summaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/acct.c4
-rw-r--r--kernel/audit.c76
-rw-r--r--kernel/audit.h2
-rw-r--r--kernel/audit_tree.c2
-rw-r--r--kernel/auditfilter.c39
-rw-r--r--kernel/auditsc.c29
-rw-r--r--kernel/bpf/core.c6
-rw-r--r--kernel/bpf/percpu_freelist.c8
-rw-r--r--kernel/bpf/verifier.c40
-rw-r--r--kernel/cgroup/Makefile2
-rw-r--r--kernel/cgroup/cgroup-internal.h9
-rw-r--r--kernel/cgroup/cgroup.c157
-rw-r--r--kernel/cgroup/cpuset.c15
-rw-r--r--kernel/cgroup/stat.c334
-rw-r--r--kernel/events/core.c498
-rw-r--r--kernel/events/ring_buffer.c6
-rw-r--r--kernel/exit.c2
-rw-r--r--kernel/extable.c2
-rw-r--r--kernel/fork.c24
-rw-r--r--kernel/irq/Kconfig6
-rw-r--r--kernel/irq/Makefile1
-rw-r--r--kernel/irq/autoprobe.c2
-rw-r--r--kernel/irq/chip.c35
-rw-r--r--kernel/irq/debugfs.c12
-rw-r--r--kernel/irq/internals.h19
-rw-r--r--kernel/irq/irqdesc.c10
-rw-r--r--kernel/irq/irqdomain.c60
-rw-r--r--kernel/irq/manage.c23
-rw-r--r--kernel/irq/matrix.c443
-rw-r--r--kernel/irq/msi.c32
-rw-r--r--kernel/irq/proc.c5
-rw-r--r--kernel/irq/timings.c2
-rw-r--r--kernel/irq_work.c21
-rw-r--r--kernel/jump_label.c14
-rw-r--r--kernel/kallsyms.c43
-rw-r--r--kernel/kexec_file.c5
-rw-r--r--kernel/kprobes.c18
-rw-r--r--kernel/kthread.c66
-rw-r--r--kernel/livepatch/Makefile2
-rw-r--r--kernel/livepatch/core.c52
-rw-r--r--kernel/livepatch/core.h40
-rw-r--r--kernel/livepatch/patch.c1
-rw-r--r--kernel/livepatch/shadow.c277
-rw-r--r--kernel/livepatch/transition.c45
-rw-r--r--kernel/locking/lockdep.c26
-rw-r--r--kernel/locking/qrwlock.c86
-rw-r--r--kernel/locking/qspinlock_paravirt.h47
-rw-r--r--kernel/locking/rwsem.c16
-rw-r--r--kernel/locking/spinlock.c9
-rw-r--r--kernel/module.c36
-rw-r--r--kernel/padata.c71
-rw-r--r--kernel/power/Kconfig14
-rw-r--r--kernel/power/qos.c4
-rw-r--r--kernel/power/snapshot.c39
-rw-r--r--kernel/power/suspend.c2
-rw-r--r--kernel/power/swap.c128
-rw-r--r--kernel/rcu/rcu.h21
-rw-r--r--kernel/rcu/rcu_segcblist.c1
-rw-r--r--kernel/rcu/rcutorture.c24
-rw-r--r--kernel/rcu/tree.c175
-rw-r--r--kernel/rcu/tree.h5
-rw-r--r--kernel/rcu/tree_plugin.h27
-rw-r--r--kernel/rcu/update.c28
-rw-r--r--kernel/resource.c76
-rw-r--r--kernel/sched/Makefile1
-rw-r--r--kernel/sched/clock.c2
-rw-r--r--kernel/sched/core.c235
-rw-r--r--kernel/sched/cpuacct.h18
-rw-r--r--kernel/sched/cpufreq_schedutil.c6
-rw-r--r--kernel/sched/cputime.c17
-rw-r--r--kernel/sched/deadline.c23
-rw-r--r--kernel/sched/debug.c18
-rw-r--r--kernel/sched/fair.c1051
-rw-r--r--kernel/sched/idle.c4
-rw-r--r--kernel/sched/isolation.c155
-rw-r--r--kernel/sched/rt.c318
-rw-r--r--kernel/sched/sched.h75
-rw-r--r--kernel/sched/stop_task.c2
-rw-r--r--kernel/sched/topology.c49
-rw-r--r--kernel/seccomp.c2
-rw-r--r--kernel/signal.c3
-rw-r--r--kernel/smp.c2
-rw-r--r--kernel/softirq.c18
-rw-r--r--kernel/sys.c12
-rw-r--r--kernel/sysctl.c24
-rw-r--r--kernel/task_work.c2
-rw-r--r--kernel/test_kprobes.c29
-rw-r--r--kernel/time/hrtimer.c4
-rw-r--r--kernel/time/posix-cpu-timers.c6
-rw-r--r--kernel/time/tick-sched.c38
-rw-r--r--kernel/trace/Kconfig4
-rw-r--r--kernel/trace/blktrace.c90
-rw-r--r--kernel/trace/bpf_trace.c8
-rw-r--r--kernel/trace/ring_buffer.c5
-rw-r--r--kernel/trace/trace.h2
-rw-r--r--kernel/trace/trace_output.c12
-rw-r--r--kernel/trace/trace_sched_wakeup.c8
-rw-r--r--kernel/trace/trace_stack.c2
-rw-r--r--kernel/user_namespace.c2
-rw-r--r--kernel/watchdog.c13
-rw-r--r--kernel/workqueue.c28
101 files changed, 3972 insertions, 1640 deletions
diff --git a/kernel/acct.c b/kernel/acct.c
index 6670fbd3e466..d15c0ee4d955 100644
--- a/kernel/acct.c
+++ b/kernel/acct.c
@@ -147,7 +147,7 @@ static struct bsd_acct_struct *acct_get(struct pid_namespace *ns)
again:
smp_rmb();
rcu_read_lock();
- res = to_acct(ACCESS_ONCE(ns->bacct));
+ res = to_acct(READ_ONCE(ns->bacct));
if (!res) {
rcu_read_unlock();
return NULL;
@@ -159,7 +159,7 @@ again:
}
rcu_read_unlock();
mutex_lock(&res->lock);
- if (res != to_acct(ACCESS_ONCE(ns->bacct))) {
+ if (res != to_acct(READ_ONCE(ns->bacct))) {
mutex_unlock(&res->lock);
acct_put(res);
goto again;
diff --git a/kernel/audit.c b/kernel/audit.c
index be1c28fd4d57..227db99b0f19 100644
--- a/kernel/audit.c
+++ b/kernel/audit.c
@@ -85,13 +85,13 @@ static int audit_initialized;
#define AUDIT_OFF 0
#define AUDIT_ON 1
#define AUDIT_LOCKED 2
-u32 audit_enabled;
-u32 audit_ever_enabled;
+u32 audit_enabled = AUDIT_OFF;
+bool audit_ever_enabled = !!AUDIT_OFF;
EXPORT_SYMBOL_GPL(audit_enabled);
/* Default state when kernel boots without any parameters. */
-static u32 audit_default;
+static u32 audit_default = AUDIT_OFF;
/* If auditing cannot proceed, audit_failure selects what happens. */
static u32 audit_failure = AUDIT_FAIL_PRINTK;
@@ -1197,25 +1197,28 @@ static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
pid_t auditd_pid;
struct pid *req_pid = task_tgid(current);
- /* sanity check - PID values must match */
- if (new_pid != pid_vnr(req_pid))
+ /* Sanity check - PID values must match. Setting
+ * pid to 0 is how auditd ends auditing. */
+ if (new_pid && (new_pid != pid_vnr(req_pid)))
return -EINVAL;
/* test the auditd connection */
audit_replace(req_pid);
auditd_pid = auditd_pid_vnr();
- /* only the current auditd can unregister itself */
- if ((!new_pid) && (new_pid != auditd_pid)) {
- audit_log_config_change("audit_pid", new_pid,
- auditd_pid, 0);
- return -EACCES;
- }
- /* replacing a healthy auditd is not allowed */
- if (auditd_pid && new_pid) {
- audit_log_config_change("audit_pid", new_pid,
- auditd_pid, 0);
- return -EEXIST;
+ if (auditd_pid) {
+ /* replacing a healthy auditd is not allowed */
+ if (new_pid) {
+ audit_log_config_change("audit_pid",
+ new_pid, auditd_pid, 0);
+ return -EEXIST;
+ }
+ /* only current auditd can unregister itself */
+ if (pid_vnr(req_pid) != auditd_pid) {
+ audit_log_config_change("audit_pid",
+ new_pid, auditd_pid, 0);
+ return -EACCES;
+ }
}
if (new_pid) {
@@ -1549,8 +1552,6 @@ static int __init audit_init(void)
register_pernet_subsys(&audit_net_ops);
audit_initialized = AUDIT_INITIALIZED;
- audit_enabled = audit_default;
- audit_ever_enabled |= !!audit_default;
kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
if (IS_ERR(kauditd_task)) {
@@ -1564,14 +1565,21 @@ static int __init audit_init(void)
return 0;
}
-__initcall(audit_init);
+postcore_initcall(audit_init);
/* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
static int __init audit_enable(char *str)
{
- audit_default = !!simple_strtol(str, NULL, 0);
- if (!audit_default)
+ long val;
+
+ if (kstrtol(str, 0, &val))
+ panic("audit: invalid 'audit' parameter value (%s)\n", str);
+ audit_default = (val ? AUDIT_ON : AUDIT_OFF);
+
+ if (audit_default == AUDIT_OFF)
audit_initialized = AUDIT_DISABLED;
+ if (audit_set_enabled(audit_default))
+ panic("audit: error setting audit state (%d)\n", audit_default);
pr_info("%s\n", audit_default ?
"enabled (after initialization)" : "disabled (until reboot)");
@@ -2337,32 +2345,6 @@ void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
}
}
-#ifdef CONFIG_SECURITY
-/**
- * audit_log_secctx - Converts and logs SELinux context
- * @ab: audit_buffer
- * @secid: security number
- *
- * This is a helper function that calls security_secid_to_secctx to convert
- * secid to secctx and then adds the (converted) SELinux context to the audit
- * log by calling audit_log_format, thus also preventing leak of internal secid
- * to userspace. If secid cannot be converted audit_panic is called.
- */
-void audit_log_secctx(struct audit_buffer *ab, u32 secid)
-{
- u32 len;
- char *secctx;
-
- if (security_secid_to_secctx(secid, &secctx, &len)) {
- audit_panic("Cannot convert secid to context");
- } else {
- audit_log_format(ab, " obj=%s", secctx);
- security_release_secctx(secctx, len);
- }
-}
-EXPORT_SYMBOL(audit_log_secctx);
-#endif
-
EXPORT_SYMBOL(audit_log_start);
EXPORT_SYMBOL(audit_log_end);
EXPORT_SYMBOL(audit_log_format);
diff --git a/kernel/audit.h b/kernel/audit.h
index 9b110ae17ee3..af5bc59487ed 100644
--- a/kernel/audit.h
+++ b/kernel/audit.h
@@ -208,7 +208,7 @@ struct audit_context {
struct audit_proctitle proctitle;
};
-extern u32 audit_ever_enabled;
+extern bool audit_ever_enabled;
extern void audit_copy_inode(struct audit_names *name,
const struct dentry *dentry,
diff --git a/kernel/audit_tree.c b/kernel/audit_tree.c
index d4b050d9a66e..fd353120e0d9 100644
--- a/kernel/audit_tree.c
+++ b/kernel/audit_tree.c
@@ -1008,7 +1008,7 @@ static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify
* We are guaranteed to have at least one reference to the mark from
* either the inode or the caller of fsnotify_destroy_mark().
*/
- BUG_ON(atomic_read(&entry->refcnt) < 1);
+ BUG_ON(refcount_read(&entry->refcnt) < 1);
}
static const struct fsnotify_ops audit_tree_ops = {
diff --git a/kernel/auditfilter.c b/kernel/auditfilter.c
index 0b0aa5854dac..4a1758adb222 100644
--- a/kernel/auditfilter.c
+++ b/kernel/auditfilter.c
@@ -56,7 +56,8 @@ struct list_head audit_filter_list[AUDIT_NR_FILTERS] = {
LIST_HEAD_INIT(audit_filter_list[3]),
LIST_HEAD_INIT(audit_filter_list[4]),
LIST_HEAD_INIT(audit_filter_list[5]),
-#if AUDIT_NR_FILTERS != 6
+ LIST_HEAD_INIT(audit_filter_list[6]),
+#if AUDIT_NR_FILTERS != 7
#error Fix audit_filter_list initialiser
#endif
};
@@ -67,6 +68,7 @@ static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = {
LIST_HEAD_INIT(audit_rules_list[3]),
LIST_HEAD_INIT(audit_rules_list[4]),
LIST_HEAD_INIT(audit_rules_list[5]),
+ LIST_HEAD_INIT(audit_rules_list[6]),
};
DEFINE_MUTEX(audit_filter_mutex);
@@ -263,6 +265,7 @@ static inline struct audit_entry *audit_to_entry_common(struct audit_rule_data *
#endif
case AUDIT_FILTER_USER:
case AUDIT_FILTER_TYPE:
+ case AUDIT_FILTER_FS:
;
}
if (unlikely(rule->action == AUDIT_POSSIBLE)) {
@@ -338,6 +341,21 @@ static int audit_field_valid(struct audit_entry *entry, struct audit_field *f)
entry->rule.listnr != AUDIT_FILTER_USER)
return -EINVAL;
break;
+ case AUDIT_FSTYPE:
+ if (entry->rule.listnr != AUDIT_FILTER_FS)
+ return -EINVAL;
+ break;
+ }
+
+ switch(entry->rule.listnr) {
+ case AUDIT_FILTER_FS:
+ switch(f->type) {
+ case AUDIT_FSTYPE:
+ case AUDIT_FILTERKEY:
+ break;
+ default:
+ return -EINVAL;
+ }
}
switch(f->type) {
@@ -391,6 +409,7 @@ static int audit_field_valid(struct audit_entry *entry, struct audit_field *f)
return -EINVAL;
/* FALL THROUGH */
case AUDIT_ARCH:
+ case AUDIT_FSTYPE:
if (f->op != Audit_not_equal && f->op != Audit_equal)
return -EINVAL;
break;
@@ -910,10 +929,13 @@ static inline int audit_add_rule(struct audit_entry *entry)
#ifdef CONFIG_AUDITSYSCALL
int dont_count = 0;
- /* If either of these, don't count towards total */
- if (entry->rule.listnr == AUDIT_FILTER_USER ||
- entry->rule.listnr == AUDIT_FILTER_TYPE)
+ /* If any of these, don't count towards total */
+ switch(entry->rule.listnr) {
+ case AUDIT_FILTER_USER:
+ case AUDIT_FILTER_TYPE:
+ case AUDIT_FILTER_FS:
dont_count = 1;
+ }
#endif
mutex_lock(&audit_filter_mutex);
@@ -989,10 +1011,13 @@ int audit_del_rule(struct audit_entry *entry)
#ifdef CONFIG_AUDITSYSCALL
int dont_count = 0;
- /* If either of these, don't count towards total */
- if (entry->rule.listnr == AUDIT_FILTER_USER ||
- entry->rule.listnr == AUDIT_FILTER_TYPE)
+ /* If any of these, don't count towards total */
+ switch(entry->rule.listnr) {
+ case AUDIT_FILTER_USER:
+ case AUDIT_FILTER_TYPE:
+ case AUDIT_FILTER_FS:
dont_count = 1;
+ }
#endif
mutex_lock(&audit_filter_mutex);
diff --git a/kernel/auditsc.c b/kernel/auditsc.c
index ecc23e25c9eb..e80459f7e132 100644
--- a/kernel/auditsc.c
+++ b/kernel/auditsc.c
@@ -1869,10 +1869,33 @@ void __audit_inode_child(struct inode *parent,
struct inode *inode = d_backing_inode(dentry);
const char *dname = dentry->d_name.name;
struct audit_names *n, *found_parent = NULL, *found_child = NULL;
+ struct audit_entry *e;
+ struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
+ int i;
if (!context->in_syscall)
return;
+ rcu_read_lock();
+ if (!list_empty(list)) {
+ list_for_each_entry_rcu(e, list, list) {
+ for (i = 0; i < e->rule.field_count; i++) {
+ struct audit_field *f = &e->rule.fields[i];
+
+ if (f->type == AUDIT_FSTYPE) {
+ if (audit_comparator(parent->i_sb->s_magic,
+ f->op, f->val)) {
+ if (e->rule.action == AUDIT_NEVER) {
+ rcu_read_unlock();
+ return;
+ }
+ }
+ }
+ }
+ }
+ }
+ rcu_read_unlock();
+
if (inode)
handle_one(inode);
@@ -2390,6 +2413,12 @@ void __audit_log_kern_module(char *name)
context->type = AUDIT_KERN_MODULE;
}
+void __audit_fanotify(unsigned int response)
+{
+ audit_log(current->audit_context, GFP_KERNEL,
+ AUDIT_FANOTIFY, "resp=%u", response);
+}
+
static void audit_log_task(struct audit_buffer *ab)
{
kuid_t auid, uid;
diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c
index 8a6c37762330..b9f8686a84cf 100644
--- a/kernel/bpf/core.c
+++ b/kernel/bpf/core.c
@@ -85,8 +85,6 @@ struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
if (fp == NULL)
return NULL;
- kmemcheck_annotate_bitfield(fp, meta);
-
aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
if (aux == NULL) {
vfree(fp);
@@ -127,8 +125,6 @@ struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
if (fp == NULL) {
__bpf_prog_uncharge(fp_old->aux->user, delta);
} else {
- kmemcheck_annotate_bitfield(fp, meta);
-
memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
fp->pages = pages;
fp->aux->prog = fp;
@@ -675,8 +671,6 @@ static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
if (fp != NULL) {
- kmemcheck_annotate_bitfield(fp, meta);
-
/* aux->prog still points to the fp_other one, so
* when promoting the clone to the real program,
* this still needs to be adapted.
diff --git a/kernel/bpf/percpu_freelist.c b/kernel/bpf/percpu_freelist.c
index 5c51d1985b51..673fa6fe2d73 100644
--- a/kernel/bpf/percpu_freelist.c
+++ b/kernel/bpf/percpu_freelist.c
@@ -78,8 +78,10 @@ struct pcpu_freelist_node *pcpu_freelist_pop(struct pcpu_freelist *s)
{
struct pcpu_freelist_head *head;
struct pcpu_freelist_node *node;
+ unsigned long flags;
int orig_cpu, cpu;
+ local_irq_save(flags);
orig_cpu = cpu = raw_smp_processor_id();
while (1) {
head = per_cpu_ptr(s->freelist, cpu);
@@ -87,14 +89,16 @@ struct pcpu_freelist_node *pcpu_freelist_pop(struct pcpu_freelist *s)
node = head->first;
if (node) {
head->first = node->next;
- raw_spin_unlock(&head->lock);
+ raw_spin_unlock_irqrestore(&head->lock, flags);
return node;
}
raw_spin_unlock(&head->lock);
cpu = cpumask_next(cpu, cpu_possible_mask);
if (cpu >= nr_cpu_ids)
cpu = 0;
- if (cpu == orig_cpu)
+ if (cpu == orig_cpu) {
+ local_irq_restore(flags);
return NULL;
+ }
}
}
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
index 4a942e2e753d..dd54d20ace2f 100644
--- a/kernel/bpf/verifier.c
+++ b/kernel/bpf/verifier.c
@@ -799,12 +799,13 @@ static int check_stack_read(struct bpf_verifier_env *env,
/* check read/write into map element returned by bpf_map_lookup_elem() */
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
- int size)
+ int size, bool zero_size_allowed)
{
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_map *map = regs[regno].map_ptr;
- if (off < 0 || size <= 0 || off + size > map->value_size) {
+ if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
+ off + size > map->value_size) {
verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
map->value_size, off, size);
return -EACCES;
@@ -814,7 +815,7 @@ static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
- int off, int size)
+ int off, int size, bool zero_size_allowed)
{
struct bpf_verifier_state *state = env->cur_state;
struct bpf_reg_state *reg = &state->regs[regno];
@@ -837,7 +838,8 @@ static int check_map_access(struct bpf_verifier_env *env, u32 regno,
regno);
return -EACCES;
}
- err = __check_map_access(env, regno, reg->smin_value + off, size);
+ err = __check_map_access(env, regno, reg->smin_value + off, size,
+ zero_size_allowed);
if (err) {
verbose(env, "R%d min value is outside of the array range\n",
regno);
@@ -853,7 +855,8 @@ static int check_map_access(struct bpf_verifier_env *env, u32 regno,
regno);
return -EACCES;
}
- err = __check_map_access(env, regno, reg->umax_value + off, size);
+ err = __check_map_access(env, regno, reg->umax_value + off, size,
+ zero_size_allowed);
if (err)
verbose(env, "R%d max value is outside of the array range\n",
regno);
@@ -889,12 +892,13 @@ static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
}
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
- int off, int size)
+ int off, int size, bool zero_size_allowed)
{
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_reg_state *reg = &regs[regno];
- if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
+ if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
+ (u64)off + size > reg->range) {
verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
off, size, regno, reg->id, reg->off, reg->range);
return -EACCES;
@@ -903,7 +907,7 @@ static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
}
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
- int size)
+ int size, bool zero_size_allowed)
{
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_reg_state *reg = &regs[regno];
@@ -922,7 +926,7 @@ static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
regno);
return -EACCES;
}
- err = __check_packet_access(env, regno, off, size);
+ err = __check_packet_access(env, regno, off, size, zero_size_allowed);
if (err) {
verbose(env, "R%d offset is outside of the packet\n", regno);
return err;
@@ -1097,7 +1101,7 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
return -EACCES;
}
- err = check_map_access(env, regno, off, size);
+ err = check_map_access(env, regno, off, size, false);
if (!err && t == BPF_READ && value_regno >= 0)
mark_reg_unknown(env, regs, value_regno);
@@ -1184,7 +1188,7 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
value_regno);
return -EACCES;
}
- err = check_packet_access(env, regno, off, size);
+ err = check_packet_access(env, regno, off, size, false);
if (!err && t == BPF_READ && value_regno >= 0)
mark_reg_unknown(env, regs, value_regno);
} else {
@@ -1281,7 +1285,7 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
}
off = regs[regno].off + regs[regno].var_off.value;
if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
- access_size <= 0) {
+ access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
regno, off, access_size);
return -EACCES;
@@ -1319,9 +1323,11 @@ static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
switch (reg->type) {
case PTR_TO_PACKET:
case PTR_TO_PACKET_META:
- return check_packet_access(env, regno, reg->off, access_size);
+ return check_packet_access(env, regno, reg->off, access_size,
+ zero_size_allowed);
case PTR_TO_MAP_VALUE:
- return check_map_access(env, regno, reg->off, access_size);
+ return check_map_access(env, regno, reg->off, access_size,
+ zero_size_allowed);
default: /* scalar_value|ptr_to_stack or invalid ptr */
return check_stack_boundary(env, regno, access_size,
zero_size_allowed, meta);
@@ -1415,7 +1421,8 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
}
if (type_is_pkt_pointer(type))
err = check_packet_access(env, regno, reg->off,
- meta->map_ptr->key_size);
+ meta->map_ptr->key_size,
+ false);
else
err = check_stack_boundary(env, regno,
meta->map_ptr->key_size,
@@ -1431,7 +1438,8 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
}
if (type_is_pkt_pointer(type))
err = check_packet_access(env, regno, reg->off,
- meta->map_ptr->value_size);
+ meta->map_ptr->value_size,
+ false);
else
err = check_stack_boundary(env, regno,
meta->map_ptr->value_size,
diff --git a/kernel/cgroup/Makefile b/kernel/cgroup/Makefile
index ae448f7632cc..2be89a003185 100644
--- a/kernel/cgroup/Makefile
+++ b/kernel/cgroup/Makefile
@@ -1,5 +1,5 @@
# SPDX-License-Identifier: GPL-2.0
-obj-y := cgroup.o namespace.o cgroup-v1.o
+obj-y := cgroup.o stat.o namespace.o cgroup-v1.o
obj-$(CONFIG_CGROUP_FREEZER) += freezer.o
obj-$(CONFIG_CGROUP_PIDS) += pids.o
diff --git a/kernel/cgroup/cgroup-internal.h b/kernel/cgroup/cgroup-internal.h
index bf54ade001be..b928b27050c6 100644
--- a/kernel/cgroup/cgroup-internal.h
+++ b/kernel/cgroup/cgroup-internal.h
@@ -201,6 +201,15 @@ int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
int cgroup_task_count(const struct cgroup *cgrp);
/*
+ * stat.c
+ */
+void cgroup_stat_flush(struct cgroup *cgrp);
+int cgroup_stat_init(struct cgroup *cgrp);
+void cgroup_stat_exit(struct cgroup *cgrp);
+void cgroup_stat_show_cputime(struct seq_file *seq);
+void cgroup_stat_boot(void);
+
+/*
* namespace.c
*/
extern const struct proc_ns_operations cgroupns_operations;
diff --git a/kernel/cgroup/cgroup.c b/kernel/cgroup/cgroup.c
index 00f5b358aeac..0b1ffe147f24 100644
--- a/kernel/cgroup/cgroup.c
+++ b/kernel/cgroup/cgroup.c
@@ -142,12 +142,14 @@ static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
};
#undef SUBSYS
+static DEFINE_PER_CPU(struct cgroup_cpu_stat, cgrp_dfl_root_cpu_stat);
+
/*
* The default hierarchy, reserved for the subsystems that are otherwise
* unattached - it never has more than a single cgroup, and all tasks are
* part of that cgroup.
*/
-struct cgroup_root cgrp_dfl_root;
+struct cgroup_root cgrp_dfl_root = { .cgrp.cpu_stat = &cgrp_dfl_root_cpu_stat };
EXPORT_SYMBOL_GPL(cgrp_dfl_root);
/*
@@ -462,6 +464,28 @@ static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
}
/**
+ * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
+ * @cgrp: the cgroup of interest
+ * @ss: the subsystem of interest
+ *
+ * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
+ * or is offline, %NULL is returned.
+ */
+static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
+ struct cgroup_subsys *ss)
+{
+ struct cgroup_subsys_state *css;
+
+ rcu_read_lock();
+ css = cgroup_css(cgrp, ss);
+ if (!css || !css_tryget_online(css))
+ css = NULL;
+ rcu_read_unlock();
+
+ return css;
+}
+
+/**
* cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
* @cgrp: the cgroup of interest
* @ss: the subsystem of interest (%NULL returns @cgrp->self)
@@ -647,6 +671,14 @@ struct css_set init_css_set = {
.cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
.mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
.mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
+
+ /*
+ * The following field is re-initialized when this cset gets linked
+ * in cgroup_init(). However, let's initialize the field
+ * statically too so that the default cgroup can be accessed safely
+ * early during boot.
+ */
+ .dfl_cgrp = &cgrp_dfl_root.cgrp,
};
static int css_set_count = 1; /* 1 for init_css_set */
@@ -3315,6 +3347,37 @@ static int cgroup_stat_show(struct seq_file *seq, void *v)
return 0;
}
+static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
+ struct cgroup *cgrp, int ssid)
+{
+ struct cgroup_subsys *ss = cgroup_subsys[ssid];
+ struct cgroup_subsys_state *css;
+ int ret;
+
+ if (!ss->css_extra_stat_show)
+ return 0;
+
+ css = cgroup_tryget_css(cgrp, ss);
+ if (!css)
+ return 0;
+
+ ret = ss->css_extra_stat_show(seq, css);
+ css_put(css);
+ return ret;
+}
+
+static int cpu_stat_show(struct seq_file *seq, void *v)
+{
+ struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
+ int ret = 0;
+
+ cgroup_stat_show_cputime(seq);
+#ifdef CONFIG_CGROUP_SCHED
+ ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
+#endif
+ return ret;
+}
+
static int cgroup_file_open(struct kernfs_open_file *of)
{
struct cftype *cft = of->kn->priv;
@@ -4422,6 +4485,11 @@ static struct cftype cgroup_base_files[] = {
.name = "cgroup.stat",
.seq_show = cgroup_stat_show,
},
+ {
+ .name = "cpu.stat",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .seq_show = cpu_stat_show,
+ },
{ } /* terminate */
};
@@ -4482,6 +4550,8 @@ static void css_free_work_fn(struct work_struct *work)
*/
cgroup_put(cgroup_parent(cgrp));
kernfs_put(cgrp->kn);
+ if (cgroup_on_dfl(cgrp))
+ cgroup_stat_exit(cgrp);
kfree(cgrp);
} else {
/*
@@ -4526,6 +4596,9 @@ static void css_release_work_fn(struct work_struct *work)
/* cgroup release path */
trace_cgroup_release(cgrp);
+ if (cgroup_on_dfl(cgrp))
+ cgroup_stat_flush(cgrp);
+
for (tcgrp = cgroup_parent(cgrp); tcgrp;
tcgrp = cgroup_parent(tcgrp))
tcgrp->nr_dying_descendants--;
@@ -4709,6 +4782,12 @@ static struct cgroup *cgroup_create(struct cgroup *parent)
if (ret)
goto out_free_cgrp;
+ if (cgroup_on_dfl(parent)) {
+ ret = cgroup_stat_init(cgrp);
+ if (ret)
+ goto out_cancel_ref;
+ }
+
/*
* Temporarily set the pointer to NULL, so idr_find() won't return
* a half-baked cgroup.
@@ -4716,7 +4795,7 @@ static struct cgroup *cgroup_create(struct cgroup *parent)
cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
if (cgrp->id < 0) {
ret = -ENOMEM;
- goto out_cancel_ref;
+ goto out_stat_exit;
}
init_cgroup_housekeeping(cgrp);
@@ -4767,6 +4846,9 @@ static struct cgroup *cgroup_create(struct cgroup *parent)
out_idr_free:
cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
+out_stat_exit:
+ if (cgroup_on_dfl(parent))
+ cgroup_stat_exit(cgrp);
out_cancel_ref:
percpu_ref_exit(&cgrp->self.refcnt);
out_free_cgrp:
@@ -5161,6 +5243,8 @@ int __init cgroup_init(void)
BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
+ cgroup_stat_boot();
+
/*
* The latency of the synchronize_sched() is too high for cgroups,
* avoid it at the cost of forcing all readers into the slow path.
@@ -5780,3 +5864,72 @@ int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
return ret;
}
#endif /* CONFIG_CGROUP_BPF */
+
+#ifdef CONFIG_SYSFS
+static ssize_t show_delegatable_files(struct cftype *files, char *buf,
+ ssize_t size, const char *prefix)
+{
+ struct cftype *cft;
+ ssize_t ret = 0;
+
+ for (cft = files; cft && cft->name[0] != '\0'; cft++) {
+ if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
+ continue;
+
+ if (prefix)
+ ret += snprintf(buf + ret, size - ret, "%s.", prefix);
+
+ ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
+
+ if (unlikely(ret >= size)) {
+ WARN_ON(1);
+ break;
+ }
+ }
+
+ return ret;
+}
+
+static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
+ char *buf)
+{
+ struct cgroup_subsys *ss;
+ int ssid;
+ ssize_t ret = 0;
+
+ ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
+ NULL);
+
+ for_each_subsys(ss, ssid)
+ ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
+ PAGE_SIZE - ret,
+ cgroup_subsys_name[ssid]);
+
+ return ret;
+}
+static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
+
+static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
+ char *buf)
+{
+ return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
+}
+static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
+
+static struct attribute *cgroup_sysfs_attrs[] = {
+ &cgroup_delegate_attr.attr,
+ &cgroup_features_attr.attr,
+ NULL,
+};
+
+static const struct attribute_group cgroup_sysfs_attr_group = {
+ .attrs = cgroup_sysfs_attrs,
+ .name = "cgroup",
+};
+
+static int __init cgroup_sysfs_init(void)
+{
+ return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
+}
+subsys_initcall(cgroup_sysfs_init);
+#endif /* CONFIG_SYSFS */
diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
index 4657e2924ecb..f7efa7b4d825 100644
--- a/kernel/cgroup/cpuset.c
+++ b/kernel/cgroup/cpuset.c
@@ -57,7 +57,7 @@
#include <linux/backing-dev.h>
#include <linux/sort.h>
#include <linux/oom.h>
-
+#include <linux/sched/isolation.h>
#include <linux/uaccess.h>
#include <linux/atomic.h>
#include <linux/mutex.h>
@@ -656,7 +656,6 @@ static int generate_sched_domains(cpumask_var_t **domains,
int csn; /* how many cpuset ptrs in csa so far */
int i, j, k; /* indices for partition finding loops */
cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
- cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
struct sched_domain_attr *dattr; /* attributes for custom domains */
int ndoms = 0; /* number of sched domains in result */
int nslot; /* next empty doms[] struct cpumask slot */
@@ -666,10 +665,6 @@ static int generate_sched_domains(cpumask_var_t **domains,
dattr = NULL;
csa = NULL;
- if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
- goto done;
- cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
-
/* Special case for the 99% of systems with one, full, sched domain */
if (is_sched_load_balance(&top_cpuset)) {
ndoms = 1;
@@ -683,7 +678,7 @@ static int generate_sched_domains(cpumask_var_t **domains,
update_domain_attr_tree(dattr, &top_cpuset);
}
cpumask_and(doms[0], top_cpuset.effective_cpus,
- non_isolated_cpus);
+ housekeeping_cpumask(HK_FLAG_DOMAIN));
goto done;
}
@@ -707,7 +702,8 @@ static int generate_sched_domains(cpumask_var_t **domains,
*/
if (!cpumask_empty(cp->cpus_allowed) &&
!(is_sched_load_balance(cp) &&
- cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
+ cpumask_intersects(cp->cpus_allowed,
+ housekeeping_cpumask(HK_FLAG_DOMAIN))))
continue;
if (is_sched_load_balance(cp))
@@ -789,7 +785,7 @@ restart:
if (apn == b->pn) {
cpumask_or(dp, dp, b->effective_cpus);
- cpumask_and(dp, dp, non_isolated_cpus);
+ cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
if (dattr)
update_domain_attr_tree(dattr + nslot, b);
@@ -802,7 +798,6 @@ restart:
BUG_ON(nslot != ndoms);
done:
- free_cpumask_var(non_isolated_cpus);
kfree(csa);
/*
diff --git a/kernel/cgroup/stat.c b/kernel/cgroup/stat.c
new file mode 100644
index 000000000000..133b465691d6
--- /dev/null
+++ b/kernel/cgroup/stat.c
@@ -0,0 +1,334 @@
+#include "cgroup-internal.h"
+
+#include <linux/sched/cputime.h>
+
+static DEFINE_MUTEX(cgroup_stat_mutex);
+static DEFINE_PER_CPU(raw_spinlock_t, cgroup_cpu_stat_lock);
+
+static struct cgroup_cpu_stat *cgroup_cpu_stat(struct cgroup *cgrp, int cpu)
+{
+ return per_cpu_ptr(cgrp->cpu_stat, cpu);
+}
+
+/**
+ * cgroup_cpu_stat_updated - keep track of updated cpu_stat
+ * @cgrp: target cgroup
+ * @cpu: cpu on which cpu_stat was updated
+ *
+ * @cgrp's cpu_stat on @cpu was updated. Put it on the parent's matching
+ * cpu_stat->updated_children list. See the comment on top of
+ * cgroup_cpu_stat definition for details.
+ */
+static void cgroup_cpu_stat_updated(struct cgroup *cgrp, int cpu)
+{
+ raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_cpu_stat_lock, cpu);
+ struct cgroup *parent;
+ unsigned long flags;
+
+ /*
+ * Speculative already-on-list test. This may race leading to
+ * temporary inaccuracies, which is fine.
+ *
+ * Because @parent's updated_children is terminated with @parent
+ * instead of NULL, we can tell whether @cgrp is on the list by
+ * testing the next pointer for NULL.
+ */
+ if (cgroup_cpu_stat(cgrp, cpu)->updated_next)
+ return;
+
+ raw_spin_lock_irqsave(cpu_lock, flags);
+
+ /* put @cgrp and all ancestors on the corresponding updated lists */
+ for (parent = cgroup_parent(cgrp); parent;
+ cgrp = parent, parent = cgroup_parent(cgrp)) {
+ struct cgroup_cpu_stat *cstat = cgroup_cpu_stat(cgrp, cpu);
+ struct cgroup_cpu_stat *pcstat = cgroup_cpu_stat(parent, cpu);
+
+ /*
+ * Both additions and removals are bottom-up. If a cgroup
+ * is already in the tree, all ancestors are.
+ */
+ if (cstat->updated_next)
+ break;
+
+ cstat->updated_next = pcstat->updated_children;
+ pcstat->updated_children = cgrp;
+ }
+
+ raw_spin_unlock_irqrestore(cpu_lock, flags);
+}
+
+/**
+ * cgroup_cpu_stat_pop_updated - iterate and dismantle cpu_stat updated tree
+ * @pos: current position
+ * @root: root of the tree to traversal
+ * @cpu: target cpu
+ *
+ * Walks the udpated cpu_stat tree on @cpu from @root. %NULL @pos starts
+ * the traversal and %NULL return indicates the end. During traversal,
+ * each returned cgroup is unlinked from the tree. Must be called with the
+ * matching cgroup_cpu_stat_lock held.
+ *
+ * The only ordering guarantee is that, for a parent and a child pair
+ * covered by a given traversal, if a child is visited, its parent is
+ * guaranteed to be visited afterwards.
+ */
+static struct cgroup *cgroup_cpu_stat_pop_updated(struct cgroup *pos,
+ struct cgroup *root, int cpu)
+{
+ struct cgroup_cpu_stat *cstat;
+ struct cgroup *parent;
+
+ if (pos == root)
+ return NULL;
+
+ /*
+ * We're gonna walk down to the first leaf and visit/remove it. We
+ * can pick whatever unvisited node as the starting point.
+ */
+ if (!pos)
+ pos = root;
+ else
+ pos = cgroup_parent(pos);
+
+ /* walk down to the first leaf */
+ while (true) {
+ cstat = cgroup_cpu_stat(pos, cpu);
+ if (cstat->updated_children == pos)
+ break;
+ pos = cstat->updated_children;
+ }
+
+ /*
+ * Unlink @pos from the tree. As the updated_children list is
+ * singly linked, we have to walk it to find the removal point.
+ * However, due to the way we traverse, @pos will be the first
+ * child in most cases. The only exception is @root.
+ */
+ parent = cgroup_parent(pos);
+ if (parent && cstat->updated_next) {
+ struct cgroup_cpu_stat *pcstat = cgroup_cpu_stat(parent, cpu);
+ struct cgroup_cpu_stat *ncstat;
+ struct cgroup **nextp;
+
+ nextp = &pcstat->updated_children;
+ while (true) {
+ ncstat = cgroup_cpu_stat(*nextp, cpu);
+ if (*nextp == pos)
+ break;
+
+ WARN_ON_ONCE(*nextp == parent);
+ nextp = &ncstat->updated_next;
+ }
+
+ *nextp = cstat->updated_next;
+ cstat->updated_next = NULL;
+ }
+
+ return pos;
+}
+
+static void cgroup_stat_accumulate(struct cgroup_stat *dst_stat,
+ struct cgroup_stat *src_stat)
+{
+ dst_stat->cputime.utime += src_stat->cputime.utime;
+ dst_stat->cputime.stime += src_stat->cputime.stime;
+ dst_stat->cputime.sum_exec_runtime += src_stat->cputime.sum_exec_runtime;
+}
+
+static void cgroup_cpu_stat_flush_one(struct cgroup *cgrp, int cpu)
+{
+ struct cgroup *parent = cgroup_parent(cgrp);
+ struct cgroup_cpu_stat *cstat = cgroup_cpu_stat(cgrp, cpu);
+ struct task_cputime *last_cputime = &cstat->last_cputime;
+ struct task_cputime cputime;
+ struct cgroup_stat delta;
+ unsigned seq;
+
+ lockdep_assert_held(&cgroup_stat_mutex);
+
+ /* fetch the current per-cpu values */
+ do {
+ seq = __u64_stats_fetch_begin(&cstat->sync);
+ cputime = cstat->cputime;
+ } while (__u64_stats_fetch_retry(&cstat->sync, seq));
+
+ /* accumulate the deltas to propgate */
+ delta.cputime.utime = cputime.utime - last_cputime->utime;
+ delta.cputime.stime = cputime.stime - last_cputime->stime;
+ delta.cputime.sum_exec_runtime = cputime.sum_exec_runtime -
+ last_cputime->sum_exec_runtime;
+ *last_cputime = cputime;
+
+ /* transfer the pending stat into delta */
+ cgroup_stat_accumulate(&delta, &cgrp->pending_stat);
+ memset(&cgrp->pending_stat, 0, sizeof(cgrp->pending_stat));
+
+ /* propagate delta into the global stat and the parent's pending */
+ cgroup_stat_accumulate(&cgrp->stat, &delta);
+ if (parent)
+ cgroup_stat_accumulate(&parent->pending_stat, &delta);
+}
+
+/* see cgroup_stat_flush() */
+static void cgroup_stat_flush_locked(struct cgroup *cgrp)
+{
+ int cpu;
+
+ lockdep_assert_held(&cgroup_stat_mutex);
+
+ for_each_possible_cpu(cpu) {
+ raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_cpu_stat_lock, cpu);
+ struct cgroup *pos = NULL;
+
+ raw_spin_lock_irq(cpu_lock);
+ while ((pos = cgroup_cpu_stat_pop_updated(pos, cgrp, cpu)))
+ cgroup_cpu_stat_flush_one(pos, cpu);
+ raw_spin_unlock_irq(cpu_lock);
+ }
+}
+
+/**
+ * cgroup_stat_flush - flush stats in @cgrp's subtree
+ * @cgrp: target cgroup
+ *
+ * Collect all per-cpu stats in @cgrp's subtree into the global counters
+ * and propagate them upwards. After this function returns, all cgroups in
+ * the subtree have up-to-date ->stat.
+ *
+ * This also gets all cgroups in the subtree including @cgrp off the
+ * ->updated_children lists.
