diff options
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/bpf/Makefile | 2 | ||||
-rw-r--r-- | kernel/bpf/bpf_lru_list.c | 20 | ||||
-rw-r--r-- | kernel/bpf/core.c | 9 | ||||
-rw-r--r-- | kernel/bpf/helpers.c | 4 | ||||
-rw-r--r-- | kernel/bpf/inode.c | 17 | ||||
-rw-r--r-- | kernel/bpf/lpm_trie.c | 521 | ||||
-rw-r--r-- | kernel/bpf/syscall.c | 19 | ||||
-rw-r--r-- | kernel/bpf/verifier.c | 289 | ||||
-rw-r--r-- | kernel/trace/bpf_trace.c | 76 | ||||
-rw-r--r-- | kernel/trace/trace_output.c | 18 |
10 files changed, 850 insertions, 125 deletions
diff --git a/kernel/bpf/Makefile b/kernel/bpf/Makefile index 1276474ac3cd..e1ce4f4fd7fd 100644 --- a/kernel/bpf/Makefile +++ b/kernel/bpf/Makefile @@ -1,7 +1,7 @@ obj-y := core.o obj-$(CONFIG_BPF_SYSCALL) += syscall.o verifier.o inode.o helpers.o -obj-$(CONFIG_BPF_SYSCALL) += hashtab.o arraymap.o percpu_freelist.o bpf_lru_list.o +obj-$(CONFIG_BPF_SYSCALL) += hashtab.o arraymap.o percpu_freelist.o bpf_lru_list.o lpm_trie.o ifeq ($(CONFIG_PERF_EVENTS),y) obj-$(CONFIG_BPF_SYSCALL) += stackmap.o endif diff --git a/kernel/bpf/bpf_lru_list.c b/kernel/bpf/bpf_lru_list.c index 89b7ef41c86b..f62d1d56f41d 100644 --- a/kernel/bpf/bpf_lru_list.c +++ b/kernel/bpf/bpf_lru_list.c @@ -213,11 +213,10 @@ __bpf_lru_list_shrink_inactive(struct bpf_lru *lru, enum bpf_lru_list_type tgt_free_type) { struct list_head *inactive = &l->lists[BPF_LRU_LIST_T_INACTIVE]; - struct bpf_lru_node *node, *tmp_node, *first_node; + struct bpf_lru_node *node, *tmp_node; unsigned int nshrinked = 0; unsigned int i = 0; - first_node = list_first_entry(inactive, struct bpf_lru_node, list); list_for_each_entry_safe_reverse(node, tmp_node, inactive, list) { if (bpf_lru_node_is_ref(node)) { __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_ACTIVE); @@ -361,7 +360,8 @@ static void __local_list_add_pending(struct bpf_lru *lru, list_add(&node->list, local_pending_list(loc_l)); } -struct bpf_lru_node *__local_list_pop_free(struct bpf_lru_locallist *loc_l) +static struct bpf_lru_node * +__local_list_pop_free(struct bpf_lru_locallist *loc_l) { struct bpf_lru_node *node; @@ -374,8 +374,8 @@ struct bpf_lru_node *__local_list_pop_free(struct bpf_lru_locallist *loc_l) return node; } -struct bpf_lru_node *__local_list_pop_pending(struct bpf_lru *lru, - struct bpf_lru_locallist *loc_l) +static struct bpf_lru_node * +__local_list_pop_pending(struct bpf_lru *lru, struct bpf_lru_locallist *loc_l) { struct bpf_lru_node *node; bool force = false; @@ -558,8 +558,9 @@ void bpf_lru_push_free(struct bpf_lru *lru, struct bpf_lru_node *node) bpf_common_lru_push_free(lru, node); } -void bpf_common_lru_populate(struct bpf_lru *lru, void *buf, u32 node_offset, - u32 elem_size, u32 nr_elems) +static void bpf_common_lru_populate(struct bpf_lru *lru, void *buf, + u32 node_offset, u32 elem_size, + u32 nr_elems) { struct bpf_lru_list *l = &lru->common_lru.lru_list; u32 i; @@ -575,8 +576,9 @@ void bpf_common_lru_populate(struct bpf_lru *lru, void *buf, u32 node_offset, } } -void bpf_percpu_lru_populate(struct bpf_lru *lru, void *buf, u32 node_offset, - u32 elem_size, u32 nr_elems) +static void bpf_percpu_lru_populate(struct bpf_lru *lru, void *buf, + u32 node_offset, u32 elem_size, + u32 nr_elems) { u32 i, pcpu_entries; int cpu; diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c index 503d4211988a..fddd76b1b627 100644 --- a/kernel/bpf/core.c +++ b/kernel/bpf/core.c @@ -1173,3 +1173,12 @@ int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to, { return -EFAULT; } + +/* All definitions of tracepoints related to BPF. */ +#define CREATE_TRACE_POINTS +#include <linux/bpf_trace.h> + +EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception); + +EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type); +EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu); diff --git a/kernel/bpf/helpers.c b/kernel/bpf/helpers.c index 045cbe673356..3d24e238221e 100644 --- a/kernel/bpf/helpers.c +++ b/kernel/bpf/helpers.c @@ -176,6 +176,6 @@ const struct bpf_func_proto bpf_get_current_comm_proto = { .func = bpf_get_current_comm, .gpl_only = false, .ret_type = RET_INTEGER, - .arg1_type = ARG_PTR_TO_RAW_STACK, - .arg2_type = ARG_CONST_STACK_SIZE, + .arg1_type = ARG_PTR_TO_UNINIT_MEM, + .arg2_type = ARG_CONST_SIZE, }; diff --git a/kernel/bpf/inode.c b/kernel/bpf/inode.c index 0b030c9126d3..fddcae801724 100644 --- a/kernel/bpf/inode.c +++ b/kernel/bpf/inode.c @@ -21,6 +21,7 @@ #include <linux/parser.h> #include <linux/filter.h> #include <linux/bpf.h> +#include <linux/bpf_trace.h> enum bpf_type { BPF_TYPE_UNSPEC = 0, @@ -281,6 +282,13 @@ int bpf_obj_pin_user(u32 ufd, const char __user *pathname) ret = bpf_obj_do_pin(pname, raw, type); if (ret != 0) bpf_any_put(raw, type); + if ((trace_bpf_obj_pin_prog_enabled() || + trace_bpf_obj_pin_map_enabled()) && !ret) { + if (type == BPF_TYPE_PROG) + trace_bpf_obj_pin_prog(raw, ufd, pname); + if (type == BPF_TYPE_MAP) + trace_bpf_obj_pin_map(raw, ufd, pname); + } out: putname(pname); return ret; @@ -342,8 +350,15 @@ int bpf_obj_get_user(const char __user *pathname) else goto out; - if (ret < 0) + if (ret < 0) { bpf_any_put(raw, type); + } else if (trace_bpf_obj_get_prog_enabled() || + trace_bpf_obj_get_map_enabled()) { + if (type == BPF_TYPE_PROG) + trace_bpf_obj_get_prog(raw, ret, pname); + if (type == BPF_TYPE_MAP) + trace_bpf_obj_get_map(raw, ret, pname); + } out: putname(pname); return ret; diff --git a/kernel/bpf/lpm_trie.c b/kernel/bpf/lpm_trie.c new file mode 100644 