summaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/Makefile7
-rw-r--r--kernel/audit_tree.c20
-rw-r--r--kernel/audit_watch.c24
-rw-r--r--kernel/bounds.c2
-rw-r--r--kernel/cgroup.c1210
-rw-r--r--kernel/cgroup_freezer.c7
-rw-r--r--kernel/context_tracking.c8
-rw-r--r--kernel/cpu/idle.c17
-rw-r--r--kernel/cpuset.c71
-rw-r--r--kernel/events/core.c52
-rw-r--r--kernel/events/ring_buffer.c42
-rw-r--r--kernel/events/uprobes.c60
-rw-r--r--kernel/exit.c1
-rw-r--r--kernel/fork.c22
-rw-r--r--kernel/freezer.c6
-rw-r--r--kernel/futex.c203
-rw-r--r--kernel/hrtimer.c3
-rw-r--r--kernel/kexec.c1
-rw-r--r--kernel/locking/lockdep.c4
-rw-r--r--kernel/locking/mutex-debug.c7
-rw-r--r--kernel/locking/rtmutex-debug.c8
-rw-r--r--kernel/locking/rtmutex.c166
-rw-r--r--kernel/locking/rtmutex_common.h23
-rw-r--r--kernel/panic.c2
-rw-r--r--kernel/posix-cpu-timers.c327
-rw-r--r--kernel/power/console.c1
-rw-r--r--kernel/power/snapshot.c2
-rw-r--r--kernel/printk/printk.c10
-rw-r--r--kernel/rcu/rcu.h5
-rw-r--r--kernel/rcu/srcu.c57
-rw-r--r--kernel/rcu/torture.c75
-rw-r--r--kernel/rcu/tree.c97
-rw-r--r--kernel/rcu/tree.h12
-rw-r--r--kernel/rcu/tree_plugin.h102
-rw-r--r--kernel/rcu/tree_trace.c3
-rw-r--r--kernel/rcu/update.c5
-rw-r--r--kernel/reboot.c2
-rw-r--r--kernel/sched/Makefile5
-rw-r--r--kernel/sched/clock.c78
-rw-r--r--kernel/sched/core.c843
-rw-r--r--kernel/sched/cpuacct.c18
-rw-r--r--kernel/sched/cpudeadline.c216
-rw-r--r--kernel/sched/cpudeadline.h33
-rw-r--r--kernel/sched/deadline.c1640
-rw-r--r--kernel/sched/debug.c4
-rw-r--r--kernel/sched/fair.c242
-rw-r--r--kernel/sched/rt.c16
-rw-r--r--kernel/sched/sched.h146
-rw-r--r--kernel/sched/stop_task.c2
-rw-r--r--kernel/softirq.c92
-rw-r--r--kernel/sysctl.c18
-rw-r--r--kernel/time/sched_clock.c6
-rw-r--r--kernel/time/tick-broadcast.c6
-rw-r--r--kernel/time/tick-common.c1
-rw-r--r--kernel/time/tick-internal.h5
-rw-r--r--kernel/time/tick-sched.c42
-rw-r--r--kernel/time/timekeeping.c53
-rw-r--r--kernel/trace/ftrace.c2
-rw-r--r--kernel/trace/ring_buffer.c2
-rw-r--r--kernel/trace/trace_sched_wakeup.c65
-rw-r--r--kernel/trace/trace_selftest.c33
-rw-r--r--kernel/user.c6
-rw-r--r--kernel/workqueue.c2
63 files changed, 4569 insertions, 1671 deletions
diff --git a/kernel/Makefile b/kernel/Makefile
index bbaf7d59c1bb..bc010ee272b6 100644
--- a/kernel/Makefile
+++ b/kernel/Makefile
@@ -137,9 +137,10 @@ $(obj)/timeconst.h: $(obj)/hz.bc $(src)/timeconst.bc FORCE
###############################################################################
ifeq ($(CONFIG_SYSTEM_TRUSTED_KEYRING),y)
X509_CERTIFICATES-y := $(wildcard *.x509) $(wildcard $(srctree)/*.x509)
-X509_CERTIFICATES-$(CONFIG_MODULE_SIG) += signing_key.x509
-X509_CERTIFICATES := $(sort $(foreach CERT,$(X509_CERTIFICATES-y), \
+X509_CERTIFICATES-$(CONFIG_MODULE_SIG) += $(objtree)/signing_key.x509
+X509_CERTIFICATES-raw := $(sort $(foreach CERT,$(X509_CERTIFICATES-y), \
$(or $(realpath $(CERT)),$(CERT))))
+X509_CERTIFICATES := $(subst $(realpath $(objtree))/,,$(X509_CERTIFICATES-raw))
ifeq ($(X509_CERTIFICATES),)
$(warning *** No X.509 certificates found ***)
@@ -164,9 +165,9 @@ $(obj)/x509_certificate_list: $(X509_CERTIFICATES) $(obj)/.x509.list
targets += $(obj)/.x509.list
$(obj)/.x509.list:
@echo $(X509_CERTIFICATES) >$@
+endif
clean-files := x509_certificate_list .x509.list
-endif
ifeq ($(CONFIG_MODULE_SIG),y)
###############################################################################
diff --git a/kernel/audit_tree.c b/kernel/audit_tree.c
index 43c307dc9453..67ccf0e7cca9 100644
--- a/kernel/audit_tree.c
+++ b/kernel/audit_tree.c
@@ -912,12 +912,13 @@ static void evict_chunk(struct audit_chunk *chunk)
}
static int audit_tree_handle_event(struct fsnotify_group *group,
+ struct inode *to_tell,
struct fsnotify_mark *inode_mark,
- struct fsnotify_mark *vfsmonut_mark,
- struct fsnotify_event *event)
+ struct fsnotify_mark *vfsmount_mark,
+ u32 mask, void *data, int data_type,
+ const unsigned char *file_name)
{
- BUG();
- return -EOPNOTSUPP;
+ return 0;
}
static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
@@ -933,19 +934,8 @@ static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify
BUG_ON(atomic_read(&entry->refcnt) < 1);
}
-static bool audit_tree_send_event(struct fsnotify_group *group, struct inode *inode,
- struct fsnotify_mark *inode_mark,
- struct fsnotify_mark *vfsmount_mark,
- __u32 mask, void *data, int data_type)
-{
- return false;
-}
-
static const struct fsnotify_ops audit_tree_ops = {
.handle_event = audit_tree_handle_event,
- .should_send_event = audit_tree_send_event,
- .free_group_priv = NULL,
- .free_event_priv = NULL,
.freeing_mark = audit_tree_freeing_mark,
};
diff --git a/kernel/audit_watch.c b/kernel/audit_watch.c
index 22831c4d369c..2596fac5dcb4 100644
--- a/kernel/audit_watch.c
+++ b/kernel/audit_watch.c
@@ -465,35 +465,27 @@ void audit_remove_watch_rule(struct audit_krule *krule)
}
}
-static bool audit_watch_should_send_event(struct fsnotify_group *group, struct inode *inode,
- struct fsnotify_mark *inode_mark,
- struct fsnotify_mark *vfsmount_mark,
- __u32 mask, void *data, int data_type)
-{
- return true;
-}
-
/* Update watch data in audit rules based on fsnotify events. */
static int audit_watch_handle_event(struct fsnotify_group *group,
+ struct inode *to_tell,
struct fsnotify_mark *inode_mark,
struct fsnotify_mark *vfsmount_mark,
- struct fsnotify_event *event)
+ u32 mask, void *data, int data_type,
+ const unsigned char *dname)
{
struct inode *inode;
- __u32 mask = event->mask;
- const char *dname = event->file_name;
struct audit_parent *parent;
parent = container_of(inode_mark, struct audit_parent, mark);
BUG_ON(group != audit_watch_group);
- switch (event->data_type) {
+ switch (data_type) {
case (FSNOTIFY_EVENT_PATH):
- inode = event->path.dentry->d_inode;
+ inode = ((struct path *)data)->dentry->d_inode;
break;
case (FSNOTIFY_EVENT_INODE):
- inode = event->inode;
+ inode = (struct inode *)data;
break;
default:
BUG();
@@ -512,11 +504,7 @@ static int audit_watch_handle_event(struct fsnotify_group *group,
}
static const struct fsnotify_ops audit_watch_fsnotify_ops = {
- .should_send_event = audit_watch_should_send_event,
.handle_event = audit_watch_handle_event,
- .free_group_priv = NULL,
- .freeing_mark = NULL,
- .free_event_priv = NULL,
};
static int __init audit_watch_init(void)
diff --git a/kernel/bounds.c b/kernel/bounds.c
index 5253204afdca..9fd4246b04b8 100644
--- a/kernel/bounds.c
+++ b/kernel/bounds.c
@@ -22,6 +22,6 @@ void foo(void)
#ifdef CONFIG_SMP
DEFINE(NR_CPUS_BITS, ilog2(CONFIG_NR_CPUS));
#endif
- DEFINE(BLOATED_SPINLOCKS, sizeof(spinlock_t) > sizeof(int));
+ DEFINE(SPINLOCK_SIZE, sizeof(spinlock_t));
/* End of constants */
}
diff --git a/kernel/cgroup.c b/kernel/cgroup.c
index 8b729c278b64..e2f46ba37f72 100644
--- a/kernel/cgroup.c
+++ b/kernel/cgroup.c
@@ -41,7 +41,6 @@
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/backing-dev.h>
-#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
@@ -56,15 +55,20 @@
#include <linux/pid_namespace.h>
#include <linux/idr.h>
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
-#include <linux/eventfd.h>
-#include <linux/poll.h>
#include <linux/flex_array.h> /* used in cgroup_attach_task */
#include <linux/kthread.h>
-#include <linux/file.h>
#include <linux/atomic.h>
/*
+ * pidlists linger the following amount before being destroyed. The goal
+ * is avoiding frequent destruction in the middle of consecutive read calls
+ * Expiring in the middle is a performance problem not a correctness one.
+ * 1 sec should be enough.
+ */
+#define CGROUP_PIDLIST_DESTROY_DELAY HZ
+
+/*
* cgroup_mutex is the master lock. Any modification to cgroup or its
* hierarchy must be performed while holding it.
*
@@ -89,6 +93,19 @@ static DEFINE_MUTEX(cgroup_mutex);
static DEFINE_MUTEX(cgroup_root_mutex);
+#define cgroup_assert_mutex_or_rcu_locked() \
+ rcu_lockdep_assert(rcu_read_lock_held() || \
+ lockdep_is_held(&cgroup_mutex), \
+ "cgroup_mutex or RCU read lock required");
+
+#ifdef CONFIG_LOCKDEP
+#define cgroup_assert_mutex_or_root_locked() \
+ WARN_ON_ONCE(debug_locks && (!lockdep_is_held(&cgroup_mutex) && \
+ !lockdep_is_held(&cgroup_root_mutex)))
+#else
+#define cgroup_assert_mutex_or_root_locked() do { } while (0)
+#endif
+
/*
* cgroup destruction makes heavy use of work items and there can be a lot
* of concurrent destructions. Use a separate workqueue so that cgroup
@@ -98,6 +115,12 @@ static DEFINE_MUTEX(cgroup_root_mutex);
static struct workqueue_struct *cgroup_destroy_wq;
/*
+ * pidlist destructions need to be flushed on cgroup destruction. Use a
+ * separate workqueue as flush domain.
+ */
+static struct workqueue_struct *cgroup_pidlist_destroy_wq;
+
+/*
* Generate an array of cgroup subsystem pointers. At boot time, this is
* populated with the built in subsystems, and modular subsystems are
* registered after that. The mutable section of this array is protected by
@@ -119,49 +142,6 @@ static struct cgroupfs_root cgroup_dummy_root;
/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
-/*
- * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
- */
-struct cfent {
- struct list_head node;
- struct dentry *dentry;
- struct cftype *type;
- struct cgroup_subsys_state *css;
-
- /* file xattrs */
- struct simple_xattrs xattrs;
-};
-
-/*
- * cgroup_event represents events which userspace want to receive.
- */
-struct cgroup_event {
- /*
- * css which the event belongs to.
- */
- struct cgroup_subsys_state *css;
- /*
- * Control file which the event associated.
- */
- struct cftype *cft;
- /*
- * eventfd to signal userspace about the event.
- */
- struct eventfd_ctx *eventfd;
- /*
- * Each of these stored in a list by the cgroup.
- */
- struct list_head list;
- /*
- * All fields below needed to unregister event when
- * userspace closes eventfd.
- */
- poll_table pt;
- wait_queue_head_t *wqh;
- wait_queue_t wait;
- struct work_struct remove;
-};
-
/* The list of hierarchy roots */
static LIST_HEAD(cgroup_roots);
@@ -200,6 +180,7 @@ static int cgroup_destroy_locked(struct cgroup *cgrp);
static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
bool is_add);
static int cgroup_file_release(struct inode *inode, struct file *file);
+static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
/**
* cgroup_css - obtain a cgroup's css for the specified subsystem
@@ -262,16 +243,32 @@ static int notify_on_release(const struct cgroup *cgrp)
}
/**
+ * for_each_css - iterate all css's of a cgroup
+ * @css: the iteration cursor
+ * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
+ * @cgrp: the target cgroup to iterate css's of
+ *
+ * Should be called under cgroup_mutex.
+ */
+#define for_each_css(css, ssid, cgrp) \
+ for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
+ if (!((css) = rcu_dereference_check( \
+ (cgrp)->subsys[(ssid)], \
+ lockdep_is_held(&cgroup_mutex)))) { } \
+ else
+
+/**
* for_each_subsys - iterate all loaded cgroup subsystems
* @ss: the iteration cursor
- * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
+ * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
*
- * Should be called under cgroup_mutex.
+ * Iterates through all loaded subsystems. Should be called under
+ * cgroup_mutex or cgroup_root_mutex.
*/
-#define for_each_subsys(ss, i) \
- for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
- if (({ lockdep_assert_held(&cgroup_mutex); \
- !((ss) = cgroup_subsys[i]); })) { } \
+#define for_each_subsys(ss, ssid) \
+ for (({ cgroup_assert_mutex_or_root_locked(); (ssid) = 0; }); \
+ (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
+ if (!((ss) = cgroup_subsys[(ssid)])) { } \
else
/**
@@ -286,10 +283,6 @@ static int notify_on_release(const struct cgroup *cgrp)
for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
(((ss) = cgroup_subsys[i]) || true); (i)++)
-/* iterate each subsystem attached to a hierarchy */
-#define for_each_root_subsys(root, ss) \
- list_for_each_entry((ss), &(root)->subsys_list, sibling)
-
/* iterate across the active hierarchies */
#define for_each_active_root(root) \
list_for_each_entry((root), &cgroup_roots, root_list)
@@ -863,11 +856,7 @@ static void cgroup_free_fn(struct work_struct *work)
*/
deactivate_super(cgrp->root->sb);
- /*
- * if we're getting rid of the cgroup, refcount should ensure
- * that there are no pidlists left.