+ */
+void cgroup_stat_flush(struct cgroup *cgrp)
+{
+ mutex_lock(&cgroup_stat_mutex);
+ cgroup_stat_flush_locked(cgrp);
+ mutex_unlock(&cgroup_stat_mutex);
+}
+
+static struct cgroup_cpu_stat *cgroup_cpu_stat_account_begin(struct cgroup *cgrp)
+{
+ struct cgroup_cpu_stat *cstat;
+
+ cstat = get_cpu_ptr(cgrp->cpu_stat);
+ u64_stats_update_begin(&cstat->sync);
+ return cstat;
+}
+
+static void cgroup_cpu_stat_account_end(struct cgroup *cgrp,
+ struct cgroup_cpu_stat *cstat)
+{
+ u64_stats_update_end(&cstat->sync);
+ cgroup_cpu_stat_updated(cgrp, smp_processor_id());
+ put_cpu_ptr(cstat);
+}
+
+void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec)
+{
+ struct cgroup_cpu_stat *cstat;
+
+ cstat = cgroup_cpu_stat_account_begin(cgrp);
+ cstat->cputime.sum_exec_runtime += delta_exec;
+ cgroup_cpu_stat_account_end(cgrp, cstat);
+}
+
+void __cgroup_account_cputime_field(struct cgroup *cgrp,
+ enum cpu_usage_stat index, u64 delta_exec)
+{
+ struct cgroup_cpu_stat *cstat;
+
+ cstat = cgroup_cpu_stat_account_begin(cgrp);
+
+ switch (index) {
+ case CPUTIME_USER:
+ case CPUTIME_NICE:
+ cstat->cputime.utime += delta_exec;
+ break;
+ case CPUTIME_SYSTEM:
+ case CPUTIME_IRQ:
+ case CPUTIME_SOFTIRQ:
+ cstat->cputime.stime += delta_exec;
+ break;
+ default:
+ break;
+ }
+
+ cgroup_cpu_stat_account_end(cgrp, cstat);
+}
+
+void cgroup_stat_show_cputime(struct seq_file *seq)
+{
+ struct cgroup *cgrp = seq_css(seq)->cgroup;
+ u64 usage, utime, stime;
+
+ if (!cgroup_parent(cgrp))
+ return;
+
+ mutex_lock(&cgroup_stat_mutex);
+
+ cgroup_stat_flush_locked(cgrp);
+
+ usage = cgrp->stat.cputime.sum_exec_runtime;
+ cputime_adjust(&cgrp->stat.cputime, &cgrp->stat.prev_cputime,
+ &utime, &stime);
+
+ mutex_unlock(&cgroup_stat_mutex);
+
+ do_div(usage, NSEC_PER_USEC);
+ do_div(utime, NSEC_PER_USEC);
+ do_div(stime, NSEC_PER_USEC);
+
+ seq_printf(seq, "usage_usec %llu\n"
+ "user_usec %llu\n"
+ "system_usec %llu\n",
+ usage, utime, stime);
+}
+
+int cgroup_stat_init(struct cgroup *cgrp)
+{
+ int cpu;
+
+ /* the root cgrp has cpu_stat preallocated */
+ if (!cgrp->cpu_stat) {
+ cgrp->cpu_stat = alloc_percpu(struct cgroup_cpu_stat);
+ if (!cgrp->cpu_stat)
+ return -ENOMEM;
+ }
+
+ /* ->updated_children list is self terminated */
+ for_each_possible_cpu(cpu)
+ cgroup_cpu_stat(cgrp, cpu)->updated_children = cgrp;
+
+ prev_cputime_init(&cgrp->stat.prev_cputime);
+
+ return 0;
+}
+
+void cgroup_stat_exit(struct cgroup *cgrp)
+{
+ int cpu;
+
+ cgroup_stat_flush(cgrp);
+
+ /* sanity check */
+ for_each_possible_cpu(cpu) {
+ struct cgroup_cpu_stat *cstat = cgroup_cpu_stat(cgrp, cpu);
+
+ if (WARN_ON_ONCE(cstat->updated_children != cgrp) ||
+ WARN_ON_ONCE(cstat->updated_next))
+ return;
+ }
+
+ free_percpu(cgrp->cpu_stat);
+ cgrp->cpu_stat = NULL;
+}
+
+void __init cgroup_stat_boot(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu)
+ raw_spin_lock_init(per_cpu_ptr(&cgroup_cpu_stat_lock, cpu));
+
+ BUG_ON(cgroup_stat_init(&cgrp_dfl_root.cgrp));
+}
diff --git a/kernel/events/core.c b/kernel/events/core.c
index 42d24bd64ea4..3939a4674e0a 100644
--- a/kernel/events/core.c
+++ b/kernel/events/core.c
@@ -209,7 +209,7 @@ static int event_function(void *info)
struct perf_event_context *task_ctx = cpuctx->task_ctx;
int ret = 0;
- WARN_ON_ONCE(!irqs_disabled());
+ lockdep_assert_irqs_disabled();
perf_ctx_lock(cpuctx, task_ctx);
/*
@@ -306,7 +306,7 @@ static void event_function_local(struct perf_event *event, event_f func, void *d
struct task_struct *task = READ_ONCE(ctx->task);
struct perf_event_context *task_ctx = NULL;
- WARN_ON_ONCE(!irqs_disabled());
+ lockdep_assert_irqs_disabled();
if (task) {
if (task == TASK_TOMBSTONE)
@@ -582,6 +582,88 @@ static inline u64 perf_event_clock(struct perf_event *event)
return event->clock();
}
+/*
+ * State based event timekeeping...
+ *
+ * The basic idea is to use event->state to determine which (if any) time
+ * fields to increment with the current delta. This means we only need to
+ * update timestamps when we change state or when they are explicitly requested
+ * (read).
+ *
+ * Event groups make things a little more complicated, but not terribly so. The
+ * rules for a group are that if the group leader is OFF the entire group is
+ * OFF, irrespecive of what the group member states are. This results in
+ * __perf_effective_state().
+ *
+ * A futher ramification is that when a group leader flips between OFF and
+ * !OFF, we need to update all group member times.
+ *
+ *
+ * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
+ * need to make sure the relevant context time is updated before we try and
+ * update our timestamps.
+ */
+
+static __always_inline enum perf_event_state
+__perf_effective_state(struct perf_event *event)
+{
+ struct perf_event *leader = event->group_leader;
+
+ if (leader->state <= PERF_EVENT_STATE_OFF)
+ return leader->state;
+
+ return event->state;
+}
+
+static __always_inline void
+__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
+{
+ enum perf_event_state state = __perf_effective_state(event);
+ u64 delta = now - event->tstamp;
+
+ *enabled = event->total_time_enabled;
+ if (state >= PERF_EVENT_STATE_INACTIVE)
+ *enabled += delta;
+
+ *running = event->total_time_running;
+ if (state >= PERF_EVENT_STATE_ACTIVE)
+ *running += delta;
+}
+
+static void perf_event_update_time(struct perf_event *event)
+{
+ u64 now = perf_event_time(event);
+
+ __perf_update_times(event, now, &event->total_time_enabled,
+ &event->total_time_running);
+ event->tstamp = now;
+}
+
+static void perf_event_update_sibling_time(struct perf_event *leader)
+{
+ struct perf_event *sibling;
+
+ list_for_each_entry(sibling, &leader->sibling_list, group_entry)
+ perf_event_update_time(sibling);
+}
+
+static void
+perf_event_set_state(struct perf_event *event, enum perf_event_state state)
+{
+ if (event->state == state)
+ return;
+
+ perf_event_update_time(event);
+ /*
+ * If a group leader gets enabled/disabled all its siblings
+ * are affected too.
+ */
+ if ((event->state < 0) ^ (state < 0))
+ perf_event_update_sibling_time(event);
+
+ WRITE_ONCE(event->state, state);
+}
+
#ifdef CONFIG_CGROUP_PERF
static inline bool
@@ -841,40 +923,6 @@ perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
event->shadow_ctx_time = now - t->timestamp;
}
-static inline void
-perf_cgroup_defer_enabled(struct perf_event *event)
-{
- /*
- * when the current task's perf cgroup does not match
- * the event's, we need to remember to call the
- * perf_mark_enable() function the first time a task with
- * a matching perf cgroup is scheduled in.
- */
- if (is_cgroup_event(event) && !perf_cgroup_match(event))
- event->cgrp_defer_enabled = 1;
-}
-
-static inline void
-perf_cgroup_mark_enabled(struct perf_event *event,
- struct perf_event_context *ctx)
-{
- struct perf_event *sub;
- u64 tstamp = perf_event_time(event);
-
- if (!event->cgrp_defer_enabled)
- return;
-
- event->cgrp_defer_enabled = 0;
-
- event->tstamp_enabled = tstamp - event->total_time_enabled;
- list_for_each_entry(sub, &event->sibling_list, group_entry) {
- if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
- sub->tstamp_enabled = tstamp - sub->total_time_enabled;
- sub->cgrp_defer_enabled = 0;
- }
- }
-}
-
/*
* Update cpuctx->cgrp so that it is set when first cgroup event is added and
* cleared when last cgroup event is removed.
@@ -975,17 +1023,6 @@ static inline u64 perf_cgroup_event_time(struct perf_event *event)
}
static inline void
-perf_cgroup_defer_enabled(struct perf_event *event)
-{
-}
-
-static inline void
-perf_cgroup_mark_enabled(struct perf_event *event,
- struct perf_event_context *ctx)
-{
-}
-
-static inline void
list_update_cgroup_event(struct perf_event *event,
struct perf_event_context *ctx, bool add)
{
@@ -1006,7 +1043,7 @@ static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
struct perf_cpu_context *cpuctx;
int rotations = 0;
- WARN_ON(!irqs_disabled());
+ lockdep_assert_irqs_disabled();
cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
rotations = perf_rotate_context(cpuctx);
@@ -1093,7 +1130,7 @@ static void perf_event_ctx_activate(struct perf_event_context *ctx)
{
struct list_head *head = this_cpu_ptr(&active_ctx_list);
- WARN_ON(!irqs_disabled());
+ lockdep_assert_irqs_disabled();
WARN_ON(!list_empty(&ctx->active_ctx_list));
@@ -1102,7 +1139,7 @@ static void perf_event_ctx_activate(struct perf_event_context *ctx)
static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
- WARN_ON(!irqs_disabled());
+ lockdep_assert_irqs_disabled();
WARN_ON(list_empty(&ctx->active_ctx_list));
@@ -1202,7 +1239,7 @@ perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
again:
rcu_read_lock();
- ctx = ACCESS_ONCE(event->ctx);
+ ctx = READ_ONCE(event->ctx);
if (!atomic_inc_not_zero(&ctx->refcount)) {
rcu_read_unlock();
goto again;
@@ -1398,60 +1435,6 @@ static u64 perf_event_time(struct perf_event *event)
return ctx ? ctx->time : 0;
}
-/*
- * Update the total_time_enabled and total_time_running fields for a event.
- */
-static void update_event_times(struct perf_event *event)
-{
- struct perf_event_context *ctx = event->ctx;
- u64 run_end;
-
- lockdep_assert_held(&ctx->lock);
-
- if (event->state < PERF_EVENT_STATE_INACTIVE ||
- event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
- return;
-
- /*
- * in cgroup mode, time_enabled represents
- * the time the event was enabled AND active
- * tasks were in the monitored cgroup. This is
- * independent of the activity of the context as
- * there may be a mix of cgroup and non-cgroup events.
- *
- * That is why we treat cgroup events differently
- * here.
- */
- if (is_cgroup_event(event))
- run_end = perf_cgroup_event_time(event);
- else if (ctx->is_active)
- run_end = ctx->time;
- else
- run_end = event->tstamp_stopped;
-
- event->total_time_enabled = run_end - event->tstamp_enabled;
-
- if (event->state == PERF_EVENT_STATE_INACTIVE)
- run_end = event->tstamp_stopped;
- else
- run_end = perf_event_time(event);
-
- event->total_time_running = run_end - event->tstamp_running;
-
-}
-
-/*
- * Update total_time_enabled and total_time_running for all events in a group.
- */
-static void update_group_times(struct perf_event *leader)
-{
- struct perf_event *event;
-
- update_event_times(leader);
- list_for_each_entry(event, &leader->sibling_list, group_entry)
- update_event_times(event);
-}
-
static enum event_type_t get_event_type(struct perf_event *event)
{
struct perf_event_context *ctx = event->ctx;
@@ -1494,6 +1477,8 @@ list_add_event(struct perf_event *event, struct perf_event_context *ctx)
WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
event->attach_state |= PERF_ATTACH_CONTEXT;
+ event->tstamp = perf_event_time(event);
+
/*
* If we're a stand alone event or group leader, we go to the context
* list, group events are kept attached to the group so that
@@ -1701,8 +1686,6 @@ list_del_event(struct perf_event *event, struct perf_event_context *ctx)
if (event->group_leader == event)
list_del_init(&event->group_entry);
- update_group_times(event);
-
/*
* If event was in error state, then keep it
* that way, otherwise bogus counts will be
@@ -1711,7 +1694,7 @@ list_del_event(struct perf_event *event, struct perf_event_context *ctx)
* of the event
*/
if (event->state > PERF_EVENT_STATE_OFF)
- event->state = PERF_EVENT_STATE_OFF;
+ perf_event_set_state(event, PERF_EVENT_STATE_OFF);
ctx->generation++;
}
@@ -1810,38 +1793,24 @@ event_sched_out(struct perf_event *event,
struct perf_cpu_context *cpuctx,
struct perf_event_context *ctx)
{
- u64 tstamp = perf_event_time(event);
- u64 delta;
+ enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
WARN_ON_ONCE(event->ctx != ctx);
lockdep_assert_held(&ctx->lock);
- /*
- * An event which could not be activated because of
- * filter mismatch still needs to have its timings
- * maintained, otherwise bogus information is return
- * via read() for time_enabled, time_running:
- */
- if (event->state == PERF_EVENT_STATE_INACTIVE &&
- !event_filter_match(event)) {
- delta = tstamp - event->tstamp_stopped;
- event->tstamp_running += delta;
- event->tstamp_stopped = tstamp;
- }
-
if (event->state != PERF_EVENT_STATE_ACTIVE)
return;
perf_pmu_disable(event->pmu);
- event->tstamp_stopped = tstamp;
event->pmu->del(event, 0);
event->oncpu = -1;
- event->state = PERF_EVENT_STATE_INACTIVE;
+
if (event->pending_disable) {
event->pending_disable = 0;
- event->state = PERF_EVENT_STATE_OFF;
+ state = PERF_EVENT_STATE_OFF;
}
+ perf_event_set_state(event, state);
if (!is_software_event(event))
cpuctx->active_oncpu--;
@@ -1861,7 +1830,9 @@ group_sched_out(struct perf_event *group_event,
struct perf_event_context *ctx)
{
struct perf_event *event;
- int state = group_event->state;
+
+ if (group_event->state != PERF_EVENT_STATE_ACTIVE)
+ return;
perf_pmu_disable(ctx->pmu);
@@ -1875,7 +1846,7 @@ group_sched_out(struct perf_event *group_event,
perf_pmu_enable(ctx->pmu);
- if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
+ if (group_event->attr.exclusive)
cpuctx->exclusive = 0;
}
@@ -1895,6 +1866,11 @@ __perf_remove_from_context(struct perf_event *event,
{
unsigned long flags = (unsigned long)info;
+ if (ctx->is_active & EVENT_TIME) {
+ update_context_time(ctx);
+ update_cgrp_time_from_cpuctx(cpuctx);
+ }
+
event_sched_out(event, cpuctx, ctx);
if (flags & DETACH_GROUP)
perf_group_detach(event);
@@ -1957,14 +1933,17 @@ static void __perf_event_disable(struct perf_event *event,
if (event->state < PERF_EVENT_STATE_INACTIVE)
return;
- update_context_time(ctx);
- update_cgrp_time_from_event(event);
- update_group_times(event);
+ if (ctx->is_active & EVENT_TIME) {
+ update_context_time(ctx);
+ update_cgrp_time_from_event(event);
+ }
+
if (event == event->group_leader)
group_sched_out(event, cpuctx, ctx);
else
event_sched_out(event, cpuctx, ctx);
- event->state = PERF_EVENT_STATE_OFF;
+
+ perf_event_set_state(event, PERF_EVENT_STATE_OFF);
}
/*
@@ -2021,8 +2000,7 @@ void perf_event_disable_inatomic(struct perf_event *event)
}
static void perf_set_shadow_time(struct perf_event *event,
- struct perf_event_context *ctx,
- u64 tstamp)
+ struct perf_event_context *ctx)
{
/*
* use the correct time source for the time snapshot
@@ -2050,9 +2028,9 @@ static void perf_set_shadow_time(struct perf_event *event,
* is cleaner and simpler to understand.
*/
if (is_cgroup_event(event))
- perf_cgroup_set_shadow_time(event, tstamp);
+ perf_cgroup_set_shadow_time(event, event->tstamp);
else
- event->shadow_ctx_time = tstamp - ctx->timestamp;
+ event->shadow_ctx_time = event->tstamp - ctx->timestamp;
}
#define MAX_INTERRUPTS (~0ULL)
@@ -2065,7 +2043,6 @@ event_sched_in(struct perf_event *event,
struct perf_cpu_context *cpuctx,
struct perf_event_context *ctx)
{
- u64 tstamp = perf_event_time(event);
int ret = 0;
lockdep_assert_held(&ctx->lock);
@@ -2075,11 +2052,12 @@ event_sched_in(struct perf_event *event,
WRITE_ONCE(event->oncpu, smp_processor_id());
/*
- * Order event::oncpu write to happen before the ACTIVE state
- * is visible.
+ * Order event::oncpu write to happen before the ACTIVE state is
+ * visible. This allows perf_event_{stop,read}() to observe the correct
+ * ->oncpu if it sees ACTIVE.
*/
smp_wmb();
- WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
+ perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
/*
* Unthrottle events, since we scheduled we might have missed several
@@ -2091,26 +2069,19 @@ event_sched_in(struct perf_event *event,
event->hw.interrupts = 0;
}
- /*
- * The new state must be visible before we turn it on in the hardware:
- */
- smp_wmb();
-
perf_pmu_disable(event->pmu);
- perf_set_shadow_time(event, ctx, tstamp);
+ perf_set_shadow_time(event, ctx);
perf_log_itrace_start(event);
if (event->pmu->add(event, PERF_EF_START)) {
- event->state = PERF_EVENT_STATE_INACTIVE;
+ perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
event->oncpu = -1;
ret = -EAGAIN;
goto out;
}
- event->tstamp_running += tstamp - event->tstamp_stopped;
-
if (!is_software_event(event))
cpuctx->active_oncpu++;
if (!ctx->nr_active++)
@@ -2134,8 +2105,6 @@ group_sched_in(struct perf_event *group_event,
{
struct perf_event *event, *partial_group = NULL;
struct pmu *pmu = ctx->pmu;
- u64 now = ctx->time;
- bool simulate = false;
if (group_event->state == PERF_EVENT_STATE_OFF)
return 0;
@@ -2165,27 +2134,13 @@ group_error:
/*
* Groups can be scheduled in as one unit only, so undo any
* partial group before returning:
- * The events up to the failed event are scheduled out normally,
- * tstamp_stopped will be updated.
- *
- * The failed events and the remaining siblings need to have
- * their timings updated as if they had gone thru event_sched_in()
- * and event_sched_out(). This is required to get consistent timings
- * across the group. This also takes care of the case where the group
- * could never be scheduled by ensuring tstamp_stopped is set to mark
- * the time the event was actually stopped, such that time delta
- * calculation in update_event_times() is correct.
+ * The events up to the failed event are scheduled out normally.
*/
list_for_each_entry(event, &group_event->sibling_list, group_entry) {
if (event == partial_group)
- simulate = true;
+ break;
- if (simulate) {
- event->tstamp_running += now - event->tstamp_stopped;
- event->tstamp_stopped = now;
- } else {
- event_sched_out(event, cpuctx, ctx);
- }
+ event_sched_out(event, cpuctx, ctx);
}
event_sched_out(group_event, cpuctx, ctx);
@@ -2227,46 +2182,11 @@ static int group_can_go_on(struct perf_event *event,
return can_add_hw;
}
-/*
- * Complement to update_event_times(). This computes the tstamp_* values to
- * continue 'enabled' state from @now, and effectively discards the time
- * between the prior tstamp_stopped and now (as we were in the OFF state, or
- * just switched (context) time base).
- *
- * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
- * cannot have been scheduled in yet. And going into INACTIVE state means
- * '@event->tstamp_stopped = @now'.
- *
- * Thus given the rules of update_event_times():
- *
- * total_time_enabled = tstamp_stopped - tstamp_enabled
- * total_time_running = tstamp_stopped - tstamp_running
- *
- * We can insert 'tstamp_stopped == now' and reverse them to compute new
- * tstamp_* values.
- */
-static void __perf_event_enable_time(struct perf_event *event, u64 now)
-{
- WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
-
- event->tstamp_stopped = now;
- event->tstamp_enabled = now - event->total_time_enabled;
- event->tstamp_running = now - event->total_time_running;
-}
-
static void add_event_to_ctx(struct perf_event *event,
struct perf_event_context *ctx)
{
- u64 tstamp = perf_event_time(event);
-
list_add_event(event, ctx);
perf_group_attach(event);
- /*
- * We can be called with event->state == STATE_OFF when we create with
- * .disabled = 1. In that case the IOC_ENABLE will call this function.
- */
- if (event->state == PERF_EVENT_STATE_INACTIVE)
- __perf_event_enable_time(event, tstamp);
}
static void ctx_sched_out(struct perf_event_context *ctx,
@@ -2498,28 +2418,6 @@ again:
}
/*
- * Put a event into inactive state and update time fields.
- * Enabling the leader of a group effectively enables all
- * the group members that aren't explicitly disabled, so we
- * have to update their ->tstamp_enabled also.
- * Note: this works for group members as well as group leaders
- * since the non-leader members' sibling_lists will be empty.
- */
-static void __perf_event_mark_enabled(struct perf_event *event)
-{
- struct perf_event *sub;
- u64 tstamp = perf_event_time(event);
-
- event->state = PERF_EVENT_STATE_INACTIVE;
- __perf_event_enable_time(event, tstamp);
- list_for_each_entry(sub, &event->sibling_list, group_entry) {
- /* XXX should not be > INACTIVE if event isn't */
- if (sub->state >= PERF_EVENT_STATE_INACTIVE)
- __perf_event_enable_time(sub, tstamp);
- }
-}
-
-/*
* Cross CPU call to enable a performance event
*/
static void __perf_event_enable(struct perf_event *event,
@@ -2537,14 +2435,12 @@ static void __perf_event_enable(struct perf_event *event,
if (ctx->is_active)
ctx_sched_out(ctx, cpuctx, EVENT_TIME);
- __perf_event_mark_enabled(event);
+ perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
if (!ctx->is_active)
return;
if (!event_filter_match(event)) {
- if (is_cgroup_event(event))
- perf_cgroup_defer_enabled(event);
ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
return;
}
@@ -2864,18 +2760,10 @@ static void __perf_event_sync_stat(struct perf_event *event,
* we know the event must be on the current CPU, therefore we
* don't need to use it.
*/
- switch (event->state) {
- case PERF_EVENT_STATE_ACTIVE:
+ if (event->state == PERF_EVENT_STATE_ACTIVE)
event->pmu->read(event);
- /* fall-through */
- case PERF_EVENT_STATE_INACTIVE:
- update_event_times(event);
- break;
-
- default:
- break;
- }
+ perf_event_update_time(event);
/*
* In order to keep per-task stats reliable we need to flip the event
@@ -3112,10 +3000,6 @@ ctx_pinned_sched_in(struct perf_event_context *ctx,
if (!event_filter_match(event))
continue;
- /* may need to reset tstamp_enabled */
- if (is_cgroup_event(event))
- perf_cgroup_mark_enabled(event, ctx);
-
if (group_can_go_on(event, cpuctx, 1))
group_sched_in(event, cpuctx, ctx);
@@ -3123,10 +3007,8 @@ ctx_pinned_sched_in(struct perf_event_context *ctx,
* If this pinned group hasn't been scheduled,
* put it in error state.
*/
- if (event->state == PERF_EVENT_STATE_INACTIVE) {
- update_group_times(event);
- event->state = PERF_EVENT_STATE_ERROR;
- }
+ if (event->state == PERF_EVENT_STATE_INACTIVE)
+ perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
}
}
@@ -3148,10 +3030,6 @@ ctx_flexible_sched_in(struct perf_event_context *ctx,
if (!event_filter_match(event))
continue;
- /* may need to reset tstamp_enabled */
- if (is_cgroup_event(event))
- perf_cgroup_mark_enabled(event, ctx);
-
if (group_can_go_on(event, cpuctx, can_add_hw)) {
if (group_sched_in(event, cpuctx, ctx))
can_add_hw = 0;
@@ -3523,7 +3401,7 @@ void perf_event_task_tick(void)
struct perf_event_context *ctx, *tmp;
int throttled;
- WARN_ON(!irqs_disabled());
+ lockdep_assert_irqs_disabled();
__this_cpu_inc(perf_throttled_seq);
throttled = __this_cpu_xchg(perf_throttled_count, 0);
@@ -3543,7 +3421,7 @@ static int event_enable_on_exec(struct perf_event *event,
if (event->state >= PERF_EVENT_STATE_INACTIVE)
return 0;
- __perf_event_mark_enabled(event);
+ perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
return 1;
}
@@ -3637,12 +3515,15 @@ static void __perf_event_read(void *info)
return;
raw_spin_lock(&ctx->lock);
- if (ctx->is_active) {
+ if (ctx->is_active & EVENT_TIME) {
update_context_time(ctx);
update_cgrp_time_from_event(event);
}
- update_event_times(event);
+ perf_event_update_time(event);
+ if (data->group)
+ perf_event_update_sibling_time(event);
+
if (event->state != PERF_EVENT_STATE_ACTIVE)
goto unlock;
@@ -3657,7 +3538,6 @@ static void __perf_event_read(void *info)
pmu->read(event);
list_for_each_entry(sub, &event->sibling_list, group_entry) {
- update_event_times(sub);
if (sub->state == PERF_EVENT_STATE_ACTIVE) {
/*
* Use sibling's PMU rather than @event's since
@@ -3691,7 +3571,6 @@ int perf_event_read_local(struct perf_event *event, u64 *value,
{
unsigned long flags;
int ret = 0;
- u64 now;
/*
* Disabling interrupts avoids all counter scheduling (context
@@ -3722,23 +3601,25 @@ int perf_event_read_local(struct perf_event *event, u64 *value,
goto out;
}
- now = event->shadow_ctx_time + perf_clock();
- if (enabled)
- *enabled = now - event->tstamp_enabled;
/*
* If the event is currently on this CPU, its either a per-task event,
* or local to this CPU. Furthermore it means its ACTIVE (otherwise
* oncpu == -1).
*/
- if (event->oncpu == smp_processor_id()) {
+ if (event->oncpu == smp_processor_id())
event->pmu->read(event);
- if (running)
- *running = now - event->tstamp_running;
- } else if (running) {
- *running = event->total_time_running;
- }
*value = local64_read(&event->count);
+ if (enabled || running) {
+ u64 now = event->shadow_ctx_time + perf_clock();
+ u64 __enabled, __running;
+
+ __perf_update_times(event, now, &__enabled, &__running);
+ if (enabled)
+ *enabled = __enabled;
+ if (running)
+ *running = __running;
+ }
out:
local_irq_restore(flags);
@@ -3747,23 +3628,35 @@ out:
static int perf_event_read(struct perf_event *event, bool group)
{
+ enum perf_event_state state = READ_ONCE(event->state);
int event_cpu, ret = 0;
/*
* If event is enabled and currently active on a CPU, update the
* value in the event structure:
*/
- if (event->state == PERF_EVENT_STATE_ACTIVE) {
- struct perf_read_data data = {
- .event = event,
- .group = group,
- .ret = 0,
- };
+again:
+ if (state == PERF_EVENT_STATE_ACTIVE) {
+ struct perf_read_data data;
+
+ /*
+ * Orders the ->state and ->oncpu loads such that if we see
+ * ACTIVE we must also see the right ->oncpu.
+ *
+ * Matches the smp_wmb() from event_sched_in().
+ */
+ smp_rmb();
event_cpu = READ_ONCE(event->oncpu);
if ((unsigned)event_cpu >= nr_cpu_ids)
return 0;
+ data = (struct perf_read_data){
+ .event = event,
+ .group = group,
+ .ret = 0,
+ };
+
preempt_disable();
event_cpu = __perf_event_read_cpu(event, event_cpu);
@@ -3780,24 +3673,30 @@ static int perf_event_read(struct perf_event *event, bool group)
(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
preempt_enable();
ret = data.ret;
- } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
+
+ } else if (state == PERF_EVENT_STATE_INACTIVE) {
struct perf_event_context *ctx = event->ctx;
unsigned long flags;
raw_spin_lock_irqsave(&ctx->lock, flags);
+ state = event->state;
+ if (state != PERF_EVENT_STATE_INACTIVE) {
+ raw_spin_unlock_irqrestore(&ctx->lock, flags);
+ goto again;
+ }
+
/*
- * may read while context is not active
- * (e.g., thread is blocked), in that case
- * we cannot update context time
+ * May read while context is not active (e.g., thread is
+ * blocked), in that case we cannot update context time
*/
- if (ctx->is_active) {
+ if (ctx->is_active & EVENT_TIME) {
update_context_time(ctx);
update_cgrp_time_from_event(event);
}
+
+ perf_event_update_time(event);
if (group)
- update_group_times(event);
- else
- update_event_times(event);
+ perf_event_update_sibling_time(event);
raw_spin_unlock_irqrestore(&ctx->lock, flags);
}
@@ -4243,7 +4142,7 @@ static void perf_remove_from_owner(struct perf_event *event)
* indeed free this event, otherwise we need to serialize on
* owner->perf_event_mutex.
*/
- owner = lockless_dereference(event->owner);
+ owner = READ_ONCE(event->owner);
if (owner) {
/*
* Since delayed_put_task_struct() also drops the last
@@ -4340,7 +4239,7 @@ again:
* Cannot change, child events are not migrated, see the
* comment with perf_event_ctx_lock_nested().
*/
- ctx = lockless_dereference(child->ctx);
+ ctx = READ_ONCE(child->ctx);
/*
* Since child_mutex nests inside ctx::mutex, we must jump
* through hoops. We start by grabbing a reference on the ctx.
@@ -4400,7 +4299,7 @@ static int perf_release(struct inode *inode, struct file *file)
return 0;
}
-u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
+static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
{
struct perf_event *child;
u64 total = 0;
@@ -4428,6 +4327,18 @@ u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
return total;
}
+
+u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
+{
+ struct perf_event_context *ctx;
+ u64 count;
+
+ ctx = perf_event_ctx_lock(event);
+ count = __perf_event_read_value(event, enabled, running);
+ perf_event_ctx_unlock(event, ctx);
+
+ return count;
+}
EXPORT_SYMBOL_GPL(perf_event_read_value);
static int __perf_read_group_add(struct perf_event *leader,
@@ -4443,6 +4354,8 @@ static int __perf_read_group_add(struct perf_event *leader,
if (ret)
return ret;
+ raw_spin_lock_irqsave(&ctx->lock, flags);
+
/*
* Since we co-schedule groups, {enabled,running} times of siblings
* will be identical to those of the leader, so we only publish one
@@ -4465,8 +4378,6 @@ static int __perf_read_group_add(struct perf_event *leader,
if (read_format & PERF_FORMAT_ID)
values[n++] = primary_event_id(leader);
- raw_spin_lock_irqsave(&ctx->lock, flags);
-
list_for_each_entry(sub, &leader->sibling_list, group_entry) {
values[n++] += perf_event_count(sub);
if (read_format & PERF_FORMAT_ID)
@@ -4530,7 +4441,7 @@ static int perf_read_one(struct perf_event *event,
u64 values[4];
int n = 0;
- values[n++] = perf_event_read_value(event, &enabled, &running);
+ values[n++] = __perf_event_read_value(event, &enabled, &running);
if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
values[n++] = enabled;
if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
@@ -4909,8 +4820,7 @@ static void calc_timer_values(struct perf_event *event,
*now = perf_clock();
ctx_time = event->shadow_ctx_time + *now;
- *enabled = ctx_time - event->tstamp_enabled;
- *running = ctx_time - event->tstamp_running;
+ __perf_update_times(event, ctx_time, enabled, running);
}
static void perf_event_init_userpage(struct perf_event *event)
@@ -5314,8 +5224,8 @@ static int perf_mmap(struct file *file, struct vm_area_struct *vma)
if (!rb)
goto aux_unlock;
- aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
- aux_size = ACCESS_ONCE(rb->user_page->aux_size);
+ aux_offset = READ_ONCE(rb->user_page->aux_offset);
+ aux_size = READ_ONCE(rb->user_page->aux_size);
if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
goto aux_unlock;
@@ -9405,6 +9315,11 @@ static void account_event(struct perf_event *event)
inc = true;
if (inc) {
+ /*
+ * We need the mutex here because static_branch_enable()
+ * must complete *before* the perf_sched_count increment
+ * becomes visible.
+ */
if (atomic_inc_not_zero(&perf_sched_count))
goto enabled;
@@ -10530,7 +10445,7 @@ perf_event_exit_event(struct perf_event *child_event,
if (parent_event)
perf_group_detach(child_event);
list_del_event(child_event, child_ctx);
- child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
+ perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
raw_spin_unlock_irq(&child_ctx->lock);
/*
@@ -10768,7 +10683,7 @@ inherit_event(struct perf_event *parent_event,
struct perf_event *group_leader,
struct perf_event_context *child_ctx)
{
- enum perf_event_active_state parent_state = parent_event->state;
+ enum perf_event_state parent_state = parent_event->state;
struct perf_event *child_event;
unsigned long flags;
@@ -11104,6 +11019,7 @@ static void __perf_event_exit_context(void *__info)
struct perf_event *event;
raw_spin_lock(&ctx->lock);
+ ctx_sched_out(ctx, cpuctx, EVENT_TIME);
list_for_each_entry(event, &ctx->event_list, event_entry)
__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
raw_spin_unlock(&ctx->lock);
diff --git a/kernel/events/ring_buffer.c b/kernel/events/ring_buffer.c
index f684d8e5fa2b..141aa2ca8728 100644
--- a/kernel/events/ring_buffer.c
+++ b/kernel/events/ring_buffer.c
@@ -381,7 +381,7 @@ void *perf_aux_output_begin(struct perf_output_handle *handle,
* (B) <-> (C) ordering is still observed by the pmu driver.
*/
if (!rb->aux_overwrite) {
- aux_tail = ACCESS_ONCE(rb->user_page->aux_tail);
+ aux_tail = READ_ONCE(rb->user_page->aux_tail);
handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
if (aux_head - aux_tail < perf_aux_size(rb))
handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
@@ -411,6 +411,7 @@ err:
return NULL;
}
+EXPORT_SYMBOL_GPL(perf_aux_output_begin);
static bool __always_inline rb_need_aux_wakeup(struct ring_buffer *rb)
{
@@ -480,6 +481,7 @@ void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
rb_free_aux(rb);
ring_buffer_put(rb);
}
+EXPORT_SYMBOL_GPL(perf_aux_output_end);
/*
* Skip over a given number of bytes in the AUX buffer, due to, for example,
@@ -505,6 +507,7 @@ int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
return 0;
}
+EXPORT_SYMBOL_GPL(perf_aux_output_skip);
void *perf_get_aux(struct perf_output_handle *handle)
{
@@ -514,6 +517,7 @@ void *perf_get_aux(struct perf_output_handle *handle)
return handle->rb->aux_priv;
}
+EXPORT_SYMBOL_GPL(perf_get_aux);
#define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
diff --git a/kernel/exit.c b/kernel/exit.c
index f6cad39f35df..6b4298a41167 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -1339,7 +1339,7 @@ static int wait_consider_task(struct wait_opts *wo, int ptrace,
* Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
* can't confuse the checks below.
*/
- int exit_state = ACCESS_ONCE(p->exit_state);
+ int exit_state = READ_ONCE(p->exit_state);
int ret;
if (unlikely(exit_state == EXIT_DEAD))
diff --git a/kernel/extable.c b/kernel/extable.c
index 9aa1cc41ecf7..a17fdb63dc3e 100644
--- a/kernel/extable.c
+++ b/kernel/extable.c
@@ -31,6 +31,8 @@
* mutex protecting text section modification (dynamic code patching).
* some users need to sleep (allocating memory...) while they hold this lock.
*
+ * Note: Also protects SMP-alternatives modification on x86.
+ *
* NOT exported to modules - patching kernel text is a really delicate matter.
*/
DEFINE_MUTEX(text_mutex);
diff --git a/kernel/fork.c b/kernel/fork.c
index 07cc743698d3..4e55eedba8d6 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -469,7 +469,7 @@ void __init fork_init(void)
/* create a slab on which task_structs can be allocated */
task_struct_cachep = kmem_cache_create("task_struct",
arch_task_struct_size, align,
- SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
+ SLAB_PANIC|SLAB_ACCOUNT, NULL);
#endif
/* do the arch specific task caches init */
@@ -817,8 +817,7 @@ static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
init_rwsem(&mm->mmap_sem);
INIT_LIST_HEAD(&mm->mmlist);
mm->core_state = NULL;
- atomic_long_set(&mm->nr_ptes, 0);
- mm_nr_pmds_init(mm);
+ mm_pgtables_bytes_init(mm);
mm->map_count = 0;
mm->locked_vm = 0;
mm->pinned_vm = 0;
@@ -872,12 +871,9 @@ static void check_mm(struct mm_struct *mm)
"mm:%p idx:%d val:%ld\n", mm, i, x);
}
- if (atomic_long_read(&mm->nr_ptes))
- pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
- atomic_long_read(&mm->nr_ptes));
- if (mm_nr_pmds(mm))
- pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
- mm_nr_pmds(mm));
+ if (mm_pgtables_bytes(mm))
+ pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
+ mm_pgtables_bytes(mm));
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
@@ -2209,18 +2205,18 @@ void __init proc_caches_init(void)
sighand_cachep = kmem_cache_create("sighand_cache",
sizeof(struct sighand_struct), 0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
- SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
+ SLAB_ACCOUNT, sighand_ctor);
signal_cachep = kmem_cache_create("signal_cache",
sizeof(struct signal_struct), 0,
- SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
+ SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
NULL);
files_cachep = kmem_cache_create("files_cache",
sizeof(struct files_struct), 0,
- SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
+ SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
NULL);
fs_cachep = kmem_cache_create("fs_cache",
sizeof(struct fs_struct), 0,
- SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
+ SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
NULL);
/*
* FIXME! The "sizeof(struct mm_struct)" currently includes the
@@ -2231,7 +2227,7 @@ void __init proc_caches_init(void)
*/
mm_cachep = kmem_cache_create("mm_struct",
sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
- SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
+ SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
NULL);
vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
mmap_init();
diff --git a/kernel/irq/Kconfig b/kernel/irq/Kconfig
index a117adf7084b..89e355866450 100644
--- a/kernel/irq/Kconfig
+++ b/kernel/irq/Kconfig
@@ -97,6 +97,12 @@ config HANDLE_DOMAIN_IRQ
config IRQ_TIMINGS
bool
+config GENERIC_IRQ_MATRIX_ALLOCATOR
+ bool
+
+config GENERIC_IRQ_RESERVATION_MODE
+ bool
+
config IRQ_DOMAIN_DEBUG
bool "Expose hardware/virtual IRQ mapping via debugfs"
depends on IRQ_DOMAIN && DEBUG_FS
diff --git a/kernel/irq/Makefile b/kernel/irq/Makefile
index ed15d142694b..ff6e352e3a6c 100644
--- a/kernel/irq/Makefile
+++ b/kernel/irq/Makefile
@@ -14,3 +14,4 @@ obj-$(CONFIG_GENERIC_MSI_IRQ) += msi.o
obj-$(CONFIG_GENERIC_IRQ_IPI) += ipi.o
obj-$(CONFIG_SMP) += affinity.o
obj-$(CONFIG_GENERIC_IRQ_DEBUGFS) += debugfs.o
+obj-$(CONFIG_GENERIC_IRQ_MATRIX_ALLOCATOR) += matrix.o
diff --git a/kernel/irq/autoprobe.c b/kernel/irq/autoprobe.c
index befa671fba64..4e8089b319ae 100644
--- a/kernel/irq/autoprobe.c
+++ b/kernel/irq/autoprobe.c
@@ -54,7 +54,7 @@ unsigned long probe_irq_on(void)
if (desc->irq_data.chip->irq_set_type)
desc->irq_data.chip->irq_set_type(&desc->irq_data,
IRQ_TYPE_PROBE);
- irq_startup(desc, IRQ_NORESEND, IRQ_START_FORCE);
+ irq_activate_and_startup(desc, IRQ_NORESEND);
}
raw_spin_unlock_irq(&desc->lock);
}
diff --git a/kernel/irq/chip.c b/kernel/irq/chip.c
index 5a2ef92c2782..043bfc35b353 100644
--- a/kernel/irq/chip.c
+++ b/kernel/irq/chip.c
@@ -207,20 +207,24 @@ __irq_startup_managed(struct irq_desc *desc, struct cpumask *aff, bool force)
* Catch code which fiddles with enable_irq() on a managed
* and potentially shutdown IRQ. Chained interrupt
* installment or irq auto probing should not happen on
- * managed irqs either. Emit a warning, break the affinity
- * and start it up as a normal interrupt.
+ * managed irqs either.
*/
if (WARN_ON_ONCE(force))
- return IRQ_STARTUP_NORMAL;
+ return IRQ_STARTUP_ABORT;
/*
* The interrupt was requested, but there is no online CPU
* in it's affinity mask. Put it into managed shutdown
* state and let the cpu hotplug mechanism start it up once
* a CPU in the mask becomes available.
*/
- irqd_set_managed_shutdown(d);
return IRQ_STARTUP_ABORT;
}
+ /*
+ * Managed interrupts have reserved resources, so this should not
+ * happen.