index 000000000000..e0f6a0bd279b --- /dev/null +++ b/kernel/bpf/lpm_trie.c @@ -0,0 +1,521 @@ +/* + * Longest prefix match list implementation + * + * Copyright (c) 2016,2017 Daniel Mack + * Copyright (c) 2016 David Herrmann + * + * This file is subject to the terms and conditions of version 2 of the GNU + * General Public License. See the file COPYING in the main directory of the + * Linux distribution for more details. + */ + +#include <linux/bpf.h> +#include <linux/err.h> +#include <linux/slab.h> +#include <linux/spinlock.h> +#include <linux/vmalloc.h> +#include <net/ipv6.h> + +/* Intermediate node */ +#define LPM_TREE_NODE_FLAG_IM BIT(0) + +struct lpm_trie_node; + +struct lpm_trie_node { + struct rcu_head rcu; + struct lpm_trie_node __rcu *child[2]; + u32 prefixlen; + u32 flags; + u8 data[0]; +}; + +struct lpm_trie { + struct bpf_map map; + struct lpm_trie_node __rcu *root; + size_t n_entries; + size_t max_prefixlen; + size_t data_size; + raw_spinlock_t lock; +}; + +/* This trie implements a longest prefix match algorithm that can be used to + * match IP addresses to a stored set of ranges. + * + * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is + * interpreted as big endian, so data[0] stores the most significant byte. + * + * Match ranges are internally stored in instances of struct lpm_trie_node + * which each contain their prefix length as well as two pointers that may + * lead to more nodes containing more specific matches. Each node also stores + * a value that is defined by and returned to userspace via the update_elem + * and lookup functions. + * + * For instance, let's start with a trie that was created with a prefix length + * of 32, so it can be used for IPv4 addresses, and one single element that + * matches 192.168.0.0/16. The data array would hence contain + * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will + * stick to IP-address notation for readability though. + * + * As the trie is empty initially, the new node (1) will be places as root + * node, denoted as (R) in the example below. As there are no other node, both + * child pointers are %NULL. + * + * +----------------+ + * | (1) (R) | + * | 192.168.0.0/16 | + * | value: 1 | + * | [0] [1] | + * +----------------+ + * + * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already + * a node with the same data and a smaller prefix (ie, a less specific one), + * node (2) will become a child of (1). In child index depends on the next bit + * that is outside of what (1) matches, and that bit is 0, so (2) will be + * child[0] of (1): + * + * +----------------+ + * | (1) (R) | + * | 192.168.0.0/16 | + * | value: 1 | + * | [0] [1] | + * +----------------+ + * | + * +----------------+ + * | (2) | + * | 192.168.0.0/24 | + * | value: 2 | + * | [0] [1] | + * +----------------+ + * + * The child[1] slot of (1) could be filled with another node which has bit #17 + * (the next bit after the ones that (1) matches on) set to 1. For instance, + * 192.168.128.0/24: + * + * +----------------+ + * | (1) (R) | + * | 192.168.0.0/16 | + * | value: 1 | + * | [0] [1] | + * +----------------+ + * | | + * +----------------+ +------------------+ + * | (2) | | (3) | + * | 192.168.0.0/24 | | 192.168.128.0/24 | + * | value: 2 | | value: 3 | + * | [0] [1] | | [0] [1] | + * +----------------+ +------------------+ + * + * Let's add another node (4) to the game for 192.168.1.0/24. In order to place + * it, node (1) is looked at first, and because (4) of the semantics laid out + * above (bit #17 is 0), it would normally be attached to (1) as child[0]. + * However, that slot is already allocated, so a new node is needed in between. + * That node does not have a value attached to it and it will never be + * returned to users as result of a lookup. It is only there to differentiate + * the traversal further. It will get a prefix as wide as necessary to + * distinguish its two children: + * + * +----------------+ + * | (1) (R) | + * | 192.168.0.0/16 | + * | value: 1 | + * | [0] [1] | + * +----------------+ + * | | + * +----------------+ +------------------+ + * | (4) (I) | | (3) | + * | 192.168.0.0/23 | | 192.168.128.0/24 | + * | value: --- | | value: 3 | + * | [0] [1] | | [0] [1] | + * +----------------+ +------------------+ + * | | + * +----------------+ +----------------+ + * | (2) | | (5) | + * | 192.168.0.0/24 | | 192.168.1.0/24 | + * | value: 2 | | value: 5 | + * | [0] [1] | | [0] [1] | + * +----------------+ +----------------+ + * + * 192.168.1.1/32 would be a child of (5) etc. + * + * An intermediate node will be turned into a 'real' node on demand. In the + * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie. + * + * A fully populated trie would have a height of 32 nodes, as the trie was + * created with a prefix length of 32. + * + * The lookup starts at the root node. If the current node matches and if there + * is a child that can be used to become more specific, the trie is traversed + * downwards. The last node in the traversal that is a non-intermediate one is + * returned. + */ + +static inline int extract_bit(const u8 *data, size_t index) +{ + return !!