- */
- BUG_ON(!list_empty(&cgrp->pidlists));
+ cgroup_pidlist_destroy_all(cgrp);
simple_xattrs_free(&cgrp->xattrs);
@@ -890,6 +879,16 @@ static void cgroup_diput(struct dentry *dentry, struct inode *inode)
struct cgroup *cgrp = dentry->d_fsdata;
BUG_ON(!(cgroup_is_dead(cgrp)));
+
+ /*
+ * XXX: cgrp->id is only used to look up css's. As cgroup
+ * and css's lifetimes will be decoupled, it should be made
+ * per-subsystem and moved to css->id so that lookups are
+ * successful until the target css is released.
+ */
+ idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
+ cgrp->id = -1;
+
call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
} else {
struct cfent *cfe = __d_cfe(dentry);
@@ -1040,7 +1039,6 @@ static int rebind_subsystems(struct cgroupfs_root *root,
cgroup_css(cgroup_dummy_top, ss));
cgroup_css(cgrp, ss)->cgroup = cgrp;
- list_move(&ss->sibling, &root->subsys_list);
ss->root = root;
if (ss->bind)
ss->bind(cgroup_css(cgrp, ss));
@@ -1059,7 +1057,6 @@ static int rebind_subsystems(struct cgroupfs_root *root,
RCU_INIT_POINTER(cgrp->subsys[i], NULL);
cgroup_subsys[i]->root = &cgroup_dummy_root;
- list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
/* subsystem is now free - drop reference on module */
module_put(ss->module);
@@ -1086,10 +1083,12 @@ static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
{
struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
struct cgroup_subsys *ss;
+ int ssid;
mutex_lock(&cgroup_root_mutex);
- for_each_root_subsys(root, ss)
- seq_printf(seq, ",%s", ss->name);
+ for_each_subsys(ss, ssid)
+ if (root->subsys_mask & (1 << ssid))
+ seq_printf(seq, ",%s", ss->name);
if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
seq_puts(seq, ",sane_behavior");
if (root->flags & CGRP_ROOT_NOPREFIX)
@@ -1352,8 +1351,6 @@ static void init_cgroup_housekeeping(struct cgroup *cgrp)
INIT_LIST_HEAD(&cgrp->pidlists);
mutex_init(&cgrp->pidlist_mutex);
cgrp->dummy_css.cgroup = cgrp;
- INIT_LIST_HEAD(&cgrp->event_list);
- spin_lock_init(&cgrp->event_list_lock);
simple_xattrs_init(&cgrp->xattrs);
}
@@ -1361,7 +1358,6 @@ static void init_cgroup_root(struct cgroupfs_root *root)
{
struct cgroup *cgrp = &root->top_cgroup;
- INIT_LIST_HEAD(&root->subsys_list);
INIT_LIST_HEAD(&root->root_list);
root->number_of_cgroups = 1;
cgrp->root = root;
@@ -1683,7 +1679,8 @@ static struct dentry *cgroup_mount(struct file_system_type *fs_type,
return ERR_PTR(ret);
}
-static void cgroup_kill_sb(struct super_block *sb) {
+static void cgroup_kill_sb(struct super_block *sb)
+{
struct cgroupfs_root *root = sb->s_fs_info;
struct cgroup *cgrp = &root->top_cgroup;
struct cgrp_cset_link *link, *tmp_link;
@@ -1966,8 +1963,8 @@ static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
bool threadgroup)
{
int retval, i, group_size;
- struct cgroup_subsys *ss, *failed_ss = NULL;
struct cgroupfs_root *root = cgrp->root;
+ struct cgroup_subsys_state *css, *failed_css = NULL;
/* threadgroup list cursor and array */
struct task_struct *leader = tsk;
struct task_and_cgroup *tc;
@@ -2040,13 +2037,11 @@ static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
/*
* step 1: check that we can legitimately attach to the cgroup.
*/
- for_each_root_subsys(root, ss) {
- struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
-
- if (ss->can_attach) {
- retval = ss->can_attach(css, &tset);
+ for_each_css(css, i, cgrp) {
+ if (css->ss->can_attach) {
+ retval = css->ss->can_attach(css, &tset);
if (retval) {
- failed_ss = ss;
+ failed_css = css;
goto out_cancel_attach;
}
}
@@ -2082,12 +2077,9 @@ static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
/*
* step 4: do subsystem attach callbacks.
*/
- for_each_root_subsys(root, ss) {
- struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
-
- if (ss->attach)
- ss->attach(css, &tset);
- }
+ for_each_css(css, i, cgrp)
+ if (css->ss->attach)
+ css->ss->attach(css, &tset);
/*
* step 5: success! and cleanup
@@ -2104,13 +2096,11 @@ out_put_css_set_refs:
}
out_cancel_attach:
if (retval) {
- for_each_root_subsys(root, ss) {
- struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
-
- if (ss == failed_ss)
+ for_each_css(css, i, cgrp) {
+ if (css == failed_css)
break;
- if (ss->cancel_attach)
- ss->cancel_attach(css, &tset);
+ if (css->ss->cancel_attach)
+ css->ss->cancel_attach(css, &tset);
}
}
out_free_group_list:
@@ -2138,7 +2128,7 @@ retry_find_task:
tsk = find_task_by_vpid(pid);
if (!tsk) {
rcu_read_unlock();
- ret= -ESRCH;
+ ret = -ESRCH;
goto out_unlock_cgroup;
}
/*
@@ -2250,10 +2240,9 @@ static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
return 0;
}
-static int cgroup_release_agent_show(struct cgroup_subsys_state *css,
- struct cftype *cft, struct seq_file *seq)
+static int cgroup_release_agent_show(struct seq_file *seq, void *v)
{
- struct cgroup *cgrp = css->cgroup;
+ struct cgroup *cgrp = seq_css(seq)->cgroup;
if (!cgroup_lock_live_group(cgrp))
return -ENODEV;
@@ -2263,174 +2252,129 @@ static int cgroup_release_agent_show(struct cgroup_subsys_state *css,
return 0;
}
-static int cgroup_sane_behavior_show(struct cgroup_subsys_state *css,
- struct cftype *cft, struct seq_file *seq)
+static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
{
- seq_printf(seq, "%d\n", cgroup_sane_behavior(css->cgroup));
+ struct cgroup *cgrp = seq_css(seq)->cgroup;
+
+ seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
return 0;
}
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64
-static ssize_t cgroup_write_X64(struct cgroup_subsys_state *css,
- struct cftype *cft, struct file *file,
- const char __user *userbuf, size_t nbytes,
- loff_t *unused_ppos)
+static ssize_t cgroup_file_write(struct file *file, const char __user *userbuf,
+ size_t nbytes, loff_t *ppos)
{
- char buffer[CGROUP_LOCAL_BUFFER_SIZE];
- int retval = 0;
- char *end;
+ struct cfent *cfe = __d_cfe(file->f_dentry);
+ struct cftype *cft = __d_cft(file->f_dentry);
+ struct cgroup_subsys_state *css = cfe->css;
+ size_t max_bytes = cft->max_write_len ?: CGROUP_LOCAL_BUFFER_SIZE - 1;
+ char *buf;
+ int ret;
- if (!nbytes)
- return -EINVAL;
- if (nbytes >= sizeof(buffer))
+ if (nbytes >= max_bytes)
return -E2BIG;
- if (copy_from_user(buffer, userbuf, nbytes))
- return -EFAULT;
- buffer[nbytes] = 0; /* nul-terminate */
- if (cft->write_u64) {
- u64 val = simple_strtoull(strstrip(buffer), &end, 0);
- if (*end)
- return -EINVAL;
- retval = cft->write_u64(css, cft, val);
+ buf = kmalloc(nbytes + 1, GFP_KERNEL);
+ if (!buf)
+ return -ENOMEM;
+
+ if (copy_from_user(buf, userbuf, nbytes)) {
+ ret = -EFAULT;
+ goto out_free;
+ }
+
+ buf[nbytes] = '\0';
+
+ if (cft->write_string) {
+ ret = cft->write_string(css, cft, strstrip(buf));
+ } else if (cft->write_u64) {
+ unsigned long long v;
+ ret = kstrtoull(buf, 0, &v);
+ if (!ret)
+ ret = cft->write_u64(css, cft, v);
+ } else if (cft->write_s64) {
+ long long v;
+ ret = kstrtoll(buf, 0, &v);
+ if (!ret)
+ ret = cft->write_s64(css, cft, v);
+ } else if (cft->trigger) {
+ ret = cft->trigger(css, (unsigned int)cft->private);
} else {
- s64 val = simple_strtoll(strstrip(buffer), &end, 0);
- if (*end)
- return -EINVAL;
- retval = cft->write_s64(css, cft, val);
+ ret = -EINVAL;
}
- if (!retval)
- retval = nbytes;
- return retval;
+out_free:
+ kfree(buf);
+ return ret ?: nbytes;
}
-static ssize_t cgroup_write_string(struct cgroup_subsys_state *css,
- struct cftype *cft, struct file *file,
- const char __user *userbuf, size_t nbytes,
- loff_t *unused_ppos)
+/*
+ * seqfile ops/methods for returning structured data. Currently just
+ * supports string->u64 maps, but can be extended in future.
+ */
+
+static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
{
- char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
- int retval = 0;
- size_t max_bytes = cft->max_write_len;
- char *buffer = local_buffer;
+ struct cftype *cft = seq_cft(seq);
- if (!max_bytes)
- max_bytes = sizeof(local_buffer) - 1;
- if (nbytes >= max_bytes)
- return -E2BIG;
- /* Allocate a dynamic buffer if we need one */
- if (nbytes >= sizeof(local_buffer)) {
- buffer = kmalloc(nbytes + 1, GFP_KERNEL);
- if (buffer == NULL)
- return -ENOMEM;
- }
- if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
- retval = -EFAULT;
- goto out;
+ if (cft->seq_start) {
+ return cft->seq_start(seq, ppos);
+ } else {
+ /*
+ * The same behavior and code as single_open(). Returns
+ * !NULL if pos is at the beginning; otherwise, NULL.
+ */
+ return NULL + !*ppos;
}
-
- buffer[nbytes] = 0; /* nul-terminate */
- retval = cft->write_string(css, cft, strstrip(buffer));
- if (!retval)
- retval = nbytes;
-out:
- if (buffer != local_buffer)
- kfree(buffer);
- return retval;
}
-static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
- size_t nbytes, loff_t *ppos)
+static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
{
- struct cfent *cfe = __d_cfe(file->f_dentry);
- struct cftype *cft = __d_cft(file->f_dentry);
- struct cgroup_subsys_state *css = cfe->css;
+ struct cftype *cft = seq_cft(seq);
- if (cft->write)
- return cft->write(css, cft, file, buf, nbytes, ppos);
- if (cft->write_u64 || cft->write_s64)
- return cgroup_write_X64(css, cft, file, buf, nbytes, ppos);
- if (cft->write_string)
- return cgroup_write_string(css, cft, file, buf, nbytes, ppos);
- if (cft->trigger) {
- int ret = cft->trigger(css, (unsigned int)cft->private);
- return ret ? ret : nbytes;
+ if (cft->seq_next) {
+ return cft->seq_next(seq, v, ppos);
+ } else {
+ /*
+ * The same behavior and code as single_open(), always
+ * terminate after the initial read.
+ */
+ ++*ppos;
+ return NULL;
}
- return -EINVAL;
}
-static ssize_t cgroup_read_u64(struct cgroup_subsys_state *css,
- struct cftype *cft, struct file *file,
- char __user *buf, size_t nbytes, loff_t *ppos)
+static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
{
- char tmp[CGROUP_LOCAL_BUFFER_SIZE];
- u64 val = cft->read_u64(css, cft);
- int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
+ struct cftype *cft = seq_cft(seq);
- return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
+ if (cft->seq_stop)
+ cft->seq_stop(seq, v);
}
-static ssize_t cgroup_read_s64(struct cgroup_subsys_state *css,
- struct cftype *cft, struct file *file,
- char __user *buf, size_t nbytes, loff_t *ppos)
+static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
- char tmp[CGROUP_LOCAL_BUFFER_SIZE];
- s64 val = cft->read_s64(css, cft);
- int len = sprintf(tmp, "%lld\n", (long long) val);
+ struct cftype *cft = seq_cft(m);
+ struct cgroup_subsys_state *css = seq_css(m);
- return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
-}
+ if (cft->seq_show)
+ return cft->seq_show(m, arg);
-static ssize_t cgroup_file_read(struct file *file, char __user *buf,
- size_t nbytes, loff_t *ppos)
-{
- struct cfent *cfe = __d_cfe(file->f_dentry);
- struct cftype *cft = __d_cft(file->f_dentry);
- struct cgroup_subsys_state *css = cfe->css;
-
- if (cft->read)
- return cft->read(css, cft, file, buf, nbytes, ppos);
if (cft->read_u64)
- return cgroup_read_u64(css, cft, file, buf, nbytes, ppos);
- if (cft->read_s64)
- return cgroup_read_s64(css, cft, file, buf, nbytes, ppos);
- return -EINVAL;
-}
-
-/*
- * seqfile ops/methods for returning structured data. Currently just
- * supports string->u64 maps, but can be extended in future.
- */
-
-static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
-{
- struct seq_file *sf = cb->state;
- return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
-}
-
-static int cgroup_seqfile_show(struct seq_file *m, void *arg)
-{
- struct cfent *cfe = m->private;
- struct cftype *cft = cfe->type;
- struct cgroup_subsys_state *css = cfe->css;
-
- if (cft->read_map) {
- struct cgroup_map_cb cb = {
- .fill = cgroup_map_add,
- .state = m,
- };
- return cft->read_map(css, cft, &cb);
- }
- return cft->read_seq_string(css, cft, m);
+ seq_printf(m, "%llu\n", cft->read_u64(css, cft));
+ else if (cft->read_s64)
+ seq_printf(m, "%lld\n", cft->read_s64(css, cft));
+ else
+ return -EINVAL;
+ return 0;
}
-static const struct file_operations cgroup_seqfile_operations = {
- .read = seq_read,
- .write = cgroup_file_write,
- .llseek = seq_lseek,
- .release = cgroup_file_release,
+static struct seq_operations cgroup_seq_operations = {
+ .start = cgroup_seqfile_start,
+ .next = cgroup_seqfile_next,
+ .stop = cgroup_seqfile_stop,
+ .show = cgroup_seqfile_show,
};
static int cgroup_file_open(struct inode *inode, struct file *file)
@@ -2439,6 +2383,7 @@ static int cgroup_file_open(struct inode *inode, struct file *file)
struct cftype *cft = __d_cft(file->f_dentry);
struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
struct cgroup_subsys_state *css;
+ struct cgroup_open_file *of;
int err;
err = generic_file_open(inode, file);
@@ -2468,32 +2413,26 @@ static int cgroup_file_open(struct inode *inode, struct file *file)
WARN_ON_ONCE(cfe->css && cfe->css != css);
cfe->css = css;
- if (cft->read_map || cft->read_seq_string) {
- file->f_op = &cgroup_seqfile_operations;
- err = single_open(file, cgroup_seqfile_show, cfe);
- } else if (cft->open) {
- err = cft->open(inode, file);
+ of = __seq_open_private(file, &cgroup_seq_operations,
+ sizeof(struct cgroup_open_file));
+ if (of) {
+ of->cfe = cfe;
+ return 0;
}
- if (css->ss && err)
+ if (css->ss)
css_put(css);
- return err;
+ return -ENOMEM;
}
static int cgroup_file_release(struct inode *inode, struct file *file)
{
struct cfent *cfe = __d_cfe(file->f_dentry);
- struct cftype *cft = __d_cft(file->f_dentry);
struct cgroup_subsys_state *css = cfe->css;
- int ret = 0;
- if (cft->release)
- ret = cft->release(inode, file);
if (css->ss)
css_put(css);
- if (file->f_op == &cgroup_seqfile_operations)
- single_release(inode, file);
- return ret;
+ return seq_release_private(inode, file);
}
/*
@@ -2604,7 +2543,7 @@ static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
}
static const struct file_operations cgroup_file_operations = {
- .read = cgroup_file_read,
+ .read = seq_read,
.write = cgroup_file_write,
.llseek = generic_file_llseek,
.open = cgroup_file_open,
@@ -2629,16 +2568,6 @@ static const struct inode_operations cgroup_dir_inode_operations = {
.removexattr = cgroup_removexattr,
};
-/*
- * Check if a file is a control file
- */
-static inline struct cftype *__file_cft(struct file *file)
-{
- if (file_inode(file)->i_fop != &cgroup_file_operations)
- return ERR_PTR(-EINVAL);
- return __d_cft(file->f_dentry);
-}
-
static int cgroup_create_file(struct dentry *dentry, umode_t mode,
struct super_block *sb)
{
@@ -2696,12 +2625,11 @@ static umode_t cgroup_file_mode(const struct cftype *cft)
if (cft->mode)
return cft->mode;
- if (cft->read || cft->read_u64 || cft->read_s64 ||
- cft->read_map || cft->read_seq_string)
+ if (cft->read_u64 || cft->read_s64 || cft->seq_show)
mode |= S_IRUGO;
- if (cft->write || cft->write_u64 || cft->write_s64 ||
- cft->write_string || cft->trigger)
+ if (cft->write_u64 || cft->write_s64 || cft->write_string ||
+ cft->trigger)
mode |= S_IWUSR;
return mode;
@@ -2997,9 +2925,9 @@ static void cgroup_enable_task_cg_lists(void)
* @parent_css: css whose children to walk
*
* This function returns the next child of @parent_css and should be called
- * under RCU read lock. The only requirement is that @parent_css and
- * @pos_css are accessible. The next sibling is guaranteed to be returned
- * regardless of their states.