+ */
+ if (WARN_ON(irq_domain_activate_irq(d, false)))
+ return IRQ_STARTUP_ABORT;
return IRQ_STARTUP_MANAGED;
}
#else
@@ -236,7 +240,9 @@ static int __irq_startup(struct irq_desc *desc)
struct irq_data *d = irq_desc_get_irq_data(desc);
int ret = 0;
- irq_domain_activate_irq(d);
+ /* Warn if this interrupt is not activated but try nevertheless */
+ WARN_ON_ONCE(!irqd_is_activated(d));
+
if (d->chip->irq_startup) {
ret = d->chip->irq_startup(d);
irq_state_clr_disabled(desc);
@@ -269,6 +275,7 @@ int irq_startup(struct irq_desc *desc, bool resend, bool force)
ret = __irq_startup(desc);
break;
case IRQ_STARTUP_ABORT:
+ irqd_set_managed_shutdown(d);
return 0;
}
}
@@ -278,6 +285,22 @@ int irq_startup(struct irq_desc *desc, bool resend, bool force)
return ret;
}
+int irq_activate(struct irq_desc *desc)
+{
+ struct irq_data *d = irq_desc_get_irq_data(desc);
+
+ if (!irqd_affinity_is_managed(d))
+ return irq_domain_activate_irq(d, false);
+ return 0;
+}
+
+void irq_activate_and_startup(struct irq_desc *desc, bool resend)
+{
+ if (WARN_ON(irq_activate(desc)))
+ return;
+ irq_startup(desc, resend, IRQ_START_FORCE);
+}
+
static void __irq_disable(struct irq_desc *desc, bool mask);
void irq_shutdown(struct irq_desc *desc)
@@ -953,7 +976,7 @@ __irq_do_set_handler(struct irq_desc *desc, irq_flow_handler_t handle,
irq_settings_set_norequest(desc);
irq_settings_set_nothread(desc);
desc->action = &chained_action;
- irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
+ irq_activate_and_startup(desc, IRQ_RESEND);
}
}
diff --git a/kernel/irq/debugfs.c b/kernel/irq/debugfs.c
index c3fdb36dec30..7f608ac39653 100644
--- a/kernel/irq/debugfs.c
+++ b/kernel/irq/debugfs.c
@@ -81,6 +81,8 @@ irq_debug_show_data(struct seq_file *m, struct irq_data *data, int ind)
data->domain ? data->domain->name : "");
seq_printf(m, "%*shwirq: 0x%lx\n", ind + 1, "", data->hwirq);
irq_debug_show_chip(m, data, ind + 1);
+ if (data->domain && data->domain->ops && data->domain->ops->debug_show)
+ data->domain->ops->debug_show(m, NULL, data, ind + 1);
#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
if (!data->parent_data)
return;
@@ -149,6 +151,7 @@ static int irq_debug_show(struct seq_file *m, void *p)
raw_spin_lock_irq(&desc->lock);
data = irq_desc_get_irq_data(desc);
seq_printf(m, "handler: %pf\n", desc->handle_irq);
+ seq_printf(m, "device: %s\n", desc->dev_name);
seq_printf(m, "status: 0x%08x\n", desc->status_use_accessors);
irq_debug_show_bits(m, 0, desc->status_use_accessors, irqdesc_states,
ARRAY_SIZE(irqdesc_states));
@@ -226,6 +229,15 @@ static const struct file_operations dfs_irq_ops = {
.release = single_release,
};
+void irq_debugfs_copy_devname(int irq, struct device *dev)
+{
+ struct irq_desc *desc = irq_to_desc(irq);
+ const char *name = dev_name(dev);
+
+ if (name)
+ desc->dev_name = kstrdup(name, GFP_KERNEL);
+}
+
void irq_add_debugfs_entry(unsigned int irq, struct irq_desc *desc)
{
char name [10];
diff --git a/kernel/irq/internals.h b/kernel/irq/internals.h
index 44ed5f8c8759..07d08ca701ec 100644
--- a/kernel/irq/internals.h
+++ b/kernel/irq/internals.h
@@ -75,6 +75,8 @@ extern void __enable_irq(struct irq_desc *desc);
#define IRQ_START_FORCE true
#define IRQ_START_COND false
+extern int irq_activate(struct irq_desc *desc);
+extern void irq_activate_and_startup(struct irq_desc *desc, bool resend);
extern int irq_startup(struct irq_desc *desc, bool resend, bool force);
extern void irq_shutdown(struct irq_desc *desc);
@@ -437,6 +439,18 @@ static inline bool irq_fixup_move_pending(struct irq_desc *desc, bool fclear)
}
#endif /* !CONFIG_GENERIC_PENDING_IRQ */
+#if !defined(CONFIG_IRQ_DOMAIN) || !defined(CONFIG_IRQ_DOMAIN_HIERARCHY)
+static inline int irq_domain_activate_irq(struct irq_data *data, bool early)
+{
+ irqd_set_activated(data);
+ return 0;
+}
+static inline void irq_domain_deactivate_irq(struct irq_data *data)
+{
+ irqd_clr_activated(data);
+}
+#endif
+
#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
#include <linux/debugfs.h>
@@ -444,7 +458,9 @@ void irq_add_debugfs_entry(unsigned int irq, struct irq_desc *desc);
static inline void irq_remove_debugfs_entry(struct irq_desc *desc)
{
debugfs_remove(desc->debugfs_file);
+ kfree(desc->dev_name);
}
+void irq_debugfs_copy_devname(int irq, struct device *dev);
# ifdef CONFIG_IRQ_DOMAIN
void irq_domain_debugfs_init(struct dentry *root);
# else
@@ -459,4 +475,7 @@ static inline void irq_add_debugfs_entry(unsigned int irq, struct irq_desc *d)
static inline void irq_remove_debugfs_entry(struct irq_desc *d)
{
}
+static inline void irq_debugfs_copy_devname(int irq, struct device *dev)
+{
+}
#endif /* CONFIG_GENERIC_IRQ_DEBUGFS */
diff --git a/kernel/irq/irqdesc.c b/kernel/irq/irqdesc.c
index 82afb7ed369f..49b54e9979cc 100644
--- a/kernel/irq/irqdesc.c
+++ b/kernel/irq/irqdesc.c
@@ -27,7 +27,7 @@ static struct lock_class_key irq_desc_lock_class;
#if defined(CONFIG_SMP)
static int __init irq_affinity_setup(char *str)
{
- zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
+ alloc_bootmem_cpumask_var(&irq_default_affinity);
cpulist_parse(str, irq_default_affinity);
/*
* Set at least the boot cpu. We don't want to end up with
@@ -40,10 +40,8 @@ __setup("irqaffinity=", irq_affinity_setup);
static void __init init_irq_default_affinity(void)
{
-#ifdef CONFIG_CPUMASK_OFFSTACK
- if (!irq_default_affinity)
+ if (!cpumask_available(irq_default_affinity))
zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
-#endif
if (cpumask_empty(irq_default_affinity))
cpumask_setall(irq_default_affinity);
}
@@ -448,7 +446,7 @@ static int alloc_descs(unsigned int start, unsigned int cnt, int node,
}
}
- flags = affinity ? IRQD_AFFINITY_MANAGED : 0;
+ flags = affinity ? IRQD_AFFINITY_MANAGED | IRQD_MANAGED_SHUTDOWN : 0;
mask = NULL;
for (i = 0; i < cnt; i++) {
@@ -462,6 +460,7 @@ static int alloc_descs(unsigned int start, unsigned int cnt, int node,
goto err;
irq_insert_desc(start + i, desc);
irq_sysfs_add(start + i, desc);
+ irq_add_debugfs_entry(start + i, desc);
}
bitmap_set(allocated_irqs, start, cnt);
return start;
@@ -863,6 +862,7 @@ int irq_get_percpu_devid_partition(unsigned int irq, struct cpumask *affinity)
return 0;
}
+EXPORT_SYMBOL_GPL(irq_get_percpu_devid_partition);
void kstat_incr_irq_this_cpu(unsigned int irq)
{
diff --git a/kernel/irq/irqdomain.c b/kernel/irq/irqdomain.c
index ac4644e92b49..4f4f60015e8a 100644
--- a/kernel/irq/irqdomain.c
+++ b/kernel/irq/irqdomain.c
@@ -21,7 +21,6 @@
static LIST_HEAD(irq_domain_list);
static DEFINE_MUTEX(irq_domain_mutex);
-static DEFINE_MUTEX(revmap_trees_mutex);
static struct irq_domain *irq_default_domain;
static void irq_domain_check_hierarchy(struct irq_domain *domain);
@@ -211,6 +210,7 @@ struct irq_domain *__irq_domain_add(struct fwnode_handle *fwnode, int size,
/* Fill structure */
INIT_RADIX_TREE(&domain->revmap_tree, GFP_KERNEL);
+ mutex_init(&domain->revmap_tree_mutex);
domain->ops = ops;
domain->host_data = host_data;
domain->hwirq_max = hwirq_max;
@@ -462,9 +462,9 @@ static void irq_domain_clear_mapping(struct irq_domain *domain,
if (hwirq < domain->revmap_size) {
domain->linear_revmap[hwirq] = 0;
} else {
- mutex_lock(&revmap_trees_mutex);
+ mutex_lock(&domain->revmap_tree_mutex);
radix_tree_delete(&domain->revmap_tree, hwirq);
- mutex_unlock(&revmap_trees_mutex);
+ mutex_unlock(&domain->revmap_tree_mutex);
}
}
@@ -475,9 +475,9 @@ static void irq_domain_set_mapping(struct irq_domain *domain,
if (hwirq < domain->revmap_size) {
domain->linear_revmap[hwirq] = irq_data->irq;
} else {
- mutex_lock(&revmap_trees_mutex);
+ mutex_lock(&domain->revmap_tree_mutex);
radix_tree_insert(&domain->revmap_tree, hwirq, irq_data);
- mutex_unlock(&revmap_trees_mutex);
+ mutex_unlock(&domain->revmap_tree_mutex);
}
}
@@ -921,8 +921,7 @@ static void virq_debug_show_one(struct seq_file *m, struct irq_desc *desc)
chip = irq_data_get_irq_chip(data);
seq_printf(m, "%-15s ", (chip && chip->name) ? chip->name : "none");
- seq_printf(m, data ? "0x%p " : " %p ",
- irq_data_get_irq_chip_data(data));
+ seq_printf(m, "0x%p ", irq_data_get_irq_chip_data(data));
seq_printf(m, " %c ", (desc->action && desc->action->handler) ? '*' : ' ');
direct = (irq == hwirq) && (irq < domain->revmap_direct_max_irq);
@@ -1459,11 +1458,11 @@ static void irq_domain_fix_revmap(struct irq_data *d)
return; /* Not using radix tree. */
/* Fix up the revmap. */
- mutex_lock(&revmap_trees_mutex);
+ mutex_lock(&d->domain->revmap_tree_mutex);
slot = radix_tree_lookup_slot(&d->domain->revmap_tree, d->hwirq);
if (slot)
radix_tree_replace_slot(&d->domain->revmap_tree, slot, d);
- mutex_unlock(&revmap_trees_mutex);
+ mutex_unlock(&d->domain->revmap_tree_mutex);
}
/**
@@ -1682,28 +1681,36 @@ void irq_domain_free_irqs_parent(struct irq_domain *domain,
}
EXPORT_SYMBOL_GPL(irq_domain_free_irqs_parent);
-static void __irq_domain_activate_irq(struct irq_data *irq_data)
+static void __irq_domain_deactivate_irq(struct irq_data *irq_data)
{
if (irq_data && irq_data->domain) {
struct irq_domain *domain = irq_data->domain;
+ if (domain->ops->deactivate)
+ domain->ops->deactivate(domain, irq_data);
if (irq_data->parent_data)
- __irq_domain_activate_irq(irq_data->parent_data);
- if (domain->ops->activate)
- domain->ops->activate(domain, irq_data);
+ __irq_domain_deactivate_irq(irq_data->parent_data);
}
}
-static void __irq_domain_deactivate_irq(struct irq_data *irq_data)
+static int __irq_domain_activate_irq(struct irq_data *irqd, bool early)
{
- if (irq_data && irq_data->domain) {
- struct irq_domain *domain = irq_data->domain;
+ int ret = 0;
- if (domain->ops->deactivate)
- domain->ops->deactivate(domain, irq_data);
- if (irq_data->parent_data)
- __irq_domain_deactivate_irq(irq_data->parent_data);
+ if (irqd && irqd->domain) {
+ struct irq_domain *domain = irqd->domain;
+
+ if (irqd->parent_data)
+ ret = __irq_domain_activate_irq(irqd->parent_data,
+ early);
+ if (!ret && domain->ops->activate) {
+ ret = domain->ops->activate(domain, irqd, early);
+ /* Rollback in case of error */
+ if (ret && irqd->parent_data)
+ __irq_domain_deactivate_irq(irqd->parent_data);
+ }
}
+ return ret;
}
/**
@@ -1714,12 +1721,15 @@ static void __irq_domain_deactivate_irq(struct irq_data *irq_data)
* This is the second step to call domain_ops->activate to program interrupt
* controllers, so the interrupt could actually get delivered.
*/
-void irq_domain_activate_irq(struct irq_data *irq_data)
+int irq_domain_activate_irq(struct irq_data *irq_data, bool early)
{
- if (!irqd_is_activated(irq_data)) {
- __irq_domain_activate_irq(irq_data);
+ int ret = 0;
+
+ if (!irqd_is_activated(irq_data))
+ ret = __irq_domain_activate_irq(irq_data, early);
+ if (!ret)
irqd_set_activated(irq_data);
- }
+ return ret;
}
/**
@@ -1810,6 +1820,8 @@ irq_domain_debug_show_one(struct seq_file *m, struct irq_domain *d, int ind)
d->revmap_size + d->revmap_direct_max_irq);
seq_printf(m, "%*smapped: %u\n", ind + 1, "", d->mapcount);
seq_printf(m, "%*sflags: 0x%08x\n", ind +1 , "", d->flags);
+ if (d->ops && d->ops->debug_show)
+ d->ops->debug_show(m, d, NULL, ind + 1);
#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
if (!d->parent)
return;
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c
index 4bff6a10ae8e..2ff1c0c82fc9 100644
--- a/kernel/irq/manage.c
+++ b/kernel/irq/manage.c
@@ -398,7 +398,8 @@ int irq_select_affinity_usr(unsigned int irq)
/**
* irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
* @irq: interrupt number to set affinity
- * @vcpu_info: vCPU specific data
+ * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
+ * specific data for percpu_devid interrupts
*
* This function uses the vCPU specific data to set the vCPU
* affinity for an irq. The vCPU specific data is passed from
@@ -536,7 +537,7 @@ void __enable_irq(struct irq_desc *desc)
* time. If it was already started up, then irq_startup()
* will invoke irq_enable() under the hood.
*/
- irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
+ irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
break;
}
default:
@@ -1305,7 +1306,7 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
* thread_mask assigned. See the loop above which or's
* all existing action->thread_mask bits.
*/
- new->thread_mask = 1 << ffz(thread_mask);
+ new->thread_mask = 1UL << ffz(thread_mask);
} else if (new->handler == irq_default_primary_handler &&
!(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
@@ -1342,6 +1343,21 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
goto out_unlock;
}
+ /*
+ * Activate the interrupt. That activation must happen
+ * independently of IRQ_NOAUTOEN. request_irq() can fail
+ * and the callers are supposed to handle
+ * that. enable_irq() of an interrupt requested with
+ * IRQ_NOAUTOEN is not supposed to fail. The activation
+ * keeps it in shutdown mode, it merily associates
+ * resources if necessary and if that's not possible it
+ * fails. Interrupts which are in managed shutdown mode
+ * will simply ignore that activation request.
+ */
+ ret = irq_activate(desc);
+ if (ret)
+ goto out_unlock;
+
desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
IRQS_ONESHOT | IRQS_WAITING);
irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
@@ -1417,7 +1433,6 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
wake_up_process(new->secondary->thread);
register_irq_proc(irq, desc);
- irq_add_debugfs_entry(irq, desc);
new->dir = NULL;
register_handler_proc(irq, new);
return 0;
diff --git a/kernel/irq/matrix.c b/kernel/irq/matrix.c
new file mode 100644
index 000000000000..a3cbbc8191c5
--- /dev/null
+++ b/kernel/irq/matrix.c
@@ -0,0 +1,443 @@
+/*
+ * Copyright (C) 2017 Thomas Gleixner <tglx@linutronix.de>
+ *
+ * SPDX-License-Identifier: GPL-2.0
+ */
+#include <linux/spinlock.h>
+#include <linux/seq_file.h>
+#include <linux/bitmap.h>
+#include <linux/percpu.h>
+#include <linux/cpu.h>
+#include <linux/irq.h>
+
+#define IRQ_MATRIX_SIZE (BITS_TO_LONGS(IRQ_MATRIX_BITS) * sizeof(unsigned long))
+
+struct cpumap {
+ unsigned int available;
+ unsigned int allocated;
+ unsigned int managed;
+ bool online;
+ unsigned long alloc_map[IRQ_MATRIX_SIZE];
+ unsigned long managed_map[IRQ_MATRIX_SIZE];
+};
+
+struct irq_matrix {
+ unsigned int matrix_bits;
+ unsigned int alloc_start;
+ unsigned int alloc_end;
+ unsigned int alloc_size;
+ unsigned int global_available;
+ unsigned int global_reserved;
+ unsigned int systembits_inalloc;
+ unsigned int total_allocated;
+ unsigned int online_maps;
+ struct cpumap __percpu *maps;
+ unsigned long scratch_map[IRQ_MATRIX_SIZE];
+ unsigned long system_map[IRQ_MATRIX_SIZE];
+};
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/irq_matrix.h>
+
+/**
+ * irq_alloc_matrix - Allocate a irq_matrix structure and initialize it
+ * @matrix_bits: Number of matrix bits must be <= IRQ_MATRIX_BITS
+ * @alloc_start: From which bit the allocation search starts
+ * @alloc_end: At which bit the allocation search ends, i.e first
+ * invalid bit
+ */
+__init struct irq_matrix *irq_alloc_matrix(unsigned int matrix_bits,
+ unsigned int alloc_start,
+ unsigned int alloc_end)
+{
+ struct irq_matrix *m;
+
+ if (matrix_bits > IRQ_MATRIX_BITS)
+ return NULL;
+
+ m = kzalloc(sizeof(*m), GFP_KERNEL);
+ if (!m)
+ return NULL;
+
+ m->matrix_bits = matrix_bits;
+ m->alloc_start = alloc_start;
+ m->alloc_end = alloc_end;
+ m->alloc_size = alloc_end - alloc_start;
+ m->maps = alloc_percpu(*m->maps);
+ if (!m->maps) {
+ kfree(m);
+ return NULL;
+ }
+ return m;
+}
+
+/**
+ * irq_matrix_online - Bring the local CPU matrix online
+ * @m: Matrix pointer
+ */
+void irq_matrix_online(struct irq_matrix *m)
+{
+ struct cpumap *cm = this_cpu_ptr(m->maps);
+
+ BUG_ON(cm->online);
+
+ bitmap_zero(cm->alloc_map, m->matrix_bits);
+ cm->available = m->alloc_size - (cm->managed + m->systembits_inalloc);
+ cm->allocated = 0;
+ m->global_available += cm->available;
+ cm->online = true;
+ m->online_maps++;
+ trace_irq_matrix_online(m);
+}
+
+/**
+ * irq_matrix_offline - Bring the local CPU matrix offline
+ * @m: Matrix pointer
+ */
+void irq_matrix_offline(struct irq_matrix *m)
+{
+ struct cpumap *cm = this_cpu_ptr(m->maps);
+
+ /* Update the global available size */
+ m->global_available -= cm->available;
+ cm->online = false;
+ m->online_maps--;
+ trace_irq_matrix_offline(m);
+}
+
+static unsigned int matrix_alloc_area(struct irq_matrix *m, struct cpumap *cm,
+ unsigned int num, bool managed)
+{
+ unsigned int area, start = m->alloc_start;
+ unsigned int end = m->alloc_end;
+
+ bitmap_or(m->scratch_map, cm->managed_map, m->system_map, end);
+ bitmap_or(m->scratch_map, m->scratch_map, cm->alloc_map, end);
+ area = bitmap_find_next_zero_area(m->scratch_map, end, start, num, 0);
+ if (area >= end)
+ return area;
+ if (managed)
+ bitmap_set(cm->managed_map, area, num);
+ else
+ bitmap_set(cm->alloc_map, area, num);
+ return area;
+}
+
+/**
+ * irq_matrix_assign_system - Assign system wide entry in the matrix
+ * @m: Matrix pointer
+ * @bit: Which bit to reserve
+ * @replace: Replace an already allocated vector with a system
+ * vector at the same bit position.
+ *
+ * The BUG_ON()s below are on purpose. If this goes wrong in the
+ * early boot process, then the chance to survive is about zero.
+ * If this happens when the system is life, it's not much better.
+ */
+void irq_matrix_assign_system(struct irq_matrix *m, unsigned int bit,
+ bool replace)
+{
+ struct cpumap *cm = this_cpu_ptr(m->maps);
+
+ BUG_ON(bit > m->matrix_bits);
+ BUG_ON(m->online_maps > 1 || (m->online_maps && !replace));
+
+ set_bit(bit, m->system_map);
+ if (replace) {
+ BUG_ON(!test_and_clear_bit(bit, cm->alloc_map));
+ cm->allocated--;
+ m->total_allocated--;
+ }
+ if (bit >= m->alloc_start && bit < m->alloc_end)
+ m->systembits_inalloc++;
+
+ trace_irq_matrix_assign_system(bit, m);
+}
+
+/**
+ * irq_matrix_reserve_managed - Reserve a managed interrupt in a CPU map
+ * @m: Matrix pointer
+ * @msk: On which CPUs the bits should be reserved.
+ *
+ * Can be called for offline CPUs. Note, this will only reserve one bit
+ * on all CPUs in @msk, but it's not guaranteed that the bits are at the
+ * same offset on all CPUs
+ */
+int irq_matrix_reserve_managed(struct irq_matrix *m, const struct cpumask *msk)
+{
+ unsigned int cpu, failed_cpu;
+
+ for_each_cpu(cpu, msk) {
+ struct cpumap *cm = per_cpu_ptr(m->maps, cpu);
+ unsigned int bit;
+
+ bit = matrix_alloc_area(m, cm, 1, true);
+ if (bit >= m->alloc_end)
+ goto cleanup;
+ cm->managed++;
+ if (cm->online) {
+ cm->available--;
+ m->global_available--;
+ }
+ trace_irq_matrix_reserve_managed(bit, cpu, m, cm);
+ }
+ return 0;
+cleanup:
+ failed_cpu = cpu;
+ for_each_cpu(cpu, msk) {
+ if (cpu == failed_cpu)
+ break;
+ irq_matrix_remove_managed(m, cpumask_of(cpu));
+ }
+ return -ENOSPC;
+}
+
+/**
+ * irq_matrix_remove_managed - Remove managed interrupts in a CPU map
+ * @m: Matrix pointer
+ * @msk: On which CPUs the bits should be removed
+ *
+ * Can be called for offline CPUs
+ *
+ * This removes not allocated managed interrupts from the map. It does
+ * not matter which one because the managed interrupts free their
+ * allocation when they shut down. If not, the accounting is screwed,
+ * but all what can be done at this point is warn about it.
+ */
+void irq_matrix_remove_managed(struct irq_matrix *m, const struct cpumask *msk)
+{
+ unsigned int cpu;
+
+ for_each_cpu(cpu, msk) {
+ struct cpumap *cm = per_cpu_ptr(m->maps, cpu);
+ unsigned int bit, end = m->alloc_end;
+
+ if (WARN_ON_ONCE(!cm->managed))
+ continue;
+
+ /* Get managed bit which are not allocated */
+ bitmap_andnot(m->scratch_map, cm->managed_map, cm->alloc_map, end);
+
+ bit = find_first_bit(m->scratch_map, end);
+ if (WARN_ON_ONCE(bit >= end))
+ continue;
+
+ clear_bit(bit, cm->managed_map);
+
+ cm->managed--;
+ if (cm->online) {
+ cm->available++;
+ m->global_available++;
+ }
+ trace_irq_matrix_remove_managed(bit, cpu, m, cm);
+ }
+}
+
+/**
+ * irq_matrix_alloc_managed - Allocate a managed interrupt in a CPU map
+ * @m: Matrix pointer
+ * @cpu: On which CPU the interrupt should be allocated
+ */
+int irq_matrix_alloc_managed(struct irq_matrix *m, unsigned int cpu)
+{
+ struct cpumap *cm = per_cpu_ptr(m->maps, cpu);
+ unsigned int bit, end = m->alloc_end;
+
+ /* Get managed bit which are not allocated */
+ bitmap_andnot(m->scratch_map, cm->managed_map, cm->alloc_map, end);
+ bit = find_first_bit(m->scratch_map, end);
+ if (bit >= end)
+ return -ENOSPC;
+ set_bit(bit, cm->alloc_map);
+ cm->allocated++;
+ m->total_allocated++;
+ trace_irq_matrix_alloc_managed(bit, cpu, m, cm);
+ return bit;
+}
+
+/**
+ * irq_matrix_assign - Assign a preallocated interrupt in the local CPU map
+ * @m: Matrix pointer
+ * @bit: Which bit to mark
+ *
+ * This should only be used to mark preallocated vectors
+ */
+void irq_matrix_assign(struct irq_matrix *m, unsigned int bit)
+{
+ struct cpumap *cm = this_cpu_ptr(m->maps);
+
+ if (WARN_ON_ONCE(bit < m->alloc_start || bit >= m->alloc_end))
+ return;
+ if (WARN_ON_ONCE(test_and_set_bit(bit, cm->alloc_map)))
+ return;
+ cm->allocated++;
+ m->total_allocated++;
+ cm->available--;
+ m->global_available--;
+ trace_irq_matrix_assign(bit, smp_processor_id(), m, cm);
+}
+
+/**
+ * irq_matrix_reserve - Reserve interrupts
+ * @m: Matrix pointer
+ *
+ * This is merily a book keeping call. It increments the number of globally
+ * reserved interrupt bits w/o actually allocating them. This allows to
+ * setup interrupt descriptors w/o assigning low level resources to it.
+ * The actual allocation happens when the interrupt gets activated.
+ */
+void irq_matrix_reserve(struct irq_matrix *m)
+{
+ if (m->global_reserved <= m->global_available &&
+ m->global_reserved + 1 > m->global_available)
+ pr_warn("Interrupt reservation exceeds available resources\n");
+
+ m->global_reserved++;
+ trace_irq_matrix_reserve(m);
+}
+
+/**
+ * irq_matrix_remove_reserved - Remove interrupt reservation
+ * @m: Matrix pointer
+ *
+ * This is merily a book keeping call. It decrements the number of globally
+ * reserved interrupt bits. This is used to undo irq_matrix_reserve() when the
+ * interrupt was never in use and a real vector allocated, which undid the
+ * reservation.
+ */
+void irq_matrix_remove_reserved(struct irq_matrix *m)
+{
+ m->global_reserved--;
+ trace_irq_matrix_remove_reserved(m);
+}
+
+/**
+ * irq_matrix_alloc - Allocate a regular interrupt in a CPU map
+ * @m: Matrix pointer
+ * @msk: Which CPUs to search in
+ * @reserved: Allocate previously reserved interrupts
+ * @mapped_cpu: Pointer to store the CPU for which the irq was allocated
+ */
+int irq_matrix_alloc(struct irq_matrix *m, const struct cpumask *msk,
+ bool reserved, unsigned int *mapped_cpu)
+{
+ unsigned int cpu;
+
+ for_each_cpu(cpu, msk) {
+ struct cpumap *cm = per_cpu_ptr(m->maps, cpu);
+ unsigned int bit;
+
+ if (!cm->online)
+ continue;
+
+ bit = matrix_alloc_area(m, cm, 1, false);
+ if (bit < m->alloc_end) {
+ cm->allocated++;
+ cm->available--;
+ m->total_allocated++;
+ m->global_available--;
+ if (reserved)
+ m->global_reserved--;
+ *mapped_cpu = cpu;
+ trace_irq_matrix_alloc(bit, cpu, m, cm);
+ return bit;
+ }
+ }
+ return -ENOSPC;
+}
+
+/**
+ * irq_matrix_free - Free allocated interrupt in the matrix
+ * @m: Matrix pointer
+ * @cpu: Which CPU map needs be updated
+ * @bit: The bit to remove
+ * @managed: If true, the interrupt is managed and not accounted
+ * as available.
+ */
+void irq_matrix_free(struct irq_matrix *m, unsigned int cpu,
+ unsigned int bit, bool managed)
+{
+ struct cpumap *cm = per_cpu_ptr(m->maps, cpu);
+
+ if (WARN_ON_ONCE(bit < m->alloc_start || bit >= m->alloc_end))
+ return;
+
+ if (cm->online) {
+ clear_bit(bit, cm->alloc_map);
+ cm->allocated--;
+ m->total_allocated--;
+ if (!managed) {
+ cm->available++;
+ m->global_available++;
+ }
+ }
+ trace_irq_matrix_free(bit, cpu, m, cm);
+}
+
+/**
+ * irq_matrix_available - Get the number of globally available irqs
+ * @m: Pointer to the matrix to query
+ * @cpudown: If true, the local CPU is about to go down, adjust
+ * the number of available irqs accordingly
+ */
+unsigned int irq_matrix_available(struct irq_matrix *m, bool cpudown)
+{
+ struct cpumap *cm = this_cpu_ptr(m->maps);
+
+ return m->global_available - cpudown ? cm->available : 0;
+}
+
+/**
+ * irq_matrix_reserved - Get the number of globally reserved irqs
+ * @m: Pointer to the matrix to query
+ */
+unsigned int irq_matrix_reserved(struct irq_matrix *m)
+{
+ return m->global_reserved;
+}
+
+/**
+ * irq_matrix_allocated - Get the number of allocated irqs on the local cpu
+ * @m: Pointer to the matrix to search
+ *
+ * This returns number of allocated irqs
+ */
+unsigned int irq_matrix_allocated(struct irq_matrix *m)
+{
+ struct cpumap *cm = this_cpu_ptr(m->maps);
+
+ return cm->allocated;
+}
+
+#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
+/**
+ * irq_matrix_debug_show - Show detailed allocation information
+ * @sf: Pointer to the seq_file to print to
+ * @m: Pointer to the matrix allocator
+ * @ind: Indentation for the print format
+ *
+ * Note, this is a lockless snapshot.
+ */
+void irq_matrix_debug_show(struct seq_file *sf, struct irq_matrix *m, int ind)
+{
+ unsigned int nsys = bitmap_weight(m->system_map, m->matrix_bits);
+ int cpu;
+
+ seq_printf(sf, "Online bitmaps: %6u\n", m->online_maps);
+ seq_printf(sf, "Global available: %6u\n", m->global_available);
+ seq_printf(sf, "Global reserved: %6u\n", m->global_reserved);
+ seq_printf(sf, "Total allocated: %6u\n", m->total_allocated);
+ seq_printf(sf, "System: %u: %*pbl\n", nsys, m->matrix_bits,
+ m->system_map);
+ seq_printf(sf, "%*s| CPU | avl | man | act | vectors\n", ind, " ");
+ cpus_read_lock();
+ for_each_online_cpu(cpu) {
+ struct cpumap *cm = per_cpu_ptr(m->maps, cpu);
+
+ seq_printf(sf, "%*s %4d %4u %4u %4u %*pbl\n", ind, " ",
+ cpu, cm->available, cm->managed, cm->allocated,
+ m->matrix_bits, cm->alloc_map);
+ }
+ cpus_read_unlock();
+}
+#endif
diff --git a/kernel/irq/msi.c b/kernel/irq/msi.c
index 3fa4bd59f569..edb987b2c58d 100644
--- a/kernel/irq/msi.c
+++ b/kernel/irq/msi.c
@@ -16,6 +16,8 @@
#include <linux/msi.h>
#include <linux/slab.h>
+#include "internals.h"
+
/**
* alloc_msi_entry - Allocate an initialize msi_entry
* @dev: Pointer to the device for which this is allocated
@@ -100,13 +102,14 @@ int msi_domain_set_affinity(struct irq_data *irq_data,
return ret;
}
-static void msi_domain_activate(struct irq_domain *domain,
- struct irq_data *irq_data)
+static int msi_domain_activate(struct irq_domain *domain,
+ struct irq_data *irq_data, bool early)
{
struct msi_msg msg;
BUG_ON(irq_chip_compose_msi_msg(irq_data, &msg));
irq_chip_write_msi_msg(irq_data, &msg);
+ return 0;
}
static void msi_domain_deactivate(struct irq_domain *domain,
@@ -373,8 +376,10 @@ int msi_domain_alloc_irqs(struct irq_domain *domain, struct device *dev,
return ret;
}
- for (i = 0; i < desc->nvec_used; i++)
+ for (i = 0; i < desc->nvec_used; i++) {
irq_set_msi_desc_off(virq, i, desc);
+ irq_debugfs_copy_devname(virq + i, dev);
+ }
}
if (ops->msi_finish)
@@ -396,11 +401,28 @@ int msi_domain_alloc_irqs(struct irq_domain *domain, struct device *dev,
struct irq_data *irq_data;
irq_data = irq_domain_get_irq_data(domain, desc->irq);
- irq_domain_activate_irq(irq_data);
+ ret = irq_domain_activate_irq(irq_data, true);
+ if (ret)
+ goto cleanup;
+ if (info->flags & MSI_FLAG_MUST_REACTIVATE)
+ irqd_clr_activated(irq_data);
}
}
-
return 0;
+
+cleanup:
+ for_each_msi_entry(desc, dev) {
+ struct irq_data *irqd;
+
+ if (desc->irq == virq)
+ break;
+
+ irqd = irq_domain_get_irq_data(domain, desc->irq);
+ if (irqd_is_activated(irqd))
+ irq_domain_deactivate_irq(irqd);
+ }
+ msi_domain_free_irqs(domain, dev);
+ return ret;
}
/**
diff --git a/kernel/irq/proc.c b/kernel/irq/proc.c
index c010cc0daf79..e8f374971e37 100644
--- a/kernel/irq/proc.c
+++ b/kernel/irq/proc.c
@@ -155,8 +155,9 @@ static ssize_t write_irq_affinity(int type, struct file *file,
*/
err = irq_select_affinity_usr(irq) ? -EINVAL : count;
} else {
- irq_set_affinity(irq, new_value);
- err = count;
+ err = irq_set_affinity(irq, new_value);
+ if (!err)
+ err = count;
}
free_cpumask:
diff --git a/kernel/irq/timings.c b/kernel/irq/timings.c
index c8c1d073fbf1..e0923fa4927a 100644
--- a/kernel/irq/timings.c
+++ b/kernel/irq/timings.c
@@ -264,7 +264,7 @@ u64 irq_timings_next_event(u64 now)
* order to prevent the timings circular buffer to be updated
* while we are reading it.
*/
- WARN_ON_ONCE(!irqs_disabled());
+ lockdep_assert_irqs_disabled();
/*
* Number of elements in the circular buffer: If it happens it
diff --git a/kernel/irq_work.c b/kernel/irq_work.c
index bcf107ce0854..40e9d739c169 100644
--- a/kernel/irq_work.c
+++ b/kernel/irq_work.c
@@ -56,7 +56,6 @@ void __weak arch_irq_work_raise(void)
*/
}
-#ifdef CONFIG_SMP
/*
* Enqueue the irq_work @work on @cpu unless it's already pending
* somewhere.
@@ -68,6 +67,8 @@ bool irq_work_queue_on(struct irq_work *work, int cpu)
/* All work should have been flushed before going offline */
WARN_ON_ONCE(cpu_is_offline(cpu));
+#ifdef CONFIG_SMP
+
/* Arch remote IPI send/receive backend aren't NMI safe */
WARN_ON_ONCE(in_nmi());
@@ -78,10 +79,12 @@ bool irq_work_queue_on(struct irq_work *work, int cpu)
if (llist_add(&work->llnode, &per_cpu(raised_list, cpu)))
arch_send_call_function_single_ipi(cpu);
+#else /* #ifdef CONFIG_SMP */
+ irq_work_queue(work);
+#endif /* #else #ifdef CONFIG_SMP */
+
return true;
}
-EXPORT_SYMBOL_GPL(irq_work_queue_on);
-#endif
/* Enqueue the irq work @work on the current CPU */
bool irq_work_queue(struct irq_work *work)
@@ -128,9 +131,9 @@ bool irq_work_needs_cpu(void)
static void irq_work_run_list(struct llist_head *list)
{
- unsigned long flags;
- struct irq_work *work;
+ struct irq_work *work, *tmp;
struct llist_node *llnode;
+ unsigned long flags;
BUG_ON(!irqs_disabled());
@@ -138,11 +141,7 @@ static void irq_work_run_list(struct llist_head *list)
return;
llnode = llist_del_all(list);
- while (llnode != NULL) {
- work = llist_entry(llnode, struct irq_work, llnode);
-
- llnode = llist_next(llnode);
-
+ llist_for_each_entry_safe(work, tmp, llnode, llnode) {
/*
* Clear the PENDING bit, after this point the @work
* can be re-used.
@@ -188,7 +187,7 @@ void irq_work_tick(void)
*/
void irq_work_sync(struct irq_work *work)
{
- WARN_ON_ONCE(irqs_disabled());
+ lockdep_assert_irqs_enabled();
while (work->flags & IRQ_WORK_BUSY)
cpu_relax();
diff --git a/kernel/jump_label.c b/kernel/jump_label.c
index 0bf2e8f5244a..8ff4ca4665ff 100644
--- a/kernel/jump_label.c
+++ b/kernel/jump_label.c
@@ -83,7 +83,7 @@ static void static_key_slow_inc_cpuslocked(struct static_key *key)
{
int v, v1;
- STATIC_KEY_CHECK_USE();
+ STATIC_KEY_CHECK_USE(key);
/*
* Careful if we get concurrent static_key_slow_inc() calls;
@@ -128,7 +128,7 @@ EXPORT_SYMBOL_GPL(static_key_slow_inc);
void static_key_enable_cpuslocked(struct static_key *key)
{
- STATIC_KEY_CHECK_USE();
+ STATIC_KEY_CHECK_USE(key);
if (atomic_read(&key->enabled) > 0) {
WARN_ON_ONCE(atomic_read(&key->enabled) != 1);
@@ -158,7 +158,7 @@ EXPORT_SYMBOL_GPL(static_key_enable);
void static_key_disable_cpuslocked(struct static_key *key)
{
- STATIC_KEY_CHECK_USE();
+ STATIC_KEY_CHECK_USE(key);
if (atomic_read(&key->enabled) != 1) {
WARN_ON_ONCE(atomic_read(&key->enabled) != 0);
@@ -224,21 +224,21 @@ static void jump_label_update_timeout(struct work_struct *work)
void static_key_slow_dec(struct static_key *key)
{
- STATIC_KEY_CHECK_USE();
+ STATIC_KEY_CHECK_USE(key);
__static_key_slow_dec(key, 0, NULL);
}
EXPORT_SYMBOL_GPL(static_key_slow_dec);
void static_key_slow_dec_deferred(struct static_key_deferred *key)
{
- STATIC_KEY_CHECK_USE();
+ STATIC_KEY_CHECK_USE(key);
__static_key_slow_dec(&key->key, key->timeout, &key->work);
}
EXPORT_SYMBOL_GPL(static_key_slow_dec_deferred);
void static_key_deferred_flush(struct static_key_deferred *key)
{
- STATIC_KEY_CHECK_USE();
+ STATIC_KEY_CHECK_USE(key);
flush_delayed_work(&key->work);
}
EXPORT_SYMBOL_GPL(static_key_deferred_flush);
@@ -246,7 +246,7 @@ EXPORT_SYMBOL_GPL(static_key_deferred_flush);
void jump_label_rate_limit(struct static_key_deferred *key,
unsigned long rl)
{
- STATIC_KEY_CHECK_USE();
+ STATIC_KEY_CHECK_USE(key);
key->timeout = rl;
INIT_DELAYED_WORK(&key->work, jump_label_update_timeout);
}
diff --git a/kernel/kallsyms.c b/kernel/kallsyms.c
index 127e7cfafa55..1e6ae66c6244 100644
--- a/kernel/kallsyms.c
+++ b/kernel/kallsyms.c
@@ -480,6 +480,7 @@ struct kallsym_iter {
char name[KSYM_NAME_LEN];
char module_name[MODULE_NAME_LEN];
int exported;
+ int show_value;
};
static int get_ksymbol_mod(struct kallsym_iter *iter)
@@ -582,12 +583,15 @@ static void s_stop(struct seq_file *m, void *p)
static int s_show(struct seq_file *m, void *p)
{
+ unsigned long value;
struct kallsym_iter *iter = m->private;
/* Some debugging symbols have no name. Ignore them. */
if (!iter->name[0])
return 0;
+ value = iter->show_value ? iter->value : 0;
+
if (iter->module_name[0]) {
char type;
@@ -597,10 +601,10 @@ static int s_show(struct seq_file *m, void *p)
*/
type = iter->exported ? toupper(iter->type) :
tolower(iter->type);
- seq_printf(m, "%pK %c %s\t[%s]\n", (void *)iter->value,
+ seq_printf(m, KALLSYM_FMT " %c %s\t[%s]\n", value,
type, iter->name, iter->module_name);
} else
- seq_printf(m, "%pK %c %s\n", (void *)iter->value,
+ seq_printf(m, KALLSYM_FMT " %c %s\n", value,
iter->type, iter->name);
return 0;
}
@@ -612,6 +616,40 @@ static const struct seq_operations kallsyms_op = {
.show = s_show
};
+static inline int kallsyms_for_perf(void)
+{
+#ifdef CONFIG_PERF_EVENTS
+ extern int sysctl_perf_event_paranoid;
+ if (sysctl_perf_event_paranoid <= 1)
+ return 1;
+#endif
+ return 0;
+}
+
+/*
+ * We show kallsyms information even to normal users if we've enabled
+ * kernel profiling and are explicitly not paranoid (so kptr_restrict
+ * is clear, and sysctl_perf_event_paranoid isn't set).
+ *
+ * Otherwise, require CAP_SYSLOG (assuming kptr_restrict isn't set to
+ * block even that).
+ */
+int kallsyms_show_value(void)
+{
+ switch (kptr_restrict) {
+ case 0:
+ if (kallsyms_for_perf())
+ return 1;
+ /* fallthrough */
+ case 1:
+ if (has_capability_noaudit(current, CAP_SYSLOG))
+ return 1;
+ /* fallthrough */
+ default:
+ return 0;
+ }
+}
+
static int kallsyms_open(struct inode *inode, struct file *file)
{
/*
@@ -625,6 +663,7 @@ static int kallsyms_open(struct inode *inode, struct file *file)
return -ENOMEM;
reset_iter(iter, 0);
+ iter->show_value = kallsyms_show_value();
return 0;
}
diff --git a/kernel/kexec_file.c b/kernel/kexec_file.c
index 9f48f4412297..e5bcd94c1efb 100644
--- a/kernel/kexec_file.c
+++ b/kernel/kexec_file.c
@@ -406,9 +406,10 @@ static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
return 1;
}
-static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
+static int locate_mem_hole_callback(struct resource *res, void *arg)
{
struct kexec_buf *kbuf = (struct kexec_buf *)arg;
+ u64 start = res->start, end = res->end;
unsigned long sz = end - start + 1;
/* Returning 0 will take to next memory range */
@@ -437,7 +438,7 @@ static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
* func returning non-zero, then zero will be returned.
*/
int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
- int (*func)(u64, u64, void *))
+ int (*func)(struct resource *, void *))
{
if (kbuf->image->type == KEXEC_TYPE_CRASH)
return walk_iomem_res_desc(crashk_res.desc,
diff --git a/kernel/kprobes.c b/kernel/kprobes.c
index a1606a4224e1..da2ccf142358 100644
--- a/kernel/kprobes.c
+++ b/kernel/kprobes.c
@@ -117,7 +117,7 @@ enum kprobe_slot_state {
SLOT_USED = 2,
};
-static void *alloc_insn_page(void)
+void __weak *alloc_insn_page(void)
{
return module_alloc(PAGE_SIZE);
}
@@ -573,13 +573,15 @@ static void kprobe_optimizer(struct work_struct *work)
do_unoptimize_kprobes();
/*
- * Step 2: Wait for quiesence period to ensure all running interrupts
- * are done. Because optprobe may modify multiple instructions
- * there is a chance that Nth instruction is interrupted. In that
- * case, running interrupt can return to 2nd-Nth byte of jump
- * instruction. This wait is for avoiding it.
+ * Step 2: Wait for quiesence period to ensure all potentially
+ * preempted tasks to have normally scheduled. Because optprobe
+ * may modify multiple instructions, there is a chance that Nth
+ * instruction is preempted. In that case, such tasks can return
+ * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
+ * Note that on non-preemptive kernel, this is transparently converted
+ * to synchronoze_sched() to wait for all interrupts to have completed.
*/
- synchronize_sched();
+ synchronize_rcu_tasks();
/* Step 3: Optimize kprobes after quiesence period */
do_optimize_kprobes();
@@ -1769,6 +1771,7 @@ unsigned long __weak arch_deref_entry_point(void *entry)
return (unsigned long)entry;
}
+#if 0
int register_jprobes(struct jprobe **jps, int num)
{
int ret = 0, i;
@@ -1837,6 +1840,7 @@ void unregister_jprobes(struct jprobe **jps, int num)
}
}
EXPORT_SYMBOL_GPL(unregister_jprobes);
+#endif
#ifdef CONFIG_KRETPROBES
/*
diff --git a/kernel/kthread.c b/kernel/kthread.c
index ba3992c8c375..8af313081b0d 100644
--- a/kernel/kthread.c
+++ b/kernel/kthread.c
@@ -20,7 +20,6 @@
#include <linux/freezer.h>
#include <linux/ptrace.h>
#include <linux/uaccess.h>
-#include <linux/cgroup.h>
#include <trace/events/sched.h>
static DEFINE_SPINLOCK(kthread_create_lock);
@@ -47,6 +46,9 @@ struct kthread {
void *data;
struct completion parked;
struct completion exited;
+#ifdef CONFIG_BLK_CGROUP
+ struct cgroup_subsys_state *blkcg_css;
+#endif
};
enum KTHREAD_BITS {
@@ -74,11 +76,17 @@ static inline struct kthread *to_kthread(struct task_struct *k)
void free_kthread_struct(struct task_struct *k)
{
+ struct kthread *kthread;
+
/*
* Can be NULL if this kthread was created by kernel_thread()
* or if kmalloc() in kthread() failed.
*/
- kfree(to_kthread(k));
+ kthread = to_kthread(k);
+#ifdef CONFIG_BLK_CGROUP
+ WARN_ON_ONCE(kthread && kthread->blkcg_css);
+#endif
+ kfree(kthread);
}
/**
@@ -196,7 +204,7 @@ static int kthread(void *_create)
struct kthread *self;
int ret;
- self = kmalloc(sizeof(*self), GFP_KERNEL);
+ self = kzalloc(sizeof(*self), GFP_KERNEL);
set_kthread_struct(self);
/* If user was SIGKILLed, I release the structure. */
@@ -212,7 +220,6 @@ static int kthread(void *_create)
do_exit(-ENOMEM);
}
- self->flags = 0;
self->data = data;
init_completion(&self->exited);
init_completion(&self->parked);
@@ -1152,3 +1159,54 @@ void kthread_destroy_worker(struct kthread_worker *worker)
kfree(worker);
}
EXPORT_SYMBOL(kthread_destroy_worker);
+
+#ifdef CONFIG_BLK_CGROUP
+/**
+ * kthread_associate_blkcg - associate blkcg to current kthread
+ * @css: the cgroup info
+ *
+ * Current thread must be a kthread. The thread is running jobs on behalf of
+ * other threads. In some cases, we expect the jobs attach cgroup info of
+ * original threads instead of that of current thread. This function stores
+ * original thread's cgroup info in current kthread context for later
+ * retrieval.
+ */
+void kthread_associate_blkcg(struct cgroup_subsys_state *css)
+{
+ struct kthread *kthread;
+
+ if (!(current->flags & PF_KTHREAD))
+ return;
+ kthread = to_kthread(current);
+ if (!kthread)
+ return;
+
+ if (kthread->blkcg_css) {
+ css_put(kthread->blkcg_css);
+ kthread->blkcg_css = NULL;
+ }
+ if (css) {
+ css_get(css);
+ kthread->blkcg_css = css;
+ }
+}
+EXPORT_SYMBOL(kthread_associate_blkcg);
+
+/**
+ * kthread_blkcg - get associated blkcg css of current kthread
+ *
+ * Current thread must be a kthread.
