group_overloaded; @@ -6270,7 +6316,7 @@ static inline void update_sg_lb_stats(struct lb_env *env, load = source_load(i, load_idx); sgs->group_load += load; - sgs->group_usage += get_cpu_usage(i); + sgs->group_util += cpu_util(i); sgs->sum_nr_running += rq->cfs.h_nr_running; if (rq->nr_running > 1) @@ -6295,7 +6341,7 @@ static inline void update_sg_lb_stats(struct lb_env *env, sgs->group_weight = group->group_weight; sgs->group_no_capacity = group_is_overloaded(env, sgs); - sgs->group_type = group_classify(env, group, sgs); + sgs->group_type = group_classify(group, sgs); } /** @@ -6429,7 +6475,7 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd group_has_capacity(env, &sds->local_stat) && (sgs->sum_nr_running > 1)) { sgs->group_no_capacity = 1; - sgs->group_type = group_overloaded; + sgs->group_type = group_classify(sg, sgs); } if (update_sd_pick_busiest(env, sds, sg, sgs)) { @@ -7609,8 +7655,22 @@ out: * When the cpu is attached to null domain for ex, it will not be * updated. */ - if (likely(update_next_balance)) + if (likely(update_next_balance)) { rq->next_balance = next_balance; + +#ifdef CONFIG_NO_HZ_COMMON + /* + * If this CPU has been elected to perform the nohz idle + * balance. Other idle CPUs have already rebalanced with + * nohz_idle_balance() and nohz.next_balance has been + * updated accordingly. This CPU is now running the idle load + * balance for itself and we need to update the + * nohz.next_balance accordingly. + */ + if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) + nohz.next_balance = rq->next_balance; +#endif + } } #ifdef CONFIG_NO_HZ_COMMON @@ -7623,6 +7683,9 @@ static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) int this_cpu = this_rq->cpu; struct rq *rq; int balance_cpu; + /* Earliest time when we have to do rebalance again */ + unsigned long next_balance = jiffies + 60*HZ; + int update_next_balance = 0; if (idle != CPU_IDLE || !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) @@ -7654,10 +7717,19 @@ static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) rebalance_domains(rq, CPU_IDLE); } - if (time_after(this_rq->next_balance, rq->next_balance)) - this_rq->next_balance = rq->next_balance; + if (time_after(next_balance, rq->next_balance)) { + next_balance = rq->next_balance; + update_next_balance = 1; + } } - nohz.next_balance = this_rq->next_balance; + + /* + * next_balance will be updated only when there is a need. + * When the CPU is attached to null domain for ex, it will not be + * updated. + */ + if (likely(update_next_balance)) + nohz.next_balance = next_balance; end: clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); } @@ -7810,7 +7882,7 @@ static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) entity_tick(cfs_rq, se, queued); } - if (numabalancing_enabled) + if (static_branch_unlikely(&sched_numa_balancing)) task_tick_numa(rq, curr); } @@ -7886,21 +7958,39 @@ prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) check_preempt_curr(rq, p, 0); } -static void switched_from_fair(struct rq *rq, struct task_struct *p) +static inline bool vruntime_normalized(struct task_struct *p) { struct sched_entity *se = &p->se; - struct cfs_rq *cfs_rq = cfs_rq_of(se); /* - * Ensure the task's vruntime is normalized, so that when it's - * switched back to the fair class the enqueue_entity(.flags=0) will - * do the right thing. + * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, + * the dequeue_entity(.flags=0) will already have normalized the + * vruntime. + */ + if (p->on_rq) + return true; + + /* + * When !on_rq, vruntime of the task has usually NOT been normalized. + * But there are some cases where it has already been normalized: * - * If it's queued, then the dequeue_entity(.flags=0) will already - * have normalized the vruntime, if it's !queued, then only when - * the task is sleeping will it still have non-normalized vruntime. + * - A forked child which is waiting for being woken up by + * wake_up_new_task(). + * - A task which has been woken up by try_to_wake_up() and + * waiting for actually being woken up by sched_ttwu_pending(). */ - if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) { + if (!se->sum_exec_runtime || p->state == TASK_WAKING) + return true; + + return false; +} + +static void detach_task_cfs_rq(struct task_struct *p) +{ + struct sched_entity *se = &p->se; + struct cfs_rq *cfs_rq = cfs_rq_of(se); + + if (!vruntime_normalized(p)) { /* * Fix up our vruntime so that the current sleep doesn't * cause 'unlimited' sleep bonus. @@ -7909,28 +7999,14 @@ static void switched_from_fair(struct rq *rq, struct task_struct *p) se->vruntime -= cfs_rq->min_vruntime; } -#ifdef