+ * under either cgroup_mutex or RCU read lock. The only requirement is
+ * that @parent_css and @pos_css are accessible. The next sibling is
+ * guaranteed to be returned regardless of their states.
*/
struct cgroup_subsys_state *
css_next_child(struct cgroup_subsys_state *pos_css,
@@ -3009,7 +2937,7 @@ css_next_child(struct cgroup_subsys_state *pos_css,
struct cgroup *cgrp = parent_css->cgroup;
struct cgroup *next;
- WARN_ON_ONCE(!rcu_read_lock_held());
+ cgroup_assert_mutex_or_rcu_locked();
/*
* @pos could already have been removed. Once a cgroup is removed,
@@ -3056,10 +2984,10 @@ EXPORT_SYMBOL_GPL(css_next_child);
* to visit for pre-order traversal of @root's descendants. @root is
* included in the iteration and the first node to be visited.
*
- * While this function requires RCU read locking, it doesn't require the
- * whole traversal to be contained in a single RCU critical section. This
- * function will return the correct next descendant as long as both @pos
- * and @root are accessible and @pos is a descendant of @root.
+ * While this function requires cgroup_mutex or RCU read locking, it
+ * doesn't require the whole traversal to be contained in a single critical
+ * section. This function will return the correct next descendant as long
+ * as both @pos and @root are accessible and @pos is a descendant of @root.
*/
struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state *pos,
@@ -3067,7 +2995,7 @@ css_next_descendant_pre(struct cgroup_subsys_state *pos,
{
struct cgroup_subsys_state *next;
- WARN_ON_ONCE(!rcu_read_lock_held());
+ cgroup_assert_mutex_or_rcu_locked();
/* if first iteration, visit @root */
if (!pos)
@@ -3098,17 +3026,17 @@ EXPORT_SYMBOL_GPL(css_next_descendant_pre);
* is returned. This can be used during pre-order traversal to skip
* subtree of @pos.
*
- * While this function requires RCU read locking, it doesn't require the
- * whole traversal to be contained in a single RCU critical section. This
- * function will return the correct rightmost descendant as long as @pos is
- * accessible.
+ * While this function requires cgroup_mutex or RCU read locking, it
+ * doesn't require the whole traversal to be contained in a single critical
+ * section. This function will return the correct rightmost descendant as
+ * long as @pos is accessible.
*/
struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state *pos)
{
struct cgroup_subsys_state *last, *tmp;
- WARN_ON_ONCE(!rcu_read_lock_held());
+ cgroup_assert_mutex_or_rcu_locked();
do {
last = pos;
@@ -3144,10 +3072,11 @@ css_leftmost_descendant(struct cgroup_subsys_state *pos)
* to visit for post-order traversal of @root's descendants. @root is
* included in the iteration and the last node to be visited.
*
- * While this function requires RCU read locking, it doesn't require the
- * whole traversal to be contained in a single RCU critical section. This
- * function will return the correct next descendant as long as both @pos
- * and @cgroup are accessible and @pos is a descendant of @cgroup.
+ * While this function requires cgroup_mutex or RCU read locking, it
+ * doesn't require the whole traversal to be contained in a single critical
+ * section. This function will return the correct next descendant as long
+ * as both @pos and @cgroup are accessible and @pos is a descendant of
+ * @cgroup.
*/
struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state *pos,
@@ -3155,7 +3084,7 @@ css_next_descendant_post(struct cgroup_subsys_state *pos,
{
struct cgroup_subsys_state *next;
- WARN_ON_ONCE(!rcu_read_lock_held());
+ cgroup_assert_mutex_or_rcu_locked();
/* if first iteration, visit leftmost descendant which may be @root */
if (!pos)
@@ -3494,14 +3423,12 @@ struct cgroup_pidlist {
pid_t *list;
/* how many elements the above list has */
int length;
- /* how many files are using the current array */
- int use_count;
/* each of these stored in a list by its cgroup */
struct list_head links;
/* pointer to the cgroup we belong to, for list removal purposes */
struct cgroup *owner;
- /* protects the other fields */
- struct rw_semaphore rwsem;
+ /* for delayed destruction */
+ struct delayed_work destroy_dwork;
};
/*
@@ -3517,6 +3444,7 @@ static void *pidlist_allocate(int count)
else
return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
+
static void pidlist_free(void *p)
{
if (is_vmalloc_addr(p))
@@ -3526,6 +3454,47 @@ static void pidlist_free(void *p)
}
/*
+ * Used to destroy all pidlists lingering waiting for destroy timer. None
+ * should be left afterwards.
+ */
+static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
+{
+ struct cgroup_pidlist *l, *tmp_l;
+
+ mutex_lock(&cgrp->pidlist_mutex);
+ list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
+ mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
+ mutex_unlock(&cgrp->pidlist_mutex);
+
+ flush_workqueue(cgroup_pidlist_destroy_wq);
+ BUG_ON(!list_empty(&cgrp->pidlists));
+}
+
+static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
+{
+ struct delayed_work *dwork = to_delayed_work(work);
+ struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
+ destroy_dwork);
+ struct cgroup_pidlist *tofree = NULL;
+
+ mutex_lock(&l->owner->pidlist_mutex);
+
+ /*
+ * Destroy iff we didn't get queued again. The state won't change
+ * as destroy_dwork can only be queued while locked.
+ */
+ if (!delayed_work_pending(dwork)) {
+ list_del(&l->links);
+ pidlist_free(l->list);
+ put_pid_ns(l->key.ns);
+ tofree = l;
+ }
+
+ mutex_unlock(&l->owner->pidlist_mutex);
+ kfree(tofree);
+}
+
+/*
* pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
* Returns the number of unique elements.
*/
@@ -3555,52 +3524,92 @@ after:
return dest;
}
+/*
+ * The two pid files - task and cgroup.procs - guaranteed that the result
+ * is sorted, which forced this whole pidlist fiasco. As pid order is
+ * different per namespace, each namespace needs differently sorted list,
+ * making it impossible to use, for example, single rbtree of member tasks
+ * sorted by task pointer. As pidlists can be fairly large, allocating one
+ * per open file is dangerous, so cgroup had to implement shared pool of
+ * pidlists keyed by cgroup and namespace.
+ *
+ * All this extra complexity was caused by the original implementation
+ * committing to an entirely unnecessary property. In the long term, we
+ * want to do away with it. Explicitly scramble sort order if
+ * sane_behavior so that no such expectation exists in the new interface.
+ *
+ * Scrambling is done by swapping every two consecutive bits, which is
+ * non-identity one-to-one mapping which disturbs sort order sufficiently.
+ */
+static pid_t pid_fry(pid_t pid)
+{
+ unsigned a = pid & 0x55555555;
+ unsigned b = pid & 0xAAAAAAAA;
+
+ return (a << 1) | (b >> 1);
+}
+
+static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
+{
+ if (cgroup_sane_behavior(cgrp))
+ return pid_fry(pid);
+ else
+ return pid;
+}
+
static int cmppid(const void *a, const void *b)
{
return *(pid_t *)a - *(pid_t *)b;
}
+static int fried_cmppid(const void *a, const void *b)
+{
+ return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
+}
+
+static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
+ enum cgroup_filetype type)
+{
+ struct cgroup_pidlist *l;
+ /* don't need task_nsproxy() if we're looking at ourself */
+ struct pid_namespace *ns = task_active_pid_ns(current);
+
+ lockdep_assert_held(&cgrp->pidlist_mutex);
+
+ list_for_each_entry(l, &cgrp->pidlists, links)
+ if (l->key.type == type && l->key.ns == ns)
+ return l;
+ return NULL;
+}
+
/*
* find the appropriate pidlist for our purpose (given procs vs tasks)
* returns with the lock on that pidlist already held, and takes care
* of the use count, or returns NULL with no locks held if we're out of
* memory.
*/
-static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
- enum cgroup_filetype type)
+static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
+ enum cgroup_filetype type)
{
struct cgroup_pidlist *l;
- /* don't need task_nsproxy() if we're looking at ourself */
- struct pid_namespace *ns = task_active_pid_ns(current);
- /*
- * We can't drop the pidlist_mutex before taking the l->rwsem in case
- * the last ref-holder is trying to remove l from the list at the same
- * time. Holding the pidlist_mutex precludes somebody taking whichever
- * list we find out from under us - compare release_pid_array().
- */
- mutex_lock(&cgrp->pidlist_mutex);
- list_for_each_entry(l, &cgrp->pidlists, links) {
- if (l->key.type == type && l->key.ns == ns) {
- /* make sure l doesn't vanish out from under us */
- down_write(&l->rwsem);
- mutex_unlock(&cgrp->pidlist_mutex);
- return l;
- }
- }
+ lockdep_assert_held(&cgrp->pidlist_mutex);
+
+ l = cgroup_pidlist_find(cgrp, type);
+ if (l)
+ return l;
+
/* entry not found; create a new one */
l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
- if (!l) {
- mutex_unlock(&cgrp->pidlist_mutex);
+ if (!l)
return l;
- }
- init_rwsem(&l->rwsem);
- down_write(&l->rwsem);
+
+ INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
l->key.type = type;
- l->key.ns = get_pid_ns(ns);
+ /* don't need task_nsproxy() if we're looking at ourself */
+ l->key.ns = get_pid_ns(task_active_pid_ns(current));
l->owner = cgrp;
list_add(&l->links, &cgrp->pidlists);
- mutex_unlock(&cgrp->pidlist_mutex);
return l;
}
@@ -3617,6 +3626,8 @@ static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
struct task_struct *tsk;
struct cgroup_pidlist *l;
+ lockdep_assert_held(&cgrp->pidlist_mutex);
+
/*
* If cgroup gets more users after we read count, we won't have
* enough space - tough. This race is indistinguishable to the
@@ -3643,20 +3654,24 @@ static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
css_task_iter_end(&it);
length = n;
/* now sort & (if procs) strip out duplicates */
- sort(array, length, sizeof(pid_t), cmppid, NULL);
+ if (cgroup_sane_behavior(cgrp))
+ sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
+ else
+ sort(array, length, sizeof(pid_t), cmppid, NULL);
if (type == CGROUP_FILE_PROCS)
length = pidlist_uniq(array, length);
- l = cgroup_pidlist_find(cgrp, type);
+
+ l = cgroup_pidlist_find_create(cgrp, type);
if (!l) {
+ mutex_unlock(&cgrp->pidlist_mutex);
pidlist_free(array);
return -ENOMEM;
}
- /* store array, freeing old if necessary - lock already held */
+
+ /* store array, freeing old if necessary */
pidlist_free(l->list);
l->list = array;
l->length = length;
- l->use_count++;
- up_write(&l->rwsem);
*lp = l;
return 0;
}
@@ -3730,20 +3745,45 @@ static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
* after a seek to the start). Use a binary-search to find the
* next pid to display, if any
*/
- struct cgroup_pidlist *l = s->private;
+ struct cgroup_open_file *of = s->private;
+ struct cgroup *cgrp = seq_css(s)->cgroup;
+ struct cgroup_pidlist *l;
+ enum cgroup_filetype type = seq_cft(s)->private;
int index = 0, pid = *pos;
- int *iter;
+ int *iter, ret;
+
+ mutex_lock(&cgrp->pidlist_mutex);
+
+ /*
+ * !NULL @of->priv indicates that this isn't the first start()
+ * after open. If the matching pidlist is around, we can use that.
+ * Look for it. Note that @of->priv can't be used directly. It
+ * could already have been destroyed.
+ */
+ if (of->priv)
+ of->priv = cgroup_pidlist_find(cgrp, type);
+
+ /*
+ * Either this is the first start() after open or the matching
+ * pidlist has been destroyed inbetween. Create a new one.
+ */
+ if (!of->priv) {
+ ret = pidlist_array_load(cgrp, type,
+ (struct cgroup_pidlist **)&of->priv);
+ if (ret)
+ return ERR_PTR(ret);
+ }
+ l = of->priv;
- down_read(&l->rwsem);
if (pid) {
int end = l->length;
while (index < end) {
int mid = (index + end) / 2;
- if (l->list[mid] == pid) {
+ if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
index = mid;
break;
- } else if (l->list[mid] <= pid)
+ } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
index = mid + 1;
else
end = mid;
@@ -3754,19 +3794,25 @@ static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
return NULL;
/* Update the abstract position to be the actual pid that we found */
iter = l->list + index;
- *pos = *iter;
+ *pos = cgroup_pid_fry(cgrp, *iter);
return iter;
}
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
{
- struct cgroup_pidlist *l = s->private;
- up_read(&l->rwsem);
+ struct cgroup_open_file *of = s->private;
+ struct cgroup_pidlist *l = of->priv;
+
+ if (l)
+ mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
+ CGROUP_PIDLIST_DESTROY_DELAY);
+ mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
}
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
{
- struct cgroup_pidlist *l = s->private;
+ struct cgroup_open_file *of = s->private;
+ struct cgroup_pidlist *l = of->priv;
pid_t *p = v;
pid_t *end = l->list + l->length;
/*
@@ -3777,7 +3823,7 @@ static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
if (p >= end) {
return NULL;
} else {
- *pos = *p;
+ *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
return p;
}
}
@@ -3798,92 +3844,6 @@ static const struct seq_operations cgroup_pidlist_seq_operations = {
.show = cgroup_pidlist_show,
};
-static void cgroup_release_pid_array(struct cgroup_pidlist *l)
-{
- /*
- * the case where we're the last user of this particular pidlist will
- * have us remove it from the cgroup's list, which entails taking the
- * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
- * pidlist_mutex, we have to take pidlist_mutex first.