+ */
+struct cgroup_subsys_state *kthread_blkcg(void)
+{
+ struct kthread *kthread;
+
+ if (current->flags & PF_KTHREAD) {
+ kthread = to_kthread(current);
+ if (kthread)
+ return kthread->blkcg_css;
+ }
+ return NULL;
+}
+EXPORT_SYMBOL(kthread_blkcg);
+#endif
diff --git a/kernel/livepatch/Makefile b/kernel/livepatch/Makefile
index 2b8bdb1925da..b36ceda6488e 100644
--- a/kernel/livepatch/Makefile
+++ b/kernel/livepatch/Makefile
@@ -1,3 +1,3 @@
obj-$(CONFIG_LIVEPATCH) += livepatch.o
-livepatch-objs := core.o patch.o transition.o
+livepatch-objs := core.o patch.o shadow.o transition.o
diff --git a/kernel/livepatch/core.c b/kernel/livepatch/core.c
index bf8c8fd72589..de9e45dca70f 100644
--- a/kernel/livepatch/core.c
+++ b/kernel/livepatch/core.c
@@ -54,11 +54,6 @@ static bool klp_is_module(struct klp_object *obj)
return obj->name;
}
-static bool klp_is_object_loaded(struct klp_object *obj)
-{
- return !obj->name || obj->mod;
-}
-
/* sets obj->mod if object is not vmlinux and module is found */
static void klp_find_object_module(struct klp_object *obj)
{
@@ -285,6 +280,11 @@ static int klp_write_object_relocations(struct module *pmod,
static int __klp_disable_patch(struct klp_patch *patch)
{
+ struct klp_object *obj;
+
+ if (WARN_ON(!patch->enabled))
+ return -EINVAL;
+
if (klp_transition_patch)
return -EBUSY;
@@ -295,6 +295,10 @@ static int __klp_disable_patch(struct klp_patch *patch)
klp_init_transition(patch, KLP_UNPATCHED);
+ klp_for_each_object(patch, obj)
+ if (obj->patched)
+ klp_pre_unpatch_callback(obj);
+
/*
* Enforce the order of the func->transition writes in
* klp_init_transition() and the TIF_PATCH_PENDING writes in
@@ -388,13 +392,18 @@ static int __klp_enable_patch(struct klp_patch *patch)
if (!klp_is_object_loaded(obj))
continue;
- ret = klp_patch_object(obj);
+ ret = klp_pre_patch_callback(obj);
if (ret) {
- pr_warn("failed to enable patch '%s'\n",
- patch->mod->name);
+ pr_warn("pre-patch callback failed for object '%s'\n",
+ klp_is_module(obj) ? obj->name : "vmlinux");
+ goto err;
+ }
- klp_cancel_transition();
- return ret;
+ ret = klp_patch_object(obj);
+ if (ret) {
+ pr_warn("failed to patch object '%s'\n",
+ klp_is_module(obj) ? obj->name : "vmlinux");
+ goto err;
}
}
@@ -403,6 +412,11 @@ static int __klp_enable_patch(struct klp_patch *patch)
patch->enabled = true;
return 0;
+err:
+ pr_warn("failed to enable patch '%s'\n", patch->mod->name);
+
+ klp_cancel_transition();
+ return ret;
}
/**
@@ -854,9 +868,15 @@ static void klp_cleanup_module_patches_limited(struct module *mod,
* is in transition.
*/
if (patch->enabled || patch == klp_transition_patch) {
+
+ if (patch != klp_transition_patch)
+ klp_pre_unpatch_callback(obj);
+
pr_notice("reverting patch '%s' on unloading module '%s'\n",
patch->mod->name, obj->mod->name);
klp_unpatch_object(obj);
+
+ klp_post_unpatch_callback(obj);
}
klp_free_object_loaded(obj);
@@ -906,13 +926,25 @@ int klp_module_coming(struct module *mod)
pr_notice("applying patch '%s' to loading module '%s'\n",
patch->mod->name, obj->mod->name);
+ ret = klp_pre_patch_callback(obj);
+ if (ret) {
+ pr_warn("pre-patch callback failed for object '%s'\n",
+ obj->name);
+ goto err;
+ }
+
ret = klp_patch_object(obj);
if (ret) {
pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
patch->mod->name, obj->mod->name, ret);
+
+ klp_post_unpatch_callback(obj);
goto err;
}
+ if (patch != klp_transition_patch)
+ klp_post_patch_callback(obj);
+
break;
}
}
diff --git a/kernel/livepatch/core.h b/kernel/livepatch/core.h
index a351601d7f76..48a83d4364cf 100644
--- a/kernel/livepatch/core.h
+++ b/kernel/livepatch/core.h
@@ -2,6 +2,46 @@
#ifndef _LIVEPATCH_CORE_H
#define _LIVEPATCH_CORE_H
+#include <linux/livepatch.h>
+
extern struct mutex klp_mutex;
+static inline bool klp_is_object_loaded(struct klp_object *obj)
+{
+ return !obj->name || obj->mod;
+}
+
+static inline int klp_pre_patch_callback(struct klp_object *obj)
+{
+ int ret = 0;
+
+ if (obj->callbacks.pre_patch)
+ ret = (*obj->callbacks.pre_patch)(obj);
+
+ obj->callbacks.post_unpatch_enabled = !ret;
+
+ return ret;
+}
+
+static inline void klp_post_patch_callback(struct klp_object *obj)
+{
+ if (obj->callbacks.post_patch)
+ (*obj->callbacks.post_patch)(obj);
+}
+
+static inline void klp_pre_unpatch_callback(struct klp_object *obj)
+{
+ if (obj->callbacks.pre_unpatch)
+ (*obj->callbacks.pre_unpatch)(obj);
+}
+
+static inline void klp_post_unpatch_callback(struct klp_object *obj)
+{
+ if (obj->callbacks.post_unpatch_enabled &&
+ obj->callbacks.post_unpatch)
+ (*obj->callbacks.post_unpatch)(obj);
+
+ obj->callbacks.post_unpatch_enabled = false;
+}
+
#endif /* _LIVEPATCH_CORE_H */
diff --git a/kernel/livepatch/patch.c b/kernel/livepatch/patch.c
index 52c4e907c14b..82d584225dc6 100644
--- a/kernel/livepatch/patch.c
+++ b/kernel/livepatch/patch.c
@@ -28,6 +28,7 @@
#include <linux/slab.h>
#include <linux/bug.h>
#include <linux/printk.h>
+#include "core.h"
#include "patch.h"
#include "transition.h"
diff --git a/kernel/livepatch/shadow.c b/kernel/livepatch/shadow.c
new file mode 100644
index 000000000000..fdac27588d60
--- /dev/null
+++ b/kernel/livepatch/shadow.c
@@ -0,0 +1,277 @@
+/*
+ * shadow.c - Shadow Variables
+ *
+ * Copyright (C) 2014 Josh Poimboeuf <jpoimboe@redhat.com>
+ * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
+ * Copyright (C) 2017 Joe Lawrence <joe.lawrence@redhat.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/**
+ * DOC: Shadow variable API concurrency notes:
+ *
+ * The shadow variable API provides a simple relationship between an
+ * <obj, id> pair and a pointer value. It is the responsibility of the
+ * caller to provide any mutual exclusion required of the shadow data.
+ *
+ * Once a shadow variable is attached to its parent object via the
+ * klp_shadow_*alloc() API calls, it is considered live: any subsequent
+ * call to klp_shadow_get() may then return the shadow variable's data
+ * pointer. Callers of klp_shadow_*alloc() should prepare shadow data
+ * accordingly.
+ *
+ * The klp_shadow_*alloc() API calls may allocate memory for new shadow
+ * variable structures. Their implementation does not call kmalloc
+ * inside any spinlocks, but API callers should pass GFP flags according
+ * to their specific needs.
+ *
+ * The klp_shadow_hash is an RCU-enabled hashtable and is safe against
+ * concurrent klp_shadow_free() and klp_shadow_get() operations.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/hashtable.h>
+#include <linux/slab.h>
+#include <linux/livepatch.h>
+
+static DEFINE_HASHTABLE(klp_shadow_hash, 12);
+
+/*
+ * klp_shadow_lock provides exclusive access to the klp_shadow_hash and
+ * the shadow variables it references.
+ */
+static DEFINE_SPINLOCK(klp_shadow_lock);
+
+/**
+ * struct klp_shadow - shadow variable structure
+ * @node: klp_shadow_hash hash table node
+ * @rcu_head: RCU is used to safely free this structure
+ * @obj: pointer to parent object
+ * @id: data identifier
+ * @data: data area
+ */
+struct klp_shadow {
+ struct hlist_node node;
+ struct rcu_head rcu_head;
+ void *obj;
+ unsigned long id;
+ char data[];
+};
+
+/**
+ * klp_shadow_match() - verify a shadow variable matches given <obj, id>
+ * @shadow: shadow variable to match
+ * @obj: pointer to parent object
+ * @id: data identifier
+ *
+ * Return: true if the shadow variable matches.
+ */
+static inline bool klp_shadow_match(struct klp_shadow *shadow, void *obj,
+ unsigned long id)
+{
+ return shadow->obj == obj && shadow->id == id;
+}
+
+/**
+ * klp_shadow_get() - retrieve a shadow variable data pointer
+ * @obj: pointer to parent object
+ * @id: data identifier
+ *
+ * Return: the shadow variable data element, NULL on failure.
+ */
+void *klp_shadow_get(void *obj, unsigned long id)
+{
+ struct klp_shadow *shadow;
+
+ rcu_read_lock();
+
+ hash_for_each_possible_rcu(klp_shadow_hash, shadow, node,
+ (unsigned long)obj) {
+
+ if (klp_shadow_match(shadow, obj, id)) {
+ rcu_read_unlock();
+ return shadow->data;
+ }
+ }
+
+ rcu_read_unlock();
+
+ return NULL;
+}
+EXPORT_SYMBOL_GPL(klp_shadow_get);
+
+static void *__klp_shadow_get_or_alloc(void *obj, unsigned long id, void *data,
+ size_t size, gfp_t gfp_flags, bool warn_on_exist)
+{
+ struct klp_shadow *new_shadow;
+ void *shadow_data;
+ unsigned long flags;
+
+ /* Check if the shadow variable already exists */
+ shadow_data = klp_shadow_get(obj, id);
+ if (shadow_data)
+ goto exists;
+
+ /* Allocate a new shadow variable for use inside the lock below */
+ new_shadow = kzalloc(size + sizeof(*new_shadow), gfp_flags);
+ if (!new_shadow)
+ return NULL;
+
+ new_shadow->obj = obj;
+ new_shadow->id = id;
+
+ /* Initialize the shadow variable if data provided */
+ if (data)
+ memcpy(new_shadow->data, data, size);
+
+ /* Look for <obj, id> again under the lock */
+ spin_lock_irqsave(&klp_shadow_lock, flags);
+ shadow_data = klp_shadow_get(obj, id);
+ if (unlikely(shadow_data)) {
+ /*
+ * Shadow variable was found, throw away speculative
+ * allocation.
+ */
+ spin_unlock_irqrestore(&klp_shadow_lock, flags);
+ kfree(new_shadow);
+ goto exists;
+ }
+
+ /* No <obj, id> found, so attach the newly allocated one */
+ hash_add_rcu(klp_shadow_hash, &new_shadow->node,
+ (unsigned long)new_shadow->obj);
+ spin_unlock_irqrestore(&klp_shadow_lock, flags);
+
+ return new_shadow->data;
+
+exists:
+ if (warn_on_exist) {
+ WARN(1, "Duplicate shadow variable <%p, %lx>\n", obj, id);
+ return NULL;
+ }
+
+ return shadow_data;
+}
+
+/**
+ * klp_shadow_alloc() - allocate and add a new shadow variable
+ * @obj: pointer to parent object
+ * @id: data identifier
+ * @data: pointer to data to attach to parent
+ * @size: size of attached data
+ * @gfp_flags: GFP mask for allocation
+ *
+ * Allocates @size bytes for new shadow variable data using @gfp_flags
+ * and copies @size bytes from @data into the new shadow variable's own
+ * data space. If @data is NULL, @size bytes are still allocated, but
+ * no copy is performed. The new shadow variable is then added to the
+ * global hashtable.
+ *
+ * If an existing <obj, id> shadow variable can be found, this routine
+ * will issue a WARN, exit early and return NULL.
+ *
+ * Return: the shadow variable data element, NULL on duplicate or
+ * failure.
+ */
+void *klp_shadow_alloc(void *obj, unsigned long id, void *data,
+ size_t size, gfp_t gfp_flags)
+{
+ return __klp_shadow_get_or_alloc(obj, id, data, size, gfp_flags, true);
+}
+EXPORT_SYMBOL_GPL(klp_shadow_alloc);
+
+/**
+ * klp_shadow_get_or_alloc() - get existing or allocate a new shadow variable
+ * @obj: pointer to parent object
+ * @id: data identifier
+ * @data: pointer to data to attach to parent
+ * @size: size of attached data
+ * @gfp_flags: GFP mask for allocation
+ *
+ * Returns a pointer to existing shadow data if an <obj, id> shadow
+ * variable is already present. Otherwise, it creates a new shadow
+ * variable like klp_shadow_alloc().
+ *
+ * This function guarantees that only one shadow variable exists with
+ * the given @id for the given @obj. It also guarantees that the shadow
+ * variable will be initialized by the given @data only when it did not
+ * exist before.
+ *
+ * Return: the shadow variable data element, NULL on failure.
+ */
+void *klp_shadow_get_or_alloc(void *obj, unsigned long id, void *data,
+ size_t size, gfp_t gfp_flags)
+{
+ return __klp_shadow_get_or_alloc(obj, id, data, size, gfp_flags, false);
+}
+EXPORT_SYMBOL_GPL(klp_shadow_get_or_alloc);
+
+/**
+ * klp_shadow_free() - detach and free a <obj, id> shadow variable
+ * @obj: pointer to parent object
+ * @id: data identifier
+ *
+ * This function releases the memory for this <obj, id> shadow variable
+ * instance, callers should stop referencing it accordingly.
+ */
+void klp_shadow_free(void *obj, unsigned long id)
+{
+ struct klp_shadow *shadow;
+ unsigned long flags;
+
+ spin_lock_irqsave(&klp_shadow_lock, flags);
+
+ /* Delete <obj, id> from hash */
+ hash_for_each_possible(klp_shadow_hash, shadow, node,
+ (unsigned long)obj) {
+
+ if (klp_shadow_match(shadow, obj, id)) {
+ hash_del_rcu(&shadow->node);
+ kfree_rcu(shadow, rcu_head);
+ break;
+ }
+ }
+
+ spin_unlock_irqrestore(&klp_shadow_lock, flags);
+}
+EXPORT_SYMBOL_GPL(klp_shadow_free);
+
+/**
+ * klp_shadow_free_all() - detach and free all <*, id> shadow variables
+ * @id: data identifier
+ *
+ * This function releases the memory for all <*, id> shadow variable
+ * instances, callers should stop referencing them accordingly.
+ */
+void klp_shadow_free_all(unsigned long id)
+{
+ struct klp_shadow *shadow;
+ unsigned long flags;
+ int i;
+
+ spin_lock_irqsave(&klp_shadow_lock, flags);
+
+ /* Delete all <*, id> from hash */
+ hash_for_each(klp_shadow_hash, i, shadow, node) {
+ if (klp_shadow_match(shadow, shadow->obj, id)) {
+ hash_del_rcu(&shadow->node);
+ kfree_rcu(shadow, rcu_head);
+ }
+ }
+
+ spin_unlock_irqrestore(&klp_shadow_lock, flags);
+}
+EXPORT_SYMBOL_GPL(klp_shadow_free_all);
diff --git a/kernel/livepatch/transition.c b/kernel/livepatch/transition.c
index b004a1fb6032..56add6327736 100644
--- a/kernel/livepatch/transition.c
+++ b/kernel/livepatch/transition.c
@@ -82,6 +82,10 @@ static void klp_complete_transition(void)
unsigned int cpu;
bool immediate_func = false;
+ pr_debug("'%s': completing %s transition\n",
+ klp_transition_patch->mod->name,
+ klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
+
if (klp_target_state == KLP_UNPATCHED) {
/*
* All tasks have transitioned to KLP_UNPATCHED so we can now
@@ -109,9 +113,6 @@ static void klp_complete_transition(void)
}
}
- if (klp_target_state == KLP_UNPATCHED && !immediate_func)
- module_put(klp_transition_patch->mod);
-
/* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */
if (klp_target_state == KLP_PATCHED)
klp_synchronize_transition();
@@ -130,6 +131,27 @@ static void klp_complete_transition(void)
}
done:
+ klp_for_each_object(klp_transition_patch, obj) {
+ if (!klp_is_object_loaded(obj))
+ continue;
+ if (klp_target_state == KLP_PATCHED)
+ klp_post_patch_callback(obj);
+ else if (klp_target_state == KLP_UNPATCHED)
+ klp_post_unpatch_callback(obj);
+ }
+
+ pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name,
+ klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
+
+ /*
+ * See complementary comment in __klp_enable_patch() for why we
+ * keep the module reference for immediate patches.
+ */
+ if (!klp_transition_patch->immediate && !immediate_func &&
+ klp_target_state == KLP_UNPATCHED) {
+ module_put(klp_transition_patch->mod);
+ }
+
klp_target_state = KLP_UNDEFINED;
klp_transition_patch = NULL;
}
@@ -145,6 +167,9 @@ void klp_cancel_transition(void)
if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED))
return;
+ pr_debug("'%s': canceling patching transition, going to unpatch\n",
+ klp_transition_patch->mod->name);
+
klp_target_state = KLP_UNPATCHED;
klp_complete_transition();
}
@@ -408,9 +433,6 @@ void klp_try_complete_transition(void)
}
success:
- pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name,
- klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
-
/* we're done, now cleanup the data structures */
klp_complete_transition();
}
@@ -426,7 +448,8 @@ void klp_start_transition(void)
WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
- pr_notice("'%s': %s...\n", klp_transition_patch->mod->name,
+ pr_notice("'%s': starting %s transition\n",
+ klp_transition_patch->mod->name,
klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
/*
@@ -482,6 +505,9 @@ void klp_init_transition(struct klp_patch *patch, int state)
*/
klp_target_state = state;
+ pr_debug("'%s': initializing %s transition\n", patch->mod->name,
+ klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
+
/*
* If the patch can be applied or reverted immediately, skip the
* per-task transitions.
@@ -547,6 +573,11 @@ void klp_reverse_transition(void)
unsigned int cpu;
struct task_struct *g, *task;
+ pr_debug("'%s': reversing transition from %s\n",
+ klp_transition_patch->mod->name,
+ klp_target_state == KLP_PATCHED ? "patching to unpatching" :
+ "unpatching to patching");
+
klp_transition_patch->enabled = !klp_transition_patch->enabled;
klp_target_state = !klp_target_state;
diff --git a/kernel/locking/lockdep.c b/kernel/locking/lockdep.c
index e36e652d996f..9776da8db180 100644
--- a/kernel/locking/lockdep.c
+++ b/kernel/locking/lockdep.c
@@ -47,7 +47,6 @@
#include <linux/stringify.h>
#include <linux/bitops.h>
#include <linux/gfp.h>
-#include <linux/kmemcheck.h>
#include <linux/random.h>
#include <linux/jhash.h>
@@ -76,6 +75,19 @@ module_param(lock_stat, int, 0644);
#define lock_stat 0
#endif
+#ifdef CONFIG_BOOTPARAM_LOCKDEP_CROSSRELEASE_FULLSTACK
+static int crossrelease_fullstack = 1;
+#else
+static int crossrelease_fullstack;
+#endif
+static int __init allow_crossrelease_fullstack(char *str)
+{
+ crossrelease_fullstack = 1;
+ return 0;
+}
+
+early_param("crossrelease_fullstack", allow_crossrelease_fullstack);
+
/*
* lockdep_lock: protects the lockdep graph, the hashes and the
* class/list/hash allocators.
@@ -3225,8 +3237,6 @@ static void __lockdep_init_map(struct lockdep_map *lock, const char *name,
{
int i;
- kmemcheck_mark_initialized(lock, sizeof(*lock));
-
for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
lock->class_cache[i] = NULL;
@@ -4863,8 +4873,14 @@ static void add_xhlock(struct held_lock *hlock)
xhlock->trace.nr_entries = 0;
xhlock->trace.max_entries = MAX_XHLOCK_TRACE_ENTRIES;
xhlock->trace.entries = xhlock->trace_entries;
- xhlock->trace.skip = 3;
- save_stack_trace(&xhlock->trace);
+
+ if (crossrelease_fullstack) {
+ xhlock->trace.skip = 3;
+ save_stack_trace(&xhlock->trace);
+ } else {
+ xhlock->trace.nr_entries = 1;
+ xhlock->trace.entries[0] = hlock->acquire_ip;
+ }
}
static inline int same_context_xhlock(struct hist_lock *xhlock)
diff --git a/kernel/locking/qrwlock.c b/kernel/locking/qrwlock.c
index 2655f26ec882..c7471c3fb798 100644
--- a/kernel/locking/qrwlock.c
+++ b/kernel/locking/qrwlock.c
@@ -23,49 +23,11 @@
#include <linux/spinlock.h>
#include <asm/qrwlock.h>
-/*
- * This internal data structure is used for optimizing access to some of
- * the subfields within the atomic_t cnts.
- */
-struct __qrwlock {
- union {
- atomic_t cnts;
- struct {
-#ifdef __LITTLE_ENDIAN
- u8 wmode; /* Writer mode */
- u8 rcnts[3]; /* Reader counts */
-#else
- u8 rcnts[3]; /* Reader counts */
- u8 wmode; /* Writer mode */
-#endif
- };
- };
- arch_spinlock_t lock;
-};
-
-/**
- * rspin_until_writer_unlock - inc reader count & spin until writer is gone
- * @lock : Pointer to queue rwlock structure
- * @writer: Current queue rwlock writer status byte
- *
- * In interrupt context or at the head of the queue, the reader will just
- * increment the reader count & wait until the writer releases the lock.
- */
-static __always_inline void
-rspin_until_writer_unlock(struct qrwlock *lock, u32 cnts)
-{
- while ((cnts & _QW_WMASK) == _QW_LOCKED) {
- cpu_relax();
- cnts = atomic_read_acquire(&lock->cnts);
- }
-}
-
/**
* queued_read_lock_slowpath - acquire read lock of a queue rwlock
* @lock: Pointer to queue rwlock structure
- * @cnts: Current qrwlock lock value
*/
-void queued_read_lock_slowpath(struct qrwlock *lock, u32 cnts)
+void queued_read_lock_slowpath(struct qrwlock *lock)
{
/*
* Readers come here when they cannot get the lock without waiting
@@ -73,13 +35,11 @@ void queued_read_lock_slowpath(struct qrwlock *lock, u32 cnts)
if (unlikely(in_interrupt())) {
/*
* Readers in interrupt context will get the lock immediately
- * if the writer is just waiting (not holding the lock yet).
- * The rspin_until_writer_unlock() function returns immediately
- * in this case. Otherwise, they will spin (with ACQUIRE
- * semantics) until the lock is available without waiting in
- * the queue.
+ * if the writer is just waiting (not holding the lock yet),
+ * so spin with ACQUIRE semantics until the lock is available
+ * without waiting in the queue.
*/
- rspin_until_writer_unlock(lock, cnts);
+ atomic_cond_read_acquire(&lock->cnts, !(VAL & _QW_LOCKED));
return;
}
atomic_sub(_QR_BIAS, &lock->cnts);
@@ -88,14 +48,14 @@ void queued_read_lock_slowpath(struct qrwlock *lock, u32 cnts)
* Put the reader into the wait queue
*/
arch_spin_lock(&lock->wait_lock);
+ atomic_add(_QR_BIAS, &lock->cnts);
/*
* The ACQUIRE semantics of the following spinning code ensure
* that accesses can't leak upwards out of our subsequent critical
* section in the case that the lock is currently held for write.
*/
- cnts = atomic_fetch_add_acquire(_QR_BIAS, &lock->cnts);
- rspin_until_writer_unlock(lock, cnts);
+ atomic_cond_read_acquire(&lock->cnts, !(VAL & _QW_LOCKED));
/*
* Signal the next one in queue to become queue head
@@ -110,8 +70,6 @@ EXPORT_SYMBOL(queued_read_lock_slowpath);
*/
void queued_write_lock_slowpath(struct qrwlock *lock)
{
- u32 cnts;
-
/* Put the writer into the wait queue */
arch_spin_lock(&lock->wait_lock);
@@ -120,30 +78,14 @@ void queued_write_lock_slowpath(struct qrwlock *lock)
(atomic_cmpxchg_acquire(&lock->cnts, 0, _QW_LOCKED) == 0))
goto unlock;
- /*
- * Set the waiting flag to notify readers that a writer is pending,
- * or wait for a previous writer to go away.
- */
- for (;;) {
- struct __qrwlock *l = (struct __qrwlock *)lock;
-
- if (!READ_ONCE(l->wmode) &&
- (cmpxchg_relaxed(&l->wmode, 0, _QW_WAITING) == 0))
- break;
+ /* Set the waiting flag to notify readers that a writer is pending */
+ atomic_add(_QW_WAITING, &lock->cnts);
- cpu_relax();
- }
-
- /* When no more readers, set the locked flag */
- for (;;) {
- cnts = atomic_read(&lock->cnts);
- if ((cnts == _QW_WAITING) &&
- (atomic_cmpxchg_acquire(&lock->cnts, _QW_WAITING,
- _QW_LOCKED) == _QW_WAITING))
- break;
-
- cpu_relax();
- }
+ /* When no more readers or writers, set the locked flag */
+ do {
+ atomic_cond_read_acquire(&lock->cnts, VAL == _QW_WAITING);
+ } while (atomic_cmpxchg_relaxed(&lock->cnts, _QW_WAITING,
+ _QW_LOCKED) != _QW_WAITING);
unlock:
arch_spin_unlock(&lock->wait_lock);
}
diff --git a/kernel/locking/qspinlock_paravirt.h b/kernel/locking/qspinlock_paravirt.h
index 15b6a39366c6..6ee477765e6c 100644
--- a/kernel/locking/qspinlock_paravirt.h
+++ b/kernel/locking/qspinlock_paravirt.h
@@ -61,21 +61,50 @@ struct pv_node {
#include "qspinlock_stat.h"
/*
+ * Hybrid PV queued/unfair lock
+ *
* By replacing the regular queued_spin_trylock() with the function below,
* it will be called once when a lock waiter enter the PV slowpath before
- * being queued. By allowing one lock stealing attempt here when the pending
- * bit is off, it helps to reduce the performance impact of lock waiter
- * preemption without the drawback of lock starvation.
+ * being queued.
+ *
+ * The pending bit is set by the queue head vCPU of the MCS wait queue in
+ * pv_wait_head_or_lock() to signal that it is ready to spin on the lock.
+ * When that bit becomes visible to the incoming waiters, no lock stealing
+ * is allowed. The function will return immediately to make the waiters
+ * enter the MCS wait queue. So lock starvation shouldn't happen as long
+ * as the queued mode vCPUs are actively running to set the pending bit
+ * and hence disabling lock stealing.
+ *
+ * When the pending bit isn't set, the lock waiters will stay in the unfair
+ * mode spinning on the lock unless the MCS wait queue is empty. In this
+ * case, the lock waiters will enter the queued mode slowpath trying to
+ * become the queue head and set the pending bit.
+ *
+ * This hybrid PV queued/unfair lock combines the best attributes of a
+ * queued lock (no lock starvation) and an unfair lock (good performance
+ * on not heavily contended locks).
*/
-#define queued_spin_trylock(l) pv_queued_spin_steal_lock(l)
-static inline bool pv_queued_spin_steal_lock(struct qspinlock *lock)
+#define queued_spin_trylock(l) pv_hybrid_queued_unfair_trylock(l)
+static inline bool pv_hybrid_queued_unfair_trylock(struct qspinlock *lock)
{
struct __qspinlock *l = (void *)lock;
- if (!(atomic_read(&lock->val) & _Q_LOCKED_PENDING_MASK) &&
- (cmpxchg_acquire(&l->locked, 0, _Q_LOCKED_VAL) == 0)) {
- qstat_inc(qstat_pv_lock_stealing, true);
- return true;
+ /*
+ * Stay in unfair lock mode as long as queued mode waiters are
+ * present in the MCS wait queue but the pending bit isn't set.
+ */
+ for (;;) {
+ int val = atomic_read(&lock->val);
+
+ if (!(val & _Q_LOCKED_PENDING_MASK) &&
+ (cmpxchg_acquire(&l->locked, 0, _Q_LOCKED_VAL) == 0)) {
+ qstat_inc(qstat_pv_lock_stealing, true);
+ return true;
+ }
+ if (!(val & _Q_TAIL_MASK) || (val & _Q_PENDING_MASK))
+ break;
+
+ cpu_relax();
}
return false;
diff --git a/kernel/locking/rwsem.c b/kernel/locking/rwsem.c
index a6c76a4832b4..f549c552dbf1 100644
--- a/kernel/locking/rwsem.c
+++ b/kernel/locking/rwsem.c
@@ -29,6 +29,22 @@ void __sched down_read(struct rw_semaphore *sem)
EXPORT_SYMBOL(down_read);
+int __sched down_read_killable(struct rw_semaphore *sem)
+{
+ might_sleep();
+ rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
+
+ if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
+ rwsem_release(&sem->dep_map, 1, _RET_IP_);
+ return -EINTR;
+ }
+
+ rwsem_set_reader_owned(sem);
+ return 0;
+}
+
+EXPORT_SYMBOL(down_read_killable);
+
/*
* trylock for reading -- returns 1 if successful, 0 if contention
*/
diff --git a/kernel/locking/spinlock.c b/kernel/locking/spinlock.c
index 6e40fdfba326..1fd1a7543cdd 100644
--- a/kernel/locking/spinlock.c
+++ b/kernel/locking/spinlock.c
@@ -30,11 +30,10 @@
#if !defined(CONFIG_GENERIC_LOCKBREAK) || defined(CONFIG_DEBUG_LOCK_ALLOC)
/*
* The __lock_function inlines are taken from
- * include/linux/spinlock_api_smp.h
+ * spinlock : include/linux/spinlock_api_smp.h
+ * rwlock : include/linux/rwlock_api_smp.h
*/
#else
-#define raw_read_can_lock(l) read_can_lock(l)
-#define raw_write_can_lock(l) write_can_lock(l)
/*
* Some architectures can relax in favour of the CPU owning the lock.
@@ -69,7 +68,7 @@ void __lockfunc __raw_##op##_lock(locktype##_t *lock) \
\
if (!(lock)->break_lock) \
(lock)->break_lock = 1; \
- while (!raw_##op##_can_lock(lock) && (lock)->break_lock)\
+ while ((lock)->break_lock) \
arch_##op##_relax(&lock->raw_lock); \
} \
(lock)->break_lock = 0; \
@@ -89,7 +88,7 @@ unsigned long __lockfunc __raw_##op##_lock_irqsave(locktype##_t *lock) \
\
if (!(lock)->break_lock) \
(lock)->break_lock = 1; \
- while (!raw_##op##_can_lock(lock) && (lock)->break_lock)\
+ while ((lock)->break_lock) \
arch_##op##_relax(&lock->raw_lock); \
} \
(lock)->break_lock = 0; \
diff --git a/kernel/module.c b/kernel/module.c
index de66ec825992..222aba4aa960 100644
--- a/kernel/module.c
+++ b/kernel/module.c
@@ -278,6 +278,16 @@ static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
module_param(sig_enforce, bool_enable_only, 0644);
#endif /* !CONFIG_MODULE_SIG_FORCE */
+/*
+ * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
+ * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
+ */
+bool is_module_sig_enforced(void)
+{
+ return sig_enforce;
+}
+EXPORT_SYMBOL(is_module_sig_enforced);
+
/* Block module loading/unloading? */
int modules_disabled = 0;
core_param(nomodule, modules_disabled, bint, 0);
@@ -837,10 +847,8 @@ static int add_module_usage(struct module *a, struct module *b)
pr_debug("Allocating new usage for %s.\n", a->name);
use = kmalloc(sizeof(*use), GFP_ATOMIC);
- if (!use) {
- pr_warn("%s: out of memory loading\n", a->name);
+ if (!use)
return -ENOMEM;
- }
use->source = a;
use->target = b;
@@ -1516,7 +1524,7 @@ static void add_sect_attrs(struct module *mod, const struct load_info *info)
sattr->mattr.show = module_sect_show;
sattr->mattr.store = NULL;
sattr->mattr.attr.name = sattr->name;
- sattr->mattr.attr.mode = S_IRUGO;
+ sattr->mattr.attr.mode = S_IRUSR;
*(gattr++) = &(sattr++)->mattr.attr;
}
*gattr = NULL;
@@ -4147,6 +4155,7 @@ static int m_show(struct seq_file *m, void *p)
{
struct module *mod = list_entry(p, struct module, list);
char buf[MODULE_FLAGS_BUF_SIZE];
+ unsigned long value;
/* We always ignore unformed modules. */
if (mod->state == MODULE_STATE_UNFORMED)
@@ -4162,7 +4171,8 @@ static int m_show(struct seq_file *m, void *p)
mod->state == MODULE_STATE_COMING ? "Loading" :
"Live");
/* Used by oprofile and other similar tools. */
- seq_printf(m, " 0x%pK", mod->core_layout.base);
+ value = m->private ? 0 : (unsigned long)mod->core_layout.base;
+ seq_printf(m, " 0x" KALLSYM_FMT, value);
/* Taints info */
if (mod->taints)
@@ -4184,9 +4194,23 @@ static const struct seq_operations modules_op = {
.show = m_show
};
+/*
+ * This also sets the "private" pointer to non-NULL if the
+ * kernel pointers should be hidden (so you can just test
+ * "m->private" to see if you should keep the values private).
+ *
+ * We use the same logic as for /proc/kallsyms.
+ */
static int modules_open(struct inode *inode, struct file *file)
{
- return seq_open(file, &modules_op);
+ int err = seq_open(file, &modules_op);
+
+ if (!err) {
+ struct seq_file *m = file->private_data;
+ m->private = kallsyms_show_value() ? NULL : (void *)8ul;
+ }
+
+ return 0;
}
static const struct file_operations proc_modules_operations = {
diff --git a/kernel/padata.c b/kernel/padata.c
index 868f947166d7..f262c9a4e70a 100644
--- a/kernel/padata.c
+++ b/kernel/padata.c
@@ -131,6 +131,7 @@ int padata_do_parallel(struct padata_instance *pinst,
padata->cb_cpu = cb_cpu;
target_cpu = padata_cpu_hash(pd);
+ padata->cpu = target_cpu;
queue = per_cpu_ptr(pd->pqueue, target_cpu);
spin_lock(&queue->parallel.lock);
@@ -275,11 +276,51 @@ static void padata_reorder(struct parallel_data *pd)
return;
}
+static void invoke_padata_reorder(struct work_struct *work)
+{
+ struct padata_parallel_queue *pqueue;
+ struct parallel_data *pd;
+
+ local_bh_disable();
+ pqueue = container_of(work, struct padata_parallel_queue, reorder_work);
+ pd = pqueue->pd;
+ padata_reorder(pd);
+ local_bh_enable();
+}
+
static void padata_reorder_timer(unsigned long arg)
{
struct parallel_data *pd = (struct parallel_data *)arg;
+ unsigned int weight;
+ int target_cpu, cpu;
- padata_reorder(pd);
+ cpu = get_cpu();
+
+ /* We don't lock pd here to not interfere with parallel processing
+ * padata_reorder() calls on other CPUs. We just need any CPU out of
+ * the cpumask.pcpu set. It would be nice if it's the right one but
+ * it doesn't matter if we're off to the next one by using an outdated
+ * pd->processed value.
+ */
+ weight = cpumask_weight(pd->cpumask.pcpu);
+ target_cpu = padata_index_to_cpu(pd, pd->processed % weight);
+
+ /* ensure to call the reorder callback on the correct CPU */
+ if (cpu != target_cpu) {
+ struct padata_parallel_queue *pqueue;
+ struct padata_instance *pinst;
+
+ /* The timer function is serialized wrt itself -- no locking
+ * needed.
+ */
+ pinst = pd->pinst;
+ pqueue = per_cpu_ptr(pd->pqueue, target_cpu);
+ queue_work_on(target_cpu, pinst->wq, &pqueue->reorder_work);
+ } else {
+ padata_reorder(pd);
+ }
+
+ put_cpu();
}
static void padata_serial_worker(struct work_struct *serial_work)
@@ -323,10 +364,21 @@ void padata_do_serial(struct padata_priv *padata)
int cpu;
struct padata_parallel_queue *pqueue;
struct parallel_data *pd;
+ int reorder_via_wq = 0;
pd = padata->pd;
cpu = get_cpu();
+
+ /* We need to run on the same CPU padata_do_parallel(.., padata, ..)
+ * was called on -- or, at least, enqueue the padata object into the
+ * correct per-cpu queue.
+ */
+ if (cpu != padata->cpu) {
+ reorder_via_wq = 1;
+ cpu = padata->cpu;
+ }
+
pqueue = per_cpu_ptr(pd->pqueue, cpu);
spin_lock(&pqueue->reorder.lock);
@@ -336,7 +388,13 @@ void padata_do_serial(struct padata_priv *padata)
put_cpu();
- padata_reorder(pd);
+ /* If we're running on the wrong CPU, call padata_reorder() via a
+ * kernel worker.
+ */
+ if (reorder_via_wq)
+ queue_work_on(cpu, pd->pinst->wq, &pqueue->reorder_work);
+ else
+ padata_reorder(pd);
}
EXPORT_SYMBOL(padata_do_serial);
@@ -384,8 +442,14 @@ static void padata_init_pqueues(struct parallel_data *pd)
struct padata_parallel_queue *pqueue;
cpu_index = 0;
- for_each_cpu(cpu, pd->cpumask.pcpu) {
+ for_each_possible_cpu(cpu) {
pqueue = per_cpu_ptr(pd->pqueue, cpu);
+
+ if (!cpumask_test_cpu(cpu, pd->cpumask.pcpu)) {
+ pqueue->cpu_index = -1;
+ continue;
+ }
+
pqueue->pd = pd;
pqueue->cpu_index = cpu_index;
cpu_index++;
@@ -393,6 +457,7 @@ static void padata_init_pqueues(struct parallel_data *pd)
__padata_list_init(&pqueue->reorder);
__padata_list_init(&pqueue->parallel);
INIT_WORK(&pqueue->work, padata_parallel_worker);
+ INIT_WORK(&pqueue->reorder_work, invoke_padata_reorder);
atomic_set(&pqueue->num_obj, 0);
}
}
diff --git a/kernel/power/Kconfig b/kernel/power/Kconfig
index e8517b63eb37..e880ca22c5a5 100644
--- a/kernel/power/Kconfig
+++ b/kernel/power/Kconfig
@@ -259,20 +259,6 @@ config APM_EMULATION
anything, try disabling/enabling this option (or disabling/enabling
APM in your BIOS).
-config PM_OPP
- bool
- select SRCU
- ---help---
- SOCs have a standard set of tuples consisting of frequency and
- voltage pairs that the device will support per voltage domain. This
- is called Operating Performance Point or OPP. The actual definitions
- of OPP varies over silicon within the same family of devices.
-
- OPP layer organizes the data internally using device pointers
- representing individual voltage domains and provides SOC
- implementations a ready to use framework to manage OPPs.