CONFIG_SMP /* Catch up with the cfs_rq and remove our load when we leave */ - __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq), &se->avg, - se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL); - - cfs_rq->avg.load_avg = - max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0); - cfs_rq->avg.load_sum = - max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0); - cfs_rq->avg.util_avg = - max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0); - cfs_rq->avg.util_sum = - max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0); -#endif + detach_entity_load_avg(cfs_rq, se); } -/* - * We switched to the sched_fair class. - */ -static void switched_to_fair(struct rq *rq, struct task_struct *p) +static void attach_task_cfs_rq(struct task_struct *p) { struct sched_entity *se = &p->se; + struct cfs_rq *cfs_rq = cfs_rq_of(se); #ifdef CONFIG_FAIR_GROUP_SCHED /* @@ -7940,31 +8016,33 @@ static void switched_to_fair(struct rq *rq, struct task_struct *p) se->depth = se->parent ? se->parent->depth + 1 : 0; #endif - if (!task_on_rq_queued(p)) { + /* Synchronize task with its cfs_rq */ + attach_entity_load_avg(cfs_rq, se); + + if (!vruntime_normalized(p)) + se->vruntime += cfs_rq->min_vruntime; +} + +static void switched_from_fair(struct rq *rq, struct task_struct *p) +{ + detach_task_cfs_rq(p); +} + +static void switched_to_fair(struct rq *rq, struct task_struct *p) +{ + attach_task_cfs_rq(p); + if (task_on_rq_queued(p)) { /* - * Ensure the task has a non-normalized vruntime when it is switched - * back to the fair class with !queued, so that enqueue_entity() at - * wake-up time will do the right thing. - * - * If it's queued, then the enqueue_entity(.flags=0) makes the task - * has non-normalized vruntime, if it's !queued, then it still has - * normalized vruntime. + * We were most likely switched from sched_rt, so + * kick off the schedule if running, otherwise just see + * if we can still preempt the current task. */ - if (p->state != TASK_RUNNING) - se->vruntime += cfs_rq_of(se)->min_vruntime; - return; + if (rq->curr == p) + resched_curr(rq); + else + check_preempt_curr(rq, p, 0); } - - /* - * We were most likely switched from sched_rt, so - * kick off the schedule if running, otherwise just see - * if we can still preempt the current task. - */ - if (rq->curr == p) - resched_curr(rq); - else - check_preempt_curr(rq, p, 0); } /* Account for a task changing its policy or group. @@ -7999,56 +8077,16 @@ void init_cfs_rq(struct cfs_rq *cfs_rq) } #ifdef CONFIG_FAIR_GROUP_SCHED -static void task_move_group_fair(struct task_struct *p, int queued) +static void task_move_group_fair(struct task_struct *p) { - struct sched_entity *se = &p->se; - struct cfs_rq *cfs_rq; - - /* - * If the task was not on the rq at the time of this cgroup movement - * it must have been asleep, sleeping tasks keep their ->vruntime - * absolute on their old rq until wakeup (needed for the fair sleeper - * bonus in place_entity()). - * - * If it was on the rq, we've just 'preempted' it, which does convert - * ->vruntime to a relative base. - * - * Make sure both cases convert their relative position when migrating - * to another cgroup's rq. This does somewhat interfere with the - * fair sleeper stuff for the first placement, but who cares. - */ - /* - * When !queued, vruntime of the task has usually NOT been normalized. - * But there are some cases where it has already been normalized: - * - * - Moving a forked child which is waiting for being woken up by - * wake_up_new_task(). - * - Moving a task which has been woken up by try_to_wake_up() and - * waiting for actually being woken up by sched_ttwu_pending(). - * - * To prevent boost or penalty in the new cfs_rq caused by delta - * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. - */ - if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING)) - queued = 1; - - if (!queued) - se->vruntime -= cfs_rq_of(se)->min_vruntime; + detach_task_cfs_rq(p); set_task_rq(p, task_cpu(p)); - se->depth = se->parent ? se->parent->depth + 1 : 0; - if (!queued) { - cfs_rq = cfs_rq_of(se); - se->vruntime += cfs_rq->min_vruntime; #ifdef CONFIG_SMP - /* Virtually synchronize task with its new cfs_rq */ - p->se.avg.last_update_time = cfs_rq->avg.last_update_time; - cfs_rq->avg.load_avg += p->se.avg.load_avg; - cfs_rq->avg.load_sum += p->se.avg.load_sum; - cfs_rq->avg.util_avg += p->se.avg.util_avg; - cfs_rq->avg.util_sum += p->se.avg.util_sum; + /* Tell se's cfs_rq has been changed -- migrated */ + p->se.avg.last_update_time = 0; #endif - } + attach_task_cfs_rq(p); } void free_fair_sched_group(struct task_group *tg) |