diff options
Diffstat (limited to 'kernel/sched')
-rw-r--r-- | kernel/sched/Makefile | 2 | ||||
-rw-r--r-- | kernel/sched/core.c | 767 | ||||
-rw-r--r-- | kernel/sched/cputime.c | 530 | ||||
-rw-r--r-- | kernel/sched/fair.c | 118 | ||||
-rw-r--r-- | kernel/sched/features.h | 10 | ||||
-rw-r--r-- | kernel/sched/rt.c | 6 | ||||
-rw-r--r-- | kernel/sched/sched.h | 70 |
7 files changed, 736 insertions, 767 deletions
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile index 173ea52f3af0..f06d249e103b 100644 --- a/kernel/sched/Makefile +++ b/kernel/sched/Makefile @@ -11,7 +11,7 @@ ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer endif -obj-y += core.o clock.o idle_task.o fair.o rt.o stop_task.o +obj-y += core.o clock.o cputime.o idle_task.o fair.o rt.o stop_task.o obj-$(CONFIG_SMP) += cpupri.o obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o obj-$(CONFIG_SCHEDSTATS) += stats.o diff --git a/kernel/sched/core.c b/kernel/sched/core.c index fbf1fd098dc6..c17747236438 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -740,126 +740,6 @@ void deactivate_task(struct rq *rq, struct task_struct *p, int flags) dequeue_task(rq, p, flags); } -#ifdef CONFIG_IRQ_TIME_ACCOUNTING - -/* - * There are no locks covering percpu hardirq/softirq time. - * They are only modified in account_system_vtime, on corresponding CPU - * with interrupts disabled. So, writes are safe. - * They are read and saved off onto struct rq in update_rq_clock(). - * This may result in other CPU reading this CPU's irq time and can - * race with irq/account_system_vtime on this CPU. We would either get old - * or new value with a side effect of accounting a slice of irq time to wrong - * task when irq is in progress while we read rq->clock. That is a worthy - * compromise in place of having locks on each irq in account_system_time. - */ -static DEFINE_PER_CPU(u64, cpu_hardirq_time); -static DEFINE_PER_CPU(u64, cpu_softirq_time); - -static DEFINE_PER_CPU(u64, irq_start_time); -static int sched_clock_irqtime; - -void enable_sched_clock_irqtime(void) -{ - sched_clock_irqtime = 1; -} - -void disable_sched_clock_irqtime(void) -{ - sched_clock_irqtime = 0; -} - -#ifndef CONFIG_64BIT -static DEFINE_PER_CPU(seqcount_t, irq_time_seq); - -static inline void irq_time_write_begin(void) -{ - __this_cpu_inc(irq_time_seq.sequence); - smp_wmb(); -} - -static inline void irq_time_write_end(void) -{ - smp_wmb(); - __this_cpu_inc(irq_time_seq.sequence); -} - -static inline u64 irq_time_read(int cpu) -{ - u64 irq_time; - unsigned seq; - - do { - seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); - irq_time = per_cpu(cpu_softirq_time, cpu) + - per_cpu(cpu_hardirq_time, cpu); - } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); - - return irq_time; -} -#else /* CONFIG_64BIT */ -static inline void irq_time_write_begin(void) -{ -} - -static inline void irq_time_write_end(void) -{ -} - -static inline u64 irq_time_read(int cpu) -{ - return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); -} -#endif /* CONFIG_64BIT */ - -/* - * Called before incrementing preempt_count on {soft,}irq_enter - * and before decrementing preempt_count on {soft,}irq_exit. - */ -void account_system_vtime(struct task_struct *curr) -{ - unsigned long flags; - s64 delta; - int cpu; - - if (!sched_clock_irqtime) - return; - - local_irq_save(flags); - - cpu = smp_processor_id(); - delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); - __this_cpu_add(irq_start_time, delta); - - irq_time_write_begin(); - /* - * We do not account for softirq time from ksoftirqd here. - * We want to continue accounting softirq time to ksoftirqd thread - * in that case, so as not to confuse scheduler with a special task - * that do not consume any time, but still wants to run. - */ - if (hardirq_count()) - __this_cpu_add(cpu_hardirq_time, delta); - else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) - __this_cpu_add(cpu_softirq_time, delta); - - irq_time_write_end(); - local_irq_restore(flags); -} -EXPORT_SYMBOL_GPL(account_system_vtime); - -#endif /* CONFIG_IRQ_TIME_ACCOUNTING */ - -#ifdef CONFIG_PARAVIRT -static inline u64 steal_ticks(u64 steal) -{ - if (unlikely(steal > NSEC_PER_SEC)) - return div_u64(steal, TICK_NSEC); - - return __iter_div_u64_rem(steal, TICK_NSEC, &steal); -} -#endif - static void update_rq_clock_task(struct rq *rq, s64 delta) { /* @@ -920,43 +800,6 @@ static void update_rq_clock_task(struct rq *rq, s64 delta) #endif } -#ifdef CONFIG_IRQ_TIME_ACCOUNTING -static int irqtime_account_hi_update(void) -{ - u64 *cpustat = kcpustat_this_cpu->cpustat; - unsigned long flags; - u64 latest_ns; - int ret = 0; - - local_irq_save(flags); - latest_ns = this_cpu_read(cpu_hardirq_time); - if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) - ret = 1; - local_irq_restore(flags); - return ret; -} - -static int irqtime_account_si_update(void) -{ - u64 *cpustat = kcpustat_this_cpu->cpustat; - unsigned long flags; - u64 latest_ns; - int ret = 0; - - local_irq_save(flags); - latest_ns = this_cpu_read(cpu_softirq_time); - if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) - ret = 1; - local_irq_restore(flags); - return ret; -} - -#else /* CONFIG_IRQ_TIME_ACCOUNTING */ - -#define sched_clock_irqtime (0) - -#endif - void sched_set_stop_task(int cpu, struct task_struct *stop) { struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; @@ -1518,25 +1361,6 @@ static void ttwu_queue_remote(struct task_struct *p, int cpu) smp_send_reschedule(cpu); } -#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW -static int ttwu_activate_remote(struct task_struct *p, int wake_flags) -{ - struct rq *rq; - int ret = 0; - - rq = __task_rq_lock(p); - if (p->on_cpu) { - ttwu_activate(rq, p, ENQUEUE_WAKEUP); - ttwu_do_wakeup(rq, p, wake_flags); - ret = 1; - } - __task_rq_unlock(rq); - - return ret; - -} -#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ - bool cpus_share_cache(int this_cpu, int that_cpu) { return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); @@ -1597,21 +1421,8 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) * If the owning (remote) cpu is still in the middle of schedule() with * this task as prev, wait until its done referencing the task. */ - while (p->on_cpu) { -#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW - /* - * In case the architecture enables interrupts in - * context_switch(), we cannot busy wait, since that - * would lead to deadlocks when an interrupt hits and - * tries to wake up @prev. So bail and do a complete - * remote wakeup. - */ - if (ttwu_activate_remote(p, wake_flags)) - goto stat; -#else + while (p->on_cpu) cpu_relax(); -#endif - } /* * Pairs with the smp_wmb() in finish_lock_switch(). */ @@ -1953,14 +1764,9 