- For more information, read <file:Documentation/power/opp.txt>
-
config PM_CLK
def_bool y
depends on PM && HAVE_CLK
diff --git a/kernel/power/qos.c b/kernel/power/qos.c
index 97b0df71303e..9d7503910ce2 100644
--- a/kernel/power/qos.c
+++ b/kernel/power/qos.c
@@ -701,8 +701,8 @@ static int __init pm_qos_power_init(void)
for (i = PM_QOS_CPU_DMA_LATENCY; i < PM_QOS_NUM_CLASSES; i++) {
ret = register_pm_qos_misc(pm_qos_array[i], d);
if (ret < 0) {
- printk(KERN_ERR "pm_qos_param: %s setup failed\n",
- pm_qos_array[i]->name);
+ pr_err("%s: %s setup failed\n",
+ __func__, pm_qos_array[i]->name);
return ret;
}
}
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c
index 0972a8e09d08..bce0464524d8 100644
--- a/kernel/power/snapshot.c
+++ b/kernel/power/snapshot.c
@@ -10,6 +10,8 @@
*
*/
+#define pr_fmt(fmt) "PM: " fmt
+
#include <linux/version.h>
#include <linux/module.h>
#include <linux/mm.h>
@@ -967,7 +969,7 @@ void __init __register_nosave_region(unsigned long start_pfn,
region->end_pfn = end_pfn;
list_add_tail(&region->list, &nosave_regions);
Report:
- printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
+ pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
(unsigned long long) start_pfn << PAGE_SHIFT,
((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
}
@@ -1039,7 +1041,7 @@ static void mark_nosave_pages(struct memory_bitmap *bm)
list_for_each_entry(region, &nosave_regions, list) {
unsigned long pfn;
- pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
+ pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
(unsigned long long) region->start_pfn << PAGE_SHIFT,
((unsigned long long) region->end_pfn << PAGE_SHIFT)
- 1);
@@ -1095,7 +1097,7 @@ int create_basic_memory_bitmaps(void)
free_pages_map = bm2;
mark_nosave_pages(forbidden_pages_map);
- pr_debug("PM: Basic memory bitmaps created\n");
+ pr_debug("Basic memory bitmaps created\n");
return 0;
@@ -1131,7 +1133,7 @@ void free_basic_memory_bitmaps(void)
memory_bm_free(bm2, PG_UNSAFE_CLEAR);
kfree(bm2);
- pr_debug("PM: Basic memory bitmaps freed\n");
+ pr_debug("Basic memory bitmaps freed\n");
}
void clear_free_pages(void)
@@ -1152,7 +1154,7 @@ void clear_free_pages(void)
pfn = memory_bm_next_pfn(bm);
}
memory_bm_position_reset(bm);
- pr_info("PM: free pages cleared after restore\n");
+ pr_info("free pages cleared after restore\n");
#endif /* PAGE_POISONING_ZERO */
}
@@ -1690,7 +1692,7 @@ int hibernate_preallocate_memory(void)
ktime_t start, stop;
int error;
- printk(KERN_INFO "PM: Preallocating image memory... ");
+ pr_info("Preallocating image memory... ");
start = ktime_get();
error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
@@ -1821,13 +1823,13 @@ int hibernate_preallocate_memory(void)
out:
stop = ktime_get();
- printk(KERN_CONT "done (allocated %lu pages)\n", pages);
+ pr_cont("done (allocated %lu pages)\n", pages);
swsusp_show_speed(start, stop, pages, "Allocated");
return 0;
err_out:
- printk(KERN_CONT "\n");
+ pr_cont("\n");
swsusp_free();
return -ENOMEM;
}
@@ -1867,8 +1869,8 @@ static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
free += zone_page_state(zone, NR_FREE_PAGES);
nr_pages += count_pages_for_highmem(nr_highmem);
- pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
- nr_pages, PAGES_FOR_IO, free);
+ pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
+ nr_pages, PAGES_FOR_IO, free);
return free > nr_pages + PAGES_FOR_IO;
}
@@ -1882,7 +1884,7 @@ static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
*/
static inline int get_highmem_buffer(int safe_needed)
{
- buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
+ buffer = get_image_page(GFP_ATOMIC, safe_needed);
return buffer ? 0 : -ENOMEM;
}
@@ -1943,7 +1945,7 @@ static int swsusp_alloc(struct memory_bitmap *copy_bm,
while (nr_pages-- > 0) {
struct page *page;
- page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
+ page = alloc_image_page(GFP_ATOMIC);
if (!page)
goto err_out;
memory_bm_set_bit(copy_bm, page_to_pfn(page));
@@ -1961,20 +1963,20 @@ asmlinkage __visible int swsusp_save(void)
{
unsigned int nr_pages, nr_highmem;
- printk(KERN_INFO "PM: Creating hibernation image:\n");
+ pr_info("Creating hibernation image:\n");
drain_local_pages(NULL);
nr_pages = count_data_pages();
nr_highmem = count_highmem_pages();
- printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
+ pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
if (!enough_free_mem(nr_pages, nr_highmem)) {
- printk(KERN_ERR "PM: Not enough free memory\n");
+ pr_err("Not enough free memory\n");
return -ENOMEM;
}
if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
- printk(KERN_ERR "PM: Memory allocation failed\n");
+ pr_err("Memory allocation failed\n");
return -ENOMEM;
}
@@ -1995,8 +1997,7 @@ asmlinkage __visible int swsusp_save(void)
nr_copy_pages = nr_pages;
nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
- printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
- nr_pages);
+ pr_info("Hibernation image created (%d pages copied)\n", nr_pages);
return 0;
}
@@ -2170,7 +2171,7 @@ static int check_header(struct swsusp_info *info)
if (!reason && info->num_physpages != get_num_physpages())
reason = "memory size";
if (reason) {
- printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
+ pr_err("Image mismatch: %s\n", reason);
return -EPERM;
}
return 0;
diff --git a/kernel/power/suspend.c b/kernel/power/suspend.c
index ccd2d20e6b06..0685c4499431 100644
--- a/kernel/power/suspend.c
+++ b/kernel/power/suspend.c
@@ -437,7 +437,6 @@ static int suspend_enter(suspend_state_t state, bool *wakeup)
error = suspend_ops->enter(state);
trace_suspend_resume(TPS("machine_suspend"),
state, false);
- events_check_enabled = false;
} else if (*wakeup) {
error = -EBUSY;
}
@@ -582,6 +581,7 @@ static int enter_state(suspend_state_t state)
pm_restore_gfp_mask();
Finish:
+ events_check_enabled = false;
pm_pr_dbg("Finishing wakeup.\n");
suspend_finish();
Unlock:
diff --git a/kernel/power/swap.c b/kernel/power/swap.c
index d7cdc426ee38..293ead59eccc 100644
--- a/kernel/power/swap.c
+++ b/kernel/power/swap.c
@@ -12,6 +12,8 @@
*
*/
+#define pr_fmt(fmt) "PM: " fmt
+
#include <linux/module.h>
#include <linux/file.h>
#include <linux/delay.h>
@@ -241,9 +243,9 @@ static void hib_end_io(struct bio *bio)
struct page *page = bio->bi_io_vec[0].bv_page;
if (bio->bi_status) {
- printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
- MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
- (unsigned long long)bio->bi_iter.bi_sector);
+ pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
+ MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
+ (unsigned long long)bio->bi_iter.bi_sector);
}
if (bio_data_dir(bio) == WRITE)
@@ -273,8 +275,8 @@ static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
bio_set_op_attrs(bio, op, op_flags);
if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
- printk(KERN_ERR "PM: Adding page to bio failed at %llu\n",
- (unsigned long long)bio->bi_iter.bi_sector);
+ pr_err("Adding page to bio failed at %llu\n",
+ (unsigned long long)bio->bi_iter.bi_sector);
bio_put(bio);
return -EFAULT;
}
@@ -319,7 +321,7 @@ static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
swsusp_resume_block, swsusp_header, NULL);
} else {
- printk(KERN_ERR "PM: Swap header not found!\n");
+ pr_err("Swap header not found!\n");
error = -ENODEV;
}
return error;
@@ -413,8 +415,7 @@ static int get_swap_writer(struct swap_map_handle *handle)
ret = swsusp_swap_check();
if (ret) {
if (ret != -ENOSPC)
- printk(KERN_ERR "PM: Cannot find swap device, try "
- "swapon -a.\n");
+ pr_err("Cannot find swap device, try swapon -a\n");
return ret;
}
handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
@@ -491,9 +492,9 @@ static int swap_writer_finish(struct swap_map_handle *handle,
{
if (!error) {
flush_swap_writer(handle);
- printk(KERN_INFO "PM: S");
+ pr_info("S");
error = mark_swapfiles(handle, flags);
- printk("|\n");
+ pr_cont("|\n");
}
if (error)
@@ -542,7 +543,7 @@ static int save_image(struct swap_map_handle *handle,
hib_init_batch(&hb);
- printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
+ pr_info("Saving image data pages (%u pages)...\n",
nr_to_write);
m = nr_to_write / 10;
if (!m)
@@ -557,8 +558,8 @@ static int save_image(struct swap_map_handle *handle,
if (ret)
break;
if (!(nr_pages % m))
- printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
- nr_pages / m * 10);
+ pr_info("Image saving progress: %3d%%\n",
+ nr_pages / m * 10);
nr_pages++;
}
err2 = hib_wait_io(&hb);
@@ -566,7 +567,7 @@ static int save_image(struct swap_map_handle *handle,
if (!ret)
ret = err2;
if (!ret)
- printk(KERN_INFO "PM: Image saving done.\n");
+ pr_info("Image saving done\n");
swsusp_show_speed(start, stop, nr_to_write, "Wrote");
return ret;
}
@@ -692,14 +693,14 @@ static int save_image_lzo(struct swap_map_handle *handle,
page = (void *)__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
if (!page) {
- printk(KERN_ERR "PM: Failed to allocate LZO page\n");
+ pr_err("Failed to allocate LZO page\n");
ret = -ENOMEM;
goto out_clean;
}
data = vmalloc(sizeof(*data) * nr_threads);
if (!data) {
- printk(KERN_ERR "PM: Failed to allocate LZO data\n");
+ pr_err("Failed to allocate LZO data\n");
ret = -ENOMEM;
goto out_clean;
}
@@ -708,7 +709,7 @@ static int save_image_lzo(struct swap_map_handle *handle,
crc = kmalloc(sizeof(*crc), GFP_KERNEL);
if (!crc) {
- printk(KERN_ERR "PM: Failed to allocate crc\n");
+ pr_err("Failed to allocate crc\n");
ret = -ENOMEM;
goto out_clean;
}
@@ -726,8 +727,7 @@ static int save_image_lzo(struct swap_map_handle *handle,
"image_compress/%u", thr);
if (IS_ERR(data[thr].thr)) {
data[thr].thr = NULL;
- printk(KERN_ERR
- "PM: Cannot start compression threads\n");
+ pr_err("Cannot start compression threads\n");
ret = -ENOMEM;
goto out_clean;
}
@@ -749,7 +749,7 @@ static int save_image_lzo(struct swap_map_handle *handle,
crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
if (IS_ERR(crc->thr)) {
crc->thr = NULL;
- printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
+ pr_err("Cannot start CRC32 thread\n");
ret = -ENOMEM;
goto out_clean;
}
@@ -760,10 +760,9 @@ static int save_image_lzo(struct swap_map_handle *handle,
*/
handle->reqd_free_pages = reqd_free_pages();
- printk(KERN_INFO
- "PM: Using %u thread(s) for compression.\n"
- "PM: Compressing and saving image data (%u pages)...\n",
- nr_threads, nr_to_write);
+ pr_info("Using %u thread(s) for compression\n", nr_threads);
+ pr_info("Compressing and saving image data (%u pages)...\n",
+ nr_to_write);
m = nr_to_write / 10;
if (!m)
m = 1;
@@ -783,10 +782,8 @@ static int save_image_lzo(struct swap_map_handle *handle,
data_of(*snapshot), PAGE_SIZE);
if (!(nr_pages % m))
- printk(KERN_INFO
- "PM: Image saving progress: "
- "%3d%%\n",
- nr_pages / m * 10);
+ pr_info("Image saving progress: %3d%%\n",
+ nr_pages / m * 10);
nr_pages++;
}
if (!off)
@@ -813,15 +810,14 @@ static int save_image_lzo(struct swap_map_handle *handle,
ret = data[thr].ret;
if (ret < 0) {
- printk(KERN_ERR "PM: LZO compression failed\n");
+ pr_err("LZO compression failed\n");
goto out_finish;
}
if (unlikely(!data[thr].cmp_len ||
data[thr].cmp_len >
lzo1x_worst_compress(data[thr].unc_len))) {
- printk(KERN_ERR
- "PM: Invalid LZO compressed length\n");
+ pr_err("Invalid LZO compressed length\n");
ret = -1;
goto out_finish;
}
@@ -857,7 +853,7 @@ out_finish:
if (!ret)
ret = err2;
if (!ret)
- printk(KERN_INFO "PM: Image saving done.\n");
+ pr_info("Image saving done\n");
swsusp_show_speed(start, stop, nr_to_write, "Wrote");
out_clean:
if (crc) {
@@ -888,7 +884,7 @@ static int enough_swap(unsigned int nr_pages, unsigned int flags)
unsigned int free_swap = count_swap_pages(root_swap, 1);
unsigned int required;
- pr_debug("PM: Free swap pages: %u\n", free_swap);
+ pr_debug("Free swap pages: %u\n", free_swap);
required = PAGES_FOR_IO + nr_pages;
return free_swap > required;
@@ -915,12 +911,12 @@ int swsusp_write(unsigned int flags)
pages = snapshot_get_image_size();
error = get_swap_writer(&handle);
if (error) {
- printk(KERN_ERR "PM: Cannot get swap writer\n");
+ pr_err("Cannot get swap writer\n");
return error;
}
if (flags & SF_NOCOMPRESS_MODE) {
if (!enough_swap(pages, flags)) {
- printk(KERN_ERR "PM: Not enough free swap\n");
+ pr_err("Not enough free swap\n");
error = -ENOSPC;
goto out_finish;
}
@@ -1068,8 +1064,7 @@ static int load_image(struct swap_map_handle *handle,
hib_init_batch(&hb);
clean_pages_on_read = true;
- printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
- nr_to_read);
+ pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
m = nr_to_read / 10;
if (!m)
m = 1;
@@ -1087,8 +1082,8 @@ static int load_image(struct swap_map_handle *handle,
if (ret)
break;
if (!(nr_pages % m))
- printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
- nr_pages / m * 10);
+ pr_info("Image loading progress: %3d%%\n",
+ nr_pages / m * 10);
nr_pages++;
}
err2 = hib_wait_io(&hb);
@@ -1096,7 +1091,7 @@ static int load_image(struct swap_map_handle *handle,
if (!ret)
ret = err2;
if (!ret) {
- printk(KERN_INFO "PM: Image loading done.\n");
+ pr_info("Image loading done\n");
snapshot_write_finalize(snapshot);
if (!snapshot_image_loaded(snapshot))
ret = -ENODATA;
@@ -1190,14 +1185,14 @@ static int load_image_lzo(struct swap_map_handle *handle,
page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
if (!page) {
- printk(KERN_ERR "PM: Failed to allocate LZO page\n");
+ pr_err("Failed to allocate LZO page\n");
ret = -ENOMEM;
goto out_clean;
}
data = vmalloc(sizeof(*data) * nr_threads);
if (!data) {
- printk(KERN_ERR "PM: Failed to allocate LZO data\n");
+ pr_err("Failed to allocate LZO data\n");
ret = -ENOMEM;
goto out_clean;
}
@@ -1206,7 +1201,7 @@ static int load_image_lzo(struct swap_map_handle *handle,
crc = kmalloc(sizeof(*crc), GFP_KERNEL);
if (!crc) {
- printk(KERN_ERR "PM: Failed to allocate crc\n");
+ pr_err("Failed to allocate crc\n");
ret = -ENOMEM;
goto out_clean;
}
@@ -1226,8 +1221,7 @@ static int load_image_lzo(struct swap_map_handle *handle,
"image_decompress/%u", thr);
if (IS_ERR(data[thr].thr)) {
data[thr].thr = NULL;
- printk(KERN_ERR
- "PM: Cannot start decompression threads\n");
+ pr_err("Cannot start decompression threads\n");
ret = -ENOMEM;
goto out_clean;
}
@@ -1249,7 +1243,7 @@ static int load_image_lzo(struct swap_map_handle *handle,
crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
if (IS_ERR(crc->thr)) {
crc->thr = NULL;
- printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
+ pr_err("Cannot start CRC32 thread\n");
ret = -ENOMEM;
goto out_clean;
}
@@ -1274,8 +1268,7 @@ static int load_image_lzo(struct swap_map_handle *handle,
if (!page[i]) {
if (i < LZO_CMP_PAGES) {
ring_size = i;
- printk(KERN_ERR
- "PM: Failed to allocate LZO pages\n");
+ pr_err("Failed to allocate LZO pages\n");
ret = -ENOMEM;
goto out_clean;
} else {
@@ -1285,10 +1278,9 @@ static int load_image_lzo(struct swap_map_handle *handle,
}
want = ring_size = i;
- printk(KERN_INFO
- "PM: Using %u thread(s) for decompression.\n"
- "PM: Loading and decompressing image data (%u pages)...\n",
- nr_threads, nr_to_read);
+ pr_info("Using %u thread(s) for decompression\n", nr_threads);
+ pr_info("Loading and decompressing image data (%u pages)...\n",
+ nr_to_read);
m = nr_to_read / 10;
if (!m)
m = 1;
@@ -1348,8 +1340,7 @@ static int load_image_lzo(struct swap_map_handle *handle,
if (unlikely(!data[thr].cmp_len ||
data[thr].cmp_len >
lzo1x_worst_compress(LZO_UNC_SIZE))) {
- printk(KERN_ERR
- "PM: Invalid LZO compressed length\n");
+ pr_err("Invalid LZO compressed length\n");
ret = -1;
goto out_finish;
}
@@ -1400,16 +1391,14 @@ static int load_image_lzo(struct swap_map_handle *handle,
ret = data[thr].ret;
if (ret < 0) {
- printk(KERN_ERR
- "PM: LZO decompression failed\n");
+ pr_err("LZO decompression failed\n");
goto out_finish;
}
if (unlikely(!data[thr].unc_len ||
data[thr].unc_len > LZO_UNC_SIZE ||
data[thr].unc_len & (PAGE_SIZE - 1))) {
- printk(KERN_ERR
- "PM: Invalid LZO uncompressed length\n");
+ pr_err("Invalid LZO uncompressed length\n");
ret = -1;
goto out_finish;
}
@@ -1420,10 +1409,8 @@ static int load_image_lzo(struct swap_map_handle *handle,
data[thr].unc + off, PAGE_SIZE);
if (!(nr_pages % m))
- printk(KERN_INFO
- "PM: Image loading progress: "
- "%3d%%\n",
- nr_pages / m * 10);
+ pr_info("Image loading progress: %3d%%\n",
+ nr_pages / m * 10);
nr_pages++;
ret = snapshot_write_next(snapshot);
@@ -1448,15 +1435,14 @@ out_finish:
}
stop = ktime_get();
if (!ret) {
- printk(KERN_INFO "PM: Image loading done.\n");
+ pr_info("Image loading done\n");
snapshot_write_finalize(snapshot);
if (!snapshot_image_loaded(snapshot))
ret = -ENODATA;
if (!ret) {
if (swsusp_header->flags & SF_CRC32_MODE) {
if(handle->crc32 != swsusp_header->crc32) {
- printk(KERN_ERR
- "PM: Invalid image CRC32!\n");
+ pr_err("Invalid image CRC32!\n");
ret = -ENODATA;
}
}
@@ -1513,9 +1499,9 @@ int swsusp_read(unsigned int *flags_p)
swap_reader_finish(&handle);
end:
if (!error)
- pr_debug("PM: Image successfully loaded\n");
+ pr_debug("Image successfully loaded\n");
else
- pr_debug("PM: Error %d resuming\n", error);
+ pr_debug("Error %d resuming\n", error);
return error;
}
@@ -1552,13 +1538,13 @@ put:
if (error)
blkdev_put(hib_resume_bdev, FMODE_READ);
else
- pr_debug("PM: Image signature found, resuming\n");
+ pr_debug("Image signature found, resuming\n");
} else {
error = PTR_ERR(hib_resume_bdev);
}
if (error)
- pr_debug("PM: Image not found (code %d)\n", error);
+ pr_debug("Image not found (code %d)\n", error);
return error;
}
@@ -1570,7 +1556,7 @@ put:
void swsusp_close(fmode_t mode)
{
if (IS_ERR(hib_resume_bdev)) {
- pr_debug("PM: Image device not initialised\n");
+ pr_debug("Image device not initialised\n");
return;
}
@@ -1594,7 +1580,7 @@ int swsusp_unmark(void)
swsusp_resume_block,
swsusp_header, NULL);
} else {
- printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
+ pr_err("Cannot find swsusp signature!\n");
error = -ENODEV;
}
diff --git a/kernel/rcu/rcu.h b/kernel/rcu/rcu.h
index e4b43fef89f5..59c471de342a 100644
--- a/kernel/rcu/rcu.h
+++ b/kernel/rcu/rcu.h
@@ -203,6 +203,21 @@ static inline bool __rcu_reclaim(const char *rn, struct rcu_head *head)
extern int rcu_cpu_stall_suppress;
int rcu_jiffies_till_stall_check(void);
+#define rcu_ftrace_dump_stall_suppress() \
+do { \
+ if (!rcu_cpu_stall_suppress) \
+ rcu_cpu_stall_suppress = 3; \
+} while (0)
+
+#define rcu_ftrace_dump_stall_unsuppress() \
+do { \
+ if (rcu_cpu_stall_suppress == 3) \
+ rcu_cpu_stall_suppress = 0; \
+} while (0)
+
+#else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
+#define rcu_ftrace_dump_stall_suppress()
+#define rcu_ftrace_dump_stall_unsuppress()
#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
/*
@@ -220,8 +235,12 @@ do { \
static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
\
if (!atomic_read(&___rfd_beenhere) && \
- !atomic_xchg(&___rfd_beenhere, 1)) \
+ !atomic_xchg(&___rfd_beenhere, 1)) { \
+ tracing_off(); \
+ rcu_ftrace_dump_stall_suppress(); \
ftrace_dump(oops_dump_mode); \
+ rcu_ftrace_dump_stall_unsuppress(); \
+ } \
} while (0)
void rcu_early_boot_tests(void);
diff --git a/kernel/rcu/rcu_segcblist.c b/kernel/rcu/rcu_segcblist.c
index 7649fcd2c4c7..88cba7c2956c 100644
--- a/kernel/rcu/rcu_segcblist.c
+++ b/kernel/rcu/rcu_segcblist.c
@@ -23,6 +23,7 @@
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
+#include <linux/rcupdate.h>
#include "rcu_segcblist.h"
diff --git a/kernel/rcu/rcutorture.c b/kernel/rcu/rcutorture.c
index 96a3cdaeed91..74f6b0146b98 100644
--- a/kernel/rcu/rcutorture.c
+++ b/kernel/rcu/rcutorture.c
@@ -51,6 +51,7 @@
#include <asm/byteorder.h>
#include <linux/torture.h>
#include <linux/vmalloc.h>
+#include <linux/sched/debug.h>
#include "rcu.h"
@@ -89,6 +90,7 @@ torture_param(int, shutdown_secs, 0, "Shutdown time (s), <= zero to disable.");
torture_param(int, stall_cpu, 0, "Stall duration (s), zero to disable.");
torture_param(int, stall_cpu_holdoff, 10,
"Time to wait before starting stall (s).");
+torture_param(int, stall_cpu_irqsoff, 0, "Disable interrupts while stalling.");
torture_param(int, stat_interval, 60,
"Number of seconds between stats printk()s");
torture_param(int, stutter, 5, "Number of seconds to run/halt test");
@@ -1239,6 +1241,7 @@ rcu_torture_stats_print(void)
long pipesummary[RCU_TORTURE_PIPE_LEN + 1] = { 0 };
long batchsummary[RCU_TORTURE_PIPE_LEN + 1] = { 0 };
static unsigned long rtcv_snap = ULONG_MAX;
+ static bool splatted;
struct task_struct *wtp;
for_each_possible_cpu(cpu) {
@@ -1324,6 +1327,10 @@ rcu_torture_stats_print(void)
gpnum, completed, flags,
wtp == NULL ? ~0UL : wtp->state,
wtp == NULL ? -1 : (int)task_cpu(wtp));
+ if (!splatted && wtp) {
+ sched_show_task(wtp);
+ splatted = true;
+ }
show_rcu_gp_kthreads();
rcu_ftrace_dump(DUMP_ALL);
}
@@ -1357,7 +1364,7 @@ rcu_torture_print_module_parms(struct rcu_torture_ops *cur_ops, const char *tag)
"fqs_duration=%d fqs_holdoff=%d fqs_stutter=%d "
"test_boost=%d/%d test_boost_interval=%d "
"test_boost_duration=%d shutdown_secs=%d "
- "stall_cpu=%d stall_cpu_holdoff=%d "
+ "stall_cpu=%d stall_cpu_holdoff=%d stall_cpu_irqsoff=%d "
"n_barrier_cbs=%d "
"onoff_interval=%d onoff_holdoff=%d\n",
torture_type, tag, nrealreaders, nfakewriters,
@@ -1365,7 +1372,7 @@ rcu_torture_print_module_parms(struct rcu_torture_ops *cur_ops, const char *tag)
stutter, irqreader, fqs_duration, fqs_holdoff, fqs_stutter,
test_boost, cur_ops->can_boost,
test_boost_interval, test_boost_duration, shutdown_secs,
- stall_cpu, stall_cpu_holdoff,
+ stall_cpu, stall_cpu_holdoff, stall_cpu_irqsoff,
n_barrier_cbs,
onoff_interval, onoff_holdoff);
}
@@ -1430,12 +1437,19 @@ static int rcu_torture_stall(void *args)
if (!kthread_should_stop()) {
stop_at = get_seconds() + stall_cpu;
/* RCU CPU stall is expected behavior in following code. */
- pr_alert("rcu_torture_stall start.\n");
rcu_read_lock();
- preempt_disable();
+ if (stall_cpu_irqsoff)
+ local_irq_disable();
+ else
+ preempt_disable();
+ pr_alert("rcu_torture_stall start on CPU %d.\n",
+ smp_processor_id());
while (ULONG_CMP_LT(get_seconds(), stop_at))
continue; /* Induce RCU CPU stall warning. */
- preempt_enable();
+ if (stall_cpu_irqsoff)
+ local_irq_enable();
+ else
+ preempt_enable();
rcu_read_unlock();
pr_alert("rcu_torture_stall end.\n");
}
diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c
index 3e3650e94ae6..f9c0ca2ccf0c 100644
--- a/kernel/rcu/tree.c
+++ b/kernel/rcu/tree.c
@@ -534,8 +534,8 @@ module_param(rcu_kick_kthreads, bool, 0644);
* How long the grace period must be before we start recruiting
* quiescent-state help from rcu_note_context_switch().
*/
-static ulong jiffies_till_sched_qs = HZ / 20;
-module_param(jiffies_till_sched_qs, ulong, 0644);
+static ulong jiffies_till_sched_qs = HZ / 10;
+module_param(jiffies_till_sched_qs, ulong, 0444);
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
struct rcu_data *rdp);
@@ -734,7 +734,7 @@ static int rcu_future_needs_gp(struct rcu_state *rsp)
int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
int *fp = &rnp->need_future_gp[idx];
- RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_future_needs_gp() invoked with irqs enabled!!!");
+ lockdep_assert_irqs_disabled();
return READ_ONCE(*fp);
}
@@ -746,7 +746,7 @@ static int rcu_future_needs_gp(struct rcu_state *rsp)
static bool
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
- RCU_LOCKDEP_WARN(!irqs_disabled(), "cpu_needs_another_gp() invoked with irqs enabled!!!");
+ lockdep_assert_irqs_disabled();
if (rcu_gp_in_progress(rsp))
return false; /* No, a grace period is already in progress. */
if (rcu_future_needs_gp(rsp))
@@ -773,7 +773,7 @@ static void rcu_eqs_enter_common(bool user)
struct rcu_data *rdp;
struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
- RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_enter_common() invoked with irqs enabled!!!");
+ lockdep_assert_irqs_disabled();
trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
!user && !is_idle_task(current)) {
@@ -837,10 +837,13 @@ static void rcu_eqs_enter(bool user)
* We crowbar the ->dynticks_nesting field to zero to allow for
* the possibility of usermode upcalls having messed up our count
* of interrupt nesting level during the prior busy period.
+ *
+ * If you add or remove a call to rcu_idle_enter(), be sure to test with
+ * CONFIG_RCU_EQS_DEBUG=y.
*/
void rcu_idle_enter(void)
{
- RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_idle_enter() invoked with irqs enabled!!!");
+ lockdep_assert_irqs_disabled();
rcu_eqs_enter(false);
}
@@ -852,10 +855,13 @@ void rcu_idle_enter(void)
* is permitted between this call and rcu_user_exit(). This way the
* CPU doesn't need to maintain the tick for RCU maintenance purposes
* when the CPU runs in userspace.
+ *
+ * If you add or remove a call to rcu_user_enter(), be sure to test with
+ * CONFIG_RCU_EQS_DEBUG=y.
*/
void rcu_user_enter(void)
{
- RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_user_enter() invoked with irqs enabled!!!");
+ lockdep_assert_irqs_disabled();
rcu_eqs_enter(true);
}
#endif /* CONFIG_NO_HZ_FULL */
@@ -875,12 +881,15 @@ void rcu_user_enter(void)
* Use things like work queues to work around this limitation.
*
* You have been warned.
+ *
+ * If you add or remove a call to rcu_irq_exit(), be sure to test with
+ * CONFIG_RCU_EQS_DEBUG=y.
*/
void rcu_irq_exit(void)
{
struct rcu_dynticks *rdtp;
- RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
+ lockdep_assert_irqs_disabled();
rdtp = this_cpu_ptr(&rcu_dynticks);
/* Page faults can happen in NMI handlers, so check... */
@@ -899,6 +908,9 @@ void rcu_irq_exit(void)
/*
* Wrapper for rcu_irq_exit() where interrupts are enabled.
+ *
+ * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
+ * with CONFIG_RCU_EQS_DEBUG=y.
*/
void rcu_irq_exit_irqson(void)
{
@@ -947,7 +959,7 @@ static void rcu_eqs_exit(bool user)
struct rcu_dynticks *rdtp;
long long oldval;
- RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_exit() invoked with irqs enabled!!!");
+ lockdep_assert_irqs_disabled();
rdtp = this_cpu_ptr(&rcu_dynticks);
oldval = rdtp->dynticks_nesting;
WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
@@ -971,6 +983,9 @@ static void rcu_eqs_exit(bool user)
* allow for the possibility of usermode upcalls messing up our count
* of interrupt nesting level during the busy period that is just
* now starting.
+ *
+ * If you add or remove a call to rcu_idle_exit(), be sure to test with
+ * CONFIG_RCU_EQS_DEBUG=y.
*/
void rcu_idle_exit(void)
{
@@ -987,6 +1002,9 @@ void rcu_idle_exit(void)
*
* Exit RCU idle mode while entering the kernel because it can
* run a RCU read side critical section anytime.
+ *
+ * If you add or remove a call to rcu_user_exit(), be sure to test with
+ * CONFIG_RCU_EQS_DEBUG=y.
*/
void rcu_user_exit(void)
{
@@ -1012,13 +1030,16 @@ void rcu_user_exit(void)
* Use things like work queues to work around this limitation.
*
* You have been warned.
+ *
+ * If you add or remove a call to rcu_irq_enter(), be sure to test with
+ * CONFIG_RCU_EQS_DEBUG=y.
*/
void rcu_irq_enter(void)
{
struct rcu_dynticks *rdtp;
long long oldval;
- RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
+ lockdep_assert_irqs_disabled();
rdtp = this_cpu_ptr(&rcu_dynticks);
/* Page faults can happen in NMI handlers, so check... */
@@ -1037,6 +1058,9 @@ void rcu_irq_enter(void)
/*
* Wrapper for rcu_irq_enter() where interrupts are enabled.
+ *
+ * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
+ * with CONFIG_RCU_EQS_DEBUG=y.
*/
void rcu_irq_enter_irqson(void)
{
@@ -1055,6 +1079,9 @@ void rcu_irq_enter_irqson(void)
* that the CPU is active. This implementation permits nested NMIs, as
* long as the nesting level does not overflow an int. (You will probably
* run out of stack space first.)
+ *
+ * If you add or remove a call to rcu_nmi_enter(), be sure to test
+ * with CONFIG_RCU_EQS_DEBUG=y.
*/
void rcu_nmi_enter(void)
{
@@ -1087,6 +1114,9 @@ void rcu_nmi_enter(void)
* RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
* to let the RCU grace-period handling know that the CPU is back to
* being RCU-idle.
+ *
+ * If you add or remove a call to rcu_nmi_exit(), be sure to test
+ * with CONFIG_RCU_EQS_DEBUG=y.
*/
void rcu_nmi_exit(void)
{
@@ -1207,6 +1237,22 @@ static int rcu_is_cpu_rrupt_from_idle(void)
}
/*
+ * We are reporting a quiescent state on behalf of some other CPU, so
+ * it is our responsibility to check for and handle potential overflow
+ * of the rcu_node ->gpnum counter with respect to the rcu_data counters.
+ * After all, the CPU might be in deep idle state, and thus executing no
+ * code whatsoever.
+ */
+static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
+{
+ lockdep_assert_held(&rnp->lock);
+ if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, rnp->gpnum))
+ WRITE_ONCE(rdp->gpwrap, true);
+ if (ULONG_CMP_LT(rdp->rcu_iw_gpnum + ULONG_MAX / 4, rnp->gpnum))
+ rdp->rcu_iw_gpnum = rnp->gpnum + ULONG_MAX / 4;
+}
+
+/*
* Snapshot the specified CPU's dynticks counter so that we can later
* credit them with an implicit quiescent state. Return 1 if this CPU
* is in dynticks idle mode, which is an extended quiescent state.
@@ -1216,15 +1262,34 @@ static int dyntick_save_progress_counter(struct rcu_data *rdp)
rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
- if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
- rdp->mynode->gpnum))
- WRITE_ONCE(rdp->gpwrap, true);
+ rcu_gpnum_ovf(rdp->mynode, rdp);
return 1;
}
return 0;
}
/*
+ * Handler for the irq_work request posted when a grace period has
+ * gone on for too long, but not yet long enough for an RCU CPU
+ * stall warning. Set state appropriately, but just complain if
+ * there is unexpected state on entry.
+ */
+static void rcu_iw_handler(struct irq_work *iwp)
+{
+ struct rcu_data *rdp;
+ struct rcu_node *rnp;
+
+ rdp = container_of(iwp, struct rcu_data, rcu_iw);
+ rnp = rdp->mynode;
+ raw_spin_lock_rcu_node(rnp);
+ if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
+ rdp->rcu_iw_gpnum = rnp->gpnum;
+ rdp->rcu_iw_pending = false;
+ }
+ raw_spin_unlock_rcu_node(rnp);
+}
+
+/*
* Return true if the specified CPU has passed through a quiescent
* state by virtue of being in or having passed through an dynticks
* idle state since the last call to dyntick_save_progress_counter()
@@ -1235,8 +1300,7 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
unsigned long jtsq;
bool *rnhqp;
bool *ruqp;
- unsigned long rjtsc;
- struct rcu_node *rnp;
+ struct rcu_node *rnp = rdp->mynode;
/*
* If the CPU passed through or entered a dynticks idle phase with
@@ -1249,34 +1313,25 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
rdp->dynticks_fqs++;
+ rcu_gpnum_ovf(rnp, rdp);
return 1;
}
- /* Compute and saturate jiffies_till_sched_qs. */
- jtsq = jiffies_till_sched_qs;
- rjtsc = rcu_jiffies_till_stall_check();
- if (jtsq > rjtsc / 2) {
- WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
- jtsq = rjtsc / 2;
- } else if (jtsq < 1) {
- WRITE_ONCE(jiffies_till_sched_qs, 1);
- jtsq = 1;
- }
-
/*
* Has this CPU encountered a cond_resched_rcu_qs() since the
* beginning of the grace period? For this to be the case,
* the CPU has to have noticed the current grace period. This
* might not be the case for nohz_full CPUs looping in the kernel.
*/
- rnp = rdp->mynode;
+ jtsq = jiffies_till_sched_qs;
ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
+ rcu_gpnum_ovf(rnp, rdp);
return 1;
- } else {
+ } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
/* Load rcu_qs_ctr before store to rcu_urgent_qs. */
smp_store_release(ruqp, true);
}
@@ -1285,6 +1340,7 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
rdp->offline_fqs++;
+ rcu_gpnum_ovf(rnp, rdp);
return 1;
}
@@ -1304,10 +1360,6 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
* updates are only once every few jiffies, the probability of
* lossage (and thus of slight grace-period extension) is
* quite low.
- *
- * Note that if the jiffies_till_sched_qs boot/sysfs parameter
- * is set too high, we override with half of the RCU CPU stall
- * warning delay.
*/
rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
if (!READ_ONCE(*rnhqp) &&
@@ -1316,15 +1368,26 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
WRITE_ONCE(*rnhqp, true);
/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
smp_store_release(ruqp, true);
- rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
+ rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
}
/*
- * If more than halfway to RCU CPU stall-warning time, do
- * a resched_cpu() to try to loosen things up a bit.
+ * If more than halfway to RCU CPU stall-warning time, do a
+ * resched_cpu() to try to loosen things up a bit. Also check to
+ * see if the CPU is getting hammered with interrupts, but only
+ * once per grace period, just to keep the IPIs down to a dull roar.
*/
- if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
+ if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
resched_cpu(rdp->cpu);
+ if (IS_ENABLED(CONFIG_IRQ_WORK) &&
+ !rdp->rcu_iw_pending && rdp->rcu_iw_gpnum != rnp->gpnum &&
+ (rnp->ffmask & rdp->grpmask)) {
+ init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
+ rdp->rcu_iw_pending = true;
+ rdp->rcu_iw_gpnum = rnp->gpnum;
+ irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
+ }
+ }
return 0;
}
@@ -1513,6 +1576,7 @@ static void print_cpu_stall(struct rcu_state *rsp)
{
int cpu;
unsigned long flags;
+ struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
struct rcu_node *rnp = rcu_get_root(rsp);
long totqlen = 0;
@@ -1528,7 +1592,9 @@ static void print_cpu_stall(struct rcu_state *rsp)
*/
pr_err("INFO: %s self-detected stall on CPU", rsp->name);
print_cpu_stall_info_begin();
+ raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
print_cpu_stall_info(rsp, smp_processor_id());
+ raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
print_cpu_stall_info_end();
for_each_possible_cpu(cpu)
totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
@@ -1922,6 +1988,7 @@ static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
rdp->core_needs_qs = need_gp;
zero_cpu_stall_ticks(rdp);
WRITE_ONCE(rdp->gpwrap, false);
+ rcu_gpnum_ovf(rnp, rdp);
}
return ret;
}
@@ -3702,6 +3769,8 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
rdp->cpu_no_qs.b.norm = true;
rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
rdp->core_needs_qs = false;
+ rdp->rcu_iw_pending = false;
+ rdp->rcu_iw_gpnum = rnp->gpnum - 1;
trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
}
@@ -3739,10 +3808,24 @@ static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
*/
int rcutree_online_cpu(unsigned int cpu)
{
- sync_sched_exp_online_cleanup(cpu);
- rcutree_affinity_setting(cpu, -1);
+ unsigned long flags;
+ struct rcu_data *rdp;
+ struct rcu_node *rnp;
+ struct rcu_state *rsp;
+
+ for_each_rcu_flavor(rsp) {
+ rdp = per_cpu_ptr(rsp->rda, cpu);
+ rnp = rdp->mynode;
+ raw_spin_lock_irqsave_rcu_node(rnp, flags);
+ rnp->ffmask |= rdp->grpmask;
+ raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
+ }
if (IS_ENABLED(CONFIG_TREE_SRCU))
srcu_online_cpu(cpu);
+ if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
+ return 0; /* Too early in boot for scheduler work. */
+ sync_sched_exp_online_cleanup(cpu);
+ rcutree_affinity_setting(cpu, -1);
return 0;
}
@@ -3752,6 +3835,19 @@ int rcutree_online_cpu(unsigned int cpu)
*/
int rcutree_offline_cpu(unsigned int cpu)
{
+ unsigned long flags;
+ struct rcu_data *rdp;
+ struct rcu_node *rnp;
+ struct rcu_state *rsp;
+
+ for_each_rcu_flavor(rsp) {
+ rdp = per_cpu_ptr(rsp->rda, cpu);
+ rnp = rdp->mynode;
+ raw_spin_lock_irqsave_rcu_node(rnp, flags);
+ rnp->ffmask &= ~rdp->grpmask;
+ raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
+ }
+
rcutree_affinity_setting(cpu, cpu);
if (IS_ENABLED(CONFIG_TREE_SRCU))
srcu_offline_cpu(cpu);
@@ -4200,8 +4296,7 @@ void __init rcu_init(void)
for_each_online_cpu(cpu) {
rcutree_prepare_cpu(cpu);
rcu_cpu_starting(cpu);
- if (IS_ENABLED(CONFIG_TREE_SRCU))
- srcu_online_cpu(cpu);
+ rcutree_online_cpu(cpu);
}
}
diff --git a/kernel/rcu/tree.h b/kernel/rcu/tree.h
index 8e1f285f0a70..46a5d1991450 100644
--- a/kernel/rcu/tree.h
+++ b/kernel/rcu/tree.h
@@ -103,6 +103,7 @@ struct rcu_node {
/* Online CPUs for next expedited GP. */
/* Any CPU that has ever been online will */
/* have its bit set. */
+ unsigned long ffmask; /* Fully functional CPUs. */
unsigned long grpmask; /* Mask to apply to parent qsmask. */
/* Only one bit will be set in this mask. */
int grplo; /* lowest-numbered CPU or group here. */
@@ -285,6 +286,10 @@ struct rcu_data {
/* 8) RCU CPU stall data. */
unsigned int softirq_snap; /* Snapshot of softirq activity. */
+ /* ->rcu_iw* fields protected by leaf rcu_node ->lock. */
+ struct irq_work rcu_iw; /* Check for non-irq activity. */
+ bool rcu_iw_pending; /* Is ->rcu_iw pending? */
+ unsigned long rcu_iw_gpnum; /* ->gpnum associated with ->rcu_iw. */
int cpu;
struct rcu_state *rsp;
diff --git a/kernel/rcu/tree_plugin.h b/kernel/rcu/tree_plugin.h
index e85946d9843b..db85ca3975f1 100644
--- a/kernel/rcu/tree_plugin.h
+++ b/kernel/rcu/tree_plugin.h
@@ -29,6 +29,7 @@
#include <linux/oom.h>
#include <linux/sched/debug.h>
#include <linux/smpboot.h>
+#include <linux/sched/isolation.h>
#include <uapi/linux/sched/types.h>
#include "../time/tick-internal.h"
@@ -54,6 +55,7 @@ DEFINE_PER_CPU(char, rcu_cpu_has_work);
* This probably needs to be excluded from -rt builds.
*/
#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
+#define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
#endif /* #else #ifdef CONFIG_RCU_BOOST */
@@ -325,7 +327,7 @@ static void rcu_preempt_note_context_switch(bool preempt)
struct rcu_data *rdp;
struct rcu_node *rnp;
- RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_preempt_note_context_switch() invoked with interrupts enabled!!!\n");
+ lockdep_assert_irqs_disabled();
WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
if (t->rcu_read_lock_nesting > 0 &&
!t->rcu_read_unlock_special.b.blocked) {
@@ -530,7 +532,7 @@ void rcu_read_unlock_special(struct task_struct *t)
/* Unboost if we were boosted. */
if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
- rt_mutex_unlock(&rnp->boost_mtx);
+ rt_mutex_futex_unlock(&rnp->boost_mtx);
/*
* If this was the last task on the expedited lists,
@@ -911,8 +913,6 @@ void exit_rcu(void)
#ifdef CONFIG_RCU_BOOST
-#include "../locking/rtmutex_common.h"
-
static void rcu_wake_cond(struct task_struct *t, int status)
{
/*
@@ -1421,7 +1421,7 @@ int rcu_needs_cpu(u64 basemono, u64 *nextevt)
struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
unsigned long dj;
- RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_needs_cpu() invoked with irqs enabled!!!");
+ lockdep_assert_irqs_disabled();
/* Snapshot to detect later posting of non-lazy callback. */
rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
@@ -1470,7 +1470,7 @@ static void rcu_prepare_for_idle(void)
struct rcu_state *rsp;
int tne;
- RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_prepare_for_idle() invoked with irqs enabled!!!");
+ lockdep_assert_irqs_disabled();
if (rcu_is_nocb_cpu(smp_processor_id()))
return;
@@ -1507,7 +1507,7 @@ static void rcu_prepare_for_idle(void)
rdtp->last_accelerate = jiffies;
for_each_rcu_flavor(rsp) {
rdp = this_cpu_ptr(rsp->rda);
- if (rcu_segcblist_pend_cbs(&rdp->cblist))
+ if (!rcu_segcblist_pend_cbs(&rdp->cblist))
continue;
rnp = rdp->mynode;
raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
@@ -1525,7 +1525,7 @@ static void rcu_prepare_for_idle(void)
*/
static void rcu_cleanup_after_idle(void)
{
- RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_cleanup_after_idle() invoked with irqs enabled!!!");
+ lockdep_assert_irqs_disabled();
if (rcu_is_nocb_cpu(smp_processor_id()))
return;
if (rcu_try_advance_all_cbs())
@@ -1671,6 +1671,7 @@ static void print_cpu_stall_info_begin(void)
*/
static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
+ unsigned long delta;
char fast_no_hz[72];
struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
struct rcu_dynticks *rdtp = rdp->dynticks;
@@ -1685,11 +1686,15 @@ static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
ticks_value = rsp->gpnum - rdp->gpnum;
}
print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
- pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
+ delta = rdp->mynode->gpnum - rdp->rcu_iw_gpnum;
+ pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
cpu,
"O."[!!cpu_online(cpu)],
"o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
"N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
+ !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' :
+ rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' :
+ "!."[!delta],
ticks_value, ticks_title,
rcu_dynticks_snap(rdtp) & 0xfff,
rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
@@ -2012,7 +2017,7 @@ static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
struct rcu_data *rdp,
unsigned long flags)
{
- RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_nocb_adopt_orphan_cbs() invoked with irqs enabled!!!");
+ lockdep_assert_irqs_disabled();
if (!rcu_is_nocb_cpu(smp_processor_id()))
return false; /* Not NOCBs CPU, caller must migrate CBs. */
__call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
@@ -2584,7 +2589,7 @@ static void rcu_bind_gp_kthread(void)
if (!tick_nohz_full_enabled())
return;
- housekeeping_affine(current);
+ housekeeping_affine(current, HK_FLAG_RCU);
}
/* Record the current task on dyntick-idle entry. */
diff --git a/kernel/rcu/update.c b/kernel/rcu/update.c
index 5033b66d2753..fbd56d6e575b 100644
--- a/kernel/rcu/update.c
+++ b/kernel/rcu/update.c
@@ -51,6 +51,7 @@
#include <linux/kthread.h>
#include <linux/tick.h>
#include <linux/rcupdate_wait.h>
+#include <linux/sched/isolation.h>
#define CREATE_TRACE_POINTS
@@ -494,6 +495,7 @@ EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
#endif
int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
+EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress);
static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
module_param(rcu_cpu_stall_suppress, int, 0644);
@@ -575,7 +577,6 @@ DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
module_param(rcu_task_stall_timeout, int, 0644);
-static void rcu_spawn_tasks_kthread(void);
static struct task_struct *rcu_tasks_kthread_ptr;
/**
@@ -600,7 +601,6 @@ void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
{
unsigned long flags;
bool needwake;
- bool havetask = READ_ONCE(rcu_tasks_kthread_ptr);
rhp->next = NULL;
rhp->func = func;
@@ -610,11 +610,8 @@ void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
rcu_tasks_cbs_tail = &rhp->next;
raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
/* We can't create the thread unless interrupts are enabled. */
- if ((needwake && havetask) ||
- (!havetask && !irqs_disabled_flags(flags))) {
- rcu_spawn_tasks_kthread();
+ if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
wake_up(&rcu_tasks_cbs_wq);
- }
}
EXPORT_SYMBOL_GPL(call_rcu_tasks);
@@ -718,7 +715,7 @@ static int __noreturn rcu_tasks_kthread(void *arg)
LIST_HEAD(rcu_tasks_holdouts);
/* Run on housekeeping CPUs by default. Sysadm can move if desired. */
- housekeeping_affine(current);
+ housekeeping_affine(current, HK_FLAG_RCU);
/*
* Each pass through the following loop makes one check for
@@ -853,27 +850,18 @@ static int __noreturn rcu_tasks_kthread(void *arg)
}
}
-/* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
-static void rcu_spawn_tasks_kthread(void)
+/* Spawn rcu_tasks_kthread() at core_initcall() time. */
+static int __init rcu_spawn_tasks_kthread(void)
{
- static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
struct task_struct *t;
- if (READ_ONCE(rcu_tasks_kthread_ptr)) {
- smp_mb(); /* Ensure caller sees full kthread. */
- return;
- }
- mutex_lock(&rcu_tasks_kthread_mutex);
- if (rcu_tasks_kthread_ptr) {
- mutex_unlock(&rcu_tasks_kthread_mutex);
- return;
- }
t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
BUG_ON(IS_ERR(t));
smp_mb(); /* Ensure others see full kthread. */
WRITE_ONCE(rcu_tasks_kthread_ptr, t);
- mutex_unlock(&rcu_tasks_kthread_mutex);
+ return 0;
}
+core_initcall(rcu_spawn_tasks_kthread);
/* Do the srcu_read_lock() for the above synchronize_srcu(). */
void exit_tasks_rcu_start(void)
diff --git a/kernel/resource.c b/kernel/resource.c
index 9b5f04404152..54ba6de3757c 100644
--- a/kernel/resource.c
+++ b/kernel/resource.c
@@ -397,9 +397,32 @@ static int find_next_iomem_res(struct resource *res, unsigned long desc,
res->start = p->start;
if (res->end > p->end)
res->end = p->end;
+ res->flags = p->flags;
+ res->desc = p->desc;
return 0;
}
+static int __walk_iomem_res_desc(struct resource *res, unsigned long desc,
+ bool first_level_children_only,
+ void *arg,
+ int (*func)(struct resource *, void *))
+{
+ u64 orig_end = res->end;
+ int ret = -1;
+
+ while ((res->start < res->end) &&
+ !find_next_iomem_res(res, desc, first_level_children_only)) {
+ ret = (*func)(res, arg);
+ if (ret)
+ break;
+
+ res->start = res->end + 1;
+ res->end = orig_end;
+ }
+
+ return ret;
+}
+
/*
* Walks through iomem resources and calls func() with matching resource
* ranges. This walks through whole tree and not just first level children.