- */
- mutex_lock(&l->owner->pidlist_mutex);
- down_write(&l->rwsem);
- BUG_ON(!l->use_count);
- if (!--l->use_count) {
- /* we're the last user if refcount is 0; remove and free */
- list_del(&l->links);
- mutex_unlock(&l->owner->pidlist_mutex);
- pidlist_free(l->list);
- put_pid_ns(l->key.ns);
- up_write(&l->rwsem);
- kfree(l);
- return;
- }
- mutex_unlock(&l->owner->pidlist_mutex);
- up_write(&l->rwsem);
-}
-
-static int cgroup_pidlist_release(struct inode *inode, struct file *file)
-{
- struct cgroup_pidlist *l;
- if (!(file->f_mode & FMODE_READ))
- return 0;
- /*
- * the seq_file will only be initialized if the file was opened for
- * reading; hence we check if it's not null only in that case.
- */
- l = ((struct seq_file *)file->private_data)->private;
- cgroup_release_pid_array(l);
- return seq_release(inode, file);
-}
-
-static const struct file_operations cgroup_pidlist_operations = {
- .read = seq_read,
- .llseek = seq_lseek,
- .write = cgroup_file_write,
- .release = cgroup_pidlist_release,
-};
-
-/*
- * The following functions handle opens on a file that displays a pidlist
- * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
- * in the cgroup.
- */
-/* helper function for the two below it */
-static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
-{
- struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
- struct cgroup_pidlist *l;
- int retval;
-
- /* Nothing to do for write-only files */
- if (!(file->f_mode & FMODE_READ))
- return 0;
-
- /* have the array populated */
- retval = pidlist_array_load(cgrp, type, &l);
- if (retval)
- return retval;
- /* configure file information */
- file->f_op = &cgroup_pidlist_operations;
-
- retval = seq_open(file, &cgroup_pidlist_seq_operations);
- if (retval) {
- cgroup_release_pid_array(l);
- return retval;
- }
- ((struct seq_file *)file->private_data)->private = l;
- return 0;
-}
-static int cgroup_tasks_open(struct inode *unused, struct file *file)
-{
- return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
-}
-static int cgroup_procs_open(struct inode *unused, struct file *file)
-{
- return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
-}
-
static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
struct cftype *cft)
{
@@ -3918,202 +3878,6 @@ static void cgroup_dput(struct cgroup *cgrp)
deactivate_super(sb);
}
-/*
- * Unregister event and free resources.
- *
- * Gets called from workqueue.
- */
-static void cgroup_event_remove(struct work_struct *work)
-{
- struct cgroup_event *event = container_of(work, struct cgroup_event,
- remove);
- struct cgroup_subsys_state *css = event->css;
-
- remove_wait_queue(event->wqh, &event->wait);
-
- event->cft->unregister_event(css, event->cft, event->eventfd);
-
- /* Notify userspace the event is going away. */
- eventfd_signal(event->eventfd, 1);
-
- eventfd_ctx_put(event->eventfd);
- kfree(event);
- css_put(css);
-}
-
-/*
- * Gets called on POLLHUP on eventfd when user closes it.
- *
- * Called with wqh->lock held and interrupts disabled.
- */
-static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
- int sync, void *key)
-{
- struct cgroup_event *event = container_of(wait,
- struct cgroup_event, wait);
- struct cgroup *cgrp = event->css->cgroup;
- unsigned long flags = (unsigned long)key;
-
- if (flags & POLLHUP) {
- /*
- * If the event has been detached at cgroup removal, we
- * can simply return knowing the other side will cleanup
- * for us.
- *
- * We can't race against event freeing since the other
- * side will require wqh->lock via remove_wait_queue(),
- * which we hold.
- */
- spin_lock(&cgrp->event_list_lock);
- if (!list_empty(&event->list)) {
- list_del_init(&event->list);
- /*
- * We are in atomic context, but cgroup_event_remove()
- * may sleep, so we have to call it in workqueue.
- */
- schedule_work(&event->remove);
- }
- spin_unlock(&cgrp->event_list_lock);
- }
-
- return 0;
-}
-
-static void cgroup_event_ptable_queue_proc(struct file *file,
- wait_queue_head_t *wqh, poll_table *pt)
-{
- struct cgroup_event *event = container_of(pt,
- struct cgroup_event, pt);
-
- event->wqh = wqh;
- add_wait_queue(wqh, &event->wait);
-}
-
-/*
- * Parse input and register new cgroup event handler.
- *
- * Input must be in format '<event_fd> <control_fd> <args>'.
- * Interpretation of args is defined by control file implementation.
- */
-static int cgroup_write_event_control(struct cgroup_subsys_state *dummy_css,
- struct cftype *cft, const char *buffer)
-{
- struct cgroup *cgrp = dummy_css->cgroup;
- struct cgroup_event *event;
- struct cgroup_subsys_state *cfile_css;
- unsigned int efd, cfd;
- struct fd efile;
- struct fd cfile;
- char *endp;
- int ret;
-
- efd = simple_strtoul(buffer, &endp, 10);
- if (*endp != ' ')
- return -EINVAL;
- buffer = endp + 1;
-
- cfd = simple_strtoul(buffer, &endp, 10);
- if ((*endp != ' ') && (*endp != '\0'))
- return -EINVAL;
- buffer = endp + 1;
-
- event = kzalloc(sizeof(*event), GFP_KERNEL);
- if (!event)
- return -ENOMEM;
-
- INIT_LIST_HEAD(&event->list);
- init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
- init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
- INIT_WORK(&event->remove, cgroup_event_remove);
-
- efile = fdget(efd);
- if (!efile.file) {
- ret = -EBADF;
- goto out_kfree;
- }
-
- event->eventfd = eventfd_ctx_fileget(efile.file);
- if (IS_ERR(event->eventfd)) {
- ret = PTR_ERR(event->eventfd);
- goto out_put_efile;
- }
-
- cfile = fdget(cfd);
- if (!cfile.file) {
- ret = -EBADF;
- goto out_put_eventfd;
- }
-
- /* the process need read permission on control file */
- /* AV: shouldn't we check that it's been opened for read instead? */
- ret = inode_permission(file_inode(cfile.file), MAY_READ);
- if (ret < 0)
- goto out_put_cfile;
-
- event->cft = __file_cft(cfile.file);
- if (IS_ERR(event->cft)) {
- ret = PTR_ERR(event->cft);
- goto out_put_cfile;
- }
-
- if (!event->cft->ss) {
- ret = -EBADF;
- goto out_put_cfile;
- }
-
- /*
- * Determine the css of @cfile, verify it belongs to the same
- * cgroup as cgroup.event_control, and associate @event with it.
- * Remaining events are automatically removed on cgroup destruction
- * but the removal is asynchronous, so take an extra ref.
- */
- rcu_read_lock();
-
- ret = -EINVAL;
- event->css = cgroup_css(cgrp, event->cft->ss);
- cfile_css = css_from_dir(cfile.file->f_dentry->d_parent, event->cft->ss);
- if (event->css && event->css == cfile_css && css_tryget(event->css))
- ret = 0;
-
- rcu_read_unlock();
- if (ret)
- goto out_put_cfile;
-
- if (!event->cft->register_event || !event->cft->unregister_event) {
- ret = -EINVAL;
- goto out_put_css;
- }
-
- ret = event->cft->register_event(event->css, event->cft,
- event->eventfd, buffer);
- if (ret)
- goto out_put_css;
-
- efile.file->f_op->poll(efile.file, &event->pt);
-
- spin_lock(&cgrp->event_list_lock);
- list_add(&event->list, &cgrp->event_list);
- spin_unlock(&cgrp->event_list_lock);
-
- fdput(cfile);
- fdput(efile);
-
- return 0;
-
-out_put_css:
- css_put(event->css);
-out_put_cfile:
- fdput(cfile);
-out_put_eventfd:
- eventfd_ctx_put(event->eventfd);
-out_put_efile:
- fdput(efile);
-out_kfree:
- kfree(event);
-
- return ret;
-}
-
static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
@@ -4133,17 +3897,15 @@ static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
static struct cftype cgroup_base_files[] = {
{
.name = "cgroup.procs",
- .open = cgroup_procs_open,
+ .seq_start = cgroup_pidlist_start,
+ .seq_next = cgroup_pidlist_next,
+ .seq_stop = cgroup_pidlist_stop,
+ .seq_show = cgroup_pidlist_show,
+ .private = CGROUP_FILE_PROCS,
.write_u64 = cgroup_procs_write,
- .release = cgroup_pidlist_release,
.mode = S_IRUGO | S_IWUSR,
},
{
- .name = "cgroup.event_control",
- .write_string = cgroup_write_event_control,
- .mode = S_IWUGO,
- },
- {
.name = "cgroup.clone_children",
.flags = CFTYPE_INSANE,
.read_u64 = cgroup_clone_children_read,
@@ -4152,7 +3914,7 @@ static struct cftype cgroup_base_files[] = {
{
.name = "cgroup.sane_behavior",
.flags = CFTYPE_ONLY_ON_ROOT,
- .read_seq_string = cgroup_sane_behavior_show,
+ .seq_show = cgroup_sane_behavior_show,
},
/*
@@ -4163,9 +3925,12 @@ static struct cftype cgroup_base_files[] = {
{
.name = "tasks",
.flags = CFTYPE_INSANE, /* use "procs" instead */
- .open = cgroup_tasks_open,
+ .seq_start = cgroup_pidlist_start,
+ .seq_next = cgroup_pidlist_next,
+ .seq_stop = cgroup_pidlist_stop,
+ .seq_show = cgroup_pidlist_show,
+ .private = CGROUP_FILE_TASKS,
.write_u64 = cgroup_tasks_write,
- .release = cgroup_pidlist_release,
.mode = S_IRUGO | S_IWUSR,
},
{
@@ -4177,7 +3942,7 @@ static struct cftype cgroup_base_files[] = {
{
.name = "release_agent",
.flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
- .read_seq_string = cgroup_release_agent_show,
+ .seq_show = cgroup_release_agent_show,
.write_string = cgroup_release_agent_write,
.max_write_len = PATH_MAX,
},
@@ -4268,6 +4033,7 @@ static void css_release(struct percpu_ref *ref)
struct cgroup_subsys_state *css =
container_of(ref, struct cgroup_subsys_state, refcnt);
+ rcu_assign_pointer(css->cgroup->subsys[css->ss->subsys_id], NULL);
call_rcu(&css->rcu_head, css_free_rcu_fn);
}
@@ -4322,6 +4088,62 @@ static void offline_css(struct cgroup_subsys_state *css)
RCU_INIT_POINTER(css->cgroup->subsys[ss->subsys_id], css);
}
+/**
+ * create_css - create a cgroup_subsys_state
+ * @cgrp: the cgroup new css will be associated with
+ * @ss: the subsys of new css
+ *
+ * Create a new css associated with @cgrp - @ss pair. On success, the new
+ * css is online and installed in @cgrp with all interface files created.
+ * Returns 0 on success, -errno on failure.
+ */
+static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
+{
+ struct cgroup *parent = cgrp->parent;
+ struct cgroup_subsys_state *css;
+ int err;
+
+ lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
+ lockdep_assert_held(&cgroup_mutex);
+
+ css = ss->css_alloc(cgroup_css(parent, ss));
+ if (IS_ERR(css))
+ return PTR_ERR(css);
+
+ err = percpu_ref_init(&css->refcnt, css_release);
+ if (err)
+ goto err_free;
+
+ init_css(css, ss, cgrp);
+
+ err = cgroup_populate_dir(cgrp, 1 << ss->subsys_id);
+ if (err)
+ goto err_free;
+
+ err = online_css(css);
+ if (err)
+ goto err_free;
+
+ dget(cgrp->dentry);
+ css_get(css->parent);
+
+ if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
+ parent->parent) {
+ pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
+ current->comm, current->pid, ss->name);
+ if (!strcmp(ss->name, "memory"))
+ pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
+ ss->warned_broken_hierarchy = true;
+ }
+
+ return 0;
+
+err_free:
+ percpu_ref_cancel_init(&css->refcnt);
+ ss->css_free(css);
+ return err;
+}
+
/*
* cgroup_create - create a cgroup
* @parent: cgroup that will be parent of the new cgroup
@@ -4333,11 +4155,10 @@ static void offline_css(struct cgroup_subsys_state *css)
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
umode_t mode)
{
- struct cgroup_subsys_state *css_ar[CGROUP_SUBSYS_COUNT] = { };
struct cgroup *cgrp;
struct cgroup_name *name;
struct cgroupfs_root *root = parent->root;
- int err = 0;
+ int ssid, err = 0;
struct cgroup_subsys *ss;
struct super_block *sb = root->sb;
@@ -4393,23 +4214,6 @@ static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
- for_each_root_subsys(root, ss) {
- struct cgroup_subsys_state *css;
-
- css = ss->css_alloc(cgroup_css(parent, ss));
- if (IS_ERR(css)) {
- err = PTR_ERR(css);
- goto err_free_all;
- }
- css_ar[ss->subsys_id] = css;
-
- err = percpu_ref_init(&css->refcnt, css_release);
- if (err)
- goto err_free_all;
-
- init_css(css, ss, cgrp);
- }
-
/*
* Create directory. cgroup_create_file() returns with the new
* directory locked on success so that it can be populated without
@@ -4417,7 +4221,7 @@ static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
*/
err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
if (err < 0)
- goto err_free_all;
+ goto err_unlock;
lockdep_assert_held(&dentry->d_inode->i_mutex);
cgrp->serial_nr = cgroup_serial_nr_next++;
@@ -4426,59 +4230,34 @@ static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
root->number_of_cgroups++;
- /* each css holds a ref to the cgroup's dentry and the parent css */
- for_each_root_subsys(root, ss) {
- struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
-
- dget(dentry);
- css_get(css->parent);
- }
-
/* hold a ref to the parent's dentry */
dget(parent->dentry);
- /* creation succeeded, notify subsystems */
- for_each_root_subsys(root, ss) {
- struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
-
- err = online_css(css);
- if (err)
- goto err_destroy;
-
- if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
- parent->parent) {
- pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
- current->comm, current->pid, ss->name);
- if (!strcmp(ss->name, "memory"))
- pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
- ss->warned_broken_hierarchy = true;
- }
- }
-
+ /*
+ * @cgrp is now fully operational. If something fails after this
+ * point, it'll be released via the normal destruction path.