(data[index / 8] & (1 << (7 - (index % 8)))); +} + +/** + * longest_prefix_match() - determine the longest prefix + * @trie: The trie to get internal sizes from + * @node: The node to operate on + * @key: The key to compare to @node + * + * Determine the longest prefix of @node that matches the bits in @key. + */ +static size_t longest_prefix_match(const struct lpm_trie *trie, + const struct lpm_trie_node *node, + const struct bpf_lpm_trie_key *key) +{ + size_t prefixlen = 0; + size_t i; + + for (i = 0; i < trie->data_size; i++) { + size_t b; + + b = 8 - fls(node->data[i] ^ key->data[i]); + prefixlen += b; + + if (prefixlen >= node->prefixlen || prefixlen >= key->prefixlen) + return min(node->prefixlen, key->prefixlen); + + if (b < 8) + break; + } + + return prefixlen; +} + +/* Called from syscall or from eBPF program */ +static void *trie_lookup_elem(struct bpf_map *map, void *_key) +{ + struct lpm_trie *trie = container_of(map, struct lpm_trie, map); + struct lpm_trie_node *node, *found = NULL; + struct bpf_lpm_trie_key *key = _key; + + /* Start walking the trie from the root node ... */ + + for (node = rcu_dereference(trie->root); node;) { + unsigned int next_bit; + size_t matchlen; + + /* Determine the longest prefix of @node that matches @key. + * If it's the maximum possible prefix for this trie, we have + * an exact match and can return it directly. + */ + matchlen = longest_prefix_match(trie, node, key); + if (matchlen == trie->max_prefixlen) { + found = node; + break; + } + + /* If the number of bits that match is smaller than the prefix + * length of @node, bail out and return the node we have seen + * last in the traversal (ie, the parent). + */ + if (matchlen < node->prefixlen) + break; + + /* Consider this node as return candidate unless it is an + * artificially added intermediate one. + */ + if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) + found = node; + + /* If the node match is fully satisfied, let's see if we can + * become more specific. Determine the next bit in the key and + * traverse down. + */ + next_bit = extract_bit(key->data, node->prefixlen); + node = rcu_dereference(node->child[next_bit]); + } + + if (!found) + return NULL; + + return found->data + trie->data_size; +} + +static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie, + const void *value) +{ + struct lpm_trie_node *node; + size_t size = sizeof(struct lpm_trie_node) + trie->data_size; + + if (value) + size += trie->map.value_size; + + node = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN); + if (!node) + return NULL; + + node->flags = 0; + + if (value) + memcpy(node->data + trie->data_size, value, + trie->map.value_size); + + return node; +} + +/* Called from syscall or from eBPF program */ +static int trie_update_elem(struct bpf_map *map, + void *_key, void *value, u64 flags) +{ + struct lpm_trie *trie = container_of(map, struct lpm_trie, map); + struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL; + struct lpm_trie_node __rcu **slot; + struct bpf_lpm_trie_key *key = _key; + unsigned long irq_flags; + unsigned int next_bit; + size_t matchlen = 0; + int ret = 0; + + if (unlikely(flags > BPF_EXIST)) + return -EINVAL; + + if (key->prefixlen > trie->max_prefixlen) + return -EINVAL; + + raw_spin_lock_irqsave(&trie->lock, irq_flags); + + /* Allocate and fill a new node */ + + if (trie->n_entries == trie->map.max_entries) { + ret = -ENOSPC; + goto out; + } + + new_node = lpm_trie_node_alloc(trie, value); + if (!new_node) { + ret = -ENOMEM; + goto out; + } + + trie->n_entries++; + + new_node->prefixlen = key->prefixlen; + RCU_INIT_POINTER(new_node->child[0], NULL); + RCU_INIT_POINTER(new_node->child[1], NULL); + memcpy(new_node->data, key->data, trie->data_size); + + /* Now find a slot to attach the new node. To do that, walk the tree + * from the root and match as many bits as possible for each node until + * we either find an empty slot or a slot that needs to be replaced by + * an intermediate node. + */ + slot = &trie->root; + + while ((node = rcu_dereference_protected(*slot, + lockdep_is_held(&trie->lock)))) { + matchlen = longest_prefix_match(trie, node, key); + + if (node->prefixlen != matchlen || + node->prefixlen == key->prefixlen || + node->prefixlen == trie->max_prefixlen) + break; + + next_bit = extract_bit(key->data, node->prefixlen); + slot = &node->child[next_bit]; + } + + /* If the slot is empty (a free child pointer or an empty root), + * simply assign the @new_node to that slot and be done. + */ + if (!node) { + rcu_assign_pointer(*slot, new_node); + goto out; + } + + /* If the slot we picked already exists, replace it with @new_node + * which already has the correct data array set. + */ + if (node->prefixlen == matchlen) { + new_node->child[0] = node->child[0]; + new_node->child[1] = node->child[1]; + + if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) + trie->n_entries--; + + rcu_assign_pointer(*slot, new_node); + kfree_rcu(node, rcu); + + goto out; + } + + /* If the new node matches the prefix completely, it must be inserted + * as an ancestor. Simply insert it between @node and *@slot. + */ + if (matchlen == key->prefixlen) { + next_bit = extract_bit(node->data, matchlen); + rcu_assign_pointer(new_node->child[next_bit], node); + rcu_assign_pointer(*slot, new_node); + goto out; + } + + im_node = lpm_trie_node_alloc(trie, NULL); + if (!im_node) { + ret = -ENOMEM; + goto out; + } + + im_node->prefixlen = matchlen; + im_node->flags |= LPM_TREE_NODE_FLAG_IM; + memcpy(im_node->data, node->data, trie->data_size); + + /* Now determine which child to install in which slot */ + if (extract_bit(key->data, matchlen)) { + rcu_assign_pointer(im_node->child[0], node); + rcu_assign_pointer(im_node->child[1], new_node); + } else { + rcu_assign_pointer(im_node->child[0], new_node); + rcu_assign_pointer(im_node->child[1], node); + } + + /* Finally, assign