@@ -415,29 +438,15 @@ static int find_next_iomem_res(struct resource *res, unsigned long desc,
* <linux/ioport.h> and set it in 'desc' of a target resource entry.
*/
int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
- u64 end, void *arg, int (*func)(u64, u64, void *))
+ u64 end, void *arg, int (*func)(struct resource *, void *))
{
struct resource res;
- u64 orig_end;
- int ret = -1;
res.start = start;
res.end = end;
res.flags = flags;
- orig_end = res.end;
-
- while ((res.start < res.end) &&
- (!find_next_iomem_res(&res, desc, false))) {
-
- ret = (*func)(res.start, res.end, arg);
- if (ret)
- break;
-
- res.start = res.end + 1;
- res.end = orig_end;
- }
- return ret;
+ return __walk_iomem_res_desc(&res, desc, false, arg, func);
}
/*
@@ -448,25 +457,33 @@ int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
* ranges.
*/
int walk_system_ram_res(u64 start, u64 end, void *arg,
- int (*func)(u64, u64, void *))
+ int (*func)(struct resource *, void *))
{
struct resource res;
- u64 orig_end;
- int ret = -1;
res.start = start;
res.end = end;
res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
- orig_end = res.end;
- while ((res.start < res.end) &&
- (!find_next_iomem_res(&res, IORES_DESC_NONE, true))) {
- ret = (*func)(res.start, res.end, arg);
- if (ret)
- break;
- res.start = res.end + 1;
- res.end = orig_end;
- }
- return ret;
+
+ return __walk_iomem_res_desc(&res, IORES_DESC_NONE, true,
+ arg, func);
+}
+
+/*
+ * This function calls the @func callback against all memory ranges, which
+ * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
+ */
+int walk_mem_res(u64 start, u64 end, void *arg,
+ int (*func)(struct resource *, void *))
+{
+ struct resource res;
+
+ res.start = start;
+ res.end = end;
+ res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
+
+ return __walk_iomem_res_desc(&res, IORES_DESC_NONE, true,
+ arg, func);
}
#if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
@@ -508,6 +525,7 @@ static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
{
return 1;
}
+
/*
* This generic page_is_ram() returns true if specified address is
* registered as System RAM in iomem_resource list.
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
index a9ee16bbc693..e2f9d4feff40 100644
--- a/kernel/sched/Makefile
+++ b/kernel/sched/Makefile
@@ -27,3 +27,4 @@ obj-$(CONFIG_CGROUP_CPUACCT) += cpuacct.o
obj-$(CONFIG_CPU_FREQ) += cpufreq.o
obj-$(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) += cpufreq_schedutil.o
obj-$(CONFIG_MEMBARRIER) += membarrier.o
+obj-$(CONFIG_CPU_ISOLATION) += isolation.o
diff --git a/kernel/sched/clock.c b/kernel/sched/clock.c
index ca0f8fc945c6..e086babe6c61 100644
--- a/kernel/sched/clock.c
+++ b/kernel/sched/clock.c
@@ -388,7 +388,7 @@ void sched_clock_tick(void)
if (unlikely(!sched_clock_running))
return;
- WARN_ON_ONCE(!irqs_disabled());
+ lockdep_assert_irqs_disabled();
scd = this_scd();
__scd_stamp(scd);
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index d17c5da523a0..a092f350f3a2 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -26,6 +26,7 @@
#include <linux/profile.h>
#include <linux/security.h>
#include <linux/syscalls.h>
+#include <linux/sched/isolation.h>
#include <asm/switch_to.h>
#include <asm/tlb.h>
@@ -42,18 +43,21 @@
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
+#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
/*
* Debugging: various feature bits
+ *
+ * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
+ * sysctl_sched_features, defined in sched.h, to allow constants propagation
+ * at compile time and compiler optimization based on features default.
*/
-
#define SCHED_FEAT(name, enabled) \
(1UL << __SCHED_FEAT_##name) * enabled |
-
const_debug unsigned int sysctl_sched_features =
#include "features.h"
0;
-
#undef SCHED_FEAT
+#endif
/*
* Number of tasks to iterate in a single balance run.
@@ -83,9 +87,6 @@ __read_mostly int scheduler_running;
*/
int sysctl_sched_rt_runtime = 950000;
-/* CPUs with isolated domains */
-cpumask_var_t cpu_isolated_map;
-
/*
* __task_rq_lock - lock the rq @p resides on.
*/
@@ -505,8 +506,7 @@ void resched_cpu(int cpu)
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
- if (!raw_spin_trylock_irqsave(&rq->lock, flags))
- return;
+ raw_spin_lock_irqsave(&rq->lock, flags);
resched_curr(rq);
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
@@ -526,7 +526,7 @@ int get_nohz_timer_target(void)
int i, cpu = smp_processor_id();
struct sched_domain *sd;
- if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
+ if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
return cpu;
rcu_read_lock();
@@ -535,15 +535,15 @@ int get_nohz_timer_target(void)
if (cpu == i)
continue;
- if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
+ if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
cpu = i;
goto unlock;
}
}
}
- if (!is_housekeeping_cpu(cpu))
- cpu = housekeeping_any_cpu();
+ if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
+ cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
unlock:
rcu_read_unlock();
return cpu;
@@ -733,7 +733,7 @@ int tg_nop(struct task_group *tg, void *data)
}
#endif
-static void set_load_weight(struct task_struct *p)
+static void set_load_weight(struct task_struct *p, bool update_load)
{
int prio = p->static_prio - MAX_RT_PRIO;
struct load_weight *load = &p->se.load;
@@ -747,8 +747,16 @@ static void set_load_weight(struct task_struct *p)
return;
}
- load->weight = scale_load(sched_prio_to_weight[prio]);
- load->inv_weight = sched_prio_to_wmult[prio];
+ /*
+ * SCHED_OTHER tasks have to update their load when changing their
+ * weight
+ */
+ if (update_load && p->sched_class == &fair_sched_class) {
+ reweight_task(p, prio);
+ } else {
+ load->weight = scale_load(sched_prio_to_weight[prio]);
+ load->inv_weight = sched_prio_to_wmult[prio];
+ }
}
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
@@ -2358,7 +2366,7 @@ int sched_fork(unsigned long clone_flags, struct task_struct *p)
p->static_prio = NICE_TO_PRIO(0);
p->prio = p->normal_prio = __normal_prio(p);
- set_load_weight(p);
+ set_load_weight(p, false);
/*
* We don't need the reset flag anymore after the fork. It has
@@ -3805,7 +3813,7 @@ void set_user_nice(struct task_struct *p, long nice)
put_prev_task(rq, p);
p->static_prio = NICE_TO_PRIO(nice);
- set_load_weight(p);
+ set_load_weight(p, true);
old_prio = p->prio;
p->prio = effective_prio(p);
delta = p->prio - old_prio;
@@ -3962,7 +3970,7 @@ static void __setscheduler_params(struct task_struct *p,
*/
p->rt_priority = attr->sched_priority;
p->normal_prio = normal_prio(p);
- set_load_weight(p);
+ set_load_weight(p, true);
}
/* Actually do priority change: must hold pi & rq lock. */
@@ -4842,6 +4850,7 @@ int __sched _cond_resched(void)
preempt_schedule_common();
return 1;
}
+ rcu_all_qs();
return 0;
}
EXPORT_SYMBOL(_cond_resched);
@@ -5165,6 +5174,7 @@ void sched_show_task(struct task_struct *p)
show_stack(p, NULL);
put_task_stack(p);
}
+EXPORT_SYMBOL_GPL(sched_show_task);
static inline bool
state_filter_match(unsigned long state_filter, struct task_struct *p)
@@ -5726,10 +5736,6 @@ static inline void sched_init_smt(void) { }
void __init sched_init_smp(void)
{
- cpumask_var_t non_isolated_cpus;
-
- alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
-
sched_init_numa();
/*
@@ -5739,16 +5745,12 @@ void __init sched_init_smp(void)
*/
mutex_lock(&sched_domains_mutex);
sched_init_domains(cpu_active_mask);
- cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
- if (cpumask_empty(non_isolated_cpus))
- cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
mutex_unlock(&sched_domains_mutex);
/* Move init over to a non-isolated CPU */
- if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
+ if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
BUG();
sched_init_granularity();
- free_cpumask_var(non_isolated_cpus);
init_sched_rt_class();
init_sched_dl_class();
@@ -5933,7 +5935,7 @@ void __init sched_init(void)
atomic_set(&rq->nr_iowait, 0);
}
- set_load_weight(&init_task);
+ set_load_weight(&init_task, false);
/*
* The boot idle thread does lazy MMU switching as well:
@@ -5952,9 +5954,6 @@ void __init sched_init(void)
calc_load_update = jiffies + LOAD_FREQ;
#ifdef CONFIG_SMP
- /* May be allocated at isolcpus cmdline parse time */
- if (cpu_isolated_map == NULL)
- zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
idle_thread_set_boot_cpu();
set_cpu_rq_start_time(smp_processor_id());
#endif
@@ -6621,7 +6620,7 @@ static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
return ret;
}
-static int cpu_stats_show(struct seq_file *sf, void *v)
+static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
{
struct task_group *tg = css_tg(seq_css(sf));
struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
@@ -6661,7 +6660,7 @@ static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
}
#endif /* CONFIG_RT_GROUP_SCHED */
-static struct cftype cpu_files[] = {
+static struct cftype cpu_legacy_files[] = {
#ifdef CONFIG_FAIR_GROUP_SCHED
{
.name = "shares",
@@ -6682,7 +6681,7 @@ static struct cftype cpu_files[] = {
},
{
.name = "stat",
- .seq_show = cpu_stats_show,
+ .seq_show = cpu_cfs_stat_show,
},
#endif
#ifdef CONFIG_RT_GROUP_SCHED
@@ -6700,16 +6699,182 @@ static struct cftype cpu_files[] = {
{ } /* Terminate */
};
+static int cpu_extra_stat_show(struct seq_file *sf,
+ struct cgroup_subsys_state *css)
+{
+#ifdef CONFIG_CFS_BANDWIDTH
+ {
+ struct task_group *tg = css_tg(css);
+ struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
+ u64 throttled_usec;
+
+ throttled_usec = cfs_b->throttled_time;
+ do_div(throttled_usec, NSEC_PER_USEC);
+
+ seq_printf(sf, "nr_periods %d\n"
+ "nr_throttled %d\n"
+ "throttled_usec %llu\n",
+ cfs_b->nr_periods, cfs_b->nr_throttled,
+ throttled_usec);
+ }
+#endif
+ return 0;
+}
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
+ struct cftype *cft)
+{
+ struct task_group *tg = css_tg(css);
+ u64 weight = scale_load_down(tg->shares);
+
+ return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
+}
+
+static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
+ struct cftype *cft, u64 weight)
+{
+ /*
+ * cgroup weight knobs should use the common MIN, DFL and MAX
+ * values which are 1, 100 and 10000 respectively. While it loses
+ * a bit of range on both ends, it maps pretty well onto the shares
+ * value used by scheduler and the round-trip conversions preserve
+ * the original value over the entire range.
+ */
+ if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
+ return -ERANGE;
+
+ weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
+
+ return sched_group_set_shares(css_tg(css), scale_load(weight));
+}
+
+static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
+ struct cftype *cft)
+{
+ unsigned long weight = scale_load_down(css_tg(css)->shares);
+ int last_delta = INT_MAX;
+ int prio, delta;
+
+ /* find the closest nice value to the current weight */
+ for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
+ delta = abs(sched_prio_to_weight[prio] - weight);
+ if (delta >= last_delta)
+ break;
+ last_delta = delta;
+ }
+
+ return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
+}
+
+static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
+ struct cftype *cft, s64 nice)
+{
+ unsigned long weight;
+
+ if (nice < MIN_NICE || nice > MAX_NICE)
+ return -ERANGE;
+
+ weight = sched_prio_to_weight[NICE_TO_PRIO(nice) - MAX_RT_PRIO];
+ return sched_group_set_shares(css_tg(css), scale_load(weight));
+}
+#endif
+
+static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
+ long period, long quota)
+{
+ if (quota < 0)
+ seq_puts(sf, "max");
+ else
+ seq_printf(sf, "%ld", quota);
+
+ seq_printf(sf, " %ld\n", period);
+}
+
+/* caller should put the current value in *@periodp before calling */
+static int __maybe_unused cpu_period_quota_parse(char *buf,
+ u64 *periodp, u64 *quotap)
+{
+ char tok[21]; /* U64_MAX */
+
+ if (!sscanf(buf, "%s %llu", tok, periodp))
+ return -EINVAL;
+
+ *periodp *= NSEC_PER_USEC;
+
+ if (sscanf(tok, "%llu", quotap))
+ *quotap *= NSEC_PER_USEC;
+ else if (!strcmp(tok, "max"))
+ *quotap = RUNTIME_INF;
+ else
+ return -EINVAL;
+
+ return 0;
+}
+
+#ifdef CONFIG_CFS_BANDWIDTH
+static int cpu_max_show(struct seq_file *sf, void *v)
+{
+ struct task_group *tg = css_tg(seq_css(sf));
+
+ cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
+ return 0;
+}
+
+static ssize_t cpu_max_write(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off)
+{
+ struct task_group *tg = css_tg(of_css(of));
+ u64 period = tg_get_cfs_period(tg);
+ u64 quota;
+ int ret;
+
+ ret = cpu_period_quota_parse(buf, &period, &quota);
+ if (!ret)
+ ret = tg_set_cfs_bandwidth(tg, period, quota);
+ return ret ?: nbytes;
+}
+#endif
+
+static struct cftype cpu_files[] = {
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ {
+ .name = "weight",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .read_u64 = cpu_weight_read_u64,
+ .write_u64 = cpu_weight_write_u64,
+ },
+ {
+ .name = "weight.nice",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .read_s64 = cpu_weight_nice_read_s64,
+ .write_s64 = cpu_weight_nice_write_s64,
+ },
+#endif
+#ifdef CONFIG_CFS_BANDWIDTH
+ {
+ .name = "max",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .seq_show = cpu_max_show,
+ .write = cpu_max_write,
+ },
+#endif
+ { } /* terminate */
+};
+
struct cgroup_subsys cpu_cgrp_subsys = {
.css_alloc = cpu_cgroup_css_alloc,
.css_online = cpu_cgroup_css_online,
.css_released = cpu_cgroup_css_released,
.css_free = cpu_cgroup_css_free,
+ .css_extra_stat_show = cpu_extra_stat_show,
.fork = cpu_cgroup_fork,
.can_attach = cpu_cgroup_can_attach,
.attach = cpu_cgroup_attach,
- .legacy_cftypes = cpu_files,
+ .legacy_cftypes = cpu_legacy_files,
+ .dfl_cftypes = cpu_files,
.early_init = true,
+ .threaded = true,
};
#endif /* CONFIG_CGROUP_SCHED */
diff --git a/kernel/sched/cpuacct.h b/kernel/sched/cpuacct.h
deleted file mode 100644
index a8358a57a316..000000000000
--- a/kernel/sched/cpuacct.h
+++ /dev/null
@@ -1,18 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-#ifdef CONFIG_CGROUP_CPUACCT
-
-extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
-extern void cpuacct_account_field(struct task_struct *tsk, int index, u64 val);
-
-#else
-
-static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime)
-{
-}
-
-static inline void
-cpuacct_account_field(struct task_struct *tsk, int index, u64 val)
-{
-}
-
-#endif
diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
index ba0da243fdd8..2f52ec0f1539 100644
--- a/kernel/sched/cpufreq_schedutil.c
+++ b/kernel/sched/cpufreq_schedutil.c
@@ -282,8 +282,12 @@ static void sugov_update_single(struct update_util_data *hook, u64 time,
* Do not reduce the frequency if the CPU has not been idle
* recently, as the reduction is likely to be premature then.
*/
- if (busy && next_f < sg_policy->next_freq)
+ if (busy && next_f < sg_policy->next_freq) {
next_f = sg_policy->next_freq;
+
+ /* Reset cached freq as next_freq has changed */
+ sg_policy->cached_raw_freq = 0;
+ }
}
sugov_update_commit(sg_policy, time, next_f);
}
diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
index 14d2dbf97c53..bac6ac9a4ec7 100644
--- a/kernel/sched/cputime.c
+++ b/kernel/sched/cputime.c
@@ -109,7 +109,7 @@ static inline void task_group_account_field(struct task_struct *p, int index,
*/
__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
- cpuacct_account_field(p, index, tmp);
+ cgroup_account_cputime_field(p, index, tmp);
}
/*
@@ -259,8 +259,7 @@ static inline u64 account_other_time(u64 max)
{
u64 accounted;
- /* Shall be converted to a lockdep-enabled lightweight check */
- WARN_ON_ONCE(!irqs_disabled());
+ lockdep_assert_irqs_disabled();
accounted = steal_account_process_time(max);
@@ -447,6 +446,13 @@ void vtime_account_irq_enter(struct task_struct *tsk)
EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
#endif /* __ARCH_HAS_VTIME_ACCOUNT */
+void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
+ u64 *ut, u64 *st)
+{
+ *ut = curr->utime;
+ *st = curr->stime;
+}
+
void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
{
*ut = p->utime;
@@ -585,9 +591,8 @@ drop_precision:
*
* Assuming that rtime_i+1 >= rtime_i.
*/
-static void cputime_adjust(struct task_cputime *curr,
- struct prev_cputime *prev,
- u64 *ut, u64 *st)
+void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
+ u64 *ut, u64 *st)
{
u64 rtime, stime, utime;
unsigned long flags;
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index 4ae5c1ea90e2..2473736c7616 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -243,7 +243,7 @@ static void task_non_contending(struct task_struct *p)
if (p->state == TASK_DEAD)
sub_rq_bw(p->dl.dl_bw, &rq->dl);
raw_spin_lock(&dl_b->lock);
- __dl_clear(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
+ __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
__dl_clear_params(p);
raw_spin_unlock(&dl_b->lock);
}
@@ -1144,7 +1144,7 @@ static void update_curr_dl(struct rq *rq)
account_group_exec_runtime(curr, delta_exec);
curr->se.exec_start = rq_clock_task(rq);
- cpuacct_charge(curr, delta_exec);
+ cgroup_account_cputime(curr, delta_exec);
sched_rt_avg_update(rq, delta_exec);
@@ -1210,7 +1210,7 @@ static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
}
raw_spin_lock(&dl_b->lock);
- __dl_clear(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
+ __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
raw_spin_unlock(&dl_b->lock);
__dl_clear_params(p);
@@ -1365,6 +1365,10 @@ enqueue_dl_entity(struct sched_dl_entity *dl_se,
update_dl_entity(dl_se, pi_se);
} else if (flags & ENQUEUE_REPLENISH) {
replenish_dl_entity(dl_se, pi_se);
+ } else if ((flags & ENQUEUE_RESTORE) &&
+ dl_time_before(dl_se->deadline,
+ rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
+ setup_new_dl_entity(dl_se);
}
__enqueue_dl_entity(dl_se);
@@ -2167,7 +2171,7 @@ static void set_cpus_allowed_dl(struct task_struct *p,
* until we complete the update.
*/
raw_spin_lock(&src_dl_b->lock);
- __dl_clear(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
+ __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
raw_spin_unlock(&src_dl_b->lock);
}
@@ -2256,13 +2260,6 @@ static void switched_to_dl(struct rq *rq, struct task_struct *p)
return;
}
- /*
- * If p is boosted we already updated its params in
- * rt_mutex_setprio()->enqueue_task(..., ENQUEUE_REPLENISH),
- * p's deadline being now already after rq_clock(rq).
- */
- if (dl_time_before(p->dl.deadline, rq_clock(rq)))
- setup_new_dl_entity(&p->dl);
if (rq->curr != p) {
#ifdef CONFIG_SMP
@@ -2452,7 +2449,7 @@ int sched_dl_overflow(struct task_struct *p, int policy,
if (dl_policy(policy) && !task_has_dl_policy(p) &&
!__dl_overflow(dl_b, cpus, 0, new_bw)) {
if (hrtimer_active(&p->dl.inactive_timer))
- __dl_clear(dl_b, p->dl.dl_bw, cpus);
+ __dl_sub(dl_b, p->dl.dl_bw, cpus);
__dl_add(dl_b, new_bw, cpus);
err = 0;
} else if (dl_policy(policy) && task_has_dl_policy(p) &&
@@ -2464,7 +2461,7 @@ int sched_dl_overflow(struct task_struct *p, int policy,
* But this would require to set the task's "inactive
* timer" when the task is not inactive.
*/
- __dl_clear(dl_b, p->dl.dl_bw, cpus);
+ __dl_sub(dl_b, p->dl.dl_bw, cpus);
__dl_add(dl_b, new_bw, cpus);
dl_change_utilization(p, new_bw);
err = 0;
diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c
index 2f93e4a2d9f6..1ca0130ed4f9 100644
--- a/kernel/sched/debug.c
+++ b/kernel/sched/debug.c
@@ -441,9 +441,11 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group
P_SCHEDSTAT(se->statistics.wait_count);
}
P(se->load.weight);
+ P(se->runnable_weight);
#ifdef CONFIG_SMP
P(se->avg.load_avg);
P(se->avg.util_avg);
+ P(se->avg.runnable_load_avg);
#endif
#undef PN_SCHEDSTAT
@@ -558,16 +560,19 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
#ifdef CONFIG_SMP
+ SEQ_printf(m, " .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
cfs_rq->avg.load_avg);
SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg",
- cfs_rq->runnable_load_avg);
+ cfs_rq->avg.runnable_load_avg);
SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
cfs_rq->avg.util_avg);
- SEQ_printf(m, " .%-30s: %ld\n", "removed_load_avg",
- atomic_long_read(&cfs_rq->removed_load_avg));
- SEQ_printf(m, " .%-30s: %ld\n", "removed_util_avg",
- atomic_long_read(&cfs_rq->removed_util_avg));
+ SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
+ cfs_rq->removed.load_avg);
+ SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
+ cfs_rq->removed.util_avg);
+ SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_sum",
+ cfs_rq->removed.runnable_sum);
#ifdef CONFIG_FAIR_GROUP_SCHED
SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
cfs_rq->tg_load_avg_contrib);
@@ -1004,10 +1009,13 @@ void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
"nr_involuntary_switches", (long long)p->nivcsw);
P(se.load.weight);
+ P(se.runnable_weight);
#ifdef CONFIG_SMP
P(se.avg.load_sum);
+ P(se.avg.runnable_load_sum);
P(se.avg.util_sum);
P(se.avg.load_avg);
+ P(se.avg.runnable_load_avg);
P(se.avg.util_avg);
P(se.avg.last_update_time);
#endif
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 5c09ddf8c832..4037e19bbca2 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -33,6 +33,7 @@
#include <linux/mempolicy.h>
#include <linux/migrate.h>
#include <linux/task_work.h>
+#include <linux/sched/isolation.h>
#include <trace/events/sched.h>
@@ -717,13 +718,8 @@ void init_entity_runnable_average(struct sched_entity *se)
{
struct sched_avg *sa = &se->avg;
- sa->last_update_time = 0;
- /*
- * sched_avg's period_contrib should be strictly less then 1024, so
- * we give it 1023 to make sure it is almost a period (1024us), and
- * will definitely be update (after enqueue).
- */
- sa->period_contrib = 1023;
+ memset(sa, 0, sizeof(*sa));
+
/*
* Tasks are intialized with full load to be seen as heavy tasks until
* they get a chance to stabilize to their real load level.
@@ -731,13 +727,10 @@ void init_entity_runnable_average(struct sched_entity *se)
* nothing has been attached to the task group yet.
*/
if (entity_is_task(se))
- sa->load_avg = scale_load_down(se->load.weight);
- sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
- /*
- * At this point, util_avg won't be used in select_task_rq_fair anyway
- */
- sa->util_avg = 0;
- sa->util_sum = 0;
+ sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
+
+ se->runnable_weight = se->load.weight;
+
/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
}
@@ -785,7 +778,6 @@ void post_init_entity_util_avg(struct sched_entity *se)
} else {
sa->util_avg = cap;
}
- sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
}
if (entity_is_task(se)) {
@@ -852,7 +844,7 @@ static void update_curr(struct cfs_rq *cfs_rq)
struct task_struct *curtask = task_of(curr);
trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
- cpuacct_charge(curtask, delta_exec);
+ cgroup_account_cputime(curtask, delta_exec);
account_group_exec_runtime(curtask, delta_exec);
}
@@ -2026,7 +2018,7 @@ static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
delta = runtime - p->last_sum_exec_runtime;
*period = now - p->last_task_numa_placement;
} else {
- delta = p->se.avg.load_sum / p->se.load.weight;
+ delta = p->se.avg.load_sum;
*period = LOAD_AVG_MAX;
}
@@ -2693,18 +2685,226 @@ account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
cfs_rq->nr_running--;
}
+/*
+ * Signed add and clamp on underflow.
+ *
+ * Explicitly do a load-store to ensure the intermediate value never hits
+ * memory. This allows lockless observations without ever seeing the negative
+ * values.
+ */
+#define add_positive(_ptr, _val) do { \
+ typeof(_ptr) ptr = (_ptr); \
+ typeof(_val) val = (_val); \
+ typeof(*ptr) res, var = READ_ONCE(*ptr); \
+ \
+ res = var + val; \
+ \
+ if (val < 0 && res > var) \
+ res = 0; \
+ \
+ WRITE_ONCE(*ptr, res); \
+} while (0)
+
+/*
+ * Unsigned subtract and clamp on underflow.
+ *
+ * Explicitly do a load-store to ensure the intermediate value never hits
+ * memory. This allows lockless observations without ever seeing the negative
+ * values.
+ */
+#define sub_positive(_ptr, _val) do { \
+ typeof(_ptr) ptr = (_ptr); \
+ typeof(*ptr) val = (_val); \
+ typeof(*ptr) res, var = READ_ONCE(*ptr); \
+ res = var - val; \
+ if (res > var) \
+ res = 0; \
+ WRITE_ONCE(*ptr, res); \
+} while (0)
+
+#ifdef CONFIG_SMP
+/*
+ * XXX we want to get rid of these helpers and use the full load resolution.
+ */
+static inline long se_weight(struct sched_entity *se)
+{
+ return scale_load_down(se->load.weight);
+}
+
+static inline long se_runnable(struct sched_entity *se)
+{
+ return scale_load_down(se->runnable_weight);
+}
+
+static inline void
+enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+ cfs_rq->runnable_weight += se->runnable_weight;
+
+ cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
+ cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
+}
+
+static inline void
+dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+ cfs_rq->runnable_weight -= se->runnable_weight;
+
+ sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
+ sub_positive(&cfs_rq->avg.runnable_load_sum,
+ se_runnable(se) * se->avg.runnable_load_sum);
+}
+
+static inline void
+enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+ cfs_rq->avg.load_avg += se->avg.load_avg;
+ cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
+}
+
+static inline void
+dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+ sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
+ sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
+}
+#else
+static inline void
+enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
+static inline void
+dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
+static inline void
+enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
+static inline void
+dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
+#endif
+
+static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
+ unsigned long weight, unsigned long runnable)
+{
+ if (se->on_rq) {
+ /* commit outstanding execution time */
+ if (cfs_rq->curr == se)
+ update_curr(cfs_rq);
+ account_entity_dequeue(cfs_rq, se);
+ dequeue_runnable_load_avg(cfs_rq, se);
+ }
+ dequeue_load_avg(cfs_rq, se);
+
+ se->runnable_weight = runnable;
+ update_load_set(&se->load, weight);
+
+#ifdef CONFIG_SMP
+ do {
+ u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
+
+ se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
+ se->avg.runnable_load_avg =
+ div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
+ } while (0);
+#endif
+
+ enqueue_load_avg(cfs_rq, se);
+ if (se->on_rq) {
+ account_entity_enqueue(cfs_rq, se);
+ enqueue_runnable_load_avg(cfs_rq, se);
+ }
+}
+
+void reweight_task(struct task_struct *p, int prio)
+{
+ struct sched_entity *se = &p->se;
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
+ struct load_weight *load = &se->load;
+ unsigned long weight = scale_load(sched_prio_to_weight[prio]);
+
+ reweight_entity(cfs_rq, se, weight, weight);
+ load->inv_weight = sched_prio_to_wmult[prio];
+}
+
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
-static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
+/*
+ * All this does is approximate the hierarchical proportion which includes that
+ * global sum we all love to hate.
+ *
+ * That is, the weight of a group entity, is the proportional share of the
+ * group weight based on the group runqueue weights. That is:
+ *
+ * tg->weight * grq->load.weight
+ * ge->load.weight = ----------------------------- (1)
+ * \Sum grq->load.weight
+ *
+ * Now, because computing that sum is prohibitively expensive to compute (been
+ * there, done that) we approximate it with this average stuff. The average
+ * moves slower and therefore the approximation is cheaper and more stable.
+ *
+ * So instead of the above, we substitute:
+ *
+ * grq->load.weight -> grq->avg.load_avg (2)
+ *
+ * which yields the following:
+ *
+ * tg->weight * grq->avg.load_avg
+ * ge->load.weight = ------------------------------ (3)
+ * tg->load_avg
+ *
+ * Where: tg->load_avg ~= \Sum grq->avg.load_avg
+ *
+ * That is shares_avg, and it is right (given the approximation (2)).
+ *
+ * The problem with it is that because the average is slow -- it was designed
+ * to be exactly that of course -- this leads to transients in boundary
+ * conditions. In specific, the case where the group was idle and we start the
+ * one task. It takes time for our CPU's grq->avg.load_avg to build up,
+ * yielding bad latency etc..
+ *
+ * Now, in that special case (1) reduces to:
+ *
+ * tg->weight * grq->load.weight
+ * ge->load.weight = ----------------------------- = tg->weight (4)
+ * grp->load.weight
+ *
+ * That is, the sum collapses because all other CPUs are idle; the UP scenario.
+ *
+ * So what we do is modify our approximation (3) to approach (4) in the (near)
+ * UP case, like:
+ *
+ * ge->load.weight =
+ *
+ * tg->weight * grq->load.weight
+ * --------------------------------------------------- (5)
+ * tg->load_avg - grq->avg.load_avg + grq->load.weight
+ *
+ * But because grq->load.weight can drop to 0, resulting in a divide by zero,
+ * we need to use grq->avg.load_avg as its lower bound, which then gives:
+ *
+ *
+ * tg->weight * grq->load.weight
+ * ge->load.weight = ----------------------------- (6)
+ * tg_load_avg'
+ *
+ * Where:
+ *
+ * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
+ * max(grq->load.weight, grq->avg.load_avg)
+ *
+ * And that is shares_weight and is icky. In the (near) UP case it approaches
+ * (4) while in the normal case it approaches (3). It consistently
+ * overestimates the ge->load.weight and therefore:
+ *
+ * \Sum ge->load.weight >= tg->weight
+ *
+ * hence icky!
+ */
+static long calc_group_shares(struct cfs_rq *cfs_rq)
{
- long tg_weight, load, shares;
+ long tg_weight, tg_shares, load, shares;
+ struct task_group *tg = cfs_rq->tg;
- /*
- * This really should be: cfs_rq->avg.load_avg, but instead we use
- * cfs_rq->load.weight, which is its upper bound. This helps ramp up
- * the shares for small weight interactive tasks.
- */
- load = scale_load_down(cfs_rq->load.weight);
+ tg_shares = READ_ONCE(tg->shares);
+
+ load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
tg_weight = atomic_long_read(&tg->load_avg);
@@ -2712,7 +2912,7 @@ static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
tg_weight -= cfs_rq->tg_load_avg_contrib;
tg_weight += load;
- shares = (tg->shares * load);
+ shares = (tg_shares * load);
if (tg_weight)
shares /= tg_weight;
@@ -2728,63 +2928,86 @@ static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
* case no task is runnable on a CPU MIN_SHARES=2 should be returned
* instead of 0.
*/
- if (shares < MIN_SHARES)
- shares = MIN_SHARES;
- if (shares > tg->shares)
- shares = tg->shares;
-
- return shares;
-}
-# else /* CONFIG_SMP */
-static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
-{
- return tg->shares;
+ return clamp_t(long, shares, MIN_SHARES, tg_shares);
}
-# endif /* CONFIG_SMP */
-static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
- unsigned long weight)
+/*
+ * This calculates the effective runnable weight for a group entity based on
+ * the group entity weight calculated above.
+ *
+ * Because of the above approximation (2), our group entity weight is
+ * an load_avg based ratio (3). This means that it includes blocked load and
+ * does not represent the runnable weight.
+ *
+ * Approximate the group entity's runnable weight per ratio from the group
+ * runqueue:
+ *
+ * grq->avg.runnable_load_avg
+ * ge->runnable_weight = ge->load.weight * -------------------------- (7)
+ * grq->avg.load_avg
+ *
+ * However, analogous to above, since the avg numbers are slow, this leads to
+ * transients in the from-idle case. Instead we use:
+ *
+ * ge->runnable_weight = ge->load.weight *
+ *
+ * max(grq->avg.runnable_load_avg, grq->runnable_weight)
+ * ----------------------------------------------------- (8)
+ * max(grq->avg.load_avg, grq->load.weight)
+ *
+ * Where these max() serve both to use the 'instant' values to fix the slow
+ * from-idle and avoid the /0 on to-idle, similar to (6).
+ */
+static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
{
- if (se->on_rq) {
- /* commit outstanding execution time */
- if (cfs_rq->curr == se)
- update_curr(cfs_rq);
- account_entity_dequeue(cfs_rq, se);
- }
+ long runnable, load_avg;
- update_load_set(&se->load, weight);
+ load_avg = max(cfs_rq->avg.load_avg,
+ scale_load_down(cfs_rq->load.weight));
- if (se->on_rq)
- account_entity_enqueue(cfs_rq, se);
+ runnable = max(cfs_rq->avg.runnable_load_avg,
+ scale_load_down(cfs_rq->runnable_weight));
+
+ runnable *= shares;
+ if (load_avg)
+ runnable /= load_avg;
+
+ return clamp_t(long, runnable, MIN_SHARES, shares);
}
+# endif /* CONFIG_SMP */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
-static void update_cfs_shares(struct sched_entity *se)
+/*
+ * Recomputes the group entity based on the current state of its group
+ * runqueue.
+ */
+static void update_cfs_group(struct sched_entity *se)
{
- struct cfs_rq *cfs_rq = group_cfs_rq(se);
- struct task_group *tg;
- long shares;
+ struct cfs_rq *gcfs_rq = group_cfs_rq(se);
+ long shares, runnable;
- if (!cfs_rq)
+ if (!gcfs_rq)
return;
- if (throttled_hierarchy(cfs_rq))
+ if (throttled_hierarchy(gcfs_rq))
return;
- tg = cfs_rq->tg;
-
#ifndef CONFIG_SMP
- if (likely(se->load.weight == tg->shares))
+ runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
+
+ if (likely(se->load.weight == shares))
return;
+#else
+ shares = calc_group_shares(gcfs_rq);
+ runnable = calc_group_runnable(gcfs_rq, shares);
#endif
- shares = calc_cfs_shares(cfs_rq, tg);
- reweight_entity(cfs_rq_of(se), se, shares);
+ reweight_entity(cfs_rq_of(se), se, shares, runnable);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
-static inline void update_cfs_shares(struct sched_entity *se)
+static inline void update_cfs_group(struct sched_entity *se)
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */
@@ -2893,7 +3116,7 @@ static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
*/
static __always_inline u32
accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
- unsigned long weight, int running, struct cfs_rq *cfs_rq)
+ unsigned long load, unsigned long runnable, int running)
{
unsigned long scale_freq, scale_cpu;
u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
@@ -2910,10 +3133,8 @@ accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
*/
if (periods) {
sa->load_sum = decay_load(sa->load_sum, periods);
- if (cfs_rq) {
- cfs_rq->runnable_load_sum =
- decay_load(cfs_rq->runnable_load_sum, periods);
- }
+ sa->runnable_load_sum =
+ decay_load(sa->runnable_load_sum, periods);
sa->util_sum = decay_load((u64)(sa->util_sum), periods);
/*
@@ -2926,11 +3147,10 @@ accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
sa->period_contrib = delta;
contrib = cap_scale(contrib, scale_freq);
- if (weight) {
- sa->load_sum += weight * contrib;
- if (cfs_rq)
- cfs_rq->runnable_load_sum += weight * contrib;
- }
+ if (load)
+ sa->load_sum += load * contrib;
+ if (runnable)
+ sa->runnable_load_sum += runnable * contrib;
if (running)
sa->util_sum += contrib * scale_cpu;
@@ -2966,8 +3186,8 @@ accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
* = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
*/
static __always_inline int
-___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
- unsigned long weight, int running, struct cfs_rq *cfs_rq)
+___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
+ unsigned long load, unsigned long runnable, int running)
{
u64 delta;
@@ -3000,8 +3220,8 @@ ___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
* this happens during idle_balance() which calls
* update_blocked_averages()
*/
- if (!weight)
- running = 0;
+ if (!load)
+ runnable = running = 0;
/*
* Now we know we crossed measurement unit boundaries. The *_avg
@@ -3010,63 +3230,96 @@ ___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
* Step 1: accumulate *_sum since last_update_time. If we haven't
* crossed period boundaries, finish.
*/
- if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
+ if (!accumulate_sum(delta, cpu, sa, load, runnable, running))
return 0;
+ return 1;
+}
+
+static __always_inline void
+___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable)
+{
+ u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
+
/*
* Step 2: update *_avg.
*/
- sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
- if (cfs_rq) {
- cfs_rq->runnable_load_avg =
- div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
- }
- sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
-
- return 1;
+ sa->load_avg = div_u64(load * sa->load_sum, divider);
+ sa->runnable_load_avg = div_u64(runnable * sa->runnable_load_sum, divider);
+ sa->util_avg = sa->util_sum / divider;
}
+/*
+ * sched_entity:
+ *
+ * task:
+ * se_runnable() == se_weight()
+ *
+ * group: [ see update_cfs_group() ]
+ * se_weight() = tg->weight * grq->load_avg / tg->load_avg
+ * se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
+ *
+ * load_sum := runnable_sum
+ * load_avg = se_weight(se) * runnable_avg
+ *
+ * runnable_load_sum := runnable_sum
+ * runnable_load_avg = se_runnable(se) * runnable_avg
+ *
+ * XXX collapse load_sum and runnable_load_sum
+ *
+ * cfq_rs:
+ *
+ * load_sum = \Sum se_weight(se) * se->avg.load_sum
+ * load_avg = \Sum se->avg.load_avg
+ *
+ * runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
+ * runnable_load_avg = \Sum se->avg.runable_load_avg
+ */
+
static int
__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
{
- return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
+ if (entity_is_task(se))
+ se->runnable_weight = se->load.weight;
+
+ if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) {
+ ___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
+ return 1;
+ }
+
+ return 0;
}
static int
__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
{
- return ___update_load_avg(now, cpu, &se->avg,
- se->on_rq * scale_load_down(se->load.weight),
- cfs_rq->curr == se, NULL);
+ if (entity_is_task(se))
+ se->runnable_weight = se->load.weight;
+
+ if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq,
+ cfs_rq->curr == se)) {
+
+ ___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
+ return 1;
+ }
+
+ return 0;
}
static int
__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
{
- return ___update_load_avg(now, cpu, &cfs_rq->avg,
- scale_load_down(cfs_rq->load.weight),
- cfs_rq->curr != NULL, cfs_rq);
-}
+ if (___update_load_sum(now, cpu, &cfs_rq->avg,
+ scale_load_down(cfs_rq->load.weight),
+ scale_load_down(cfs_rq->runnable_weight),
+ cfs_rq->curr != NULL)) {
-/*
- * Signed add and clamp on underflow.
- *
- * Explicitly do a load-store to ensure the intermediate value never hits
- * memory. This allows lockless observations without ever seeing the negative
- * values.
- */
-#define add_positive(_ptr, _val) do { \
- typeof(_ptr) ptr = (_ptr); \
- typeof(_val) val = (_val); \
- typeof(*ptr) res, var = READ_ONCE(*ptr); \
- \
- res = var + val; \
- \
- if (val < 0 && res > var) \
- res = 0; \
- \
- WRITE_ONCE(*ptr, res); \
-} while (0)
+ ___update_load_avg(&cfs_rq->avg, 1, 1);
+ return 1;
+ }
+
+ return 0;
+}
#ifdef CONFIG_FAIR_GROUP_SCHED
/**
@@ -3149,11 +3402,77 @@ void set_task_rq_fair(struct sched_entity *se,
se->avg.last_update_time = n_last_update_time;
}
-/* Take into account change of utilization of a child task group */
+
+/*
+ * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
+ * propagate its contribution. The key to this propagation is the invariant
+ * that for each group:
+ *
+ * ge->avg == grq->avg (1)
+ *
+ * _IFF_ we look at the pure running and runnable sums. Because they
+ * represent the very same entity, just at different points in the hierarchy.
+ *
+ *
+ * Per the above update_tg_cfs_util() is trivial (and still 'wrong') and
+ * simply copies the running sum over.
+ *
+ * However, update_tg_cfs_runnable() is more complex. So we have:
+ *
+ * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
+ *
+ * And since, like util, the runnable part should be directly transferable,
+ * the following would _appear_ to be the straight forward approach:
+ *
+ * grq->avg.load_avg = grq->load.weight * grq->avg.running_avg (3)
+ *
+ * And per (1) we have:
+ *
+ * ge->avg.running_avg == grq->avg.running_avg
+ *
+ * Which gives:
+ *
+ * ge->load.weight * grq->avg.load_avg
+ * ge->avg.load_avg = ----------------------------------- (4)
+ * grq->load.weight
+ *
+ * Except that is wrong!
+ *
+ * Because while for entities historical weight is not important and we
+ * really only care about our future and therefore can consider a pure
+ * runnable sum, runqueues can NOT do this.
+ *
+ * We specifically want runqueues to have a load_avg that includes
+ * historical weights. Those represent the blocked load, the load we expect
+ * to (shortly) return to us. This only works by keeping the weights as
+ * integral part of the sum. We therefore cannot decompose as per (3).
+ *
+ * OK, so what then?
+ *
+ *
+ * Another way to look at things is:
+ *
+ * grq->avg.load_avg = \Sum se->avg.load_avg
+ *
+ * Therefore, per (2):
+ *
+ * grq->avg.load_avg = \Sum se->load.weight * se->avg.runnable_avg
+ *
+ * And the very thing we're propagating is a change in that sum (someone
+ * joined/left). So we can easily know the runnable change, which would be, per
+ * (2) the already tracked se->load_avg divided by the corresponding
+ * se->weight.
+ *
+ * Basically (4) but in differential form:
+ *
+ * d(runnable_avg) += se->avg.load_avg / se->load.weight
+ * (5)
+ * ge->avg.load_avg += ge->load.weight * d(runnable_avg)
+ */
+
static inline void
-update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
+update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
{
- struct cfs_rq *gcfs_rq = group_cfs_rq(se);
long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
/* Nothing to update */
@@ -3169,102 +3488,65 @@ update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}
-/* Take into account change of load of a child task group */
static inline void
-update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
+update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
{
- struct cfs_rq *gcfs_rq = group_cfs_rq(se);
- long delta, load = gcfs_rq->avg.load_avg;
+ long runnable_sum = gcfs_rq->prop_runnable_sum;
+ long runnable_load_avg, load_avg;
+ s64 runnable_load_sum, load_sum;
- /*
- * If the load of group cfs_rq is null, the load of the
- * sched_entity will also be null so we can skip the formula
- */
- if (load) {
- long tg_load;
+ if (!runnable_sum)
+ return;
- /* Get tg's load and ensure tg_load > 0 */
- tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
+ gcfs_rq->prop_runnable_sum = 0;
- /* Ensure tg_load >= load and updated with current load*/
- tg_load -= gcfs_rq->tg_load_avg_contrib;
- tg_load += load;
+ load_sum = (s64)se_weight(se) * runnable_sum;
+ load_avg = div_s64(load_sum, LOAD_AVG_MAX);
- /*
- * We need to compute a correction term in the case that the
- * task group is consuming more CPU than a task of equal
- * weight. A task with a weight equals to tg->shares will have
- * a load less or equal to scale_load_down(tg->shares).