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) * Manfred Spraul <manfred@colorfullife.com> */ prev_state = prev->state; + vtime_task_switch(prev); finish_arch_switch(prev); -#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW - local_irq_disable(); -#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ perf_event_task_sched_in(prev, current); -#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW - local_irq_enable(); -#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ finish_lock_switch(rq, prev); finish_arch_post_lock_switch(); @@ -2081,6 +1887,7 @@ context_switch(struct rq *rq, struct task_struct *prev, #endif /* Here we just switch the register state and the stack. */ + rcu_switch(prev, next); switch_to(prev, next, prev); barrier(); @@ -2809,404 +2616,6 @@ unsigned long long task_sched_runtime(struct task_struct *p) return ns; } -#ifdef CONFIG_CGROUP_CPUACCT -struct cgroup_subsys cpuacct_subsys; -struct cpuacct root_cpuacct; -#endif - -static inline void task_group_account_field(struct task_struct *p, int index, - u64 tmp) -{ -#ifdef CONFIG_CGROUP_CPUACCT - struct kernel_cpustat *kcpustat; - struct cpuacct *ca; -#endif - /* - * Since all updates are sure to touch the root cgroup, we - * get ourselves ahead and touch it first. If the root cgroup - * is the only cgroup, then nothing else should be necessary. - * - */ - __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; - -#ifdef CONFIG_CGROUP_CPUACCT - if (unlikely(!cpuacct_subsys.active)) - return; - - rcu_read_lock(); - ca = task_ca(p); - while (ca && (ca != &root_cpuacct)) { - kcpustat = this_cpu_ptr(ca->cpustat); - kcpustat->cpustat[index] += tmp; - ca = parent_ca(ca); - } - rcu_read_unlock(); -#endif -} - - -/* - * Account user cpu time to a process. - * @p: the process that the cpu time gets accounted to - * @cputime: the cpu time spent in user space since the last update - * @cputime_scaled: cputime scaled by cpu frequency - */ -void account_user_time(struct task_struct *p, cputime_t cputime, - cputime_t cputime_scaled) -{ - int index; - - /* Add user time to process. */ - p->utime += cputime; - p->utimescaled += cputime_scaled; - account_group_user_time(p, cputime); - - index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; - - /* Add user time to cpustat. */ - task_group_account_field(p, index, (__force u64) cputime); - - /* Account for user time used */ - acct_update_integrals(p); -} - -/* - * Account guest cpu time to a process. - * @p: the process that the cpu time gets accounted to - * @cputime: the cpu time spent in virtual machine since the last update - * @cputime_scaled: cputime scaled by cpu frequency - */ -static void account_guest_time(struct task_struct *p, cputime_t cputime, - cputime_t cputime_scaled) -{ - u64 *cpustat = kcpustat_this_cpu->cpustat; - - /* Add guest time to process. */ - p->utime += cputime; - p->utimescaled += cputime_scaled; - account_group_user_time(p, cputime); - p->gtime += cputime; - - /* Add guest time to cpustat. */ - if (TASK_NICE(p) > 0) { - cpustat[CPUTIME_NICE] += (__force u64) cputime; - cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; - } else { - cpustat[CPUTIME_USER] += (__force u64) cputime; - cpustat[CPUTIME_GUEST] += (__force u64) cputime; - } -} - -/* - * Account system cpu time to a process and desired cpustat field - * @p: the process that the cpu time gets accounted to - * @cputime: the cpu time spent in kernel space since the last update - * @cputime_scaled: cputime scaled by cpu frequency - * @target_cputime64: pointer to cpustat field that has to be updated - */ -static inline -void __account_system_time(struct task_struct *p, cputime_t cputime, - cputime_t cputime_scaled, int index) -{ - /* Add system time to process. */ - p->stime += cputime; - p->stimescaled += cputime_scaled; - account_group_system_time(p, cputime); - - /* Add system time to cpustat. */ - task_group_account_field(p, index, (__force u64) cputime); - - /* Account for system time used */ - acct_update_integrals(p); -} - -/* - * Account system cpu time to a process. - * @p: the process that the cpu time gets accounted to - * @hardirq_offset: the offset to subtract from hardirq_count() - * @cputime: the cpu time spent in kernel space since the last update - * @cputime_scaled: cputime scaled by cpu frequency - */ -void account_system_time(struct task_struct *p, int hardirq_offset, - cputime_t cputime, cputime_t cputime_scaled) -{ - int index; - - if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { - account_guest_time(p, cputime, cputime_scaled); - return; - } - - if (hardirq_count() - hardirq_offset) - index = CPUTIME_IRQ; - else if (in_serving_softirq()) - index = CPUTIME_SOFTIRQ; - else - index = CPUTIME_SYSTEM; - - __account_system_time(p, cputime, cputime_scaled, index); -} - -/* - * Account for involuntary wait time. - * @cputime: the cpu time spent in involuntary wait - */ -void account_steal_time(cputime_t cputime) -{ - u64 *cpustat = kcpustat_this_cpu->cpustat; - - cpustat[CPUTIME_STEAL] += (__force u64) cputime; -} - -/* - * Account for idle time. - * @cputime: the cpu time spent in idle wait - */ -void account_idle_time(cputime_t cputime) -{ - u64 *cpustat = kcpustat_this_cpu->cpustat; - struct rq *rq = this_rq(); - - if (atomic_read(&rq->nr_iowait) > 0) - cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; - else - cpustat[CPUTIME_IDLE] += (__force u64) cputime; -} - -static __always_inline bool steal_account_process_tick(void) -{ -#ifdef CONFIG_PARAVIRT - if (static_key_false(¶virt_steal_enabled)) { - u64 steal, st = 0; - - steal = paravirt_steal_clock(smp_processor_id()); - steal -= this_rq()->prev_steal_time; - - st = steal_ticks(steal); - this_rq()->prev_steal_time += st * TICK_NSEC; - - account_steal_time(st); - return st; - } -#endif - return false; -} - -#ifndef CONFIG_VIRT_CPU_ACCOUNTING - -#ifdef CONFIG_IRQ_TIME_ACCOUNTING -/* - * Account a tick to a process and cpustat - * @p: the process that the cpu time gets accounted to - * @user_tick: is the tick from userspace - * @rq: the pointer to rq - * - * Tick demultiplexing follows the order - * - pending hardirq update - * - pending softirq update - * - user_time - * - idle_time - * - system time - * - check for guest_time - * - else account as system_time - * - * Check for hardirq is done both for system and user time as there is - * no timer going off while we are on hardirq and hence we may never get an - * opportunity to update it solely in system time. - * p->stime and friends are only updated on system time and not on irq - * softirq as those do not count in task exec_runtime any more. - */ -static void irqtime_account_process_tick(struct task_struct *p, int user_tick, - struct rq *rq) -{ - cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); - u64 *cpustat = kcpustat_this_cpu->cpustat; - - if (steal_account_process_tick()) - return; - - if (irqtime_account_hi_update()) { - cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; - } else if (irqtime_account_si_update()) { - cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; - } else if (this_cpu_ksoftirqd() == p) { - /* - * ksoftirqd time do not get accounted in cpu_softirq_time. - * So, we have to handle it separately here. - * Also, p->stime needs to be updated for ksoftirqd. - */ - __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, - CPUTIME_SOFTIRQ); - } else if (user_tick) { - account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); - } else if (p == rq->idle) { - account_idle_time(cputime_one_jiffy); - } else if (p->flags & PF_VCPU) { /* System time or guest time */ - account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); - } else { - __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, - CPUTIME_SYSTEM); - } -} - -static void irqtime_account_idle_ticks(int ticks) -{ - int i; - struct rq *rq = this_rq(); - - for (i = 0; i < ticks; i++) - irqtime_account_process_tick(current, 0, rq); -} -#else /* CONFIG_IRQ_TIME_ACCOUNTING */ -static void irqtime_account_idle_ticks(int ticks) {} -static void irqtime_account_process_tick(struct task_struct *p, int user_tick, - struct rq *rq) {} -#endif /* CONFIG_IRQ_TIME_ACCOUNTING */ - -/* - * Account a single tick of cpu time. - * @p: the process that the cpu time gets accounted to - * @user_tick: indicates if the tick is a user or a system tick - */ -void account_process_tick(struct task_struct *p, int user_tick) -{ - cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); - struct rq *rq = this_rq(); - - if (sched_clock_irqtime) { - irqtime_account_process_tick(p, user_tick, rq); - return; - } - - if (steal_account_process_tick()) - return; - - if (user_tick) - account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); - else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) - account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, - one_jiffy_scaled); - else - account_idle_time(cputime_one_jiffy); -} - -/* - * Account multiple ticks of steal time. - * @p: the process from which the cpu time has been stolen - * @ticks: number of stolen ticks - */ -void account_steal_ticks(unsigned long ticks) -{ - account_steal_time(jiffies_to_cputime(ticks)); -} - -/* - * Account multiple ticks of idle time. - * @ticks: number of stolen ticks - */ -void account_idle_ticks(unsigned long ticks) -{ - - if (sched_clock_irqtime) { - irqtime_account_idle_ticks(ticks); - return; - } - - account_idle_time(jiffies_to_cputime(ticks)); -} - -#endif - -/* - * Use precise platform statistics if available: - */ -#ifdef CONFIG_VIRT_CPU_ACCOUNTING -void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) -{ - *ut = p->utime; - *st = p->stime; -} - -void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) -{ - struct task_cputime cputime; - - thread_group_cputime(p, &cputime); - - *ut = cputime.utime; - *st = cputime.stime; -} -#else - -#ifndef nsecs_to_cputime -# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) -#endif - -static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total) -{ - u64 temp = (__force u64) rtime; - - temp *= (__force u64) utime; - - if (sizeof(cputime_t) == 4) - temp = div_u64(temp, (__force u32) total); - else - temp = div64_u64(temp, (__force u64) total); - - return (__force cputime_t) temp; -} - -void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) -{ - cputime_t rtime, utime = p->utime, total = utime + p->stime; - - /* - * Use CFS's precise accounting: - */ - rtime = nsecs_to_cputime(p->se.sum_exec_runtime); - - if (total) - utime = scale_utime(utime, rtime, total); - else - utime = rtime; - - /* - * Compare with previous values, to keep monotonicity: - */ - p->prev_utime = max(p->prev_utime, utime); - p->prev_stime = max(p->prev_stime, rtime - p->prev_utime); - - *ut = p->prev_utime; - *st = p->prev_stime; -} - -/* - * Must be called with siglock held. - */ -void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) -{ - struct signal_struct *sig = p->signal; - struct task_cputime cputime; - cputime_t rtime, utime, total; - - thread_group_cputime(p, &cputime); - - total = cputime.utime + cputime.stime; - rtime = nsecs_to_cputime(cputime.sum_exec_runtime); - - if (total) - utime = scale_utime(cputime.utime, rtime, total); - else - utime = rtime; - - sig->prev_utime = max(sig->prev_utime, utime); - sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime); - - *ut = sig->prev_utime; - *st = sig->prev_stime; -} -#endif - /* * This function gets called by the timer code, with HZ frequency. * We call it with interrupts disabled. @@ -3367,6 +2776,40 @@ pick_next_task(struct rq *rq) /* * __schedule() is the main scheduler function. + * + * The main means of driving the scheduler and thus entering this function are: + * + * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. + * + * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return + * paths. For example, see arch/x86/entry_64.S. + * + * To drive preemption between tasks, the scheduler sets the flag in timer + * interrupt handler scheduler_tick(). + * + * 3. Wakeups don't really cause entry into schedule(). They add a + * task to the run-queue and that's it. + * + * Now, if the new task added to the run-queue preempts the current + * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets + * called on the nearest possible occasion: + * + * - If the kernel is preemptible (CONFIG_PREEMPT=y): + * + * - in syscall or exception context, at the next outmost + * preempt_enable(). (this might be as soon as the wake_up()'s + * spin_unlock()!) + * + * - in IRQ context, return from interrupt-handler to + * preemptible context + * + * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) + * then at the next: + * + * - cond_resched() call + * - explicit schedule() call + * - return from syscall or exception to user-space + * - return from interrupt-handler to user-space */ static void __sched __schedule(void) { @@ -3468,6 +2911,21 @@ asmlinkage void __sched schedule(void) } EXPORT_SYMBOL(schedule); +#ifdef CONFIG_RCU_USER_QS +asmlinkage void __sched schedule_user(void) +{ + /* + * If we come here after a random call to set_need_resched(), + * or we have been woken up remotely but the IPI has not yet arrived, + * we haven't yet exited the RCU idle mode. Do it here manually until + * we find a better solution. + */ + rcu_user_exit(); + schedule(); + rcu_user_enter(); +} +#endif + /** * schedule_preempt_disabled - called with preemption disabled * @@ -3569,6 +3027,7 @@ asmlinkage void __sched preempt_schedule_irq(void) /* Catch callers which need to be