+ */
idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
if (err)
goto err_destroy;
- err = cgroup_populate_dir(cgrp, root->subsys_mask);
- if (err)
- goto err_destroy;
+ /* let's create and online css's */
+ for_each_subsys(ss, ssid) {
+ if (root->subsys_mask & (1 << ssid)) {
+ err = create_css(cgrp, ss);
+ if (err)
+ goto err_destroy;
+ }
+ }
mutex_unlock(&cgroup_mutex);
mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
return 0;
-err_free_all:
- for_each_root_subsys(root, ss) {
- struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
-
- if (css) {
- percpu_ref_cancel_init(&css->refcnt);
- ss->css_free(css);
- }
- }
+err_unlock:
mutex_unlock(&cgroup_mutex);
/* Release the reference count that we took on the superblock */
deactivate_super(sb);
@@ -4613,10 +4392,10 @@ static int cgroup_destroy_locked(struct cgroup *cgrp)
__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
{
struct dentry *d = cgrp->dentry;
- struct cgroup_event *event, *tmp;
- struct cgroup_subsys *ss;
+ struct cgroup_subsys_state *css;
struct cgroup *child;
bool empty;
+ int ssid;
lockdep_assert_held(&d->d_inode->i_mutex);
lockdep_assert_held(&cgroup_mutex);
@@ -4652,8 +4431,8 @@ static int cgroup_destroy_locked(struct cgroup *cgrp)
* will be invoked to perform the rest of destruction once the
* percpu refs of all css's are confirmed to be killed.
*/
- for_each_root_subsys(cgrp->root, ss)
- kill_css(cgroup_css(cgrp, ss));
+ for_each_css(css, ssid, cgrp)
+ kill_css(css);
/*
* Mark @cgrp dead. This prevents further task migration and child
@@ -4688,18 +4467,6 @@ static int cgroup_destroy_locked(struct cgroup *cgrp)
dget(d);
cgroup_d_remove_dir(d);
- /*
- * Unregister events and notify userspace.
- * Notify userspace about cgroup removing only after rmdir of cgroup
- * directory to avoid race between userspace and kernelspace.
- */
- spin_lock(&cgrp->event_list_lock);
- list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
- list_del_init(&event->list);
- schedule_work(&event->remove);
- }
- spin_unlock(&cgrp->event_list_lock);
-
return 0;
};
@@ -4722,14 +4489,6 @@ static void cgroup_destroy_css_killed(struct cgroup *cgrp)
/* delete this cgroup from parent->children */
list_del_rcu(&cgrp->sibling);
- /*
- * We should remove the cgroup object from idr before its grace
- * period starts, so we won't be looking up a cgroup while the
- * cgroup is being freed.
- */
- idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
- cgrp->id = -1;
-
dput(d);
set_bit(CGRP_RELEASABLE, &parent->flags);
@@ -4778,7 +4537,6 @@ static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
cgroup_init_cftsets(ss);
/* Create the top cgroup state for this subsystem */
- list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
ss->root = &cgroup_dummy_root;
css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
/* We don't handle early failures gracefully */
@@ -4852,6 +4610,7 @@ int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
cgroup_init_cftsets(ss);
mutex_lock(&cgroup_mutex);
+ mutex_lock(&cgroup_root_mutex);
cgroup_subsys[ss->subsys_id] = ss;
/*
@@ -4863,11 +4622,11 @@ int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
if (IS_ERR(css)) {
/* failure case - need to deassign the cgroup_subsys[] slot. */
cgroup_subsys[ss->subsys_id] = NULL;
+ mutex_unlock(&cgroup_root_mutex);
mutex_unlock(&cgroup_mutex);
return PTR_ERR(css);
}
- list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
ss->root = &cgroup_dummy_root;
/* our new subsystem will be attached to the dummy hierarchy. */
@@ -4897,14 +4656,18 @@ int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
write_unlock(&css_set_lock);
ret = online_css(css);
- if (ret)
+ if (ret) {
+ ss->css_free(css);
goto err_unload;
+ }
/* success! */
+ mutex_unlock(&cgroup_root_mutex);
mutex_unlock(&cgroup_mutex);
return 0;
err_unload:
+ mutex_unlock(&cgroup_root_mutex);
mutex_unlock(&cgroup_mutex);
/* @ss can't be mounted here as try_module_get() would fail */
cgroup_unload_subsys(ss);
@@ -4923,6 +4686,7 @@ EXPORT_SYMBOL_GPL(cgroup_load_subsys);
void cgroup_unload_subsys(struct cgroup_subsys *ss)
{
struct cgrp_cset_link *link;
+ struct cgroup_subsys_state *css;
BUG_ON(ss->module == NULL);
@@ -4934,15 +4698,15 @@ void cgroup_unload_subsys(struct cgroup_subsys *ss)
BUG_ON(ss->root != &cgroup_dummy_root);
mutex_lock(&cgroup_mutex);
+ mutex_lock(&cgroup_root_mutex);
- offline_css(cgroup_css(cgroup_dummy_top, ss));
+ css = cgroup_css(cgroup_dummy_top, ss);
+ if (css)
+ offline_css(css);
/* deassign the subsys_id */
cgroup_subsys[ss->subsys_id] = NULL;
- /* remove subsystem from the dummy root's list of subsystems */
- list_del_init(&ss->sibling);
-
/*
* disentangle the css from all css_sets attached to the dummy
* top. as in loading, we need to pay our respects to the hashtable
@@ -4965,9 +4729,11 @@ void cgroup_unload_subsys(struct cgroup_subsys *ss)
* need to free before marking as null because ss->css_free needs
* the cgrp->subsys pointer to find their state.
*/
- ss->css_free(cgroup_css(cgroup_dummy_top, ss));
+ if (css)
+ ss->css_free(css);
RCU_INIT_POINTER(cgroup_dummy_top->subsys[ss->subsys_id], NULL);
+ mutex_unlock(&cgroup_root_mutex);
mutex_unlock(&cgroup_mutex);
}
EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
@@ -5086,6 +4852,15 @@ static int __init cgroup_wq_init(void)
*/
cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
BUG_ON(!cgroup_destroy_wq);
+
+ /*
+ * Used to destroy pidlists and separate to serve as flush domain.
+ * Cap @max_active to 1 too.
+ */
+ cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
+ 0, 1);
+ BUG_ON(!cgroup_pidlist_destroy_wq);
+
return 0;
}
core_initcall(cgroup_wq_init);
@@ -5129,11 +4904,12 @@ int proc_cgroup_show(struct seq_file *m, void *v)
for_each_active_root(root) {
struct cgroup_subsys *ss;
struct cgroup *cgrp;
- int count = 0;
+ int ssid, count = 0;
seq_printf(m, "%d:", root->hierarchy_id);
- for_each_root_subsys(root, ss)
- seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
+ for_each_subsys(ss, ssid)
+ if (root->subsys_mask & (1 << ssid))
+ seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
if (strlen(root->name))
seq_printf(m, "%sname=%s", count ? "," : "",
root->name);
@@ -5474,16 +5250,16 @@ __setup("cgroup_disable=", cgroup_disable);
* @dentry: directory dentry of interest
* @ss: subsystem of interest
*
- * Must be called under RCU read lock. The caller is responsible for
- * pinning the returned css if it needs to be accessed outside the RCU
- * critical section.
+ * Must be called under cgroup_mutex or RCU read lock. The caller is
+ * responsible for pinning the returned css if it needs to be accessed
+ * outside the critical section.
*/
struct cgroup_subsys_state *css_from_dir(struct dentry *dentry,
struct cgroup_subsys *ss)
{
struct cgroup *cgrp;
- WARN_ON_ONCE(!rcu_read_lock_held());
+ cgroup_assert_mutex_or_rcu_locked();
/* is @dentry a cgroup dir? */
if (!dentry->d_inode ||
@@ -5506,9 +5282,7 @@ struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
{
struct cgroup *cgrp;
- rcu_lockdep_assert(rcu_read_lock_held() ||
- lockdep_is_held(&cgroup_mutex),
- "css_from_id() needs proper protection");
+ cgroup_assert_mutex_or_rcu_locked();
cgrp = idr_find(&ss->root->cgroup_idr, id);
if (cgrp)
@@ -5556,9 +5330,7 @@ static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
return count;
}
-static int current_css_set_cg_links_read(struct cgroup_subsys_state *css,
- struct cftype *cft,
- struct seq_file *seq)
+static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
{
struct cgrp_cset_link *link;
struct css_set *cset;
@@ -5583,9 +5355,9 @@ static int current_css_set_cg_links_read(struct cgroup_subsys_state *css,
}
#define MAX_TASKS_SHOWN_PER_CSS 25
-static int cgroup_css_links_read(struct cgroup_subsys_state *css,
- struct cftype *cft, struct seq_file *seq)
+static int cgroup_css_links_read(struct seq_file *seq, void *v)
{
+ struct cgroup_subsys_state *css = seq_css(seq);
struct cgrp_cset_link *link;
read_lock(&css_set_lock);
@@ -5631,12 +5403,12 @@ static struct cftype debug_files[] = {
{
.name = "current_css_set_cg_links",
- .read_seq_string = current_css_set_cg_links_read,
+ .seq_show = current_css_set_cg_links_read,
},
{
.name = "cgroup_css_links",
- .read_seq_string = cgroup_css_links_read,
+ .seq_show = cgroup_css_links_read,
},
{
diff --git a/kernel/cgroup_freezer.c b/kernel/cgroup_freezer.c
index f0ff64d0ebaa..6c3154e477f6 100644
--- a/kernel/cgroup_freezer.c
+++ b/kernel/cgroup_freezer.c
@@ -301,10 +301,9 @@ out_unlock:
spin_unlock_irq(&freezer->lock);
}
-static int freezer_read(struct cgroup_subsys_state *css, struct cftype *cft,
- struct seq_file *m)
+static int freezer_read(struct seq_file *m, void *v)
{
- struct cgroup_subsys_state *pos;
+ struct cgroup_subsys_state *css = seq_css(m), *pos;
rcu_read_lock();
@@ -458,7 +457,7 @@ static struct cftype files[] = {
{
.name = "state",
.flags = CFTYPE_NOT_ON_ROOT,
- .read_seq_string = freezer_read,
+ .seq_show = freezer_read,
.write_string = freezer_write,
},
{
diff --git a/kernel/context_tracking.c b/kernel/context_tracking.c
index e5f3917aa05b..6cb20d2e7ee0 100644
--- a/kernel/context_tracking.c
+++ b/kernel/context_tracking.c
@@ -53,10 +53,10 @@ void context_tracking_user_enter(void)
/*
* Repeat the user_enter() check here because some archs may be calling
* this from asm and if no CPU needs context tracking, they shouldn't
- * go further. Repeat the check here until they support the static key
- * check.
+ * go further. Repeat the check here until they support the inline static
+ * key check.
*/
- if (!static_key_false(&context_tracking_enabled))
+ if (!context_tracking_is_enabled())
return;
/*
@@ -160,7 +160,7 @@ void context_tracking_user_exit(void)
{
unsigned long flags;
- if (!static_key_false(&context_tracking_enabled))
+ if (!context_tracking_is_enabled())
return;
if (in_interrupt())
diff --git a/kernel/cpu/idle.c b/kernel/cpu/idle.c
index 988573a9a387..277f494c2a9a 100644
--- a/kernel/cpu/idle.c
+++ b/kernel/cpu/idle.c
@@ -105,14 +105,17 @@ static void cpu_idle_loop(void)
__current_set_polling();
}
arch_cpu_idle_exit();
- /*
- * We need to test and propagate the TIF_NEED_RESCHED
- * bit here because we might not have send the
- * reschedule IPI to idle tasks.
- */
- if (tif_need_resched())
- set_preempt_need_resched();
}
+
+ /*
+ * Since we fell out of the loop above, we know
+ * TIF_NEED_RESCHED must be set, propagate it into
+ * PREEMPT_NEED_RESCHED.
+ *
+ * This is required because for polling idle loops we will
+ * not have had an IPI to fold the state for us.
+ */
+ preempt_set_need_resched();
tick_nohz_idle_exit();
schedule_preempt_disabled();
}
diff --git a/kernel/cpuset.c b/kernel/cpuset.c
index 4772034b4b17..4410ac6a55f1 100644
--- a/kernel/cpuset.c
+++ b/kernel/cpuset.c
@@ -1731,66 +1731,41 @@ out_unlock:
* used, list of ranges of sequential numbers, is variable length,
* and since these maps can change value dynamically, one could read
* gibberish by doing partial reads while a list was changing.
- * A single large read to a buffer that crosses a page boundary is
- * ok, because the result being copied to user land is not recomputed
- * across a page fault.