- * Similarly, the sched_entities that represent the task group
- * at parent level, can't have a load higher than
- * scale_load_down(tg->shares). And the Sum of sched_entities'
- * load must be <= scale_load_down(tg->shares).
- */
- if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
- /* scale gcfs_rq's load into tg's shares*/
- load *= scale_load_down(gcfs_rq->tg->shares);
- load /= tg_load;
- }
- }
+ add_positive(&se->avg.load_sum, runnable_sum);
+ add_positive(&se->avg.load_avg, load_avg);
- delta = load - se->avg.load_avg;
+ add_positive(&cfs_rq->avg.load_avg, load_avg);
+ add_positive(&cfs_rq->avg.load_sum, load_sum);
- /* Nothing to update */
- if (!delta)
- return;
-
- /* Set new sched_entity's load */
- se->avg.load_avg = load;
- se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
+ runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
+ runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
- /* Update parent cfs_rq load */
- add_positive(&cfs_rq->avg.load_avg, delta);
- cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
+ add_positive(&se->avg.runnable_load_sum, runnable_sum);
+ add_positive(&se->avg.runnable_load_avg, runnable_load_avg);
- /*
- * If the sched_entity is already enqueued, we also have to update the
- * runnable load avg.
- */
if (se->on_rq) {
- /* Update parent cfs_rq runnable_load_avg */
- add_positive(&cfs_rq->runnable_load_avg, delta);
- cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
+ add_positive(&cfs_rq->avg.runnable_load_avg, runnable_load_avg);
+ add_positive(&cfs_rq->avg.runnable_load_sum, runnable_load_sum);
}
}
-static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
-{
- cfs_rq->propagate_avg = 1;
-}
-
-static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
+static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
{
- struct cfs_rq *cfs_rq = group_cfs_rq(se);
-
- if (!cfs_rq->propagate_avg)
- return 0;
-
- cfs_rq->propagate_avg = 0;
- return 1;
+ cfs_rq->propagate = 1;
+ cfs_rq->prop_runnable_sum += runnable_sum;
}
/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
- struct cfs_rq *cfs_rq;
+ struct cfs_rq *cfs_rq, *gcfs_rq;
if (entity_is_task(se))
return 0;
- if (!test_and_clear_tg_cfs_propagate(se))
+ gcfs_rq = group_cfs_rq(se);
+ if (!gcfs_rq->propagate)
return 0;
+ gcfs_rq->propagate = 0;
+
cfs_rq = cfs_rq_of(se);
- set_tg_cfs_propagate(cfs_rq);
+ add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
- update_tg_cfs_util(cfs_rq, se);
- update_tg_cfs_load(cfs_rq, se);
+ update_tg_cfs_util(cfs_rq, se, gcfs_rq);
+ update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
return 1;
}
@@ -3288,7 +3570,7 @@ static inline bool skip_blocked_update(struct sched_entity *se)
* If there is a pending propagation, we have to update the load and
* the utilization of the sched_entity:
*/
- if (gcfs_rq->propagate_avg)
+ if (gcfs_rq->propagate)
return false;
/*
@@ -3308,27 +3590,10 @@ static inline int propagate_entity_load_avg(struct sched_entity *se)
return 0;
}
-static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
+static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
#endif /* CONFIG_FAIR_GROUP_SCHED */
-/*
- * Unsigned subtract and clamp on underflow.
- *
- * Explicitly do a load-store to ensure the intermediate value never hits
- * memory. This allows lockless observations without ever seeing the negative
- * values.
- */
-#define sub_positive(_ptr, _val) do { \
- typeof(_ptr) ptr = (_ptr); \
- typeof(*ptr) val = (_val); \
- typeof(*ptr) res, var = READ_ONCE(*ptr); \
- res = var - val; \
- if (res > var) \
- res = 0; \
- WRITE_ONCE(*ptr, res); \
-} while (0)
-
/**
* update_cfs_rq_load_avg - update the cfs_rq's load/util averages
* @now: current time, as per cfs_rq_clock_task()
@@ -3348,65 +3613,45 @@ static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
{
+ unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
struct sched_avg *sa = &cfs_rq->avg;
- int decayed, removed_load = 0, removed_util = 0;
+ int decayed = 0;
- if (atomic_long_read(&cfs_rq->removed_load_avg)) {
- s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
+ if (cfs_rq->removed.nr) {
+ unsigned long r;
+ u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
+
+ raw_spin_lock(&cfs_rq->removed.lock);
+ swap(cfs_rq->removed.util_avg, removed_util);
+ swap(cfs_rq->removed.load_avg, removed_load);
+ swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
+ cfs_rq->removed.nr = 0;
+ raw_spin_unlock(&cfs_rq->removed.lock);
+
+ r = removed_load;
sub_positive(&sa->load_avg, r);
- sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
- removed_load = 1;
- set_tg_cfs_propagate(cfs_rq);
- }
+ sub_positive(&sa->load_sum, r * divider);
- if (atomic_long_read(&cfs_rq->removed_util_avg)) {
- long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
+ r = removed_util;
sub_positive(&sa->util_avg, r);
- sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
- removed_util = 1;
- set_tg_cfs_propagate(cfs_rq);
+ sub_positive(&sa->util_sum, r * divider);
+
+ add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
+
+ decayed = 1;
}
- decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
+ decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
#ifndef CONFIG_64BIT
smp_wmb();
cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
- if (decayed || removed_util)
+ if (decayed)
cfs_rq_util_change(cfs_rq);
- return decayed || removed_load;
-}
-
-/*
- * Optional action to be done while updating the load average
- */
-#define UPDATE_TG 0x1
-#define SKIP_AGE_LOAD 0x2
-
-/* Update task and its cfs_rq load average */
-static inline void update_load_avg(struct sched_entity *se, int flags)
-{
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- u64 now = cfs_rq_clock_task(cfs_rq);
- struct rq *rq = rq_of(cfs_rq);
- int cpu = cpu_of(rq);
- int decayed;
-
- /*
- * Track task load average for carrying it to new CPU after migrated, and
- * track group sched_entity load average for task_h_load calc in migration
- */
- if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
- __update_load_avg_se(now, cpu, cfs_rq, se);
-
- decayed = update_cfs_rq_load_avg(now, cfs_rq);
- decayed |= propagate_entity_load_avg(se);
-
- if (decayed && (flags & UPDATE_TG))
- update_tg_load_avg(cfs_rq, 0);
+ return decayed;
}
/**
@@ -3419,12 +3664,39 @@ static inline void update_load_avg(struct sched_entity *se, int flags)
*/
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
+ u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
+
+ /*
+ * When we attach the @se to the @cfs_rq, we must align the decay
+ * window because without that, really weird and wonderful things can
+ * happen.
+ *
+ * XXX illustrate
+ */
se->avg.last_update_time = cfs_rq->avg.last_update_time;
- cfs_rq->avg.load_avg += se->avg.load_avg;
- cfs_rq->avg.load_sum += se->avg.load_sum;
+ se->avg.period_contrib = cfs_rq->avg.period_contrib;
+
+ /*
+ * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
+ * period_contrib. This isn't strictly correct, but since we're
+ * entirely outside of the PELT hierarchy, nobody cares if we truncate
+ * _sum a little.
+ */
+ se->avg.util_sum = se->avg.util_avg * divider;
+
+ se->avg.load_sum = divider;
+ if (se_weight(se)) {
+ se->avg.load_sum =
+ div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
+ }
+
+ se->avg.runnable_load_sum = se->avg.load_sum;
+
+ enqueue_load_avg(cfs_rq, se);
cfs_rq->avg.util_avg += se->avg.util_avg;
cfs_rq->avg.util_sum += se->avg.util_sum;
- set_tg_cfs_propagate(cfs_rq);
+
+ add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
cfs_rq_util_change(cfs_rq);
}
@@ -3439,39 +3711,47 @@ static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *s
*/
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
-
- sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
- sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
+ dequeue_load_avg(cfs_rq, se);
sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
- set_tg_cfs_propagate(cfs_rq);
+
+ add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
cfs_rq_util_change(cfs_rq);
}
-/* Add the load generated by se into cfs_rq's load average */
-static inline void
-enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
+/*
+ * Optional action to be done while updating the load average
+ */
+#define UPDATE_TG 0x1
+#define SKIP_AGE_LOAD 0x2
+#define DO_ATTACH 0x4
+
+/* Update task and its cfs_rq load average */
+static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
- struct sched_avg *sa = &se->avg;
+ u64 now = cfs_rq_clock_task(cfs_rq);
+ struct rq *rq = rq_of(cfs_rq);
+ int cpu = cpu_of(rq);
+ int decayed;
+
+ /*
+ * Track task load average for carrying it to new CPU after migrated, and
+ * track group sched_entity load average for task_h_load calc in migration
+ */
+ if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
+ __update_load_avg_se(now, cpu, cfs_rq, se);
- cfs_rq->runnable_load_avg += sa->load_avg;
- cfs_rq->runnable_load_sum += sa->load_sum;
+ decayed = update_cfs_rq_load_avg(now, cfs_rq);
+ decayed |= propagate_entity_load_avg(se);
+
+ if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
- if (!sa->last_update_time) {
attach_entity_load_avg(cfs_rq, se);
update_tg_load_avg(cfs_rq, 0);
- }
-}
-/* Remove the runnable load generated by se from cfs_rq's runnable load average */
-static inline void
-dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
- cfs_rq->runnable_load_avg =
- max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
- cfs_rq->runnable_load_sum =
- max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
+ } else if (decayed && (flags & UPDATE_TG))
+ update_tg_load_avg(cfs_rq, 0);
}
#ifndef CONFIG_64BIT
@@ -3515,6 +3795,7 @@ void sync_entity_load_avg(struct sched_entity *se)
void remove_entity_load_avg(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
+ unsigned long flags;
/*
* tasks cannot exit without having gone through wake_up_new_task() ->
@@ -3527,13 +3808,18 @@ void remove_entity_load_avg(struct sched_entity *se)
*/
sync_entity_load_avg(se);
- atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
- atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
+
+ raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
+ ++cfs_rq->removed.nr;
+ cfs_rq->removed.util_avg += se->avg.util_avg;
+ cfs_rq->removed.load_avg += se->avg.load_avg;
+ cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
+ raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
}
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
- return cfs_rq->runnable_load_avg;
+ return cfs_rq->avg.runnable_load_avg;
}
static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
@@ -3553,16 +3839,13 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
#define UPDATE_TG 0x0
#define SKIP_AGE_LOAD 0x0
+#define DO_ATTACH 0x0
-static inline void update_load_avg(struct sched_entity *se, int not_used1)
+static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
{
- cfs_rq_util_change(cfs_rq_of(se));
+ cfs_rq_util_change(cfs_rq);
}
-static inline void
-enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
-static inline void
-dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void remove_entity_load_avg(struct sched_entity *se) {}
static inline void
@@ -3707,9 +3990,9 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
* its group cfs_rq
* - Add its new weight to cfs_rq->load.weight
*/
- update_load_avg(se, UPDATE_TG);
- enqueue_entity_load_avg(cfs_rq, se);
- update_cfs_shares(se);
+ update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
+ update_cfs_group(se);
+ enqueue_runnable_load_avg(cfs_rq, se);
account_entity_enqueue(cfs_rq, se);
if (flags & ENQUEUE_WAKEUP)
@@ -3791,8 +4074,8 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
* - For group entity, update its weight to reflect the new share
* of its group cfs_rq.
*/
- update_load_avg(se, UPDATE_TG);
- dequeue_entity_load_avg(cfs_rq, se);
+ update_load_avg(cfs_rq, se, UPDATE_TG);
+ dequeue_runnable_load_avg(cfs_rq, se);
update_stats_dequeue(cfs_rq, se, flags);
@@ -3815,7 +4098,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
/* return excess runtime on last dequeue */
return_cfs_rq_runtime(cfs_rq);
- update_cfs_shares(se);
+ update_cfs_group(se);
/*
* Now advance min_vruntime if @se was the entity holding it back,
@@ -3879,7 +4162,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
*/
update_stats_wait_end(cfs_rq, se);
__dequeue_entity(cfs_rq, se);
- update_load_avg(se, UPDATE_TG);
+ update_load_avg(cfs_rq, se, UPDATE_TG);
}
update_stats_curr_start(cfs_rq, se);
@@ -3981,7 +4264,7 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
/* Put 'current' back into the tree. */
__enqueue_entity(cfs_rq, prev);
/* in !on_rq case, update occurred at dequeue */
- update_load_avg(prev, 0);
+ update_load_avg(cfs_rq, prev, 0);
}
cfs_rq->curr = NULL;
}
@@ -3997,8 +4280,8 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
/*
* Ensure that runnable average is periodically updated.
*/
- update_load_avg(curr, UPDATE_TG);
- update_cfs_shares(curr);
+ update_load_avg(cfs_rq, curr, UPDATE_TG);
+ update_cfs_group(curr);
#ifdef CONFIG_SCHED_HRTICK
/*
@@ -4915,8 +5198,8 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_throttled(cfs_rq))
break;
- update_load_avg(se, UPDATE_TG);
- update_cfs_shares(se);
+ update_load_avg(cfs_rq, se, UPDATE_TG);
+ update_cfs_group(se);
}
if (!se)
@@ -4974,8 +5257,8 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_throttled(cfs_rq))
break;
- update_load_avg(se, UPDATE_TG);
- update_cfs_shares(se);
+ update_load_avg(cfs_rq, se, UPDATE_TG);
+ update_cfs_group(se);
}
if (!se)
@@ -5449,6 +5732,8 @@ static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
/*
* find_idlest_group finds and returns the least busy CPU group within the
* domain.
+ *
+ * Assumes p is allowed on at least one CPU in sd.
*/
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
@@ -5456,8 +5741,9 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
{
struct sched_group *idlest = NULL, *group = sd->groups;
struct sched_group *most_spare_sg = NULL;
- unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
- unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
+ unsigned long min_runnable_load = ULONG_MAX;
+ unsigned long this_runnable_load = ULONG_MAX;
+ unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
unsigned long most_spare = 0, this_spare = 0;
int load_idx = sd->forkexec_idx;
int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
@@ -5578,10 +5864,10 @@ skip_spare:
}
/*
- * find_idlest_cpu - find the idlest cpu among the cpus in group.
+ * find_idlest_group_cpu - find the idlest cpu among the cpus in group.
*/
static int
-find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
+find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
unsigned long load, min_load = ULONG_MAX;
unsigned int min_exit_latency = UINT_MAX;
@@ -5630,6 +5916,53 @@ find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
}
+static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
+ int cpu, int prev_cpu, int sd_flag)
+{
+ int new_cpu = cpu;
+
+ if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
+ return prev_cpu;
+
+ while (sd) {
+ struct sched_group *group;
+ struct sched_domain *tmp;
+ int weight;
+
+ if (!(sd->flags & sd_flag)) {
+ sd = sd->child;
+ continue;
+ }
+
+ group = find_idlest_group(sd, p, cpu, sd_flag);
+ if (!group) {
+ sd = sd->child;
+ continue;
+ }
+
+ new_cpu = find_idlest_group_cpu(group, p, cpu);
+ if (new_cpu == cpu) {
+ /* Now try balancing at a lower domain level of cpu */
+ sd = sd->child;
+ continue;
+ }
+
+ /* Now try balancing at a lower domain level of new_cpu */
+ cpu = new_cpu;
+ weight = sd->span_weight;
+ sd = NULL;
+ for_each_domain(cpu, tmp) {
+ if (weight <= tmp->span_weight)
+ break;
+ if (tmp->flags & sd_flag)
+ sd = tmp;
+ }
+ /* while loop will break here if sd == NULL */
+ }
+
+ return new_cpu;
+}
+
#ifdef CONFIG_SCHED_SMT
static inline void set_idle_cores(int cpu, int val)
@@ -5982,50 +6315,30 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
new_cpu = cpu;
}
+ if (sd && !(sd_flag & SD_BALANCE_FORK)) {
+ /*
+ * We're going to need the task's util for capacity_spare_wake
+ * in find_idlest_group. Sync it up to prev_cpu's
+ * last_update_time.
+ */
+ sync_entity_load_avg(&p->se);
+ }
+
if (!sd) {
- pick_cpu:
+pick_cpu:
if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
- } else while (sd) {
- struct sched_group *group;
- int weight;
-
- if (!(sd->flags & sd_flag)) {
- sd = sd->child;
- continue;
- }
-
- group = find_idlest_group(sd, p, cpu, sd_flag);
- if (!group) {
- sd = sd->child;
- continue;
- }
-
- new_cpu = find_idlest_cpu(group, p, cpu);
- if (new_cpu == -1 || new_cpu == cpu) {
- /* Now try balancing at a lower domain level of cpu */
- sd = sd->child;
- continue;
- }
-
- /* Now try balancing at a lower domain level of new_cpu */
- cpu = new_cpu;
- weight = sd->span_weight;
- sd = NULL;
- for_each_domain(cpu, tmp) {
- if (weight <= tmp->span_weight)
- break;
- if (tmp->flags & sd_flag)
- sd = tmp;
- }
- /* while loop will break here if sd == NULL */
+ } else {
+ new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
}
rcu_read_unlock();
return new_cpu;
}
+static void detach_entity_cfs_rq(struct sched_entity *se);
+
/*
* Called immediately before a task is migrated to a new cpu; task_cpu(p) and
* cfs_rq_of(p) references at time of call are still valid and identify the
@@ -6059,14 +6372,25 @@ static void migrate_task_rq_fair(struct task_struct *p)
se->vruntime -= min_vruntime;
}
- /*
- * We are supposed to update the task to "current" time, then its up to date
- * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
- * what current time is, so simply throw away the out-of-date time. This
- * will result in the wakee task is less decayed, but giving the wakee more
- * load sounds not bad.
- */
- remove_entity_load_avg(&p->se);
+ if (p->on_rq == TASK_ON_RQ_MIGRATING) {
+ /*
+ * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
+ * rq->lock and can modify state directly.
+ */
+ lockdep_assert_held(&task_rq(p)->lock);
+ detach_entity_cfs_rq(&p->se);
+
+ } else {
+ /*
+ * We are supposed to update the task to "current" time, then
+ * its up to date and ready to go to new CPU/cfs_rq. But we
+ * have difficulty in getting what current time is, so simply
+ * throw away the out-of-date time. This will result in the
+ * wakee task is less decayed, but giving the wakee more load
+ * sounds not bad.
+ */
+ remove_entity_load_avg(&p->se);
+ }
/* Tell new CPU we are migrated */
p->se.avg.last_update_time = 0;
@@ -6334,10 +6658,7 @@ again:
set_next_entity(cfs_rq, se);
}
- if (hrtick_enabled(rq))
- hrtick_start_fair(rq, p);
-
- return p;
+ goto done;
simple:
#endif
@@ -6351,6 +6672,16 @@ simple:
p = task_of(se);
+done: __maybe_unused
+#ifdef CONFIG_SMP
+ /*
+ * Move the next running task to the front of
+ * the list, so our cfs_tasks list becomes MRU
+ * one.
+ */
+ list_move(&p->se.group_node, &rq->cfs_tasks);
+#endif
+
if (hrtick_enabled(rq))
hrtick_start_fair(rq, p);
@@ -6786,11 +7117,12 @@ static void detach_task(struct task_struct *p, struct lb_env *env)
*/
static struct task_struct *detach_one_task(struct lb_env *env)
{
- struct task_struct *p, *n;
+ struct task_struct *p;
lockdep_assert_held(&env->src_rq->lock);
- list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
+ list_for_each_entry_reverse(p,
+ &env->src_rq->cfs_tasks, se.group_node) {
if (!can_migrate_task(p, env))
continue;
@@ -6836,7 +7168,7 @@ static int detach_tasks(struct lb_env *env)
if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
break;
- p = list_first_entry(tasks, struct task_struct, se.group_node);
+ p = list_last_entry(tasks, struct task_struct, se.group_node);
env->loop++;
/* We've more or less seen every task there is, call it quits */
@@ -6886,7 +7218,7 @@ static int detach_tasks(struct lb_env *env)
continue;
next:
- list_move_tail(&p->se.group_node, tasks);
+ list_move(&p->se.group_node, tasks);
}
/*
@@ -6962,7 +7294,7 @@ static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
if (cfs_rq->avg.util_sum)
return false;
- if (cfs_rq->runnable_load_sum)
+ if (cfs_rq->avg.runnable_load_sum)
return false;
return true;
@@ -6994,7 +7326,7 @@ static void update_blocked_averages(int cpu)
/* Propagate pending load changes to the parent, if any: */
se = cfs_rq->tg->se[cpu];
if (se && !skip_blocked_update(se))
- update_load_avg(se, 0);
+ update_load_avg(cfs_rq_of(se), se, 0);
/*
* There can be a lot of idle CPU cgroups. Don't let fully
@@ -7875,8 +8207,11 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
if (busiest->group_type == group_imbalanced)
goto force_balance;
- /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
- if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
+ /*
+ * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
+ * capacities from resulting in underutilization due to avg_load.
+ */
+ if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
busiest->group_no_capacity)
goto force_balance;
@@ -8693,7 +9028,7 @@ void nohz_balance_enter_idle(int cpu)
return;
/* Spare idle load balancing on CPUs that don't want to be disturbed: */
- if (!is_housekeeping_cpu(cpu))
+ if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
return;
if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
@@ -9158,7 +9493,7 @@ static void propagate_entity_cfs_rq(struct sched_entity *se)
if (cfs_rq_throttled(cfs_rq))
break;
- update_load_avg(se, UPDATE_TG);
+ update_load_avg(cfs_rq, se, UPDATE_TG);
}
}
#else
@@ -9170,7 +9505,7 @@ static void detach_entity_cfs_rq(struct sched_entity *se)
struct cfs_rq *cfs_rq = cfs_rq_of(se);
/* Catch up with the cfs_rq and remove our load when we leave */
- update_load_avg(se, 0);
+ update_load_avg(cfs_rq, se, 0);
detach_entity_load_avg(cfs_rq, se);
update_tg_load_avg(cfs_rq, false);
propagate_entity_cfs_rq(se);
@@ -9189,7 +9524,7 @@ static void attach_entity_cfs_rq(struct sched_entity *se)
#endif
/* Synchronize entity with its cfs_rq */
- update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
+ update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
attach_entity_load_avg(cfs_rq, se);
update_tg_load_avg(cfs_rq, false);
propagate_entity_cfs_rq(se);
@@ -9271,11 +9606,7 @@ void init_cfs_rq(struct cfs_rq *cfs_rq)
cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
#ifdef CONFIG_SMP
-#ifdef CONFIG_FAIR_GROUP_SCHED
- cfs_rq->propagate_avg = 0;
-#endif
- atomic_long_set(&cfs_rq->removed_load_avg, 0);
- atomic_long_set(&cfs_rq->removed_util_avg, 0);
+ raw_spin_lock_init(&cfs_rq->removed.lock);
#endif
}
@@ -9473,8 +9804,8 @@ int sched_group_set_shares(struct task_group *tg, unsigned long shares)
rq_lock_irqsave(rq, &rf);
update_rq_clock(rq);
for_each_sched_entity(se) {
- update_load_avg(se, UPDATE_TG);
- update_cfs_shares(se);
+ update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
+ update_cfs_group(se);
}
rq_unlock_irqrestore(rq, &rf);
}
diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
index 257f4f0b4532..7dae9eb8c042 100644
--- a/kernel/sched/idle.c
+++ b/kernel/sched/idle.c
@@ -209,6 +209,7 @@ exit_idle:
*/
static void do_idle(void)
{
+ int cpu = smp_processor_id();
/*
* If the arch has a polling bit, we maintain an invariant:
*
@@ -219,14 +220,13 @@ static void do_idle(void)
*/
__current_set_polling();
- quiet_vmstat();
tick_nohz_idle_enter();
while (!need_resched()) {
check_pgt_cache();
rmb();
- if (cpu_is_offline(smp_processor_id())) {
+ if (cpu_is_offline(cpu)) {
cpuhp_report_idle_dead();
arch_cpu_idle_dead();
}
diff --git a/kernel/sched/isolation.c b/kernel/sched/isolation.c
new file mode 100644
index 000000000000..b71b436f59f2
--- /dev/null
+++ b/kernel/sched/isolation.c
@@ -0,0 +1,155 @@
+/*
+ * Housekeeping management. Manage the targets for routine code that can run on
+ * any CPU: unbound workqueues, timers, kthreads and any offloadable work.
+ *
+ * Copyright (C) 2017 Red Hat, Inc., Frederic Weisbecker
+ *
+ */
+
+#include <linux/sched/isolation.h>
+#include <linux/tick.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/static_key.h>
+#include <linux/ctype.h>
+
+DEFINE_STATIC_KEY_FALSE(housekeeping_overriden);
+EXPORT_SYMBOL_GPL(housekeeping_overriden);
+static cpumask_var_t housekeeping_mask;
+static unsigned int housekeeping_flags;
+
+int housekeeping_any_cpu(enum hk_flags flags)
+{
+ if (static_branch_unlikely(&housekeeping_overriden))
+ if (housekeeping_flags & flags)
+ return cpumask_any_and(housekeeping_mask, cpu_online_mask);
+ return smp_processor_id();
+}
+EXPORT_SYMBOL_GPL(housekeeping_any_cpu);
+
+const struct cpumask *housekeeping_cpumask(enum hk_flags flags)
+{
+ if (static_branch_unlikely(&housekeeping_overriden))
+ if (housekeeping_flags & flags)
+ return housekeeping_mask;
+ return cpu_possible_mask;
+}
+EXPORT_SYMBOL_GPL(housekeeping_cpumask);
+
+void housekeeping_affine(struct task_struct *t, enum hk_flags flags)
+{
+ if (static_branch_unlikely(&housekeeping_overriden))
+ if (housekeeping_flags & flags)
+ set_cpus_allowed_ptr(t, housekeeping_mask);
+}
+EXPORT_SYMBOL_GPL(housekeeping_affine);
+
+bool housekeeping_test_cpu(int cpu, enum hk_flags flags)
+{
+ if (static_branch_unlikely(&housekeeping_overriden))
+ if (housekeeping_flags & flags)
+ return cpumask_test_cpu(cpu, housekeeping_mask);
+ return true;
+}
+EXPORT_SYMBOL_GPL(housekeeping_test_cpu);
+
+void __init housekeeping_init(void)
+{
+ if (!housekeeping_flags)
+ return;
+
+ static_branch_enable(&housekeeping_overriden);
+
+ /* We need at least one CPU to handle housekeeping work */
+ WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
+}
+
+static int __init housekeeping_setup(char *str, enum hk_flags flags)
+{
+ cpumask_var_t non_housekeeping_mask;
+ int err;
+
+ alloc_bootmem_cpumask_var(&non_housekeeping_mask);
+ err = cpulist_parse(str, non_housekeeping_mask);
+ if (err < 0 || cpumask_last(non_housekeeping_mask) >= nr_cpu_ids) {
+ pr_warn("Housekeeping: nohz_full= or isolcpus= incorrect CPU range\n");
+ free_bootmem_cpumask_var(non_housekeeping_mask);
+ return 0;
+ }
+
+ if (!housekeeping_flags) {
+ alloc_bootmem_cpumask_var(&housekeeping_mask);
+ cpumask_andnot(housekeeping_mask,
+ cpu_possible_mask, non_housekeeping_mask);
+ if (cpumask_empty(housekeeping_mask))
+ cpumask_set_cpu(smp_processor_id(), housekeeping_mask);
+ } else {
+ cpumask_var_t tmp;
+
+ alloc_bootmem_cpumask_var(&tmp);
+ cpumask_andnot(tmp, cpu_possible_mask, non_housekeeping_mask);
+ if (!cpumask_equal(tmp, housekeeping_mask)) {
+ pr_warn("Housekeeping: nohz_full= must match isolcpus=\n");
+ free_bootmem_cpumask_var(tmp);
+ free_bootmem_cpumask_var(non_housekeeping_mask);
+ return 0;
+ }
+ free_bootmem_cpumask_var(tmp);
+ }
+
+ if ((flags & HK_FLAG_TICK) && !(housekeeping_flags & HK_FLAG_TICK)) {
+ if (IS_ENABLED(CONFIG_NO_HZ_FULL)) {
+ tick_nohz_full_setup(non_housekeeping_mask);
+ } else {
+ pr_warn("Housekeeping: nohz unsupported."
+ " Build with CONFIG_NO_HZ_FULL\n");
+ free_bootmem_cpumask_var(non_housekeeping_mask);
+ return 0;
+ }
+ }
+
+ housekeeping_flags |= flags;
+
+ free_bootmem_cpumask_var(non_housekeeping_mask);
+
+ return 1;
+}
+
+static int __init housekeeping_nohz_full_setup(char *str)
+{
+ unsigned int flags;
+
+ flags = HK_FLAG_TICK | HK_FLAG_TIMER | HK_FLAG_RCU | HK_FLAG_MISC;
+
+ return housekeeping_setup(str, flags);
+}
+__setup("nohz_full=", housekeeping_nohz_full_setup);
+
+static int __init housekeeping_isolcpus_setup(char *str)
+{
+ unsigned int flags = 0;
+
+ while (isalpha(*str)) {
+ if (!strncmp(str, "nohz,", 5)) {
+ str += 5;
+ flags |= HK_FLAG_TICK;
+ continue;
+ }
+
+ if (!strncmp(str, "domain,", 7)) {
+ str += 7;
+ flags |= HK_FLAG_DOMAIN;
+ continue;
+ }
+
+ pr_warn("isolcpus: Error, unknown flag\n");
+ return 0;
+ }
+
+ /* Default behaviour for isolcpus without flags */
+ if (!flags)
+ flags |= HK_FLAG_DOMAIN;
+
+ return housekeeping_setup(str, flags);
+}
+__setup("isolcpus=", housekeeping_isolcpus_setup);
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index 3c96c80e0992..4056c19ca3f0 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -74,10 +74,6 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
raw_spin_unlock(&rt_b->rt_runtime_lock);
}
-#if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
-static void push_irq_work_func(struct irq_work *work);
-#endif
-
void init_rt_rq(struct rt_rq *rt_rq)
{
struct rt_prio_array *array;
@@ -97,13 +93,6 @@ void init_rt_rq(struct rt_rq *rt_rq)
rt_rq->rt_nr_migratory = 0;
rt_rq->overloaded = 0;
plist_head_init(&rt_rq->pushable_tasks);
-
-#ifdef HAVE_RT_PUSH_IPI
- rt_rq->push_flags = 0;
- rt_rq->push_cpu = nr_cpu_ids;
- raw_spin_lock_init(&rt_rq->push_lock);
- init_irq_work(&rt_rq->push_work, push_irq_work_func);
-#endif
#endif /* CONFIG_SMP */
/* We start is dequeued state, because no RT tasks are queued */
rt_rq->rt_queued = 0;
@@ -980,7 +969,7 @@ static void update_curr_rt(struct rq *rq)
account_group_exec_runtime(curr, delta_exec);
curr->se.exec_start = rq_clock_task(rq);
- cpuacct_charge(curr, delta_exec);
+ cgroup_account_cputime(curr, delta_exec);
sched_rt_avg_update(rq, delta_exec);
@@ -1876,241 +1865,166 @@ static void push_rt_tasks(struct rq *rq)
}
#ifdef HAVE_RT_PUSH_IPI
+
/*
- * The search for the next cpu always starts at rq->cpu and ends
- * when we reach rq->cpu again. It will never return rq->cpu.
- * This returns the next cpu to check, or nr_cpu_ids if the loop
- * is complete.
+ * When a high priority task schedules out from a CPU and a lower priority
+ * task is scheduled in, a check is made to see if there's any RT tasks
+ * on other CPUs that are waiting to run because a higher priority RT task
+ * is currently running on its CPU. In this case, the CPU with multiple RT
+ * tasks queued on it (overloaded) needs to be notified that a CPU has opened
+ * up that may be able to run one of its non-running queued RT tasks.
+ *
+ * All CPUs with overloaded RT tasks need to be notified as there is currently
+ * no way to know which of these CPUs have the highest priority task waiting
+ * to run. Instead of trying to take a spinlock on each of these CPUs,
+ * which has shown to cause large latency when done on machines with many
+ * CPUs, sending an IPI to the CPUs to have them push off the overloaded
+ * RT tasks waiting to run.
+ *
+ * Just sending an IPI to each of the CPUs is also an issue, as on large
+ * count CPU machines, this can cause an IPI storm on a CPU, especially
+ * if its the only CPU with multiple RT tasks queued, and a large number
+ * of CPUs scheduling a lower priority task at the same time.
+ *
+ * Each root domain has its own irq work function that can iterate over
+ * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
+ * tassk must be checked if there's one or many CPUs that are lowering
+ * their priority, there's a single irq work iterator that will try to
+ * push off RT tasks that are waiting to run.
+ *
+ * When a CPU schedules a lower priority task, it will kick off the
+ * irq work iterator that will jump to each CPU with overloaded RT tasks.
+ * As it only takes the first CPU that schedules a lower priority task
+ * to start the process, the rto_start variable is incremented and if
+ * the atomic result is one, then that CPU will try to take the rto_lock.
+ * This prevents high contention on the lock as the process handles all
+ * CPUs scheduling lower priority tasks.
+ *
+ * All CPUs that are scheduling a lower priority task will increment the
+ * rt_loop_next variable. This will make sure that the irq work iterator
+ * checks all RT overloaded CPUs whenever a CPU schedules a new lower
+ * priority task, even if the iterator is in the middle of a scan. Incrementing
+ * the rt_loop_next will cause the iterator to perform another scan.
*
- * rq->rt.push_cpu holds the last cpu returned by this function,
- * or if this is the first instance, it must hold rq->cpu.
*/
static int rto_next_cpu(struct rq *rq)
{
- int prev_cpu = rq->rt.push_cpu;
+ struct root_domain *rd = rq->rd;
+ int next;
int cpu;
- cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
-
/*
- * If the previous cpu is less than the rq's CPU, then it already
- * passed the end of the mask, and has started from the beginning.
- * We end if the next CPU is greater or equal to rq's CPU.
+ * When starting the IPI RT pushing, the rto_cpu is set to -1,
+ * rt_next_cpu() will simply return the first CPU found in
+ * the rto_mask.
+ *
+ * If rto_next_cpu() is called with rto_cpu is a valid cpu, it
+ * will return the next CPU found in the rto_mask.
+ *
+ * If there are no more CPUs left in the rto_mask, then a check is made
+ * against rto_loop and rto_loop_next. rto_loop is only updated with
+ * the rto_lock held, but any CPU may increment the rto_loop_next
+ * without any locking.
*/
- if (prev_cpu < rq->cpu) {
- if (cpu >= rq->cpu)
- return nr_cpu_ids;
+ for (;;) {
- } else if (cpu >= nr_cpu_ids) {
- /*
- * We passed the end of the mask, start at the beginning.
- * If the result is greater or equal to the rq's CPU, then
- * the loop is finished.
- */
- cpu = cpumask_first(rq->rd->rto_mask);
- if (cpu >= rq->cpu)
- return nr_cpu_ids;
- }
- rq->rt.push_cpu = cpu;
+ /* When rto_cpu is -1 this acts like cpumask_first() */
+ cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
- /* Return cpu to let the caller know if the loop is finished or not */
- return cpu;
-}
+ rd->rto_cpu = cpu;
-static int find_next_push_cpu(struct rq *rq)
-{
- struct rq *next_rq;
- int cpu;
+ if (cpu < nr_cpu_ids)
+ return cpu;
- while (1) {
- cpu = rto_next_cpu(rq);
- if (cpu >= nr_cpu_ids)
- break;
- next_rq = cpu_rq(cpu);
+ rd->rto_cpu = -1;
+
+ /*
+ * ACQUIRE ensures we see the @rto_mask changes
+ * made prior to the @next value observed.
+ *
+ * Matches WMB in rt_set_overload().
+ */
+ next = atomic_read_acquire(&rd->rto_loop_next);
- /* Make sure the next rq can push to this rq */
- if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
+ if (rd->rto_loop == next)
break;
+
+ rd->rto_loop = next;
}
- return cpu;
+ return -1;
}
-#define RT_PUSH_IPI_EXECUTING 1
-#define RT_PUSH_IPI_RESTART 2
+static inline bool rto_start_trylock(atomic_t *v)
+{
+ return !atomic_cmpxchg_acquire(v, 0, 1);
+}
-/*
- * When a high priority task schedules out from a CPU and a lower priority
- * task is scheduled in, a check is made to see if there's any RT tasks
- * on other CPUs that are waiting to run because a higher priority RT task
- * is currently running on its CPU. In this case, the CPU with multiple RT
- * tasks queued on it (overloaded) needs to be notified that a CPU has opened
- * up that may be able to run one of its non-running queued RT tasks.
- *
- * On large CPU boxes, there's the case that several CPUs could schedule
- * a lower priority task at the same time, in which case it will look for
- * any overloaded CPUs that it could pull a task from. To do this, the runqueue
- * lock must be taken from that overloaded CPU. Having 10s of CPUs all fighting
- * for a single overloaded CPU's runqueue lock can produce a large latency.
- * (This has actually been observed on large boxes running cyclictest).
- * Instead of taking the runqueue lock of the overloaded CPU, each of the
- * CPUs that scheduled a lower priority task simply sends an IPI to the
- * overloaded CPU. An IPI is much cheaper than taking an runqueue lock with
- * lots of contention. The overloaded CPU will look to push its non-running
- * RT task off, and if it does, it can then ignore the other IPIs coming
- * in, and just pass those IPIs off to any other overloaded CPU.
- *
- * When a CPU schedules a lower priority task, it only sends an IPI to
- * the "next" CPU that has overloaded RT tasks. This prevents IPI storms,
- * as having 10 CPUs scheduling lower priority tasks and 10 CPUs with
- * RT overloaded tasks, would cause 100 IPIs to go out at once.
- *
- * The overloaded RT CPU, when receiving an IPI, will try to push off its
- * overloaded RT tasks and then send an IPI to the next CPU that has
- * overloaded RT tasks. This stops when all CPUs with overloaded RT tasks
- * have completed. Just because a CPU may have pushed off its own overloaded
- * RT task does not mean it should stop sending the IPI around to other
- * overloaded CPUs. There may be another RT task waiting to run on one of
- * those CPUs that are of higher priority than the one that was just
- * pushed.
- *
- * An optimization that could possibly be made is to make a CPU array similar
- * to the cpupri array mask of all running RT tasks, but for the overloaded
- * case, then the IPI could be sent to only the CPU with the highest priority
- * RT task waiting, and that CPU could send off further IPIs to the CPU with
- * the next highest waiting task. Since the overloaded case is much less likely
- * to happen, the complexity of this implementation may not be worth it.
- * Instead, just send an IPI around to all overloaded CPUs.
- *
- * The rq->rt.push_flags holds the status of the IPI that is going around.
- * A run queue can only send out a single IPI at a time. The possible flags
- * for rq->rt.push_flags are:
- *
- * (None or zero): No IPI is going around for the current rq
- * RT_PUSH_IPI_EXECUTING: An IPI for the rq is being passed around
- * RT_PUSH_IPI_RESTART: The priority of the running task for the rq
- * has changed, and the IPI should restart
- * circulating the overloaded CPUs again.
- *
- * rq->rt.push_cpu contains the CPU that is being sent the IPI. It is updated
- * before sending to the next CPU.
- *
- * Instead of having all CPUs that schedule a lower priority task send
- * an IPI to the same "first" CPU in the RT overload mask, they send it
- * to the next overloaded CPU after their own CPU. This helps distribute
- * the work when there's more than one overloaded CPU and multiple CPUs
- * scheduling in lower priority tasks.
- *
- * When a rq schedules a lower priority task than what was currently
- * running, the next CPU with overloaded RT tasks is examined first.
- * That is, if CPU 1 and 5 are overloaded, and CPU 3 schedules a lower
- * priority task, it will send an IPI first to CPU 5, then CPU 5 will
- * send to CPU 1 if it is still overloaded. CPU 1 will clear the
- * rq->rt.push_flags if RT_PUSH_IPI_RESTART is not set.
- *
- * The first CPU to notice IPI_RESTART is set, will clear that flag and then
- * send an IPI to the next overloaded CPU after the rq->cpu and not the next
- * CPU after push_cpu. That is, if CPU 1, 4 and 5 are overloaded when CPU 3
- * schedules a lower priority task, and the IPI_RESTART gets set while the
- * handling is being done on CPU 5, it will clear the flag and send it back to
- * CPU 4 instead of CPU 1.
- *
- * Note, the above logic can be disabled by turning off the sched_feature
- * RT_PUSH_IPI. Then the rq lock of the overloaded CPU will simply be
- * taken by the CPU requesting a pull and the waiting RT task will be pulled
- * by that CPU. This may be fine for machines with few CPUs.
- */
-static void tell_cpu_to_push(struct rq *rq)
+static inline void rto_start_unlock(atomic_t *v)
{
- int cpu;
+ atomic_set_release(v, 0);
+}
- if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
- raw_spin_lock(&rq->rt.push_lock);
- /* Make sure it's still executing */
- if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
- /*
- * Tell the IPI to restart the loop as things have
- * changed since it started.
- */
- rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
- raw_spin_unlock(&rq->rt.push_lock);
- return;
- }
- raw_spin_unlock(&rq->rt.push_lock);
- }
+static void tell_cpu_to_push(struct rq *rq)
+{
+ int cpu = -1;
- /* When here, there's no IPI going around */
+ /* Keep the loop going if the IPI is currently active */
+ atomic_inc(&rq->rd->rto_loop_next);
- rq->rt.push_cpu = rq->cpu;
- cpu = find_next_push_cpu(rq);
- if (cpu >= nr_cpu_ids)
+ /* Only one CPU can initiate a loop at a time */
+ if (!rto_start_trylock(&rq->rd->rto_loop_start))
return;
- rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
+ raw_spin_lock(&rq->rd->rto_lock);
+
+ /*
+ * The rto_cpu is updated under the lock, if it has a valid cpu
+ * then the IPI is still running and will continue due to the
+ * update to loop_next, and nothing needs to be done here.
+ * Otherwise it is finishing up and an ipi needs to be sent.
+ */
+ if (rq->rd->rto_cpu < 0)
+ cpu = rto_next_cpu(rq);
- irq_work_queue_on(&rq->rt.push_work, cpu);
+ raw_spin_unlock(&rq->rd->rto_lock);
+
+ rto_start_unlock(&rq->rd->rto_loop_start);
+
+ if (cpu >= 0)
+ irq_work_queue_on(&rq->rd->rto_push_work, cpu);
}
/* Called from hardirq context */
-static void try_to_push_tasks(void *arg)
+void rto_push_irq_work_func(struct irq_work *work)
{
- struct rt_rq *rt_rq = arg;
- struct rq *rq, *src_rq;
- int this_cpu;
+ struct rq *rq;
int cpu;
- this_cpu = rt_rq->push_cpu;
+ rq = this_rq();
- /* Paranoid check */
- BUG_ON(this_cpu != smp_processor_id());
-
- rq = cpu_rq(this_cpu);
- src_rq = rq_of_rt_rq(rt_rq);
-
-again:
+ /*
+ * We do not need to grab the lock to check for has_pushable_tasks.
+ * When it gets updated, a check is made if a push is possible.
+ */
if (has_pushable_tasks(rq)) {
raw_spin_lock(&rq->lock);
- push_rt_task(rq);
+ push_rt_tasks(rq);
raw_spin_unlock(&rq->lock);
}
- /* Pass the IPI to the next rt overloaded queue */
- raw_spin_lock(&rt_rq->push_lock);
- /*
- * If the source queue changed since the IPI went out,
- * we need to restart the search from that CPU again.