fixed */ BUG_ON(ti->preempt_count || !irqs_disabled()); + rcu_user_exit(); do { add_preempt_count(PREEMPT_ACTIVE); local_irq_enable(); @@ -4868,13 +4327,6 @@ again: */ if (preempt && rq != p_rq) resched_task(p_rq->curr); - } else { - /* - * We might have set it in task_yield_fair(), but are - * not going to schedule(), so don't want to skip - * the next update. - */ - rq->skip_clock_update = 0; } out: @@ -5304,27 +4756,17 @@ void idle_task_exit(void) } /* - * While a dead CPU has no uninterruptible tasks queued at this point, - * it might still have a nonzero ->nr_uninterruptible counter, because - * for performance reasons the counter is not stricly tracking tasks to - * their home CPUs. So we just add the counter to another CPU's counter, - * to keep the global sum constant after CPU-down: - */ -static void migrate_nr_uninterruptible(struct rq *rq_src) -{ - struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); - - rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; - rq_src->nr_uninterruptible = 0; -} - -/* - * remove the tasks which were accounted by rq from calc_load_tasks. + * Since this CPU is going 'away' for a while, fold any nr_active delta + * we might have. Assumes we're called after migrate_tasks() so that the + * nr_active count is stable. + * + * Also see the comment "Global load-average calculations". */ -static void calc_global_load_remove(struct rq *rq) +static void calc_load_migrate(struct rq *rq) { - atomic_long_sub(rq->calc_load_active, &calc_load_tasks); - rq->calc_load_active = 0; + long delta = calc_load_fold_active(rq); + if (delta) + atomic_long_add(delta, &calc_load_tasks); } /* @@ -5352,9 +4794,6 @@ static void migrate_tasks(unsigned int dead_cpu) */ rq->stop = NULL; - /* Ensure any throttled groups are reachable by pick_next_task */ - unthrottle_offline_cfs_rqs(rq); - for ( ; ; ) { /* * There's this thread running, bail when that's the only @@ -5429,16 +4868,25 @@ static void sd_free_ctl_entry(struct ctl_table **tablep) *tablep = NULL; } +static int min_load_idx = 0; +static int max_load_idx = CPU_LOAD_IDX_MAX; + static void set_table_entry(struct ctl_table *entry, const char *procname, void *data, int maxlen, - umode_t mode, proc_handler *proc_handler) + umode_t mode, proc_handler *proc_handler, + bool load_idx) { entry->procname = procname; entry->data = data; entry->maxlen = maxlen; entry->mode = mode; entry->proc_handler = proc_handler; + + if (load_idx) { + entry->extra1 = &min_load_idx; + entry->extra2 = &max_load_idx; + } } static struct ctl_table * @@ -5450,30 +4898,30 @@ sd_alloc_ctl_domain_table(struct sched_domain *sd) return NULL; set_table_entry(&table[0], "min_interval", &sd->min_interval, - sizeof(long), 0644, proc_doulongvec_minmax); + sizeof(long), 0644, proc_doulongvec_minmax, false); set_table_entry(&table[1], "max_interval", &sd->max_interval, - sizeof(long), 0644, proc_doulongvec_minmax); + sizeof(long), 0644, proc_doulongvec_minmax, false); set_table_entry(&table[2], "busy_idx", &sd->busy_idx, - sizeof(int), 0644, proc_dointvec_minmax); + sizeof(int), 0644, proc_dointvec_minmax, true); set_table_entry(&table[3], "idle_idx", &sd->idle_idx, - sizeof(int), 0644, proc_dointvec_minmax); + sizeof(int), 0644, proc_dointvec_minmax, true); set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, - sizeof(int), 0644, proc_dointvec_minmax); + sizeof(int), 0644, proc_dointvec_minmax, true); set_table_entry(&table[5], "wake_idx", &sd->wake_idx, - sizeof(int), 0644, proc_dointvec_minmax); + sizeof(int), 0644, proc_dointvec_minmax, true); set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, - sizeof(int), 0644, proc_dointvec_minmax); + sizeof(int), 0644, proc_dointvec_minmax, true); set_table_entry(&table[7], "busy_factor", &sd->busy_factor, - sizeof(int), 0644, proc_dointvec_minmax); + sizeof(int), 0644, proc_dointvec_minmax, false); set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, - sizeof(int), 0644, proc_dointvec_minmax); + sizeof(int), 0644, proc_dointvec_minmax, false); set_table_entry(&table[9], "cache_nice_tries", &sd->cache_nice_tries, - sizeof(int), 0644, proc_dointvec_minmax); + sizeof(int), 0644, proc_dointvec_minmax, false); set_table_entry(&table[10], "flags", &sd->flags, - sizeof(int), 0644, proc_dointvec_minmax); + sizeof(int), 0644, proc_dointvec_minmax, false); set_table_entry(&table[11], "name", sd->name, - CORENAME_MAX_SIZE, 0444, proc_dostring); + CORENAME_MAX_SIZE, 0444, proc_dostring, false); /* &table[12] is terminator */ return table; @@ -5617,9 +5065,10 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) migrate_tasks(cpu); BUG_ON(rq->nr_running != 1); /* the migration thread */ raw_spin_unlock_irqrestore(&rq->lock, flags); + break; - migrate_nr_uninterruptible(rq); - calc_global_load_remove(rq); + case CPU_DEAD: + calc_load_migrate(rq); break; #endif } @@ -6028,11 +5477,6 @@ static void destroy_sched_domains(struct sched_domain *sd, int cpu) * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this * allows us to avoid some pointer chasing select_idle_sibling(). * - * Iterate domains and sched_groups downward, assigning CPUs to be - * select_idle_sibling() hw buddy. Cross-wiring hw makes bouncing - * due to random perturbation self canceling, ie sw buddies pull - * their counterpart to their CPU's hw counterpart. - * * Also keep a unique ID per domain (we use the first cpu number in * the cpumask of the domain), this allows us to quickly tell if * two cpus are in the same cache domain, see cpus_share_cache(). @@ -6046,40 +5490,8 @@ static void update_top_cache_domain(int cpu) int id = cpu; sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); - if (sd) { - struct sched_domain *tmp = sd; - struct sched_group *sg, *prev; - bool right; - - /* - * Traverse to first CPU in group, and count hops - * to cpu from there, switching direction on each - * hop, never ever pointing the last CPU rightward. - */ - do { - id = cpumask_first(sched_domain_span(tmp)); - prev = sg = tmp->groups; - right = 1; - - while (cpumask_first(sched_group_cpus(sg)) != id) - sg = sg->next; - - while (!cpumask_test_cpu(cpu, sched_group_cpus(sg))) { - prev = sg; - sg = sg->next; - right = !right; - } - - /* A CPU went down, never point back to domain start. */ - if (right && cpumask_first(sched_group_cpus(sg->next)) == id) - right = false; - - sg = right ? sg->next : prev; - tmp->idle_buddy = cpumask_first(sched_group_cpus(sg)); - } while ((tmp = tmp->child)); - + if (sd) id = cpumask_first(sched_domain_span(sd)); - } rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); per_cpu(sd_llc_id, cpu) = id; @@ -6588,7 +6000,6 @@ sd_numa_init(struct sched_domain_topology_level *tl, int cpu) | 0*SD_BALANCE_FORK | 0*SD_BALANCE_WAKE | 0*SD_WAKE_AFFINE - | 