the intermediate node to the determined spot */ + rcu_assign_pointer(*slot, im_node); + +out: + if (ret) { + if (new_node) + trie->n_entries--; + + kfree(new_node); + kfree(im_node); + } + + raw_spin_unlock_irqrestore(&trie->lock, irq_flags); + + return ret; +} + +static int trie_delete_elem(struct bpf_map *map, void *key) +{ + /* TODO */ + return -ENOSYS; +} + +#define LPM_DATA_SIZE_MAX 256 +#define LPM_DATA_SIZE_MIN 1 + +#define LPM_VAL_SIZE_MAX (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \ + sizeof(struct lpm_trie_node)) +#define LPM_VAL_SIZE_MIN 1 + +#define LPM_KEY_SIZE(X) (sizeof(struct bpf_lpm_trie_key) + (X)) +#define LPM_KEY_SIZE_MAX LPM_KEY_SIZE(LPM_DATA_SIZE_MAX) +#define LPM_KEY_SIZE_MIN LPM_KEY_SIZE(LPM_DATA_SIZE_MIN) + +static struct bpf_map *trie_alloc(union bpf_attr *attr) +{ + struct lpm_trie *trie; + u64 cost = sizeof(*trie), cost_per_node; + int ret; + + if (!capable(CAP_SYS_ADMIN)) + return ERR_PTR(-EPERM); + + /* check sanity of attributes */ + if (attr->max_entries == 0 || + attr->map_flags != BPF_F_NO_PREALLOC || + attr->key_size < LPM_KEY_SIZE_MIN || + attr->key_size > LPM_KEY_SIZE_MAX || + attr->value_size < LPM_VAL_SIZE_MIN || + attr->value_size > LPM_VAL_SIZE_MAX) + return ERR_PTR(-EINVAL); + + trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN); + if (!trie) + return ERR_PTR(-ENOMEM); + + /* copy mandatory map attributes */ + trie->map.map_type = attr->map_type; + trie->map.key_size = attr->key_size; + trie->map.value_size = attr->value_size; + trie->map.max_entries = attr->max_entries; + trie->data_size = attr->key_size - + offsetof(struct bpf_lpm_trie_key, data); + trie->max_prefixlen = trie->data_size * 8; + + cost_per_node = sizeof(struct lpm_trie_node) + + attr->value_size + trie->data_size; + cost += (u64) attr->max_entries * cost_per_node; + if (cost >= U32_MAX - PAGE_SIZE) { + ret = -E2BIG; + goto out_err; + } + + trie->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; + + ret = bpf_map_precharge_memlock(trie->map.pages); + if (ret) + goto out_err; + + raw_spin_lock_init(&trie->lock); + + return &trie->map; +out_err: + kfree(trie); + return ERR_PTR(ret); +} + +static void trie_free(struct bpf_map *map) +{ + struct lpm_trie *trie = container_of(map, struct lpm_trie, map); + struct lpm_trie_node __rcu **slot; + struct lpm_trie_node *node; + + raw_spin_lock(&trie->lock); + + /* Always start at the root and walk down to a node that has no + * children. Then free that node, nullify its reference in the parent + * and start over. + */ + + for (;;) { + slot = &trie->root; + + for (;;) { + node = rcu_dereference_protected(*slot, + lockdep_is_held(&trie->lock)); + if (!node) + goto unlock; + + if (rcu_access_pointer(node->child[0])) { + slot = &node->child[0]; + continue; + } + + if (rcu_access_pointer(node->child[1])) { + slot = &node->child[1]; + continue; + } + + kfree(node); + RCU_INIT_POINTER(*slot, NULL); + break; + } + } + +unlock: + raw_spin_unlock(&trie->lock); +} + +static const struct bpf_map_ops trie_ops = { + .map_alloc = trie_alloc, + .map_free = trie_free, + .map_lookup_elem = trie_lookup_elem, + .map_update_elem = trie_update_elem, + .map_delete_elem = trie_delete_elem, +}; + +static struct bpf_map_type_list trie_type __read_mostly = { + .ops = &trie_ops, + .type = BPF_MAP_TYPE_LPM_TRIE, +}; + +static int __init register_trie_map(void) +{ + bpf_register_map_type(&trie_type); + return 0; +} +late_initcall(register_trie_map); diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c index 19b6129eab23..08a4d287226b 100644 --- a/kernel/bpf/syscall.c +++ b/kernel/bpf/syscall.c @@ -10,6 +10,7 @@ * General Public License for more details. */ #include <linux/bpf.h> +#include <linux/bpf_trace.h> #include <linux/syscalls.h> #include <linux/slab.h> #include <linux/vmalloc.h> @@ -241,6 +242,7 @@ static int map_create(union bpf_attr *attr) /* failed to allocate fd */ goto free_map; + trace_bpf_map_create(map, err); return err; free_map: @@ -365,6 +367,7 @@ static int map_lookup_elem(union bpf_attr *attr) if (copy_to_user(uvalue, value, value_size) != 0) goto free_value; + trace_bpf_map_lookup_elem(map, ufd, key, value); err = 0; free_value: @@ -447,6 +450,8 @@ static int map_update_elem(union bpf_attr *attr) __this_cpu_dec(bpf_prog_active); preempt_enable(); + if (!err) + trace_bpf_map_update_elem(map, ufd, key, value); free_value: kfree(value); free_key: @@ -492,6 +497,8 @@ static int map_delete_elem(union bpf_attr *attr) __this_cpu_dec(bpf_prog_active); preempt_enable(); + if (!err) + trace_bpf_map_delete_elem(map, ufd, key); free_key: kfree(key); err_put: @@ -544,6 +551,7 @@ static int map_get_next_key(union bpf_attr *attr) if (copy_to_user(unext_key, next_key, map->key_size) != 0) goto free_next_key; + trace_bpf_map_next_key(map, ufd, key, next_key); err = 0; free_next_key: @@ -697,8 +705,10 @@ static void __bpf_prog_put_rcu(struct rcu_head *rcu) void bpf_prog_put(struct bpf_prog *prog) { - if (atomic_dec_and_test(&prog->aux->refcnt)) + if (atomic_dec_and_test(&prog->aux->refcnt)) { + trace_bpf_prog_put_rcu(prog); call_rcu(&prog->aux->rcu, __bpf_prog_put_rcu); + } } EXPORT_SYMBOL_GPL(bpf_prog_put); @@ -807,7 +817,11 @@ struct bpf_prog *bpf_prog_get(u32 ufd) struct bpf_prog *bpf_prog_get_type(u32 ufd, enum bpf_prog_type type) { - return __bpf_prog_get(ufd, &type); + struct bpf_prog *prog = __bpf_prog_get(ufd, &type); + + if (!IS_ERR(prog)) + trace_bpf_prog_get_type(prog); + return