- */
- if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
- rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
- rt_rq->push_cpu = src_rq->cpu;
- }
+ raw_spin_lock(&rq->rd->rto_lock);
- cpu = find_next_push_cpu(src_rq);
+ /* Pass the IPI to the next rt overloaded queue */
+ cpu = rto_next_cpu(rq);
- if (cpu >= nr_cpu_ids)
- rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
- raw_spin_unlock(&rt_rq->push_lock);
+ raw_spin_unlock(&rq->rd->rto_lock);
- if (cpu >= nr_cpu_ids)
+ if (cpu < 0)
return;
- /*
- * It is possible that a restart caused this CPU to be
- * chosen again. Don't bother with an IPI, just see if we
- * have more to push.
- */
- if (unlikely(cpu == rq->cpu))
- goto again;
-
/* Try the next RT overloaded CPU */
- irq_work_queue_on(&rt_rq->push_work, cpu);
-}
-
-static void push_irq_work_func(struct irq_work *work)
-{
- struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
-
- try_to_push_tasks(rt_rq);
+ irq_work_queue_on(&rq->rd->rto_push_work, cpu);
}
#endif /* HAVE_RT_PUSH_IPI */
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 3b448ba82225..b19552a212de 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -30,6 +30,7 @@
#include <linux/irq_work.h>
#include <linux/tick.h>
#include <linux/slab.h>
+#include <linux/cgroup.h>
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
@@ -37,7 +38,6 @@
#include "cpupri.h"
#include "cpudeadline.h"
-#include "cpuacct.h"
#ifdef CONFIG_SCHED_DEBUG
# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
@@ -227,7 +227,7 @@ struct dl_bw {
static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
static inline
-void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
+void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
{
dl_b->total_bw -= tsk_bw;
__dl_update(dl_b, (s32)tsk_bw / cpus);
@@ -256,7 +256,6 @@ extern int sched_dl_overflow(struct task_struct *p, int policy,
extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
extern bool __checkparam_dl(const struct sched_attr *attr);
-extern void __dl_clear_params(struct task_struct *p);
extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
extern int dl_task_can_attach(struct task_struct *p,
const struct cpumask *cs_cpus_allowed);
@@ -419,6 +418,7 @@ struct cfs_bandwidth { };
/* CFS-related fields in a runqueue */
struct cfs_rq {
struct load_weight load;
+ unsigned long runnable_weight;
unsigned int nr_running, h_nr_running;
u64 exec_clock;
@@ -444,18 +444,22 @@ struct cfs_rq {
* CFS load tracking
*/
struct sched_avg avg;
- u64 runnable_load_sum;
- unsigned long runnable_load_avg;
-#ifdef CONFIG_FAIR_GROUP_SCHED
- unsigned long tg_load_avg_contrib;
- unsigned long propagate_avg;
-#endif
- atomic_long_t removed_load_avg, removed_util_avg;
#ifndef CONFIG_64BIT
u64 load_last_update_time_copy;
#endif
+ struct {
+ raw_spinlock_t lock ____cacheline_aligned;
+ int nr;
+ unsigned long load_avg;
+ unsigned long util_avg;
+ unsigned long runnable_sum;
+ } removed;
#ifdef CONFIG_FAIR_GROUP_SCHED
+ unsigned long tg_load_avg_contrib;
+ long propagate;
+ long prop_runnable_sum;
+
/*
* h_load = weight * f(tg)
*
@@ -502,7 +506,7 @@ static inline int rt_bandwidth_enabled(void)
}
/* RT IPI pull logic requires IRQ_WORK */
-#ifdef CONFIG_IRQ_WORK
+#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
# define HAVE_RT_PUSH_IPI
#endif
@@ -524,12 +528,6 @@ struct rt_rq {
unsigned long rt_nr_total;
int overloaded;
struct plist_head pushable_tasks;
-#ifdef HAVE_RT_PUSH_IPI
- int push_flags;
- int push_cpu;
- struct irq_work push_work;
- raw_spinlock_t push_lock;
-#endif
#endif /* CONFIG_SMP */
int rt_queued;
@@ -638,6 +636,19 @@ struct root_domain {
struct dl_bw dl_bw;
struct cpudl cpudl;
+#ifdef HAVE_RT_PUSH_IPI
+ /*
+ * For IPI pull requests, loop across the rto_mask.
+ */
+ struct irq_work rto_push_work;
+ raw_spinlock_t rto_lock;
+ /* These are only updated and read within rto_lock */
+ int rto_loop;
+ int rto_cpu;
+ /* These atomics are updated outside of a lock */
+ atomic_t rto_loop_next;
+ atomic_t rto_loop_start;
+#endif
/*
* The "RT overload" flag: it gets set if a CPU has more than
* one runnable RT task.
@@ -655,6 +666,9 @@ extern void init_defrootdomain(void);
extern int sched_init_domains(const struct cpumask *cpu_map);
extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
+#ifdef HAVE_RT_PUSH_IPI
+extern void rto_push_irq_work_func(struct irq_work *work);
+#endif
#endif /* CONFIG_SMP */
/*
@@ -1219,8 +1233,6 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
# define const_debug const
#endif
-extern const_debug unsigned int sysctl_sched_features;
-
#define SCHED_FEAT(name, enabled) \
__SCHED_FEAT_##name ,
@@ -1232,6 +1244,13 @@ enum {
#undef SCHED_FEAT
#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
+
+/*
+ * To support run-time toggling of sched features, all the translation units
+ * (but core.c) reference the sysctl_sched_features defined in core.c.
+ */
+extern const_debug unsigned int sysctl_sched_features;
+
#define SCHED_FEAT(name, enabled) \
static __always_inline bool static_branch_##name(struct static_key *key) \
{ \
@@ -1239,13 +1258,27 @@ static __always_inline bool static_branch_##name(struct static_key *key) \
}
#include "features.h"
-
#undef SCHED_FEAT
extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
+
#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
+
+/*
+ * Each translation unit has its own copy of sysctl_sched_features to allow
+ * constants propagation at compile time and compiler optimization based on
+ * features default.
+ */
+#define SCHED_FEAT(name, enabled) \
+ (1UL << __SCHED_FEAT_##name) * enabled |
+static const_debug __maybe_unused unsigned int sysctl_sched_features =
+#include "features.h"
+ 0;
+#undef SCHED_FEAT
+
#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
+
#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
extern struct static_key_false sched_numa_balancing;
@@ -1530,6 +1563,8 @@ extern void init_sched_dl_class(void);
extern void init_sched_rt_class(void);
extern void init_sched_fair_class(void);
+extern void reweight_task(struct task_struct *p, int prio);
+
extern void resched_curr(struct rq *rq);
extern void resched_cpu(int cpu);
diff --git a/kernel/sched/stop_task.c b/kernel/sched/stop_task.c
index 45caf90b24cd..210b1f2146ff 100644
--- a/kernel/sched/stop_task.c
+++ b/kernel/sched/stop_task.c
@@ -72,7 +72,7 @@ static void put_prev_task_stop(struct rq *rq, struct task_struct *prev)
account_group_exec_runtime(curr, delta_exec);
curr->se.exec_start = rq_clock_task(rq);
- cpuacct_charge(curr, delta_exec);
+ cgroup_account_cputime(curr, delta_exec);
}
static void task_tick_stop(struct rq *rq, struct task_struct *curr, int queued)
diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
index 6798276d29af..034cbed7f88b 100644
--- a/kernel/sched/topology.c
+++ b/kernel/sched/topology.c
@@ -4,6 +4,7 @@
*/
#include <linux/sched.h>
#include <linux/mutex.h>
+#include <linux/sched/isolation.h>
#include "sched.h"
@@ -269,6 +270,12 @@ static int init_rootdomain(struct root_domain *rd)
if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
goto free_dlo_mask;
+#ifdef HAVE_RT_PUSH_IPI
+ rd->rto_cpu = -1;
+ raw_spin_lock_init(&rd->rto_lock);
+ init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
+#endif
+
init_dl_bw(&rd->dl_bw);
if (cpudl_init(&rd->cpudl) != 0)
goto free_rto_mask;
@@ -464,21 +471,6 @@ cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
update_top_cache_domain(cpu);
}
-/* Setup the mask of CPUs configured for isolated domains */
-static int __init isolated_cpu_setup(char *str)
-{
- int ret;
-
- alloc_bootmem_cpumask_var(&cpu_isolated_map);
- ret = cpulist_parse(str, cpu_isolated_map);
- if (ret) {
- pr_err("sched: Error, all isolcpus= values must be between 0 and %u\n", nr_cpu_ids);
- return 0;
- }
- return 1;
-}
-__setup("isolcpus=", isolated_cpu_setup);
-
struct s_data {
struct sched_domain ** __percpu sd;
struct root_domain *rd;
@@ -1158,6 +1150,7 @@ sd_init(struct sched_domain_topology_level *tl,
sd->smt_gain = 1178; /* ~15% */
} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
+ sd->flags |= SD_PREFER_SIBLING;
sd->imbalance_pct = 117;
sd->cache_nice_tries = 1;
sd->busy_idx = 2;
@@ -1332,6 +1325,10 @@ void sched_init_numa(void)
if (!sched_domains_numa_distance)
return;
+ /* Includes NUMA identity node at level 0. */
+ sched_domains_numa_distance[level++] = curr_distance;
+ sched_domains_numa_levels = level;
+
/*
* O(nr_nodes^2) deduplicating selection sort -- in order to find the
* unique distances in the node_distance() table.
@@ -1379,8 +1376,7 @@ void sched_init_numa(void)
return;
/*
- * 'level' contains the number of unique distances, excluding the
- * identity distance node_distance(i,i).
+ * 'level' contains the number of unique distances
*
* The sched_domains_numa_distance[] array includes the actual distance
* numbers.
@@ -1442,9 +1438,18 @@ void sched_init_numa(void)
tl[i] = sched_domain_topology[i];
/*
+ * Add the NUMA identity distance, aka single NODE.
+ */
+ tl[i++] = (struct sched_domain_topology_level){
+ .mask = sd_numa_mask,
+ .numa_level = 0,
+ SD_INIT_NAME(NODE)
+ };
+
+ /*
* .. and append 'j' levels of NUMA goodness.
*/
- for (j = 0; j < level; i++, j++) {
+ for (j = 1; j < level; i++, j++) {
tl[i] = (struct sched_domain_topology_level){
.mask = sd_numa_mask,
.sd_flags = cpu_numa_flags,
@@ -1774,7 +1779,7 @@ int sched_init_domains(const struct cpumask *cpu_map)
doms_cur = alloc_sched_domains(ndoms_cur);
if (!doms_cur)
doms_cur = &fallback_doms;
- cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
+ cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
err = build_sched_domains(doms_cur[0], NULL);
register_sched_domain_sysctl();
@@ -1857,7 +1862,8 @@ void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
doms_new = alloc_sched_domains(1);
if (doms_new) {
n = 1;
- cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
+ cpumask_and(doms_new[0], cpu_active_mask,
+ housekeeping_cpumask(HK_FLAG_DOMAIN));
}
} else {
n = ndoms_new;
@@ -1880,7 +1886,8 @@ match1:
if (!doms_new) {
n = 0;
doms_new = &fallback_doms;
- cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
+ cpumask_and(doms_new[0], cpu_active_mask,
+ housekeeping_cpumask(HK_FLAG_DOMAIN));
}
/* Build new domains: */
diff --git a/kernel/seccomp.c b/kernel/seccomp.c
index 418a1c045933..5f0dfb2abb8d 100644
--- a/kernel/seccomp.c
+++ b/kernel/seccomp.c
@@ -190,7 +190,7 @@ static u32 seccomp_run_filters(const struct seccomp_data *sd,
u32 ret = SECCOMP_RET_ALLOW;
/* Make sure cross-thread synced filter points somewhere sane. */
struct seccomp_filter *f =
- lockless_dereference(current->seccomp.filter);
+ READ_ONCE(current->seccomp.filter);
/* Ensure unexpected behavior doesn't result in failing open. */
if (unlikely(WARN_ON(f == NULL)))
diff --git a/kernel/signal.c b/kernel/signal.c
index 8dcd8825b2de..aa1fb9f905db 100644
--- a/kernel/signal.c
+++ b/kernel/signal.c
@@ -1036,8 +1036,7 @@ static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
else
override_rlimit = 0;
- q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
- override_rlimit);
+ q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
if (q) {
list_add_tail(&q->list, &pending->list);
switch ((unsigned long) info) {
diff --git a/kernel/smp.c b/kernel/smp.c
index c94dd85c8d41..084c8b3a2681 100644
--- a/kernel/smp.c
+++ b/kernel/smp.c
@@ -213,7 +213,7 @@ static void flush_smp_call_function_queue(bool warn_cpu_offline)
call_single_data_t *csd, *csd_next;
static bool warned;
- WARN_ON(!irqs_disabled());
+ lockdep_assert_irqs_disabled();
head = this_cpu_ptr(&call_single_queue);
entry = llist_del_all(head);
diff --git a/kernel/softirq.c b/kernel/softirq.c
index 4e09821f9d9e..2f5e87f1bae2 100644
--- a/kernel/softirq.c
+++ b/kernel/softirq.c
@@ -137,7 +137,7 @@ EXPORT_SYMBOL(__local_bh_disable_ip);
static void __local_bh_enable(unsigned int cnt)
{
- WARN_ON_ONCE(!irqs_disabled());
+ lockdep_assert_irqs_disabled();
if (softirq_count() == (cnt & SOFTIRQ_MASK))
trace_softirqs_on(_RET_IP_);
@@ -158,7 +158,8 @@ EXPORT_SYMBOL(_local_bh_enable);
void __local_bh_enable_ip(unsigned long ip, unsigned int cnt)
{
- WARN_ON_ONCE(in_irq() || irqs_disabled());
+ WARN_ON_ONCE(in_irq());
+ lockdep_assert_irqs_enabled();
#ifdef CONFIG_TRACE_IRQFLAGS
local_irq_disable();
#endif
@@ -396,9 +397,8 @@ void irq_exit(void)
#ifndef __ARCH_IRQ_EXIT_IRQS_DISABLED
local_irq_disable();
#else
- WARN_ON_ONCE(!irqs_disabled());
+ lockdep_assert_irqs_disabled();
#endif
-
account_irq_exit_time(current);
preempt_count_sub(HARDIRQ_OFFSET);
if (!in_interrupt() && local_softirq_pending())
@@ -486,16 +486,6 @@ void __tasklet_hi_schedule(struct tasklet_struct *t)
}
EXPORT_SYMBOL(__tasklet_hi_schedule);
-void __tasklet_hi_schedule_first(struct tasklet_struct *t)
-{
- BUG_ON(!irqs_disabled());
-
- t->next = __this_cpu_read(tasklet_hi_vec.head);
- __this_cpu_write(tasklet_hi_vec.head, t);
- __raise_softirq_irqoff(HI_SOFTIRQ);
-}
-EXPORT_SYMBOL(__tasklet_hi_schedule_first);
-
static __latent_entropy void tasklet_action(struct softirq_action *a)
{
struct tasklet_struct *list;
diff --git a/kernel/sys.c b/kernel/sys.c
index 524a4cb9bbe2..83ffd7dccf23 100644
--- a/kernel/sys.c
+++ b/kernel/sys.c
@@ -111,6 +111,12 @@
#ifndef SET_FP_MODE
# define SET_FP_MODE(a,b) (-EINVAL)
#endif
+#ifndef SVE_SET_VL
+# define SVE_SET_VL(a) (-EINVAL)
+#endif
+#ifndef SVE_GET_VL
+# define SVE_GET_VL() (-EINVAL)
+#endif
/*
* this is where the system-wide overflow UID and GID are defined, for
@@ -2386,6 +2392,12 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
case PR_GET_FP_MODE:
error = GET_FP_MODE(me);
break;
+ case PR_SVE_SET_VL:
+ error = SVE_SET_VL(arg2);
+ break;
+ case PR_SVE_GET_VL:
+ error = SVE_GET_VL();
+ break;
default:
error = -EINVAL;
break;
diff --git a/kernel/sysctl.c b/kernel/sysctl.c
index d9c31bc2eaea..4a13a389e99b 100644
--- a/kernel/sysctl.c
+++ b/kernel/sysctl.c
@@ -30,7 +30,6 @@
#include <linux/proc_fs.h>
#include <linux/security.h>
#include <linux/ctype.h>
-#include <linux/kmemcheck.h>
#include <linux/kmemleak.h>
#include <linux/fs.h>
#include <linux/init.h>
@@ -1174,15 +1173,6 @@ static struct ctl_table kern_table[] = {
.extra2 = &one_thousand,
},
#endif
-#ifdef CONFIG_KMEMCHECK
- {
- .procname = "kmemcheck",
- .data = &kmemcheck_enabled,
- .maxlen = sizeof(int),
- .mode = 0644,
- .proc_handler = proc_dointvec,
- },
-#endif
{
.procname = "panic_on_warn",
.data = &panic_on_warn,
@@ -1342,11 +1332,6 @@ static struct ctl_table vm_table[] = {
.extra1 = &zero,
},
{
- .procname = "nr_pdflush_threads",
- .mode = 0444 /* read-only */,
- .proc_handler = pdflush_proc_obsolete,
- },
- {
.procname = "swappiness",
.data = &vm_swappiness,
.maxlen = sizeof(vm_swappiness),
@@ -1371,6 +1356,15 @@ static struct ctl_table vm_table[] = {
.mode = 0644,
.proc_handler = &hugetlb_mempolicy_sysctl_handler,
},
+ {
+ .procname = "numa_stat",
+ .data = &sysctl_vm_numa_stat,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ .proc_handler = sysctl_vm_numa_stat_handler,
+ .extra1 = &zero,
+ .extra2 = &one,
+ },
#endif
{
.procname = "hugetlb_shm_group",
diff --git a/kernel/task_work.c b/kernel/task_work.c
index 5718b3ea202a..0fef395662a6 100644
--- a/kernel/task_work.c
+++ b/kernel/task_work.c
@@ -68,7 +68,7 @@ task_work_cancel(struct task_struct *task, task_work_func_t func)
* we raced with task_work_run(), *pprev == NULL/exited.
*/
raw_spin_lock_irqsave(&task->pi_lock, flags);
- while ((work = lockless_dereference(*pprev))) {
+ while ((work = READ_ONCE(*pprev))) {
if (work->func != func)
pprev = &work->next;
else if (cmpxchg(pprev, work, work->next) == work)
diff --git a/kernel/test_kprobes.c b/kernel/test_kprobes.c
index 0dbab6d1acb4..dd53e354f630 100644
--- a/kernel/test_kprobes.c
+++ b/kernel/test_kprobes.c
@@ -22,7 +22,7 @@
#define div_factor 3
-static u32 rand1, preh_val, posth_val, jph_val;
+static u32 rand1, preh_val, posth_val;
static int errors, handler_errors, num_tests;
static u32 (*target)(u32 value);
static u32 (*target2)(u32 value);
@@ -34,6 +34,10 @@ static noinline u32 kprobe_target(u32 value)
static int kp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
+ if (preemptible()) {
+ handler_errors++;
+ pr_err("pre-handler is preemptible\n");
+ }
preh_val = (rand1 / div_factor);
return 0;
}
@@ -41,6 +45,10 @@ static int kp_pre_handler(struct kprobe *p, struct pt_regs *regs)
static void kp_post_handler(struct kprobe *p, struct pt_regs *regs,
unsigned long flags)
{
+ if (preemptible()) {
+ handler_errors++;
+ pr_err("post-handler is preemptible\n");
+ }
if (preh_val != (rand1 / div_factor)) {
handler_errors++;
pr_err("incorrect value in post_handler\n");
@@ -154,8 +162,15 @@ static int test_kprobes(void)
}
+#if 0
+static u32 jph_val;
+
static u32 j_kprobe_target(u32 value)
{
+ if (preemptible()) {
+ handler_errors++;
+ pr_err("jprobe-handler is preemptible\n");
+ }
if (value != rand1) {
handler_errors++;
pr_err("incorrect value in jprobe handler\n");
@@ -227,11 +242,19 @@ static int test_jprobes(void)
return 0;
}
+#else
+#define test_jprobe() (0)
+#define test_jprobes() (0)
+#endif
#ifdef CONFIG_KRETPROBES
static u32 krph_val;
static int entry_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
{
+ if (preemptible()) {
+ handler_errors++;
+ pr_err("kretprobe entry handler is preemptible\n");
+ }
krph_val = (rand1 / div_factor);
return 0;
}
@@ -240,6 +263,10 @@ static int return_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
{
unsigned long ret = regs_return_value(regs);
+ if (preemptible()) {
+ handler_errors++;
+ pr_err("kretprobe return handler is preemptible\n");
+ }
if (ret != (rand1 / div_factor)) {
handler_errors++;
pr_err("incorrect value in kretprobe handler\n");
diff --git a/kernel/time/hrtimer.c b/kernel/time/hrtimer.c
index 88f75f92ef36..d32520840fde 100644
--- a/kernel/time/hrtimer.c
+++ b/kernel/time/hrtimer.c
@@ -758,9 +758,7 @@ void clock_was_set(void)
*/
void hrtimers_resume(void)
{
- WARN_ONCE(!irqs_disabled(),
- KERN_INFO "hrtimers_resume() called with IRQs enabled!");
-
+ lockdep_assert_irqs_disabled();
/* Retrigger on the local CPU */
retrigger_next_event(NULL);
/* And schedule a retrigger for all others */
diff --git a/kernel/time/posix-cpu-timers.c b/kernel/time/posix-cpu-timers.c
index 5b117110b55b..1f27887aa194 100644
--- a/kernel/time/posix-cpu-timers.c
+++ b/kernel/time/posix-cpu-timers.c
@@ -603,7 +603,7 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
/*
* Disarm any old timer after extracting its expiry time.
*/
- WARN_ON_ONCE(!irqs_disabled());
+ lockdep_assert_irqs_disabled();
ret = 0;
old_incr = timer->it.cpu.incr;
@@ -1034,7 +1034,7 @@ static void posix_cpu_timer_rearm(struct k_itimer *timer)
/*
* Now re-arm for the new expiry time.
*/
- WARN_ON_ONCE(!irqs_disabled());
+ lockdep_assert_irqs_disabled();
arm_timer(timer);
unlock:
unlock_task_sighand(p, &flags);
@@ -1125,7 +1125,7 @@ void run_posix_cpu_timers(struct task_struct *tsk)
struct k_itimer *timer, *next;
unsigned long flags;
- WARN_ON_ONCE(!irqs_disabled());
+ lockdep_assert_irqs_disabled();
/*
* The fast path checks that there are no expired thread or thread
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index c7a899c5ce64..99578f06c8d4 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -27,6 +27,7 @@
#include <linux/irq_work.h>
#include <linux/posix-timers.h>
#include <linux/context_tracking.h>
+#include <linux/mm.h>
#include <asm/irq_regs.h>
@@ -165,7 +166,6 @@ static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
#ifdef CONFIG_NO_HZ_FULL
cpumask_var_t tick_nohz_full_mask;
-cpumask_var_t housekeeping_mask;
bool tick_nohz_full_running;
static atomic_t tick_dep_mask;
@@ -198,7 +198,7 @@ static bool check_tick_dependency(atomic_t *dep)
static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
{
- WARN_ON_ONCE(!irqs_disabled());
+ lockdep_assert_irqs_disabled();
if (unlikely(!cpu_online(cpu)))
return false;
@@ -385,20 +385,13 @@ out:
local_irq_restore(flags);
}
-/* Parse the boot-time nohz CPU list from the kernel parameters. */
-static int __init tick_nohz_full_setup(char *str)
+/* Get the boot-time nohz CPU list from the kernel parameters. */
+void __init tick_nohz_full_setup(cpumask_var_t cpumask)
{
alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
- if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
- pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
- free_bootmem_cpumask_var(tick_nohz_full_mask);
- return 1;
- }
+ cpumask_copy(tick_nohz_full_mask, cpumask);
tick_nohz_full_running = true;
-
- return 1;
}
-__setup("nohz_full=", tick_nohz_full_setup);
static int tick_nohz_cpu_down(unsigned int cpu)
{
@@ -437,13 +430,6 @@ void __init tick_nohz_init(void)
return;
}
- if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
- WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
- cpumask_clear(tick_nohz_full_mask);
- tick_nohz_full_running = false;
- return;
- }
-
/*
* Full dynticks uses irq work to drive the tick rescheduling on safe
* locking contexts. But then we need irq work to raise its own
@@ -452,7 +438,6 @@ void __init tick_nohz_init(void)
if (!arch_irq_work_has_interrupt()) {
pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
cpumask_clear(tick_nohz_full_mask);
- cpumask_copy(housekeeping_mask, cpu_possible_mask);
tick_nohz_full_running = false;
return;
}
@@ -465,9 +450,6 @@ void __init tick_nohz_init(void)
cpumask_clear_cpu(cpu, tick_nohz_full_mask);
}
- cpumask_andnot(housekeeping_mask,
- cpu_possible_mask, tick_nohz_full_mask);
-
for_each_cpu(cpu, tick_nohz_full_mask)
context_tracking_cpu_set(cpu);
@@ -477,12 +459,6 @@ void __init tick_nohz_init(void)
WARN_ON(ret < 0);
pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
cpumask_pr_args(tick_nohz_full_mask));
-
- /*
- * We need at least one CPU to handle housekeeping work such
- * as timekeeping, unbound timers, workqueues, ...
- */
- WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
}
#endif
@@ -787,6 +763,7 @@ static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
if (!ts->tick_stopped) {
calc_load_nohz_start();
cpu_load_update_nohz_start();
+ quiet_vmstat();
ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
ts->tick_stopped = 1;
@@ -960,8 +937,7 @@ void tick_nohz_idle_enter(void)
{
struct tick_sched *ts;
- WARN_ON_ONCE(irqs_disabled());
-
+ lockdep_assert_irqs_enabled();
/*
* Update the idle state in the scheduler domain hierarchy
* when tick_nohz_stop_sched_tick() is called from the idle loop.
diff --git a/kernel/trace/Kconfig b/kernel/trace/Kconfig
index 434c840e2d82..f54b7b6b4a4b 100644
--- a/kernel/trace/Kconfig
+++ b/kernel/trace/Kconfig
@@ -224,7 +224,7 @@ config HWLAT_TRACER
select GENERIC_TRACER
help
This tracer, when enabled will create one or more kernel threads,
- depening on what the cpumask file is set to, which each thread
+ depending on what the cpumask file is set to, which each thread
spinning in a loop looking for interruptions caused by
something other than the kernel. For example, if a
System Management Interrupt (SMI) takes a noticeable amount of
@@ -239,7 +239,7 @@ config HWLAT_TRACER
iteration
A kernel thread is created that will spin with interrupts disabled
- for "width" microseconds in every "widow" cycle. It will not spin
+ for "width" microseconds in every "window" cycle. It will not spin
for "window - width" microseconds, where the system can
continue to operate.
diff --git a/kernel/trace/blktrace.c b/kernel/trace/blktrace.c
index 45a3928544ce..206e0e2ace53 100644
--- a/kernel/trace/blktrace.c
+++ b/kernel/trace/blktrace.c
@@ -66,7 +66,8 @@ static struct tracer_flags blk_tracer_flags = {
};
/* Global reference count of probes */
-static atomic_t blk_probes_ref = ATOMIC_INIT(0);
+static DEFINE_MUTEX(blk_probe_mutex);
+static int blk_probes_ref;
static void blk_register_tracepoints(void);
static void blk_unregister_tracepoints(void);
@@ -329,14 +330,29 @@ static void blk_trace_free(struct blk_trace *bt)
kfree(bt);
}
+static void get_probe_ref(void)
+{
+ mutex_lock(&blk_probe_mutex);
+ if (++blk_probes_ref == 1)
+ blk_register_tracepoints();
+ mutex_unlock(&blk_probe_mutex);
+}
+
+static void put_probe_ref(void)
+{
+ mutex_lock(&blk_probe_mutex);
+ if (!--blk_probes_ref)
+ blk_unregister_tracepoints();
+ mutex_unlock(&blk_probe_mutex);
+}
+
static void blk_trace_cleanup(struct blk_trace *bt)
{
blk_trace_free(bt);
- if (atomic_dec_and_test(&blk_probes_ref))
- blk_unregister_tracepoints();
+ put_probe_ref();
}
-int blk_trace_remove(struct request_queue *q)
+static int __blk_trace_remove(struct request_queue *q)
{
struct blk_trace *bt;
@@ -349,6 +365,17 @@ int blk_trace_remove(struct request_queue *q)
return 0;
}
+
+int blk_trace_remove(struct request_queue *q)
+{
+ int ret;
+
+ mutex_lock(&q->blk_trace_mutex);
+ ret = __blk_trace_remove(q);
+ mutex_unlock(&q->blk_trace_mutex);
+
+ return ret;
+}
EXPORT_SYMBOL_GPL(blk_trace_remove);
static ssize_t blk_dropped_read(struct file *filp, char __user *buffer,
@@ -538,8 +565,7 @@ static int do_blk_trace_setup(struct request_queue *q, char *name, dev_t dev,
if (cmpxchg(&q->blk_trace, NULL, bt))
goto err;
- if (atomic_inc_return(&blk_probes_ref) == 1)
- blk_register_tracepoints();
+ get_probe_ref();
ret = 0;
err:
@@ -550,9 +576,8 @@ err:
return ret;
}
-int blk_trace_setup(struct request_queue *q, char *name, dev_t dev,
- struct block_device *bdev,
- char __user *arg)
+static int __blk_trace_setup(struct request_queue *q, char *name, dev_t dev,
+ struct block_device *bdev, char __user *arg)
{
struct blk_user_trace_setup buts;
int ret;
@@ -571,6 +596,19 @@ int blk_trace_setup(struct request_queue *q, char *name, dev_t dev,
}
return 0;
}
+
+int blk_trace_setup(struct request_queue *q, char *name, dev_t dev,
+ struct block_device *bdev,
+ char __user *arg)
+{
+ int ret;
+
+ mutex_lock(&q->blk_trace_mutex);
+ ret = __blk_trace_setup(q, name, dev, bdev, arg);
+ mutex_unlock(&q->blk_trace_mutex);
+
+ return ret;
+}
EXPORT_SYMBOL_GPL(blk_trace_setup);
#if defined(CONFIG_COMPAT) && defined(CONFIG_X86_64)
@@ -607,7 +645,7 @@ static int compat_blk_trace_setup(struct request_queue *q, char *name,
}
#endif
-int blk_trace_startstop(struct request_queue *q, int start)
+static int __blk_trace_startstop(struct request_queue *q, int start)
{
int ret;
struct blk_trace *bt = q->blk_trace;
@@ -646,6 +684,17 @@ int blk_trace_startstop(struct request_queue *q, int start)
return ret;
}
+
+int blk_trace_startstop(struct request_queue *q, int start)
+{
+ int ret;
+
+ mutex_lock(&q->blk_trace_mutex);
+ ret = __blk_trace_startstop(q, start);
+ mutex_unlock(&q->blk_trace_mutex);
+
+ return ret;
+}
EXPORT_SYMBOL_GPL(blk_trace_startstop);
/*
@@ -676,7 +725,7 @@ int blk_trace_ioctl(struct block_device *bdev, unsigned cmd, char __user *arg)
switch (cmd) {
case BLKTRACESETUP:
bdevname(bdev, b);
- ret = blk_trace_setup(q, b, bdev->bd_dev, bdev, arg);
+ ret = __blk_trace_setup(q, b, bdev->bd_dev, bdev, arg);
break;
#if defined(CONFIG_COMPAT) && defined(CONFIG_X86_64)
case BLKTRACESETUP32:
@@ -687,10 +736,10 @@ int blk_trace_ioctl(struct block_device *bdev, unsigned cmd, char __user *arg)
case BLKTRACESTART:
start = 1;
case BLKTRACESTOP:
- ret = blk_trace_startstop(q, start);
+ ret = __blk_trace_startstop(q, start);
break;
case BLKTRACETEARDOWN:
- ret = blk_trace_remove(q);
+ ret = __blk_trace_remove(q);
break;
default:
ret = -ENOTTY;
@@ -708,10 +757,14 @@ int blk_trace_ioctl(struct block_device *bdev, unsigned cmd, char __user *arg)
**/
void blk_trace_shutdown(struct request_queue *q)
{
+ mutex_lock(&q->blk_trace_mutex);
+
if (q->blk_trace) {
- blk_trace_startstop(q, 0);
- blk_trace_remove(q);
+ __blk_trace_startstop(q, 0);
+ __blk_trace_remove(q);
}
+
+ mutex_unlock(&q->blk_trace_mutex);
}
#ifdef CONFIG_BLK_CGROUP
@@ -1558,9 +1611,7 @@ static int blk_trace_remove_queue(struct request_queue *q)
if (bt == NULL)
return -EINVAL;
- if (atomic_dec_and_test(&blk_probes_ref))
- blk_unregister_tracepoints();
-
+ put_probe_ref();
blk_trace_free(bt);
return 0;
}
@@ -1591,8 +1642,7 @@ static int blk_trace_setup_queue(struct request_queue *q,
if (cmpxchg(&q->blk_trace, NULL, bt))
goto free_bt;
- if (atomic_inc_return(&blk_probes_ref) == 1)
- blk_register_tracepoints();
+ get_probe_ref();
return 0;
free_bt:
diff --git a/kernel/trace/bpf_trace.c b/kernel/trace/bpf_trace.c
index 506efe6e8ed9..a5580c670866 100644
--- a/kernel/trace/bpf_trace.c
+++ b/kernel/trace/bpf_trace.c
@@ -78,12 +78,16 @@ EXPORT_SYMBOL_GPL(trace_call_bpf);
BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
{
- int ret;
+ int ret = 0;
+
+ if (unlikely(size == 0))
+ goto out;
ret = probe_kernel_read(dst, unsafe_ptr, size);
if (unlikely(ret < 0))
memset(dst, 0, size);
+ out:
return ret;
}
@@ -92,7 +96,7 @@ static const struct bpf_func_proto bpf_probe_read_proto = {
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
- .arg2_type = ARG_CONST_SIZE,
+ .arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
};
diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c
index 81279c6602ff..d57fede84b38 100644
--- a/kernel/trace/ring_buffer.c
+++ b/kernel/trace/ring_buffer.c
@@ -13,7 +13,6 @@
#include <linux/uaccess.h>
#include <linux/hardirq.h>
#include <linux/kthread.h> /* for self test */
-#include <linux/kmemcheck.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/mutex.h>
@@ -2055,7 +2054,6 @@ rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
}
event = __rb_page_index(tail_page, tail);
- kmemcheck_annotate_bitfield(event, bitfield);
/* account for padding bytes */
local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
@@ -2686,7 +2684,6 @@ __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
/* We reserved something on the buffer */
event = __rb_page_index(tail_page, tail);
- kmemcheck_annotate_bitfield(event, bitfield);
rb_update_event(cpu_buffer, event, info);
local_inc(&tail_page->entries);
@@ -2724,7 +2721,7 @@ rb_reserve_next_event(struct ring_buffer *buffer,
* if it happened, we have to fail the write.
*/
barrier();
- if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
+ if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
local_dec(&cpu_buffer->committing);
local_dec(&cpu_buffer->commits);
return NULL;
diff --git a/kernel/trace/trace.h b/kernel/trace/trace.h
index 401b0639116f..6b0b343a36a2 100644
--- a/kernel/trace/trace.h
+++ b/kernel/trace/trace.h
@@ -1460,7 +1460,7 @@ extern struct trace_event_file *find_event_file(struct trace_array *tr,
static inline void *event_file_data(struct file *filp)
{
- return ACCESS_ONCE(file_inode(filp)->i_private);
+ return READ_ONCE(file_inode(filp)->i_private);
}
extern struct mutex event_mutex;
diff --git a/kernel/trace/trace_output.c b/kernel/trace/trace_output.c
index c738e764e2a5..90db994ac900 100644
--- a/kernel/trace/trace_output.c
+++ b/kernel/trace/trace_output.c
@@ -921,8 +921,8 @@ static enum print_line_t trace_ctxwake_print(struct trace_iterator *iter,
trace_assign_type(field, iter->ent);
- T = __task_state_to_char(field->next_state);
- S = __task_state_to_char(field->prev_state);
+ T = task_index_to_char(field->next_state);
+ S = task_index_to_char(field->prev_state);
trace_find_cmdline(field->next_pid, comm);
trace_seq_printf(&iter->seq,
" %5d:%3d:%c %s [%03d] %5d:%3d:%c %s\n",
@@ -957,8 +957,8 @@ static int trace_ctxwake_raw(struct trace_iterator *iter, char S)
trace_assign_type(field, iter->ent);
if (!S)
- S = __task_state_to_char(field->prev_state);
- T = __task_state_to_char(field->next_state);
+ S = task_index_to_char(field->prev_state);
+ T = task_index_to_char(field->next_state);
trace_seq_printf(&iter->seq, "%d %d %c %d %d %d %c\n",
field->prev_pid,
field->prev_prio,
@@ -993,8 +993,8 @@ static int trace_ctxwake_hex(struct trace_iterator *iter, char S)
trace_assign_type(field, iter->ent);
if (!S)
- S = __task_state_to_char(field->prev_state);
- T = __task_state_to_char(field->next_state);
+ S = task_index_to_char(field->prev_state);
+ T = task_index_to_char(field->next_state);
SEQ_PUT_HEX_FIELD(s, field->prev_pid);
SEQ_PUT_HEX_FIELD(s, field->prev_prio);
diff --git a/kernel/trace/trace_sched_wakeup.c b/kernel/trace/trace_sched_wakeup.c
index 7d461dcd4831..a86b303e6c67 100644
--- a/kernel/trace/trace_sched_wakeup.c
+++ b/kernel/trace/trace_sched_wakeup.c
@@ -398,10 +398,10 @@ tracing_sched_switch_trace(struct trace_array *tr,
entry = ring_buffer_event_data(event);
entry->prev_pid = prev->pid;
entry->prev_prio = prev->prio;
- entry->prev_state = __get_task_state(prev);
+ entry->prev_state = task_state_index(prev);
entry->next_pid = next->pid;
entry->next_prio = next->prio;
- entry->next_state = __get_task_state(next);
+ entry->next_state = task_state_index(next);
entry->next_cpu = task_cpu(next);
if (!call_filter_check_discard(call, entry, buffer, event))
@@ -426,10 +426,10 @@ tracing_sched_wakeup_trace(struct trace_array *tr,
entry = ring_buffer_event_data(event);
entry->prev_pid = curr->pid;
entry->prev_prio = curr->prio;
- entry->prev_state = __get_task_state(curr);
+ entry->prev_state = task_state_index(curr);
entry->next_pid = wakee->pid;
entry->next_prio = wakee->prio;
- entry->next_state = __get_task_state(wakee);
+ entry->next_state = task_state_index(wakee);
entry->next_cpu = task_cpu(wakee);
if (!call_filter_check_discard(call, entry, buffer, event))
diff --git a/kernel/trace/trace_stack.c b/kernel/trace/trace_stack.c
index 719a52a4064a..734accc02418 100644
--- a/kernel/trace/trace_stack.c
+++ b/kernel/trace/trace_stack.c
@@ -78,7 +78,7 @@ check_stack(unsigned long ip, unsigned long *stack)
{
unsigned long this_size, flags; unsigned long *p, *top, *start;
static int tracer_frame;
- int frame_size = ACCESS_ONCE(tracer_frame);
+ int frame_size = READ_ONCE(tracer_frame);
int i, x;
this_size = ((unsigned long)stack) & (THREAD_SIZE-1);
diff --git a/kernel/user_namespace.c b/kernel/user_namespace.c
index c490f1e4313b..d32b45662fb6 100644
--- a/kernel/user_namespace.c
+++ b/kernel/user_namespace.c
@@ -894,7 +894,7 @@ static bool new_idmap_permitted(const struct file *file,
int proc_setgroups_show(struct seq_file *seq, void *v)
{
struct user_namespace *ns = seq->private;
- unsigned long userns_flags = ACCESS_ONCE(ns->flags);
+ unsigned long userns_flags = READ_ONCE(ns->flags);
seq_printf(seq, "%s\n",
(userns_flags & USERNS_SETGROUPS_ALLOWED) ?
diff --git a/kernel/watchdog.c b/kernel/watchdog.c
index c8e06703e44c..576d18045811 100644
--- a/kernel/watchdog.c
+++ b/kernel/watchdog.c
@@ -25,6 +25,7 @@
#include <linux/workqueue.h>
#include <linux/sched/clock.h>
#include <linux/sched/debug.h>
+#include <linux/sched/isolation.h>
#include <asm/irq_regs.h>
#include <linux/kvm_para.h>
@@ -774,15 +775,11 @@ int proc_watchdog_cpumask(struct ctl_table *table, int write,
void __init lockup_detector_init(void)
{
-#ifdef CONFIG_NO_HZ_FULL
- if (tick_nohz_full_enabled()) {
+ if (tick_nohz_full_enabled())
pr_info("Disabling watchdog on nohz_full cores by default\n");
- cpumask_copy(&watchdog_cpumask, housekeeping_mask);
- } else
- cpumask_copy(&watchdog_cpumask, cpu_possible_mask);
-#else
- cpumask_copy(&watchdog_cpumask, cpu_possible_mask);
-#endif
+
+ cpumask_copy(&watchdog_cpumask,
+ housekeeping_cpumask(HK_FLAG_TIMER));
if (!watchdog_nmi_probe())
nmi_watchdog_available = true;
diff --git a/kernel/workqueue.c b/kernel/workqueue.c
index 3b67c0a0df16..dde6298f6b22 100644
--- a/kernel/workqueue.c
+++ b/kernel/workqueue.c
@@ -1376,7 +1376,7 @@ static void __queue_work(int cpu, struct workqueue_struct *wq,
* queued or lose PENDING. Grabbing PENDING and queueing should
* happen with IRQ disabled.
*/
- WARN_ON_ONCE(!irqs_disabled());
+ lockdep_assert_irqs_disabled();
debug_work_activate(work);
@@ -2490,15 +2490,8 @@ static void insert_wq_barrier(struct pool_workqueue *pwq,
INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
- /*
- * Explicitly init the crosslock for wq_barrier::done, make its lock
- * key a subkey of the corresponding work. As a result we won't
- * build a dependency between wq_barrier::done and unrelated work.
- */
- lockdep_init_map_crosslock((struct lockdep_map *)&barr->done.map,
- "(complete)wq_barr::done",
- target->lockdep_map.key, 1);
- __init_completion(&barr->done);
+ init_completion_map(&barr->done, &target->lockdep_map);
+
barr->task = current;
/*
@@ -2604,16 +2597,13 @@ void flush_workqueue(struct workqueue_struct *wq)
struct wq_flusher this_flusher = {
.list = LIST_HEAD_INIT(this_flusher.list),
.flush_color = -1,
- .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
+ .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
};
int next_color;
if (WARN_ON(!wq_online))
return;
- lock_map_acquire(&wq->lockdep_map);
- lock_map_release(&wq->lockdep_map);
-
mutex_lock(&wq->mutex);
/*
@@ -2876,9 +2866,6 @@ bool flush_work(struct work_struct *work)
if (WARN_ON(!wq_online))
return false;
- lock_map_acquire(&work->lockdep_map);
- lock_map_release(&work->lockdep_map);
-
if (start_flush_work(work, &barr)) {
wait_for_completion(&barr.done);
destroy_work_on_stack(&barr.work);
@@ -4637,7 +4624,7 @@ static void rebind_workers(struct worker_pool *pool)
* concurrency management. Note that when or whether
* @worker clears REBOUND doesn't affect correctness.
*
- * ACCESS_ONCE() is necessary because @worker->flags may be
+ * WRITE_ONCE() is necessary because @worker->flags may be
* tested without holding any lock in
* wq_worker_waking_up(). Without it, NOT_RUNNING test may
* fail incorrectly leading to premature concurrency
@@ -4646,7 +4633,7 @@ static void rebind_workers(struct worker_pool *pool)
WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
worker_flags |= WORKER_REBOUND;
worker_flags &= ~WORKER_UNBOUND;
- ACCESS_ONCE(worker->flags) = worker_flags;
+ WRITE_ONCE(worker->flags, worker_flags);
}
spin_unlock_irq(&pool->lock);
@@ -5003,9 +4990,10 @@ int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
*
* Unbound workqueues have the following extra attributes.
*
- * id RO int : the associated pool ID
+ * pool_ids RO int : the associated pool IDs for each node
* nice RW int : nice value of the workers
* cpumask RW mask : bitmask of allowed CPUs for the workers
+ * numa RW bool : whether enable NUMA affinity
*/
struct wq_device {
struct workqueue_struct *wq;