0*SD_PREFER_LOCAL | 0*SD_SHARE_CPUPOWER | 0*SD_SHARE_PKG_RESOURCES | 1*SD_SERIALIZE @@ -8386,6 +7797,8 @@ struct cgroup_subsys cpu_cgroup_subsys = { * (balbir@in.ibm.com). */ +struct cpuacct root_cpuacct; + /* create a new cpu accounting group */ static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp) { diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c new file mode 100644 index 000000000000..81b763ba58a6 --- /dev/null +++ b/kernel/sched/cputime.c @@ -0,0 +1,530 @@ +#include <linux/export.h> +#include <linux/sched.h> +#include <linux/tsacct_kern.h> +#include <linux/kernel_stat.h> +#include <linux/static_key.h> +#include "sched.h" + + +#ifdef CONFIG_IRQ_TIME_ACCOUNTING + +/* + * There are no locks covering percpu hardirq/softirq time. + * They are only modified in vtime_account, on corresponding CPU + * with interrupts disabled. So, writes are safe. + * They are read and saved off onto struct rq in update_rq_clock(). + * This may result in other CPU reading this CPU's irq time and can + * race with irq/vtime_account on this CPU. We would either get old + * or new value with a side effect of accounting a slice of irq time to wrong + * task when irq is in progress while we read rq->clock. That is a worthy + * compromise in place of having locks on each irq in account_system_time. + */ +DEFINE_PER_CPU(u64, cpu_hardirq_time); +DEFINE_PER_CPU(u64, cpu_softirq_time); + +static DEFINE_PER_CPU(u64, irq_start_time); +static int sched_clock_irqtime; + +void enable_sched_clock_irqtime(void) +{ + sched_clock_irqtime = 1; +} + +void disable_sched_clock_irqtime(void) +{ + sched_clock_irqtime = 0; +} + +#ifndef CONFIG_64BIT +DEFINE_PER_CPU(seqcount_t, irq_time_seq); +#endif /* CONFIG_64BIT */ + +/* + * Called before incrementing preempt_count on {soft,}irq_enter + * and before decrementing preempt_count on {soft,}irq_exit. + */ +void vtime_account(struct task_struct *curr) +{ + unsigned long flags; + s64 delta; + int cpu; + + if (!sched_clock_irqtime) + return; + + local_irq_save(flags); + + cpu = smp_processor_id(); + delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); + __this_cpu_add(irq_start_time, delta); + + irq_time_write_begin(); + /* + * We do not account for softirq time from ksoftirqd here. + * We want to continue accounting softirq time to ksoftirqd thread + * in that case, so as not to confuse scheduler with a special task + * that do not consume any time, but still wants to run. + */ + if (hardirq_count()) + __this_cpu_add(cpu_hardirq_time, delta); + else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) + __this_cpu_add(cpu_softirq_time, delta); + + irq_time_write_end(); + local_irq_restore(flags); +} +EXPORT_SYMBOL_GPL(vtime_account); + +static int irqtime_account_hi_update(void) +{ + u64 *cpustat = kcpustat_this_cpu->cpustat; + unsigned long flags; + u64 latest_ns; + int ret = 0; + + local_irq_save(flags); + latest_ns = this_cpu_read(cpu_hardirq_time); + if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) + ret = 1; + local_irq_restore(flags); + return ret; +} + +static int irqtime_account_si_update(void) +{ + u64 *cpustat = kcpustat_this_cpu->cpustat; + unsigned long flags; + u64 latest_ns; + int ret = 0; + + local_irq_save(flags); + latest_ns = this_cpu_read(cpu_softirq_time); + if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) + ret = 1; + local_irq_restore(flags); + return ret; +} + +#else /* CONFIG_IRQ_TIME_ACCOUNTING */ + +#define sched_clock_irqtime (0) + +#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ + +static inline void task_group_account_field(struct task_struct *p, int index, + u64 tmp) +{ +#ifdef CONFIG_CGROUP_CPUACCT + struct kernel_cpustat *kcpustat; + struct cpuacct *ca; +#endif + /* + * Since all updates are sure to touch the root cgroup, we + * get ourselves ahead and touch it first. If the root cgroup + * is the only cgroup, then nothing else should be necessary. + * + */ + __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; + +#ifdef CONFIG_CGROUP_CPUACCT + if (unlikely(!cpuacct_subsys.active)) + return; + + rcu_read_lock(); + ca = task_ca(p); + while (ca && (ca != &root_cpuacct)) { + kcpustat = this_cpu_ptr(ca->cpustat); + kcpustat->cpustat[index] += tmp; + ca = parent_ca(ca); + } + rcu_read_unlock(); +#endif +} + +/* + * Account user cpu time to a process. + * @p: the process that the cpu time gets accounted to + * @cputime: the cpu time spent in user space since the last update + * @cputime_scaled: cputime scaled by cpu frequency + */ +void account_user_time(struct task_struct *p, cputime_t cputime, + cputime_t cputime_scaled) +{ + int index; + + /* Add user time to process. */ + p->utime += cputime; + p->utimescaled += cputime_scaled; + account_group_user_time(p, cputime); + + index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; + + /* Add user time to cpustat. */ + task_group_account_field(p, index, (__force u64) cputime); + + /* Account for user time used */ + acct_update_integrals(p); +} + +/* + * Account guest cpu time to a process. + * @p: the process that the cpu time gets accounted to + * @cputime: the cpu time spent in virtual machine since the last update + * @cputime_scaled: cputime scaled by cpu frequency + */ +static void account_guest_time(struct task_struct *p, cputime_t cputime, + cputime_t cputime_scaled) +{ + u64 *cpustat = kcpustat_this_cpu->cpustat; + + /* Add guest time to process. */ + p->utime += cputime; + p->utimescaled += cputime_scaled; + account_group_user_time(p, cputime); + p->gtime += cputime; + + /* Add guest time to cpustat. */ + if (TASK_NICE(p) > 0) { + cpustat[CPUTIME_NICE] += (__force u64) cputime; + cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; + } else { + cpustat[CPUTIME_USER] += (__force u64) cputime; + cpustat[CPUTIME_GUEST] += (__force u64) cputime; + } +} + +/* + * Account system cpu time to a process and desired cpustat field + * @p: the process that the cpu time gets accounted to + * @cputime: the cpu time spent in kernel space since the last update + * @cputime_scaled: cputime scaled by cpu frequency + * @target_cputime64: pointer to cpustat field that has to be updated + */ +static inline +void __account_system_time(struct task_struct *p, cputime_t cputime, + cputime_t cputime_scaled, int index) +{ + /* Add system time to process. */ + p->stime += cputime; + p->stimescaled += cputime_scaled; + account_group_system_time(p, cputime); + + /* Add system time to cpustat. */ + task_group_account_field(p, index, (__force u64) cputime); + + /* Account for system time used */ + acct_update_integrals(p); +} + +/* + * Account system cpu time to a process. + * @p: the process that the cpu time gets accounted to + * @hardirq_offset: the offset to subtract from hardirq_count() + * @cputime: the cpu