prog; } EXPORT_SYMBOL_GPL(bpf_prog_get_type); @@ -889,6 +903,7 @@ static int bpf_prog_load(union bpf_attr *attr) /* failed to allocate fd */ goto free_used_maps; + trace_bpf_prog_load(prog, err); return err; free_used_maps: diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index cdc43b899f28..1a754e5d2695 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -481,6 +481,13 @@ static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno) regs[regno].max_value = BPF_REGISTER_MAX_RANGE; } +static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs, + u32 regno) +{ + mark_reg_unknown_value(regs, regno); + reset_reg_range_values(regs, regno); +} + enum reg_arg_type { SRC_OP, /* register is used as source operand */ DST_OP, /* register is used as destination operand */ @@ -532,6 +539,7 @@ static bool is_spillable_regtype(enum bpf_reg_type type) switch (type) { case PTR_TO_MAP_VALUE: case PTR_TO_MAP_VALUE_OR_NULL: + case PTR_TO_MAP_VALUE_ADJ: case PTR_TO_STACK: case PTR_TO_CTX: case PTR_TO_PACKET: @@ -616,7 +624,8 @@ static int check_stack_read(struct bpf_verifier_state *state, int off, int size, } if (value_regno >= 0) /* have read misc data from the stack */ - mark_reg_unknown_value(state->regs, value_regno); + mark_reg_unknown_value_and_range(state->regs, + value_regno); return 0; } } @@ -627,7 +636,7 @@ static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off, { struct bpf_map *map = env->cur_state.regs[regno].map_ptr; - if (off < 0 || off + size > map->value_size) { + if (off < 0 || size <= 0 || off + size > map->value_size) { verbose("invalid access to map value, value_size=%d off=%d size=%d\n", map->value_size, off, size); return -EACCES; @@ -635,6 +644,51 @@ static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off, return 0; } +/* check read/write into an adjusted map element */ +static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno, + int off, int size) +{ + struct bpf_verifier_state *state = &env->cur_state; + struct bpf_reg_state *reg = &state->regs[regno]; + int err; + + /* We adjusted the register to this map value, so we + * need to change off and size to min_value and max_value + * respectively to make sure our theoretical access will be + * safe. + */ + if (log_level) + print_verifier_state(state); + env->varlen_map_value_access = true; + /* The minimum value is only important with signed + * comparisons where we can't assume the floor of a + * value is 0. If we are using signed variables for our + * index'es we need to make sure that whatever we use + * will have a set floor within our range. + */ + if (reg->min_value < 0) { + verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", + regno); + return -EACCES; + } + err = check_map_access(env, regno, reg->min_value + off, size); + if (err) { + verbose("R%d min value is outside of the array range\n", + regno); + return err; + } + + /* If we haven't set a max value then we need to bail + * since we can't be sure we won't do bad things. + */ + if (reg->max_value == BPF_REGISTER_MAX_RANGE) { + verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n", + regno); + return -EACCES; + } + return check_map_access(env, regno, reg->max_value + off, size); +} + #define MAX_PACKET_OFF 0xffff static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, @@ -775,47 +829,13 @@ static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off, return -EACCES; } - /* If we adjusted the register to this map value at all then we - * need to change off and size to min_value and max_value - * respectively to make sure our theoretical access will be - * safe. - */ - if (reg->type == PTR_TO_MAP_VALUE_ADJ) { - if (log_level) - print_verifier_state(state); - env->varlen_map_value_access = true; - /* The minimum value is only important with signed - * comparisons where we can't assume the floor of a - * value is 0. If we are using signed variables for our - * index'es we need to make sure that whatever we use - * will have a set floor within our range. - */ - if (reg->min_value < 0) { - verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", - regno); - return -EACCES; - } - err = check_map_access(env, regno, reg->min_value + off, - size); - if (err) { - verbose("R%d min value is outside of the array range\n", - regno); - return err; - } - - /* If we haven't set a max value then we need to bail - * since we can't be sure we won't do bad things. - */ - if (reg->max_value == BPF_REGISTER_MAX_RANGE) { - verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n", - regno); - return -EACCES; - } - off += reg->max_value; - } - err = check_map_access(env, regno, off, size); + if (reg->type == PTR_TO_MAP_VALUE_ADJ) + err = check_map_access_adj(env, regno, off, size); + else + err = check_map_access(env, regno, off, size); if (!err && t == BPF_READ && value_regno >= 0) - mark_reg_unknown_value(state->regs, value_regno); + mark_reg_unknown_value_and_range(state->regs, + value_regno); } else if (reg->type == PTR_TO_CTX) { enum bpf_reg_type reg_type = UNKNOWN_VALUE; @@ -827,7 +847,8 @@ static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off, } err = check_ctx_access(env, off, size, t, ®_type); if (!err && t == BPF_READ && value_regno >= 0) { - mark_reg_unknown_value(state->regs, value_regno); + mark_reg_unknown_value_and_range(state->regs, + value_regno); /* note that reg.