*/
-
-static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
+static int cpuset_common_seq_show(struct seq_file *sf, void *v)
{
- size_t count;
-
- mutex_lock(&callback_mutex);
- count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
- mutex_unlock(&callback_mutex);
+ struct cpuset *cs = css_cs(seq_css(sf));
+ cpuset_filetype_t type = seq_cft(sf)->private;
+ ssize_t count;
+ char *buf, *s;
+ int ret = 0;
- return count;
-}
-
-static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
-{
- size_t count;
+ count = seq_get_buf(sf, &buf);
+ s = buf;
mutex_lock(&callback_mutex);
- count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
- mutex_unlock(&callback_mutex);
-
- return count;
-}
-
-static ssize_t cpuset_common_file_read(struct cgroup_subsys_state *css,
- struct cftype *cft, struct file *file,
- char __user *buf, size_t nbytes,
- loff_t *ppos)
-{
- struct cpuset *cs = css_cs(css);
- cpuset_filetype_t type = cft->private;
- char *page;
- ssize_t retval = 0;
- char *s;
-
- if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
- return -ENOMEM;
-
- s = page;
switch (type) {
case FILE_CPULIST:
- s += cpuset_sprintf_cpulist(s, cs);
+ s += cpulist_scnprintf(s, count, cs->cpus_allowed);
break;
case FILE_MEMLIST:
- s += cpuset_sprintf_memlist(s, cs);
+ s += nodelist_scnprintf(s, count, cs->mems_allowed);
break;
default:
- retval = -EINVAL;
- goto out;
+ ret = -EINVAL;
+ goto out_unlock;
}
- *s++ = '\n';
- retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
-out:
- free_page((unsigned long)page);
- return retval;
+ if (s < buf + count - 1) {
+ *s++ = '\n';
+ seq_commit(sf, s - buf);
+ } else {
+ seq_commit(sf, -1);
+ }
+out_unlock:
+ mutex_unlock(&callback_mutex);
+ return ret;
}
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
@@ -1847,7 +1822,7 @@ static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
static struct cftype files[] = {
{
.name = "cpus",
- .read = cpuset_common_file_read,
+ .seq_show = cpuset_common_seq_show,
.write_string = cpuset_write_resmask,
.max_write_len = (100U + 6 * NR_CPUS),
.private = FILE_CPULIST,
@@ -1855,7 +1830,7 @@ static struct cftype files[] = {
{
.name = "mems",
- .read = cpuset_common_file_read,
+ .seq_show = cpuset_common_seq_show,
.write_string = cpuset_write_resmask,
.max_write_len = (100U + 6 * MAX_NUMNODES),
.private = FILE_MEMLIST,
diff --git a/kernel/events/core.c b/kernel/events/core.c
index 72348dc192c1..56003c6edfd3 100644
--- a/kernel/events/core.c
+++ b/kernel/events/core.c
@@ -119,7 +119,8 @@ static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
PERF_FLAG_FD_OUTPUT |\
- PERF_FLAG_PID_CGROUP)
+ PERF_FLAG_PID_CGROUP |\
+ PERF_FLAG_FD_CLOEXEC)
/*
* branch priv levels that need permission checks
@@ -1396,6 +1397,8 @@ event_sched_out(struct perf_event *event,
if (event->state != PERF_EVENT_STATE_ACTIVE)
return;
+ perf_pmu_disable(event->pmu);
+
event->state = PERF_EVENT_STATE_INACTIVE;
if (event->pending_disable) {
event->pending_disable = 0;
@@ -1412,6 +1415,8 @@ event_sched_out(struct perf_event *event,
ctx->nr_freq--;
if (event->attr.exclusive || !cpuctx->active_oncpu)
cpuctx->exclusive = 0;
+
+ perf_pmu_enable(event->pmu);
}
static void
@@ -1652,6 +1657,7 @@ event_sched_in(struct perf_event *event,
struct perf_event_context *ctx)
{
u64 tstamp = perf_event_time(event);
+ int ret = 0;
if (event->state <= PERF_EVENT_STATE_OFF)
return 0;
@@ -1674,10 +1680,13 @@ event_sched_in(struct perf_event *event,
*/
smp_wmb();
+ perf_pmu_disable(event->pmu);
+
if (event->pmu->add(event, PERF_EF_START)) {
event->state = PERF_EVENT_STATE_INACTIVE;
event->oncpu = -1;
- return -EAGAIN;
+ ret = -EAGAIN;
+ goto out;
}
event->tstamp_running += tstamp - event->tstamp_stopped;
@@ -1693,7 +1702,10 @@ event_sched_in(struct perf_event *event,
if (event->attr.exclusive)
cpuctx->exclusive = 1;
- return 0;
+out:
+ perf_pmu_enable(event->pmu);
+
+ return ret;
}
static int
@@ -2743,6 +2755,8 @@ static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
if (!event_filter_match(event))
continue;
+ perf_pmu_disable(event->pmu);
+
hwc = &event->hw;
if (hwc->interrupts == MAX_INTERRUPTS) {
@@ -2752,7 +2766,7 @@ static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
}
if (!event->attr.freq || !event->attr.sample_freq)
- continue;
+ goto next;
/*
* stop the event and update event->count
@@ -2774,6 +2788,8 @@ static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
perf_adjust_period(event, period, delta, false);
event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
+ next:
+ perf_pmu_enable(event->pmu);
}
perf_pmu_enable(ctx->pmu);
@@ -3527,7 +3543,7 @@ static void perf_event_for_each(struct perf_event *event,
static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
struct perf_event_context *ctx = event->ctx;
- int ret = 0;
+ int ret = 0, active;
u64 value;
if (!is_sampling_event(event))
@@ -3551,6 +3567,20 @@ static int perf_event_period(struct perf_event *event, u64 __user *arg)
event->attr.sample_period = value;
event->hw.sample_period = value;
}
+
+ active = (event->state == PERF_EVENT_STATE_ACTIVE);
+ if (active) {
+ perf_pmu_disable(ctx->pmu);
+ event->pmu->stop(event, PERF_EF_UPDATE);
+ }
+
+ local64_set(&event->hw.period_left, 0);
+
+ if (active) {
+ event->pmu->start(event, PERF_EF_RELOAD);
+ perf_pmu_enable(ctx->pmu);
+ }
+
unlock:
raw_spin_unlock_irq(&ctx->lock);
@@ -6655,6 +6685,9 @@ perf_event_alloc(struct perf_event_attr *attr, int cpu,
INIT_LIST_HEAD(&event->event_entry);
INIT_LIST_HEAD(&event->sibling_list);
INIT_LIST_HEAD(&event->rb_entry);
+ INIT_LIST_HEAD(&event->active_entry);
+ INIT_HLIST_NODE(&event->hlist_entry);
+
init_waitqueue_head(&event->waitq);
init_irq_work(&event->pending, perf_pending_event);
@@ -6965,6 +6998,7 @@ SYSCALL_DEFINE5(perf_event_open,
int event_fd;
int move_group = 0;
int err;
+ int f_flags = O_RDWR;
/* for future expandability... */
if (flags & ~PERF_FLAG_ALL)
@@ -6993,7 +7027,10 @@ SYSCALL_DEFINE5(perf_event_open,
if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
return -EINVAL;
- event_fd = get_unused_fd();
+ if (flags & PERF_FLAG_FD_CLOEXEC)
+ f_flags |= O_CLOEXEC;
+
+ event_fd = get_unused_fd_flags(f_flags);
if (event_fd < 0)
return event_fd;
@@ -7115,7 +7152,8 @@ SYSCALL_DEFINE5(perf_event_open,
goto err_context;
}
- event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
+ event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
+ f_flags);
if (IS_ERR(event_file)) {
err = PTR_ERR(event_file);
goto err_context;
diff --git a/kernel/events/ring_buffer.c b/kernel/events/ring_buffer.c
index e8b168af135b..146a5792b1d2 100644
--- a/kernel/events/ring_buffer.c
+++ b/kernel/events/ring_buffer.c
@@ -61,19 +61,20 @@ again:
*
* kernel user
*
- * READ ->data_tail READ ->data_head
- * smp_mb() (A) smp_rmb() (C)
- * WRITE $data READ $data
- * smp_wmb() (B) smp_mb() (D)
- * STORE ->data_head WRITE ->data_tail
+ * if (LOAD ->data_tail) { LOAD ->data_head
+ * (A) smp_rmb() (C)
+ * STORE $data LOAD $data
+ * smp_wmb() (B) smp_mb() (D)
+ * STORE ->data_head STORE ->data_tail
+ * }
*
* Where A pairs with D, and B pairs with C.
*
- * I don't think A needs to be a full barrier because we won't in fact
- * write data until we see the store from userspace. So we simply don't
- * issue the data WRITE until we observe it. Be conservative for now.
+ * In our case (A) is a control dependency that separates the load of
+ * the ->data_tail and the stores of $data. In case ->data_tail
+ * indicates there is no room in the buffer to store $data we do not.
*
- * OTOH, D needs to be a full barrier since it separates the data READ
+ * D needs to be a full barrier since it separates the data READ
* from the tail WRITE.
*
* For B a WMB is sufficient since it separates two WRITEs, and for C
@@ -81,7 +82,7 @@ again:
*
* See perf_output_begin().
*/
- smp_wmb();
+ smp_wmb(); /* B, matches C */
rb->user_page->data_head = head;
/*
@@ -144,17 +145,26 @@ int perf_output_begin(struct perf_output_handle *handle,
if (!rb->overwrite &&
unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
goto fail;
+
+ /*
+ * The above forms a control dependency barrier separating the
+ * @tail load above from the data stores below. Since the @tail
+ * load is required to compute the branch to fail below.
+ *
+ * A, matches D; the full memory barrier userspace SHOULD issue
+ * after reading the data and before storing the new tail
+ * position.
+ *
+ * See perf_output_put_handle().
+ */
+
head += size;
} while (local_cmpxchg(&rb->head, offset, head) != offset);
/*
- * Separate the userpage->tail read from the data stores below.
- * Matches the MB userspace SHOULD issue after reading the data
- * and before storing the new tail position.
- *
- * See perf_output_put_handle().
+ * We rely on the implied barrier() by local_cmpxchg() to ensure
+ * none of the data stores below can be lifted up by the compiler.
*/
- smp_mb();
if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
local_add(rb->watermark, &rb->wakeup);
diff --git a/kernel/events/uprobes.c b/kernel/events/uprobes.c
index 3cc8e0bb8acf..307d87c0991a 100644
--- a/kernel/events/uprobes.c
+++ b/kernel/events/uprobes.c
@@ -73,6 +73,17 @@ struct uprobe {
struct inode *inode; /* Also hold a ref to inode */
loff_t offset;
unsigned long flags;
+
+ /*
+ * The generic code assumes that it has two members of unknown type
+ * owned by the arch-specific code:
+ *
+ * insn - copy_insn() saves the original instruction here for
+ * arch_uprobe_analyze_insn().
+ *
+ * ixol - potentially modified instruction to execute out of
+ * line, copied to xol_area by xol_get_insn_slot().
+ */
struct arch_uprobe arch;
};
@@ -86,6 +97,29 @@ struct return_instance {
};
/*
+ * Execute out of line area: anonymous executable mapping installed
+ * by the probed task to execute the copy of the original instruction
+ * mangled by set_swbp().
+ *
+ * On a breakpoint hit, thread contests for a slot. It frees the
+ * slot after singlestep. Currently a fixed number of slots are
+ * allocated.
+ */
+struct xol_area {
+ wait_queue_head_t wq; /* if all slots are busy */
+ atomic_t slot_count; /* number of in-use slots */
+ unsigned long *bitmap; /* 0 = free slot */
+ struct page *page;
+
+ /*
+ * We keep the vma's vm_start rather than a pointer to the vma
+ * itself. The probed process or a naughty kernel module could make
+ * the vma go away, and we must handle that reasonably gracefully.
+ */
+ unsigned long vaddr; /* Page(s) of instruction slots */
+};
+
+/*
* valid_vma: Verify if the specified vma is an executable vma
* Relax restrictions while unregistering: vm_flags might have
* changed after breakpoint was inserted.
@@ -330,7 +364,7 @@ int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned
int __weak
set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
{
- return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
+ return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
}
static int match_uprobe(struct uprobe *l, struct uprobe *r)
@@ -529,8 +563,8 @@ static int copy_insn(struct uprobe *uprobe, struct file *filp)
{
struct address_space *mapping = uprobe->inode->i_mapping;
loff_t offs = uprobe->offset;
- void *insn = uprobe->arch.insn;
- int size = MAX_UINSN_BYTES;
+ void *insn = &uprobe->arch.insn;
+ int size = sizeof(uprobe->arch.insn);
int len, err = -EIO;
/* Copy only available bytes, -EIO if nothing was read */
@@ -569,7 +603,7 @@ static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
goto out;
ret = -ENOTSUPP;
- if (is_trap_insn((uprobe_opcode_t *)uprobe->arch.insn))
+ if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
goto out;
ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
@@ -1264,7 +1298,7 @@ static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
/* Initialize the slot */
copy_to_page(area->page, xol_vaddr,
- uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
+ &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
/*
* We probably need flush_icache_user_range() but it needs vma.
* This should work on supported architectures too.
@@ -1403,12 +1437,10 @@ static void uprobe_warn(struct task_struct *t, const char *msg)
static void dup_xol_work(struct callback_head *work)
{
- kfree(work);
-
if (current->flags & PF_EXITING)
return;
- if (!__create_xol_area(current->utask->vaddr))
+ if (!__create_xol_area(current->utask->dup_xol_addr))
uprobe_warn(current, "dup xol area");
}
@@ -1419,7 +1451,6 @@ void uprobe_copy_process(struct task_struct *t, unsigned long flags)
{
struct uprobe_task *utask = current->utask;
struct mm_struct *mm = current->mm;
- struct callback_head *work;
struct xol_area *area;
t->utask = NULL;
@@ -1441,14 +1472,9 @@ void uprobe_copy_process(struct task_struct *t, unsigned long flags)
if (mm == t->mm)
return;
- /* TODO: move it into the union in uprobe_task */
- work = kmalloc(sizeof(*work), GFP_KERNEL);
- if (!work)
- return uprobe_warn(t, "dup xol area");
-
- t->utask->vaddr = area->vaddr;
- init_task_work(work, dup_xol_work);
- task_work_add(t, work, true);
+ t->utask->dup_xol_addr = area->vaddr;
+ init_task_work(&t->utask->dup_xol_work, dup_xol_work);
+ task_work_add(t, &t->utask->dup_xol_work, true);
}
/*
diff --git a/kernel/exit.c b/kernel/exit.c
index a949819055d5..1e77fc645317 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -74,6 +74,7 @@ static void __unhash_process(struct task_struct *p, bool group_dead)
__this_cpu_dec(process_counts);
}
list_del_rcu(&p->thread_group);
+ list_del_rcu(&p->thread_node);
}
/*
diff --git a/kernel/fork.c b/kernel/fork.c
index 728d5be9548c..2f11bbe376b0 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -537,6 +537,7 @@ static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
spin_lock_init(&mm->page_table_lock);
mm_init_aio(mm);
mm_init_owner(mm, p);
+ clear_tlb_flush_pending(mm);
if (likely(!mm_alloc_pgd(mm))) {
mm->def_flags = 0;
@@ -1034,6 +1035,11 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
sig->nr_threads = 1;
atomic_set(&sig->live, 1);
atomic_set(&sig->sigcnt, 1);
+
+ /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
+ sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
+ tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
+
init_waitqueue_head(&sig->wait_chldexit);
sig->curr_target = tsk;
init_sigpending(&sig->shared_pending);
@@ -1086,8 +1092,10 @@ static void rt_mutex_init_task(struct task_struct *p)
{
raw_spin_lock_init(&p->pi_lock);
#ifdef CONFIG_RT_MUTEXES
- plist_head_init(&p->pi_waiters);
+ p->pi_waiters = RB_ROOT;
+ p->pi_waiters_leftmost = NULL;
p->pi_blocked_on = NULL;
+ p->pi_top_task = NULL;
#endif
}
@@ -1171,7 +1179,7 @@ static struct task_struct *copy_process(unsigned long clone_flags,
* do not allow it to share a thread group or signal handlers or
* parent with the forking task.
*/
- if (clone_flags & (CLONE_SIGHAND | CLONE_PARENT)) {
+ if (clone_flags & CLONE_SIGHAND) {
if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
(task_active_pid_ns(current) !=
current->nsproxy->pid_ns_for_children))
@@ -1310,7 +1318,9 @@ static struct task_struct *copy_process(unsigned long clone_flags,
#endif
/* Perform scheduler related setup. Assign this task to a CPU. */
- sched_fork(clone_flags, p);
+ retval = sched_fork(clone_flags, p);
+ if (retval)
+ goto bad_fork_cleanup_policy;
retval = perf_event_init_task(p);
if (retval)
@@ -1402,13 +1412,11 @@ static struct task_struct *copy_process(unsigned long clone_flags,
p->tgid = p->pid;
}
- p->pdeath_signal = 0;
- p->exit_state = 0;
-
p->nr_dirtied = 0;
p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
p->dirty_paused_when = 0;
+ p->pdeath_signal = 0;
INIT_LIST_HEAD(&p->thread_group);
p->task_works = NULL;
@@ -1471,6 +1479,8 @@ static struct task_struct *copy_process(unsigned long clone_flags,
atomic_inc(&current->signal->sigcnt);
list_add_tail_rcu(&p->thread_group,
&p->group_leader->thread_group);
+ list_add_tail_rcu(&p->thread_node,
+ &p->signal->thread_head);
}
attach_pid(p, PIDTYPE_PID);
nr_threads++;
diff --git a/kernel/freezer.c b/kernel/freezer.c
index b462fa197517..aa6a8aadb911 100644
--- a/kernel/freezer.c
+++ b/kernel/freezer.c
@@ -19,6 +19,12 @@ EXPORT_SYMBOL(system_freezing_cnt);
bool pm_freezing;
bool pm_nosig_freezing;
+/*
+ * Temporary export for the deadlock workaround in ata_scsi_hotplug().
+ * Remove once the hack becomes unnecessary.