time spent in kernel space since the last update + * @cputime_scaled: cputime scaled by cpu frequency + */ +void account_system_time(struct task_struct *p, int hardirq_offset, + cputime_t cputime, cputime_t cputime_scaled) +{ + int index; + + if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { + account_guest_time(p, cputime, cputime_scaled); + return; + } + + if (hardirq_count() - hardirq_offset) + index = CPUTIME_IRQ; + else if (in_serving_softirq()) + index = CPUTIME_SOFTIRQ; + else + index = CPUTIME_SYSTEM; + + __account_system_time(p, cputime, cputime_scaled, index); +} + +/* + * Account for involuntary wait time. + * @cputime: the cpu time spent in involuntary wait + */ +void account_steal_time(cputime_t cputime) +{ + u64 *cpustat = kcpustat_this_cpu->cpustat; + + cpustat[CPUTIME_STEAL] += (__force u64) cputime; +} + +/* + * Account for idle time. + * @cputime: the cpu time spent in idle wait + */ +void account_idle_time(cputime_t cputime) +{ + u64 *cpustat = kcpustat_this_cpu->cpustat; + struct rq *rq = this_rq(); + + if (atomic_read(&rq->nr_iowait) > 0) + cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; + else + cpustat[CPUTIME_IDLE] += (__force u64) cputime; +} + +static __always_inline bool steal_account_process_tick(void) +{ +#ifdef CONFIG_PARAVIRT + if (static_key_false(¶virt_steal_enabled)) { + u64 steal, st = 0; + + steal = paravirt_steal_clock(smp_processor_id()); + steal -= this_rq()->prev_steal_time; + + st = steal_ticks(steal); + this_rq()->prev_steal_time += st * TICK_NSEC; + + account_steal_time(st); + return st; + } +#endif + return false; +} + +#ifndef CONFIG_VIRT_CPU_ACCOUNTING + +#ifdef CONFIG_IRQ_TIME_ACCOUNTING +/* + * Account a tick to a process and cpustat + * @p: the process that the cpu time gets accounted to + * @user_tick: is the tick from userspace + * @rq: the pointer to rq + * + * Tick demultiplexing follows the order + * - pending hardirq update + * - pending softirq update + * - user_time + * - idle_time + * - system time + * - check for guest_time + * - else account as system_time + * + * Check for hardirq is done both for system and user time as there is + * no timer going off while we are on hardirq and hence we may never get an + * opportunity to update it solely in system time. + * p->stime and friends are only updated on system time and not on irq + * softirq as those do not count in task exec_runtime any more. + */ +static void irqtime_account_process_tick(struct task_struct *p, int user_tick, + struct rq *rq) +{ + cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); + u64 *cpustat = kcpustat_this_cpu->cpustat; + + if (steal_account_process_tick()) + return; + + if (irqtime_account_hi_update()) { + cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; + } else if (irqtime_account_si_update()) { + cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; + } else if (this_cpu_ksoftirqd() == p) { + /* + * ksoftirqd time do not get accounted in cpu_softirq_time. + * So, we have to handle it separately here. + * Also, p->stime needs to be updated for ksoftirqd. + */ + __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, + CPUTIME_SOFTIRQ); + } else if (user_tick) { + account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); + } else if (p == rq->idle) { + account_idle_time(cputime_one_jiffy); + } else if (p->flags & PF_VCPU) { /* System time or guest time */ + account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); + } else { + __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, + CPUTIME_SYSTEM); + } +} + +static void irqtime_account_idle_ticks(int ticks) +{ + int i; + struct rq *rq = this_rq(); + + for (i = 0; i < ticks; i++) + irqtime_account_process_tick(current, 0, rq); +} +#else /* CONFIG_IRQ_TIME_ACCOUNTING */ +static void irqtime_account_idle_ticks(int ticks) {} +static void irqtime_account_process_tick(struct task_struct *p, int user_tick, + struct rq *rq) {} +#endif /* CONFIG_IRQ_TIME_ACCOUNTING */ + +/* + * Account a single tick of cpu time. + * @p: the process that the cpu time gets accounted to + * @user_tick: indicates if the tick is a user or a system tick + */ +void account_process_tick(struct task_struct *p, int user_tick) +{ + cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); + struct rq *rq = this_rq(); + + if (sched_clock_irqtime) { + irqtime_account_process_tick(p, user_tick, rq); + return; + } + + if (steal_account_process_tick()) + return; + + if (user_tick) + account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); + else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) + account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, + one_jiffy_scaled); + else + account_idle_time(cputime_one_jiffy); +} + +/* + * Account multiple ticks of steal time. + * @p: the process from which the cpu time has been stolen + * @ticks: number of stolen ticks + */ +void account_steal_ticks(unsigned long ticks) +{ + account_steal_time(jiffies_to_cputime(ticks)); +} + +/* + * Account multiple ticks of idle time. + * @ticks: number of stolen ticks + */ +void account_idle_ticks(unsigned long ticks) +{ + + if (sched_clock_irqtime) { + irqtime_account_idle_ticks(ticks); + return; + } + + account_idle_time(jiffies_to_cputime(ticks)); +} + +#endif + +/* + * Use precise platform statistics if available: + */ +#ifdef CONFIG_VIRT_CPU_ACCOUNTING +void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) +{ + *ut = p->utime; + *st = p->stime; +} + +void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) +{ + struct task_cputime cputime; + + thread_group_cputime(p, &cputime); + + *ut = cputime.utime; + *st = cputime.stime; +} + +/* + * Archs that account the whole time spent in the idle task + * (outside irq) as idle time can rely on this and just implement + * vtime_account_system() and vtime_account_idle(). Archs that + * have other meaning of the idle time (s390 only includes the + * time spent by the CPU when it's in low power mode) must override + * vtime_account(). + */ +#ifndef __ARCH_HAS_VTIME_ACCOUNT +void vtime_account(struct task_struct *tsk) +{ + unsigned long flags; + + local_irq_save(flags); + + if (in_interrupt() || !is_idle_task(tsk)) + vtime_account_system(tsk); + else + vtime_account_idle(tsk); + + local_irq_restore(flags); +} +EXPORT_SYMBOL_GPL(vtime_account); +#endif /* __ARCH_HAS_VTIME_ACCOUNT */ + +#else + +#ifndef nsecs_to_cputime +# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) +#endif + +static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total) +{ + u64 temp = (__force u64) rtime; + + temp *= (__force u64) utime; + + if (sizeof(cputime_t) == 4) + temp = div_u64(temp, (__force u32) total); + else + temp = div64_u64(temp, (__force u64) total); + + return (__force