[id|off|range] == 0 */ state->regs[value_regno].type = reg_type; } @@ -860,7 +881,8 @@ static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off, } err = check_packet_access(env, regno, off, size); if (!err && t == BPF_READ && value_regno >= 0) - mark_reg_unknown_value(state->regs, value_regno); + mark_reg_unknown_value_and_range(state->regs, + value_regno); } else { verbose("R%d invalid mem access '%s'\n", regno, reg_type_str[reg->type]); @@ -958,6 +980,25 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno, return 0; } +static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, + int access_size, bool zero_size_allowed, + struct bpf_call_arg_meta *meta) +{ + struct bpf_reg_state *regs = env->cur_state.regs; + + switch (regs[regno].type) { + case PTR_TO_PACKET: + return check_packet_access(env, regno, 0, access_size); + case PTR_TO_MAP_VALUE: + return check_map_access(env, regno, 0, access_size); + case PTR_TO_MAP_VALUE_ADJ: + return check_map_access_adj(env, regno, 0, access_size); + default: /* const_imm|ptr_to_stack or invalid ptr */ + return check_stack_boundary(env, regno, access_size, + zero_size_allowed, meta); + } +} + static int check_func_arg(struct bpf_verifier_env *env, u32 regno, enum bpf_arg_type arg_type, struct bpf_call_arg_meta *meta) @@ -993,10 +1034,13 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 regno, expected_type = PTR_TO_STACK; if (type != PTR_TO_PACKET && type != expected_type) goto err_type; - } else if (arg_type == ARG_CONST_STACK_SIZE || - arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) { + } else if (arg_type == ARG_CONST_SIZE || + arg_type == ARG_CONST_SIZE_OR_ZERO) { expected_type = CONST_IMM; - if (type != expected_type) + /* One exception. Allow UNKNOWN_VALUE registers when the + * boundaries are known and don't cause unsafe memory accesses + */ + if (type != UNKNOWN_VALUE && type != expected_type) goto err_type; } else if (arg_type == ARG_CONST_MAP_PTR) { expected_type = CONST_PTR_TO_MAP; @@ -1006,8 +1050,8 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 regno, expected_type = PTR_TO_CTX; if (type != expected_type) goto err_type; - } else if (arg_type == ARG_PTR_TO_STACK || - arg_type == ARG_PTR_TO_RAW_STACK) { + } else if (arg_type == ARG_PTR_TO_MEM || + arg_type == ARG_PTR_TO_UNINIT_MEM) { expected_type = PTR_TO_STACK; /* One exception here. In case function allows for NULL to be * passed in as argument, it's a CONST_IMM type. Final test @@ -1015,9 +1059,10 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 regno, */ if (type == CONST_IMM && reg->imm == 0) /* final test in check_stack_boundary() */; - else if (type != PTR_TO_PACKET && type != expected_type) + else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE && + type != PTR_TO_MAP_VALUE_ADJ && type != expected_type) goto err_type; - meta->raw_mode = arg_type == ARG_PTR_TO_RAW_STACK; + meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; } else { verbose("unsupported arg_type %d\n", arg_type); return -EFAULT; @@ -1063,9 +1108,9 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 regno, err = check_stack_boundary(env, regno, meta->map_ptr->value_size, false, NULL); - } else if (arg_type == ARG_CONST_STACK_SIZE || - arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) { - bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO); + } else if (arg_type == ARG_CONST_SIZE || + arg_type == ARG_CONST_SIZE_OR_ZERO) { + bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); /* bpf_xxx(..., buf, len) call will access 'len' bytes * from stack pointer 'buf'. Check it @@ -1073,14 +1118,50 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 regno, */ if (regno == 0) { /* kernel subsystem misconfigured verifier */ - verbose("ARG_CONST_STACK_SIZE cannot be first argument\n"); + verbose("ARG_CONST_SIZE cannot be first argument\n"); return -EACCES; } - if (regs[regno - 1].type == PTR_TO_PACKET) - err = check_packet_access(env, regno - 1, 0, reg->imm); - else - err = check_stack_boundary(env, regno - 1, reg->imm, - zero_size_allowed, meta); + + /* If the register is UNKNOWN_VALUE, the access check happens + * using its boundaries. Otherwise, just use its imm + */ + if (type == UNKNOWN_VALUE) { + /* For unprivileged variable accesses, disable raw + * mode so that the program is required to + * initialize all the memory that the helper could + * just partially fill up. + */ + meta = NULL; + + if (reg->min_value < 0) { + verbose("R%d min value is negative, either use unsigned or 'var &= const'\n", + regno); + return -EACCES; + } + + if (reg->min_value == 0) { + err = check_helper_mem_access(env, regno - 1, 0, + zero_size_allowed, + meta); + if (err) + return err; + } + + if (reg->max_value == BPF_REGISTER_MAX_RANGE) { + verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", + regno); + return -EACCES; + } + err = check_helper_mem_access(env, regno - 1, + reg->max_value, + zero_size_allowed, meta); + if (err) + return err; + } else { + /* register is CONST_IMM */ + err = check_helper_mem_access(env, regno - 1, reg->imm, + zero_size_allowed, meta); + } } return err; @@ -1154,15 +1235,15 @@ static int check_raw_mode(const struct bpf_func_proto *fn) { int count = 0; - if (fn->arg1_type == ARG_PTR_TO_RAW_STACK) + if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) count++; - if (fn->arg2_type == ARG_PTR_TO_RAW_STACK) + if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) count++; - if (fn->arg3_type == ARG_PTR_TO_RAW_STACK) + if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) count++; - if (fn->arg4_type == ARG_PTR_TO_RAW_STACK) + if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) count++; - if (fn->arg5_type == ARG_PTR_TO_RAW_STACK) + if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) count++; return count > 1 ? -EINVAL : 0; @@ -1316,7 +1397,7 @@ static int check_packet_ptr_add(struct bpf_verifier_env *env, imm = insn->imm; add_imm: - if (imm <= 0) { + if (imm < 0) { verbose("addition of negative constant to packet pointer is not allowed\n"); return -EACCES; } @@ -1485,22 +1566,54 @@ static int evaluate_reg_imm_alu(struct bpf_verifier_env *env, struct bpf_reg_state *dst_reg = ®s[insn->dst_reg]; struct bpf_reg_state *src_reg = ®s[insn->src_reg]; u8 opcode = BPF_OP(insn->code); + u64 dst_imm = dst_reg->imm; - /* dst_reg->type == CONST_IMM here, simulate execution of 'add'/'or' - * insn. Don't care about overflow or negative values, just add them + /* dst_reg->type == CONST_IMM here. Simulate execution of insns + * containing ALU ops. Don't care about overflow or negative + * values, just add/sub/... them; registers are in u64. */ - if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) - dst_reg->imm += insn->imm; - else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X && - src_reg->type == CONST_IMM) - dst_reg->imm += src_reg->imm; - else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) - dst_reg->imm |= insn->imm; - else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X && - src_reg->type == CONST_IMM) - dst_reg->imm |= src_reg->imm; - else + if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) { + dst_imm += insn->imm; + } else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X && + src_reg->type == CONST_IMM) { + dst_imm += src_reg->imm; + } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) { + dst_imm -= insn->imm; + } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X && + src_reg->type == CONST_IMM) { + dst_imm -= src_reg->imm; + } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) { + dst_imm *= insn->imm; + } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X && + src_reg->type == CONST_IMM) { + dst_imm *= src_reg->imm; + } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) { + dst_imm |= insn->imm; + } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X && + src_reg->type == CONST_IMM) { + dst_imm |= src_reg->imm; + } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) { + dst_imm &= insn->imm; + } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X && + src_reg->type == CONST_IMM) { + dst_imm &= src_reg->imm; + } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) { + dst_imm >>= insn->imm; + } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X && + src_reg->type == CONST_IMM) { + dst_imm >>= src_reg->imm; + } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) { + dst_imm <<= insn->imm; + } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X && + src_reg->type == CONST_IMM) { + dst_imm <<= src_reg->imm; + } else { mark_reg_unknown_value(regs, insn->dst_reg); + goto out; + } + + dst_reg->imm = dst_imm; +out: return 0; } @@ -2144,14 +2257,8 @@ static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) return err; if (insn->src_reg == 0) { - /* generic move 64-bit immediate into a register, - * only analyzer needs to collect the ld_imm value. - */ u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; - if (!env->analyzer_ops) - return 0; - regs[insn->dst_reg].type = CONST_IMM; regs[insn->dst_reg].imm = imm; return 0; @@ -2729,7 +2836,6 @@ static int do_check(struct bpf_verifier_env *env) if (err) return err; - reset_reg_range_values(regs, insn->dst_reg); if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { insn_idx++; @@ -3085,10 +3191,14 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) insn = env->prog->insnsi + delta; for (i = 0; i < insn_cnt; i++, insn++) { - if (insn->code == (BPF_LDX | BPF_MEM | BPF_W) || + if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || + insn->code == (BPF_LDX | BPF_MEM | BPF_H) || + insn->code == (BPF_LDX | BPF_MEM | BPF_W) || insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) type = BPF_READ; - else if (insn->code == (BPF_STX | BPF_MEM | BPF_W) || + else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || + insn->code == (BPF_STX | BPF_MEM | BPF_H) || + insn->code == (BPF_STX | BPF_MEM | BPF_W) || insn->code == (BPF_STX | BPF_MEM | BPF_DW)) type = BPF_WRITE; else @@ -3097,8 +3207,7 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env) if (env->insn_aux_data[i].ptr_type != PTR_TO_CTX) continue; - cnt = ops->convert_ctx_access(type, insn->dst_reg, insn->src_reg, - insn->off, insn_buf, env->prog); + cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog); if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { verbose("bpf verifier is misconfigured\n"); return -EINVAL; diff --git a/kernel/trace/bpf_trace.c b/kernel/trace/bpf_trace.c index fa77311dadb2..424daa4586d1 100644 --- a/kernel/trace/bpf_trace.c +++ b/kernel/trace/bpf_trace.c @@ -76,8 +76,8 @@ static const struct bpf_func_proto bpf_probe_read_proto = { .func = bpf_probe_read, .gpl_only = true, .ret_type = RET_INTEGER, - .arg1_type = ARG_PTR_TO_RAW_STACK, - .arg2_type = ARG_CONST_STACK_SIZE, + .arg1_type = ARG_PTR_TO_UNINIT_MEM, + .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_ANYTHING, }; @@ -109,8 +109,8 @@ static const struct bpf_func_proto bpf_probe_write_user_proto = { .