+ */
+EXPORT_SYMBOL_GPL(pm_freezing);
+
/* protects freezing and frozen transitions */
static DEFINE_SPINLOCK(freezer_lock);
diff --git a/kernel/futex.c b/kernel/futex.c
index f6ff0191ecf7..44a1261cb9ff 100644
--- a/kernel/futex.c
+++ b/kernel/futex.c
@@ -63,14 +63,101 @@
#include <linux/sched/rt.h>
#include <linux/hugetlb.h>
#include <linux/freezer.h>
+#include <linux/bootmem.h>
#include <asm/futex.h>
#include "locking/rtmutex_common.h"
-int __read_mostly futex_cmpxchg_enabled;
+/*
+ * Basic futex operation and ordering guarantees:
+ *
+ * The waiter reads the futex value in user space and calls
+ * futex_wait(). This function computes the hash bucket and acquires
+ * the hash bucket lock. After that it reads the futex user space value
+ * again and verifies that the data has not changed. If it has not changed
+ * it enqueues itself into the hash bucket, releases the hash bucket lock
+ * and schedules.
+ *
+ * The waker side modifies the user space value of the futex and calls
+ * futex_wake(). This function computes the hash bucket and acquires the
+ * hash bucket lock. Then it looks for waiters on that futex in the hash
+ * bucket and wakes them.
+ *
+ * In futex wake up scenarios where no tasks are blocked on a futex, taking
+ * the hb spinlock can be avoided and simply return. In order for this
+ * optimization to work, ordering guarantees must exist so that the waiter
+ * being added to the list is acknowledged when the list is concurrently being
+ * checked by the waker, avoiding scenarios like the following:
+ *
+ * CPU 0 CPU 1
+ * val = *futex;
+ * sys_futex(WAIT, futex, val);
+ * futex_wait(futex, val);
+ * uval = *futex;
+ * *futex = newval;
+ * sys_futex(WAKE, futex);
+ * futex_wake(futex);
+ * if (queue_empty())
+ * return;
+ * if (uval == val)
+ * lock(hash_bucket(futex));
+ * queue();
+ * unlock(hash_bucket(futex));
+ * schedule();
+ *
+ * This would cause the waiter on CPU 0 to wait forever because it
+ * missed the transition of the user space value from val to newval
+ * and the waker did not find the waiter in the hash bucket queue.
+ *
+ * The correct serialization ensures that a waiter either observes
+ * the changed user space value before blocking or is woken by a
+ * concurrent waker:
+ *
+ * CPU 0 CPU 1
+ * val = *futex;
+ * sys_futex(WAIT, futex, val);
+ * futex_wait(futex, val);
+ *
+ * waiters++;
+ * mb(); (A) <-- paired with -.
+ * |
+ * lock(hash_bucket(futex)); |
+ * |
+ * uval = *futex; |
+ * | *futex = newval;
+ * | sys_futex(WAKE, futex);
+ * | futex_wake(futex);
+ * |
+ * `-------> mb(); (B)
+ * if (uval == val)
+ * queue();
+ * unlock(hash_bucket(futex));
+ * schedule(); if (waiters)
+ * lock(hash_bucket(futex));
+ * wake_waiters(futex);
+ * unlock(hash_bucket(futex));
+ *
+ * Where (A) orders the waiters increment and the futex value read -- this
+ * is guaranteed by the head counter in the hb spinlock; and where (B)
+ * orders the write to futex and the waiters read -- this is done by the
+ * barriers in get_futex_key_refs(), through either ihold or atomic_inc,
+ * depending on the futex type.
+ *
+ * This yields the following case (where X:=waiters, Y:=futex):
+ *
+ * X = Y = 0
+ *
+ * w[X]=1 w[Y]=1
+ * MB MB
+ * r[Y]=y r[X]=x
+ *
+ * Which guarantees that x==0 && y==0 is impossible; which translates back into
+ * the guarantee that we cannot both miss the futex variable change and the
+ * enqueue.
+ */
-#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
+int __read_mostly futex_cmpxchg_enabled;
/*
* Futex flags used to encode options to functions and preserve them across
@@ -149,9 +236,41 @@ static const struct futex_q futex_q_init = {
struct futex_hash_bucket {
spinlock_t lock;
struct plist_head chain;
-};
+} ____cacheline_aligned_in_smp;
-static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
+static unsigned long __read_mostly futex_hashsize;
+
+static struct futex_hash_bucket *futex_queues;
+
+static inline void futex_get_mm(union futex_key *key)
+{
+ atomic_inc(&key->private.mm->mm_count);
+ /*
+ * Ensure futex_get_mm() implies a full barrier such that
+ * get_futex_key() implies a full barrier. This is relied upon
+ * as full barrier (B), see the ordering comment above.
+ */
+ smp_mb__after_atomic_inc();
+}
+
+static inline bool hb_waiters_pending(struct futex_hash_bucket *hb)
+{
+#ifdef CONFIG_SMP
+ /*
+ * Tasks trying to enter the critical region are most likely
+ * potential waiters that will be added to the plist. Ensure
+ * that wakers won't miss to-be-slept tasks in the window between
+ * the wait call and the actual plist_add.
+ */
+ if (spin_is_locked(&hb->lock))
+ return true;
+ smp_rmb(); /* Make sure we check the lock state first */
+
+ return !plist_head_empty(&hb->chain);
+#else
+ return true;
+#endif
+}
/*
* We hash on the keys returned from get_futex_key (see below).
@@ -161,7 +280,7 @@ static struct futex_hash_bucket *hash_futex(union futex_key *key)
u32 hash = jhash2((u32*)&key->both.word,
(sizeof(key->both.word)+sizeof(key->both.ptr))/4,
key->both.offset);
- return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
+ return &futex_queues[hash & (futex_hashsize - 1)];
}
/*
@@ -187,10 +306,10 @@ static void get_futex_key_refs(union futex_key *key)
switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
case FUT_OFF_INODE:
- ihold(key->shared.inode);
+ ihold(key->shared.inode); /* implies MB (B) */
break;
case FUT_OFF_MMSHARED:
- atomic_inc(&key->private.mm->mm_count);
+ futex_get_mm(key); /* implies MB (B) */
break;
}
}
@@ -264,7 +383,7 @@ get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
if (!fshared) {
key->private.mm = mm;
key->private.address = address;
- get_futex_key_refs(key);
+ get_futex_key_refs(key); /* implies MB (B) */
return 0;
}
@@ -371,7 +490,7 @@ again:
key->shared.pgoff = basepage_index(page);
}
- get_futex_key_refs(key);
+ get_futex_key_refs(key); /* implies MB (B) */
out:
unlock_page(page_head);
@@ -598,13 +717,10 @@ lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
{
struct futex_pi_state *pi_state = NULL;
struct futex_q *this, *next;
- struct plist_head *head;
struct task_struct *p;
pid_t pid = uval & FUTEX_TID_MASK;
- head = &hb->chain;
-
- plist_for_each_entry_safe(this, next, head, list) {
+ plist_for_each_entry_safe(this, next, &hb->chain, list) {
if (match_futex(&this->key, key)) {
/*
* Another waiter already exists - bump up
@@ -986,7 +1102,6 @@ futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
{
struct futex_hash_bucket *hb;
struct futex_q *this, *next;
- struct plist_head *head;
union futex_key key = FUTEX_KEY_INIT;
int ret;
@@ -998,10 +1113,14 @@ futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
goto out;
hb = hash_futex(&key);
+
+ /* Make sure we really have tasks to wakeup */
+ if (!hb_waiters_pending(hb))
+ goto out_put_key;
+
spin_lock(&hb->lock);
- head = &hb->chain;
- plist_for_each_entry_safe(this, next, head, list) {
+ plist_for_each_entry_safe(this, next, &hb->chain, list) {
if (match_futex (&this->key, &key)) {
if (this->pi_state || this->rt_waiter) {
ret = -EINVAL;
@@ -1019,6 +1138,7 @@ futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
}
spin_unlock(&hb->lock);
+out_put_key:
put_futex_key(&key);
out:
return ret;
@@ -1034,7 +1154,6 @@ futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
{
union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
struct futex_hash_bucket *hb1, *hb2;
- struct plist_head *head;
struct futex_q *this, *next;
int ret, op_ret;
@@ -1082,9 +1201,7 @@ retry_private:
goto retry;
}
- head = &hb1->chain;
-
- plist_for_each_entry_safe(this, next, head, list) {
+ plist_for_each_entry_safe(this, next, &hb1->chain, list) {
if (match_futex (&this->key, &key1)) {
if (this->pi_state || this->rt_waiter) {
ret = -EINVAL;
@@ -1097,10 +1214,8 @@ retry_private:
}
if (op_ret > 0) {
- head = &hb2->chain;
-
op_ret = 0;
- plist_for_each_entry_safe(this, next, head, list) {
+ plist_for_each_entry_safe(this, next, &hb2->chain, list) {
if (match_futex (&this->key, &key2)) {
if (this->pi_state || this->rt_waiter) {
ret = -EINVAL;
@@ -1270,7 +1385,6 @@ static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
int drop_count = 0, task_count = 0, ret;
struct futex_pi_state *pi_state = NULL;
struct futex_hash_bucket *hb1, *hb2;
- struct plist_head *head1;
struct futex_q *this, *next;
u32 curval2;
@@ -1393,8 +1507,7 @@ retry_private:
}
}
- head1 = &hb1->chain;
- plist_for_each_entry_safe(this, next, head1, list) {
+ plist_for_each_entry_safe(this, next, &hb1->chain, list) {
if (task_count - nr_wake >= nr_requeue)
break;
@@ -1489,12 +1602,12 @@ static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
hb = hash_futex(&q->key);
q->lock_ptr = &hb->lock;
- spin_lock(&hb->lock);
+ spin_lock(&hb->lock); /* implies MB (A) */
return hb;
}
static inline void
-queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
+queue_unlock(struct futex_hash_bucket *hb)
__releases(&hb->lock)
{
spin_unlock(&hb->lock);
@@ -1867,7 +1980,7 @@ retry_private:
ret = get_futex_value_locked(&uval, uaddr);
if (ret) {
- queue_unlock(q, *hb);
+ queue_unlock(*hb);
ret = get_user(uval, uaddr);
if (ret)
@@ -1881,7 +1994,7 @@ retry_private:
}
if (uval != val) {
- queue_unlock(q, *hb);
+ queue_unlock(*hb);
ret = -EWOULDBLOCK;
}
@@ -2029,7 +2142,7 @@ retry_private:
* Task is exiting and we just wait for the
* exit to complete.
*/
- queue_unlock(&q, hb);
+ queue_unlock(hb);
put_futex_key(&q.key);
cond_resched();
goto retry;
@@ -2081,7 +2194,7 @@ retry_private:
goto out_put_key;
out_unlock_put_key:
- queue_unlock(&q, hb);
+ queue_unlock(hb);
out_put_key:
put_futex_key(&q.key);
@@ -2091,7 +2204,7 @@ out:
return ret != -EINTR ? ret : -ERESTARTNOINTR;
uaddr_faulted:
- queue_unlock(&q, hb);
+ queue_unlock(hb);
ret = fault_in_user_writeable(uaddr);
if (ret)
@@ -2113,7 +2226,6 @@ static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
{
struct futex_hash_bucket *hb;
struct futex_q *this, *next;
- struct plist_head *head;
union futex_key key = FUTEX_KEY_INIT;
u32 uval, vpid = task_pid_vnr(current);
int ret;
@@ -2153,9 +2265,7 @@ retry:
* Ok, other tasks may need to be woken up - check waiters
* and do the wakeup if necessary:
*/
- head = &hb->chain;
-
- plist_for_each_entry_safe(this, next, head, list) {
+ plist_for_each_entry_safe(this, next, &hb->chain, list) {
if (!match_futex (&this->key, &key))
continue;
ret = wake_futex_pi(uaddr, uval, this);
@@ -2316,6 +2426,8 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
* code while we sleep on uaddr.
*/
debug_rt_mutex_init_waiter(&rt_waiter);
+ RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
+ RB_CLEAR_NODE(&rt_waiter.tree_entry);
rt_waiter.task = NULL;
ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
@@ -2734,8 +2846,21 @@ SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
static int __init futex_init(void)
{
u32 curval;
- int i;
+ unsigned int futex_shift;
+ unsigned long i;
+
+#if CONFIG_BASE_SMALL
+ futex_hashsize = 16;
+#else
+ futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
+#endif
+ futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
+ futex_hashsize, 0,
+ futex_hashsize < 256 ? HASH_SMALL : 0,
+ &futex_shift, NULL,
+ futex_hashsize, futex_hashsize);
+ futex_hashsize = 1UL << futex_shift;
/*
* This will fail and we want it. Some arch implementations do
* runtime detection of the futex_atomic_cmpxchg_inatomic()
@@ -2749,7 +2874,7 @@ static int __init futex_init(void)
if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
futex_cmpxchg_enabled = 1;
- for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
+ for (i = 0; i < futex_hashsize; i++) {
plist_head_init(&futex_queues[i].chain);
spin_lock_init(&futex_queues[i].lock);
}
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c
index 383319bae3f7..09094361dce5 100644
--- a/kernel/hrtimer.c
+++ b/kernel/hrtimer.c
@@ -46,6 +46,7 @@
#include <linux/sched.h>
#include <linux/sched/sysctl.h>
#include <linux/sched/rt.h>
+#include <linux/sched/deadline.h>
#include <linux/timer.h>
#include <linux/freezer.h>
@@ -1610,7 +1611,7 @@ long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
unsigned long slack;
slack = current->timer_slack_ns;
- if (rt_task(current))
+ if (dl_task(current) || rt_task(current))
slack = 0;
hrtimer_init_on_stack(&t.timer, clockid, mode);
diff --git a/kernel/kexec.c b/kernel/kexec.c
index d0d8fca54065..9c970167e402 100644
--- a/kernel/kexec.c
+++ b/kernel/kexec.c
@@ -1680,6 +1680,7 @@ int kernel_kexec(void)
{
kexec_in_progress = true;
kernel_restart_prepare(NULL);
+ migrate_to_reboot_cpu();
printk(KERN_EMERG "Starting new kernel\n");
machine_shutdown();
}
diff --git a/kernel/locking/lockdep.c b/kernel/locking/lockdep.c
index 576ba756a32d..eb8a54783fa0 100644
--- a/kernel/locking/lockdep.c
+++ b/kernel/locking/lockdep.c
@@ -590,6 +590,7 @@ static int very_verbose(struct lock_class *class)
/*
* Is this the address of a static object:
*/
+#ifdef __KERNEL__
static int static_obj(void *obj)
{
unsigned long start = (unsigned long) &_stext,
@@ -616,6 +617,7 @@ static int static_obj(void *obj)
*/
return is_module_address(addr) || is_module_percpu_address(addr);
}
+#endif
/*
* To make lock name printouts unique, we calculate a unique
@@ -4115,6 +4117,7 @@ void debug_check_no_locks_held(void)
}
EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
+#ifdef __KERNEL__
void debug_show_all_locks(void)
{
struct task_struct *g, *p;
@@ -4172,6 +4175,7 @@ retry:
read_unlock(&tasklist_lock);
}
EXPORT_SYMBOL_GPL(debug_show_all_locks);
+#endif
/*
* Careful: only use this function if you are sure that
diff --git a/kernel/locking/mutex-debug.c b/kernel/locking/mutex-debug.c
index 7e3443fe1f48..faf6f5b53e77 100644
--- a/kernel/locking/mutex-debug.c
+++ b/kernel/locking/mutex-debug.c
@@ -75,7 +75,12 @@ void debug_mutex_unlock(struct mutex *lock)
return;
DEBUG_LOCKS_WARN_ON(lock->magic != lock);
- DEBUG_LOCKS_WARN_ON(lock->owner != current);
+
+ if (!lock->owner)
+ DEBUG_LOCKS_WARN_ON(!lock->owner);
+ else
+ DEBUG_LOCKS_WARN_ON(lock->owner != current);
+
DEBUG_LOCKS_WARN_ON(!lock->wait_list.prev && !lock->wait_list.next);
mutex_clear_owner(lock);
}
diff --git a/kernel/locking/rtmutex-debug.c b/kernel/locking/rtmutex-debug.c
index 13b243a323fa..49b2ed3dced8 100644
--- a/kernel/locking/rtmutex-debug.c
+++ b/kernel/locking/rtmutex-debug.c
@@ -24,7 +24,7 @@
#include <linux/kallsyms.h>
#include <linux/syscalls.h>
#include <linux/interrupt.h>
-#include <linux/plist.h>
+#include <linux/rbtree.h>
#include <linux/fs.h>
#include <linux/debug_locks.h>
@@ -57,7 +57,7 @@ static void printk_lock(struct rt_mutex *lock, int print_owner)
void rt_mutex_debug_task_free(struct task_struct *task)
{
- DEBUG_LOCKS_WARN_ON(!plist_head_empty(&task->pi_waiters));
+ DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters));
DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
}
@@ -154,16 +154,12 @@ void debug_rt_mutex_proxy_unlock(struct rt_mutex *lock)
void debug_rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
{
memset(waiter, 0x11, sizeof(*waiter));
- plist_node_init(&waiter->list_entry, MAX_PRIO);
- plist_node_init(&waiter->pi_list_entry, MAX_PRIO);
waiter->deadlock_task_pid = NULL;
}
void debug_rt_mutex_free_waiter(struct rt_mutex_waiter *waiter)
{
put_pid(waiter->deadlock_task_pid);
- DEBUG_LOCKS_WARN_ON(!plist_node_empty(&waiter->list_entry));
- DEBUG_LOCKS_WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
memset(waiter, 0x22, sizeof(*waiter));
}
diff --git a/kernel/locking/rtmutex.c b/kernel/locking/rtmutex.c
index 0dd6aec1cb6a..2e960a2bab81 100644
--- a/kernel/locking/rtmutex.c
+++ b/kernel/locking/rtmutex.c
@@ -14,6 +14,7 @@
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/sched/rt.h>
+#include <linux/sched/deadline.h>
#include <linux/timer.h>
#include "rtmutex_common.h"
@@ -91,10 +92,107 @@ static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
}
#endif
+static inline int
+rt_mutex_waiter_less(struct rt_mutex_waiter *left,
+ struct rt_mutex_waiter *right)
+{
+ if (left->prio < right->prio)
+ return 1;
+
+ /*
+ * If both waiters have dl_prio(), we check the deadlines of the
+ * associated tasks.