cputime_t) temp; +} + +void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) +{ + cputime_t rtime, utime = p->utime, total = utime + p->stime; + + /* + * Use CFS's precise accounting: + */ + rtime = nsecs_to_cputime(p->se.sum_exec_runtime); + + if (total) + utime = scale_utime(utime, rtime, total); + else + utime = rtime; + + /* + * Compare with previous values, to keep monotonicity: + */ + p->prev_utime = max(p->prev_utime, utime); + p->prev_stime = max(p->prev_stime, rtime - p->prev_utime); + + *ut = p->prev_utime; + *st = p->prev_stime; +} + +/* + * Must be called with siglock held. + */ +void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) +{ + struct signal_struct *sig = p->signal; + struct task_cputime cputime; + cputime_t rtime, utime, total; + + thread_group_cputime(p, &cputime); + + total = cputime.utime + cputime.stime; + rtime = nsecs_to_cputime(cputime.sum_exec_runtime); + + if (total) + utime = scale_utime(cputime.utime, rtime, total); + else + utime = rtime; + + sig->prev_utime = max(sig->prev_utime, utime); + sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime); + + *ut = sig->prev_utime; + *st = sig->prev_stime; +} +#endif diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index c219bf8d704c..6b800a14b990 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -597,7 +597,7 @@ calc_delta_fair(unsigned long delta, struct sched_entity *se) /* * The idea is to set a period in which each task runs once. * - * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch + * When there are too many tasks (sched_nr_latency) we have to stretch * this period because otherwise the slices get too small. * * p = (nr <= nl) ? l : l*nr/nl @@ -2052,7 +2052,7 @@ static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) hrtimer_cancel(&cfs_b->slack_timer); } -void unthrottle_offline_cfs_rqs(struct rq *rq) +static void unthrottle_offline_cfs_rqs(struct rq *rq) { struct cfs_rq *cfs_rq; @@ -2106,7 +2106,7 @@ static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) return NULL; } static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} -void unthrottle_offline_cfs_rqs(struct rq *rq) {} +static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} #endif /* CONFIG_CFS_BANDWIDTH */ @@ -2637,6 +2637,8 @@ static int select_idle_sibling(struct task_struct *p, int target) int cpu = smp_processor_id(); int prev_cpu = task_cpu(p); struct sched_domain *sd; + struct sched_group *sg; + int i; /* * If the task is going to be woken-up on this cpu and if it is @@ -2653,17 +2655,29 @@ static int select_idle_sibling(struct task_struct *p, int target) return prev_cpu; /* - * Otherwise, check assigned siblings to find an elegible idle cpu. + * Otherwise, iterate the domains and find an elegible idle cpu. */ sd = rcu_dereference(per_cpu(sd_llc, target)); - for_each_lower_domain(sd) { - if (!cpumask_test_cpu(sd->idle_buddy, tsk_cpus_allowed(p))) - continue; - if (idle_cpu(sd->idle_buddy)) - return sd->idle_buddy; - } + sg = sd->groups; + do { + if (!cpumask_intersects(sched_group_cpus(sg), + tsk_cpus_allowed(p))) + goto next; + for_each_cpu(i, sched_group_cpus(sg)) { + if (!idle_cpu(i)) + goto next; + } + + target = cpumask_first_and(sched_group_cpus(sg), + tsk_cpus_allowed(p)); + goto done; +next: + sg = sg->next; + } while (sg != sd->groups); + } +done: return target; } @@ -2686,7 +2700,6 @@ select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) int prev_cpu = task_cpu(p); int new_cpu = cpu; int want_affine = 0; - int want_sd = 1; int sync = wake_flags & WF_SYNC; if (p->nr_cpus_allowed == 1) @@ -2704,48 +2717,21 @@ select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) continue; /* - * If power savings logic is enabled for a domain, see if we - * are not overloaded, if so, don't balance wider. - */ - if (tmp->flags & (SD_PREFER_LOCAL)) { - unsigned long power = 0; - unsigned long nr_running = 0; - unsigned long capacity; - int i; - - for_each_cpu(i, sched_domain_span(tmp)) { - power += power_of(i); - nr_running += cpu_rq(i)->cfs.nr_running; - } - - capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE); - - if (nr_running < capacity) - want_sd = 0; - } - - /* * If both cpu and prev_cpu are part of this domain, * cpu is a valid SD_WAKE_AFFINE target. */ if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { affine_sd = tmp; - want_affine = 0; - } - - if (!want_sd && !want_affine) break; + } - if (!(tmp->flags & sd_flag)) - continue; - - if (want_sd) + if (tmp->flags & sd_flag) sd = tmp; } if (affine_sd) { - if (cpu == prev_cpu || wake_affine(affine_sd, p, sync)) + if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) prev_cpu = cpu; new_cpu = select_idle_sibling(p, prev_cpu); @@ -3658,7 +3644,6 @@ fix_small_capacity(struct sched_domain *sd, struct sched_group *group) * @group: sched_group whose statistics are to be updated. * @load_idx: Load index of sched_domain of this_cpu for load calc. * @local_group: Does group contain this_cpu. - * @cpus: Set of cpus considered for load balancing. * @balance: Should we balance. * @sgs: variable to hold the statistics for this group. */ @@ -3805,7 +3790,6 @@ static bool update_sd_pick_busiest(struct lb_env *env, /** * update_sd_lb_stats - Update sched_domain's statistics for load balancing. * @env: The load balancing environment. - * @cpus: Set of cpus considered for load balancing. * @balance: Should we balance. * @sds: variable to hold the statistics for this sched_domain. */ @@ -4283,7 +4267,7 @@ redo: goto out_balanced; } - BUG_ON(busiest == this_rq); + BUG_ON(busiest == env.dst_rq); schedstat_add(sd, lb_imbalance[idle], env.imbalance); @@ -4304,7 +4288,7 @@ redo: update_h_load(env.src_cpu); more_balance: local_irq_save(flags); - double_rq_lock(this_rq, busiest); + double_rq_lock(env.dst_rq, busiest); /* * cur_ld_moved - load moved in current iteration @@ -4312,7 +4296,7 @@ more_balance: */ cur_ld_moved = move_tasks(&env); ld_moved += cur_ld_moved; - double_rq_unlock(this_rq, busiest); + double_rq_unlock(env.dst_rq, busiest); local_irq_restore(flags); if (env.flags & LBF_NEED_BREAK) { @@ -4348,8 +4332,7 @@ more_balance: if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 && lb_iterations++ < max_lb_iterations) { - this_rq = cpu_rq(env.new_dst_cpu); - env.dst_rq = this_rq; + env.dst_rq = cpu_rq(env.new_dst_cpu); env.dst_cpu = env.new_dst_cpu; env.flags &= ~LBF_SOME_PINNED; env.loop = 0; @@ -4634,7 +4617,7 @@ static void nohz_balancer_kick(int cpu) return; } -static inline void clear_nohz_tick_stopped(int cpu) +static inline void nohz_balance_exit_idle(int cpu) { if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); @@ -4674,28 +4657,23 @@ void set_cpu_sd_state_idle(void) } /* - * This routine will record that this cpu is going idle with tick stopped. + * This routine will