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, - .arg2_type = ARG_PTR_TO_STACK, - .arg3_type = ARG_CONST_STACK_SIZE, + .arg2_type = ARG_PTR_TO_MEM, + .arg3_type = ARG_CONST_SIZE, }; static const struct bpf_func_proto *bpf_get_probe_write_proto(void) @@ -213,8 +213,8 @@ static const struct bpf_func_proto bpf_trace_printk_proto = { .func = bpf_trace_printk, .gpl_only = true, .ret_type = RET_INTEGER, - .arg1_type = ARG_PTR_TO_STACK, - .arg2_type = ARG_CONST_STACK_SIZE, + .arg1_type = ARG_PTR_TO_MEM, + .arg2_type = ARG_CONST_SIZE, }; const struct bpf_func_proto *bpf_get_trace_printk_proto(void) @@ -329,8 +329,8 @@ static const struct bpf_func_proto bpf_perf_event_output_proto = { .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, - .arg4_type = ARG_PTR_TO_STACK, - .arg5_type = ARG_CONST_STACK_SIZE, + .arg4_type = ARG_PTR_TO_MEM, + .arg5_type = ARG_CONST_SIZE, }; static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs); @@ -395,6 +395,36 @@ static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { .arg2_type = ARG_ANYTHING, }; +BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size, + const void *, unsafe_ptr) +{ + int ret; + + /* + * The strncpy_from_unsafe() call will likely not fill the entire + * buffer, but that's okay in this circumstance as we're probing + * arbitrary memory anyway similar to bpf_probe_read() and might + * as well probe the stack. Thus, memory is explicitly cleared + * only in error case, so that improper users ignoring return + * code altogether don't copy garbage; otherwise length of string + * is returned that can be used for bpf_perf_event_output() et al. + */ + ret = strncpy_from_unsafe(dst, unsafe_ptr, size); + if (unlikely(ret < 0)) + memset(dst, 0, size); + + return ret; +} + +static const struct bpf_func_proto bpf_probe_read_str_proto = { + .func = bpf_probe_read_str, + .gpl_only = true, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_UNINIT_MEM, + .arg2_type = ARG_CONST_SIZE, + .arg3_type = ARG_ANYTHING, +}; + static const struct bpf_func_proto *tracing_func_proto(enum bpf_func_id func_id) { switch (func_id) { @@ -432,6 +462,8 @@ static const struct bpf_func_proto *tracing_func_proto(enum bpf_func_id func_id) return &bpf_current_task_under_cgroup_proto; case BPF_FUNC_get_prandom_u32: return &bpf_get_prandom_u32_proto; + case BPF_FUNC_probe_read_str: + return &bpf_probe_read_str_proto; default: return NULL; } @@ -459,6 +491,13 @@ static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type return false; if (off % size != 0) return false; + /* + * Assertion for 32 bit to make sure last 8 byte access + * (BPF_DW) to the last 4 byte member is disallowed. + */ + if (off + size > sizeof(struct pt_regs)) + return false; + return true; } @@ -492,8 +531,8 @@ static const struct bpf_func_proto bpf_perf_event_output_proto_tp = { .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, - .arg4_type = ARG_PTR_TO_STACK, - .arg5_type = ARG_CONST_STACK_SIZE, + .arg4_type = ARG_PTR_TO_MEM, + .arg5_type = ARG_CONST_SIZE, }; BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map, @@ -540,6 +579,8 @@ static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type return false; if (off % size != 0) return false; + + BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64)); return true; } @@ -572,28 +613,29 @@ static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type return true; } -static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, int dst_reg, - int src_reg, int ctx_off, +static u32 pe_prog_convert_ctx_access(enum bpf_access_type type, + const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog) { struct bpf_insn *insn = insn_buf; - switch (ctx_off) { + switch (si->off) { case offsetof(struct bpf_perf_event_data, sample_period): BUILD_BUG_ON(FIELD_SIZEOF(struct perf_sample_data, period) != sizeof(u64)); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, - data), dst_reg, src_reg, + data), si->dst_reg, si->src_reg, offsetof(struct bpf_perf_event_data_kern, data)); - *insn++ = BPF_LDX_MEM(BPF_DW, dst_reg, dst_reg, + *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, offsetof(struct perf_sample_data, period)); break; default: *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern, - regs), dst_reg, src_reg, + regs), si->dst_reg, si->src_reg, offsetof(struct bpf_perf_event_data_kern, regs)); - *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), dst_reg, dst_reg, ctx_off); + *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg, + si->off); break; } diff --git a/kernel/trace/trace_output.c b/kernel/trace/trace_output.c index 5d33a7352919..aea6a1218c7d 100644 --- a/kernel/trace/trace_output.c +++ b/kernel/trace/trace_output.c @@ -162,15 +162,27 @@ trace_print_bitmask_seq(struct trace_seq *p, void *bitmask_ptr, } EXPORT_SYMBOL_GPL(trace_print_bitmask_seq); +/** + * trace_print_hex_seq - print buffer as hex sequence + * @p: trace seq struct to write to + * @buf: The buffer to print + * @buf_len: Length of @buf in bytes + * @concatenate: Print @buf as single hex string or with spacing + * + * Prints the passed buffer as a hex sequence either as a whole, + * single hex string if @concatenate is true or with spacing after + * each byte in case @concatenate is false. + */ const char * -trace_print_hex_seq(struct trace_seq *p, const unsigned char *buf, int buf_len) +trace_print_hex_seq(struct trace_seq *p, const unsigned char *buf, int buf_len, + bool concatenate) { int i; const char *ret = trace_seq_buffer_ptr(p); for (i = 0; i < buf_len; i++) - trace_seq_printf(p, "%s%2.2x", i == 0 ? "" : " ", buf[i]); - + trace_seq_printf(p, "%s%2.2x", concatenate || i == 0 ? "" : " ", + buf[i]); trace_seq_putc(p, 0); return ret; |