record that the cpu is going idle with tick stopped. * This info will be used in performing idle load balancing in the future. */ -void select_nohz_load_balancer(int stop_tick) +void nohz_balance_enter_idle(int cpu) { - int cpu = smp_processor_id(); - /* * If this cpu is going down, then nothing needs to be done. */ if (!cpu_active(cpu)) return; - if (stop_tick) { - if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) - return; + if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) + return; - cpumask_set_cpu(cpu, nohz.idle_cpus_mask); - atomic_inc(&nohz.nr_cpus); - set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); - } - return; + cpumask_set_cpu(cpu, nohz.idle_cpus_mask); + atomic_inc(&nohz.nr_cpus); + set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); } static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb, @@ -4703,7 +4681,7 @@ static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb, { switch (action & ~CPU_TASKS_FROZEN) { case CPU_DYING: - clear_nohz_tick_stopped(smp_processor_id()); + nohz_balance_exit_idle(smp_processor_id()); return NOTIFY_OK; default: return NOTIFY_DONE; @@ -4825,14 +4803,15 @@ static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) if (need_resched()) break; - raw_spin_lock_irq(&this_rq->lock); - update_rq_clock(this_rq); - update_idle_cpu_load(this_rq); - raw_spin_unlock_irq(&this_rq->lock); + rq = cpu_rq(balance_cpu); + + raw_spin_lock_irq(&rq->lock); + update_rq_clock(rq); + update_idle_cpu_load(rq); + raw_spin_unlock_irq(&rq->lock); rebalance_domains(balance_cpu, CPU_IDLE); - rq = cpu_rq(balance_cpu); if (time_after(this_rq->next_balance, rq->next_balance)) this_rq->next_balance = rq->next_balance; } @@ -4863,7 +4842,7 @@ static inline int nohz_kick_needed(struct rq *rq, int cpu) * busy tick after returning from idle, we will update the busy stats. */ set_cpu_sd_state_busy(); - clear_nohz_tick_stopped(cpu); + nohz_balance_exit_idle(cpu); /* * None are in tickless mode and hence no need for NOHZ idle load @@ -4956,6 +4935,9 @@ static void rq_online_fair(struct rq *rq) static void rq_offline_fair(struct rq *rq) { update_sysctl(); + + /* Ensure any throttled groups are reachable by pick_next_task */ + unthrottle_offline_cfs_rqs(rq); } #endif /* CONFIG_SMP */ diff --git a/kernel/sched/features.h b/kernel/sched/features.h index de00a486c5c6..eebefcad7027 100644 --- a/kernel/sched/features.h +++ b/kernel/sched/features.h @@ -12,14 +12,6 @@ SCHED_FEAT(GENTLE_FAIR_SLEEPERS, true) SCHED_FEAT(START_DEBIT, true) /* - * Based on load and program behaviour, see if it makes sense to place - * a newly woken task on the same cpu as the task that woke it -- - * improve cache locality. Typically used with SYNC wakeups as - * generated by pipes and the like, see also SYNC_WAKEUPS. - */ -SCHED_FEAT(AFFINE_WAKEUPS, true) - -/* * Prefer to schedule the task we woke last (assuming it failed * wakeup-preemption), since its likely going to consume data we * touched, increases cache locality. @@ -42,7 +34,7 @@ SCHED_FEAT(CACHE_HOT_BUDDY, true) /* * Use arch dependent cpu power functions */ -SCHED_FEAT(ARCH_POWER, false) +SCHED_FEAT(ARCH_POWER, true) SCHED_FEAT(HRTICK, false) SCHED_FEAT(DOUBLE_TICK, false) diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c index 944cb68420e9..418feb01344e 100644 --- a/kernel/sched/rt.c +++ b/kernel/sched/rt.c @@ -691,6 +691,7 @@ balanced: * runtime - in which case borrowing doesn't make sense. */ rt_rq->rt_runtime = RUNTIME_INF; + rt_rq->rt_throttled = 0; raw_spin_unlock(&rt_rq->rt_runtime_lock); raw_spin_unlock(&rt_b->rt_runtime_lock); } @@ -1631,11 +1632,6 @@ static int push_rt_task(struct rq *rq) if (!next_task) return 0; -#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW - if (unlikely(task_running(rq, next_task))) - return 0; -#endif - retry: if (unlikely(next_task == rq->curr)) { WARN_ON(1); diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index f6714d009e77..7a7db09cfabc 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -737,11 +737,7 @@ static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) */ next->on_cpu = 1; #endif -#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW - raw_spin_unlock_irq(&rq->lock); -#else raw_spin_unlock(&rq->lock); -#endif } static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) @@ -755,9 +751,7 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) smp_wmb(); prev->on_cpu = 0; #endif -#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW local_irq_enable(); -#endif } #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ @@ -891,6 +885,9 @@ struct cpuacct { struct kernel_cpustat __percpu *cpustat; }; +extern struct cgroup_subsys cpuacct_subsys; +extern struct cpuacct root_cpuacct; + /* return cpu accounting group corresponding to this container */ static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) { @@ -917,6 +914,16 @@ extern void cpuacct_charge(struct task_struct *tsk, u64 cputime); static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} #endif +#ifdef CONFIG_PARAVIRT +static inline u64 steal_ticks(u64 steal) +{ + if (unlikely(steal > NSEC_PER_SEC)) + return div_u64(steal, TICK_NSEC); + + return __iter_div_u64_rem(steal, TICK_NSEC, &steal); +} +#endif + static inline void inc_nr_running(struct rq *rq) { rq->nr_running++; @@ -1144,7 +1151,6 @@ extern void print_rt_stats(struct seq_file *m, int cpu); extern void init_cfs_rq(struct cfs_rq *cfs_rq); extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); -extern void unthrottle_offline_cfs_rqs(struct rq *rq); extern void account_cfs_bandwidth_used(int enabled, int was_enabled); @@ -1157,3 +1163,53 @@ enum rq_nohz_flag_bits { #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) #endif + +#ifdef CONFIG_IRQ_TIME_ACCOUNTING + +DECLARE_PER_CPU(u64, cpu_hardirq_time); +DECLARE_PER_CPU(u64, cpu_softirq_time); + +#ifndef CONFIG_64BIT +DECLARE_PER_CPU(seqcount_t, irq_time_seq); + +static inline void irq_time_write_begin(void) +{ + __this_cpu_inc(irq_time_seq.sequence); + smp_wmb(); +} + +static inline void irq_time_write_end(void) +{ + smp_wmb(); + __this_cpu_inc(irq_time_seq.sequence); +} + +static inline u64 irq_time_read(int cpu) +{ + u64 irq_time; + unsigned seq; + + do { + seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); + irq_time = per_cpu(cpu_softirq_time, cpu) + + per_cpu(cpu_hardirq_time, cpu); + } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); + + return irq_time; +} +#else /* CONFIG_64BIT */ +static inline void irq_time_write_begin(void) +{ +} + +static inline void irq_time_write_end(void) +{ +} + +static inline u64 irq_time_read(int cpu) +{ + return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); +} +#endif /* CONFIG_64BIT */ +#endif /* CONFIG_IRQ_TIME_ACCOUNTING */ + |