+ * If left waiter has a dl_prio(), and we didn't return 1 above,
+ * then right waiter has a dl_prio() too.
+ */
+ if (dl_prio(left->prio))
+ return (left->task->dl.deadline < right->task->dl.deadline);
+
+ return 0;
+}
+
+static void
+rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
+{
+ struct rb_node **link = &lock->waiters.rb_node;
+ struct rb_node *parent = NULL;
+ struct rt_mutex_waiter *entry;
+ int leftmost = 1;
+
+ while (*link) {
+ parent = *link;
+ entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
+ if (rt_mutex_waiter_less(waiter, entry)) {
+ link = &parent->rb_left;
+ } else {
+ link = &parent->rb_right;
+ leftmost = 0;
+ }
+ }
+
+ if (leftmost)
+ lock->waiters_leftmost = &waiter->tree_entry;
+
+ rb_link_node(&waiter->tree_entry, parent, link);
+ rb_insert_color(&waiter->tree_entry, &lock->waiters);
+}
+
+static void
+rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
+{
+ if (RB_EMPTY_NODE(&waiter->tree_entry))
+ return;
+
+ if (lock->waiters_leftmost == &waiter->tree_entry)
+ lock->waiters_leftmost = rb_next(&waiter->tree_entry);
+
+ rb_erase(&waiter->tree_entry, &lock->waiters);
+ RB_CLEAR_NODE(&waiter->tree_entry);
+}
+
+static void
+rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
+{
+ struct rb_node **link = &task->pi_waiters.rb_node;
+ struct rb_node *parent = NULL;
+ struct rt_mutex_waiter *entry;
+ int leftmost = 1;
+
+ while (*link) {
+ parent = *link;
+ entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
+ if (rt_mutex_waiter_less(waiter, entry)) {
+ link = &parent->rb_left;
+ } else {
+ link = &parent->rb_right;
+ leftmost = 0;
+ }
+ }
+
+ if (leftmost)
+ task->pi_waiters_leftmost = &waiter->pi_tree_entry;
+
+ rb_link_node(&waiter->pi_tree_entry, parent, link);
+ rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
+}
+
+static void
+rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
+{
+ if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
+ return;
+
+ if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
+ task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
+
+ rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
+ RB_CLEAR_NODE(&waiter->pi_tree_entry);
+}
+
/*
- * Calculate task priority from the waiter list priority
+ * Calculate task priority from the waiter tree priority
*
- * Return task->normal_prio when the waiter list is empty or when
+ * Return task->normal_prio when the waiter tree is empty or when
* the waiter is not allowed to do priority boosting
*/
int rt_mutex_getprio(struct task_struct *task)
@@ -102,10 +200,18 @@ int rt_mutex_getprio(struct task_struct *task)
if (likely(!task_has_pi_waiters(task)))
return task->normal_prio;
- return min(task_top_pi_waiter(task)->pi_list_entry.prio,
+ return min(task_top_pi_waiter(task)->prio,
task->normal_prio);
}
+struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
+{
+ if (likely(!task_has_pi_waiters(task)))
+ return NULL;
+
+ return task_top_pi_waiter(task)->task;
+}
+
/*
* Adjust the priority of a task, after its pi_waiters got modified.
*
@@ -115,7 +221,7 @@ static void __rt_mutex_adjust_prio(struct task_struct *task)
{
int prio = rt_mutex_getprio(task);
- if (task->prio != prio)
+ if (task->prio != prio || dl_prio(prio))
rt_mutex_setprio(task, prio);
}
@@ -233,7 +339,7 @@ static int rt_mutex_adjust_prio_chain(struct task_struct *task,
* When deadlock detection is off then we check, if further
* priority adjustment is necessary.
*/
- if (!detect_deadlock && waiter->list_entry.prio == task->prio)
+ if (!detect_deadlock && waiter->prio == task->prio)
goto out_unlock_pi;
lock = waiter->lock;
@@ -254,9 +360,9 @@ static int rt_mutex_adjust_prio_chain(struct task_struct *task,
top_waiter = rt_mutex_top_waiter(lock);
/* Requeue the waiter */
- plist_del(&waiter->list_entry, &lock->wait_list);
- waiter->list_entry.prio = task->prio;
- plist_add(&waiter->list_entry, &lock->wait_list);
+ rt_mutex_dequeue(lock, waiter);
+ waiter->prio = task->prio;
+ rt_mutex_enqueue(lock, waiter);
/* Release the task */
raw_spin_unlock_irqrestore(&task->pi_lock, flags);
@@ -280,17 +386,15 @@ static int rt_mutex_adjust_prio_chain(struct task_struct *task,
if (waiter == rt_mutex_top_waiter(lock)) {
/* Boost the owner */
- plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
- waiter->pi_list_entry.prio = waiter->list_entry.prio;
- plist_add(&waiter->pi_list_entry, &task->pi_waiters);
+ rt_mutex_dequeue_pi(task, top_waiter);
+ rt_mutex_enqueue_pi(task, waiter);
__rt_mutex_adjust_prio(task);
} else if (top_waiter == waiter) {
/* Deboost the owner */
- plist_del(&waiter->pi_list_entry, &task->pi_waiters);
+ rt_mutex_dequeue_pi(task, waiter);
waiter = rt_mutex_top_waiter(lock);
- waiter->pi_list_entry.prio = waiter->list_entry.prio;
- plist_add(&waiter->pi_list_entry, &task->pi_waiters);
+ rt_mutex_enqueue_pi(task, waiter);
__rt_mutex_adjust_prio(task);
}
@@ -355,7 +459,7 @@ static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
* 3) it is top waiter
*/
if (rt_mutex_has_waiters(lock)) {
- if (task->prio >= rt_mutex_top_waiter(lock)->list_entry.prio) {
+ if (task->prio >= rt_mutex_top_waiter(lock)->prio) {
if (!waiter || waiter != rt_mutex_top_waiter(lock))
return 0;
}
@@ -369,7 +473,7 @@ static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
/* remove the queued waiter. */
if (waiter) {
- plist_del(&waiter->list_entry, &lock->wait_list);
+ rt_mutex_dequeue(lock, waiter);
task->pi_blocked_on = NULL;
}
@@ -379,8 +483,7 @@ static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
*/
if (rt_mutex_has_waiters(lock)) {
top = rt_mutex_top_waiter(lock);
- top->pi_list_entry.prio = top->list_entry.prio;
- plist_add(&top->pi_list_entry, &task->pi_waiters);
+ rt_mutex_enqueue_pi(task, top);
}
raw_spin_unlock_irqrestore(&task->pi_lock, flags);
}
@@ -416,13 +519,12 @@ static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
__rt_mutex_adjust_prio(task);
waiter->task = task;
waiter->lock = lock;
- plist_node_init(&waiter->list_entry, task->prio);
- plist_node_init(&waiter->pi_list_entry, task->prio);
+ waiter->prio = task->prio;
/* Get the top priority waiter on the lock */
if (rt_mutex_has_waiters(lock))
top_waiter = rt_mutex_top_waiter(lock);
- plist_add(&waiter->list_entry, &lock->wait_list);
+ rt_mutex_enqueue(lock, waiter);
task->pi_blocked_on = waiter;
@@ -433,8 +535,8 @@ static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
if (waiter == rt_mutex_top_waiter(lock)) {
raw_spin_lock_irqsave(&owner->pi_lock, flags);
- plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
- plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
+ rt_mutex_dequeue_pi(owner, top_waiter);
+ rt_mutex_enqueue_pi(owner, waiter);
__rt_mutex_adjust_prio(owner);
if (owner->pi_blocked_on)
@@ -486,7 +588,7 @@ static void wakeup_next_waiter(struct rt_mutex *lock)
* boosted mode and go back to normal after releasing
* lock->wait_lock.
*/
- plist_del(&waiter->pi_list_entry, &current->pi_waiters);
+ rt_mutex_dequeue_pi(current, waiter);
rt_mutex_set_owner(lock, NULL);
@@ -510,7 +612,7 @@ static void remove_waiter(struct rt_mutex *lock,
int chain_walk = 0;
raw_spin_lock_irqsave(&current->pi_lock, flags);
- plist_del(&waiter->list_entry, &lock->wait_list);
+ rt_mutex_dequeue(lock, waiter);
current->pi_blocked_on = NULL;
raw_spin_unlock_irqrestore(&current->pi_lock, flags);
@@ -521,13 +623,13 @@ static void remove_waiter(struct rt_mutex *lock,
raw_spin_lock_irqsave(&owner->pi_lock, flags);
- plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
+ rt_mutex_dequeue_pi(owner, waiter);
if (rt_mutex_has_waiters(lock)) {
struct rt_mutex_waiter *next;
next = rt_mutex_top_waiter(lock);
- plist_add(&next->pi_list_entry, &owner->pi_waiters);
+ rt_mutex_enqueue_pi(owner, next);
}
__rt_mutex_adjust_prio(owner);
@@ -537,8 +639,6 @@ static void remove_waiter(struct rt_mutex *lock,
raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
}
- WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
-
if (!chain_walk)
return;
@@ -565,7 +665,8 @@ void rt_mutex_adjust_pi(struct task_struct *task)
raw_spin_lock_irqsave(&task->pi_lock, flags);
waiter = task->pi_blocked_on;
- if (!waiter || waiter->list_entry.prio == task->prio) {
+ if (!waiter || (waiter->prio == task->prio &&
+ !dl_prio(task->prio))) {
raw_spin_unlock_irqrestore(&task->pi_lock, flags);
return;
}
@@ -638,6 +739,8 @@ rt_mutex_slowlock(struct rt_mutex *lock, int state,
int ret = 0;
debug_rt_mutex_init_waiter(&waiter);
+ RB_CLEAR_NODE(&waiter.pi_tree_entry);
+ RB_CLEAR_NODE(&waiter.tree_entry);
raw_spin_lock(&lock->wait_lock);
@@ -904,7 +1007,8 @@ void __rt_mutex_init(struct rt_mutex *lock, const char *name)
{
lock->owner = NULL;
raw_spin_lock_init(&lock->wait_lock);
- plist_head_init(&lock->wait_list);
+ lock->waiters = RB_ROOT;
+ lock->waiters_leftmost = NULL;
debug_rt_mutex_init(lock, name);
}
diff --git a/kernel/locking/rtmutex_common.h b/kernel/locking/rtmutex_common.h
index 53a66c85261b..7431a9c86f35 100644
--- a/kernel/locking/rtmutex_common.h
+++ b/kernel/locking/rtmutex_common.h
@@ -40,13 +40,13 @@ extern void schedule_rt_mutex_test(struct rt_mutex *lock);
* This is the control structure for tasks blocked on a rt_mutex,
* which is allocated on the kernel stack on of the blocked task.
*
- * @list_entry: pi node to enqueue into the mutex waiters list
- * @pi_list_entry: pi node to enqueue into the mutex owner waiters list
+ * @tree_entry: pi node to enqueue into the mutex waiters tree
+ * @pi_tree_entry: pi node to enqueue into the mutex owner waiters tree
* @task: task reference to the blocked task
*/
struct rt_mutex_waiter {
- struct plist_node list_entry;
- struct plist_node pi_list_entry;
+ struct rb_node tree_entry;
+ struct rb_node pi_tree_entry;
struct task_struct *task;
struct rt_mutex *lock;
#ifdef CONFIG_DEBUG_RT_MUTEXES
@@ -54,14 +54,15 @@ struct rt_mutex_waiter {
struct pid *deadlock_task_pid;
struct rt_mutex *deadlock_lock;
#endif
+ int prio;
};
/*
- * Various helpers to access the waiters-plist:
+ * Various helpers to access the waiters-tree:
*/
static inline int rt_mutex_has_waiters(struct rt_mutex *lock)
{
- return !plist_head_empty(&lock->wait_list);
+ return !RB_EMPTY_ROOT(&lock->waiters);
}
static inline struct rt_mutex_waiter *
@@ -69,8 +70,8 @@ rt_mutex_top_waiter(struct rt_mutex *lock)
{
struct rt_mutex_waiter *w;
- w = plist_first_entry(&lock->wait_list, struct rt_mutex_waiter,
- list_entry);
+ w = rb_entry(lock->waiters_leftmost, struct rt_mutex_waiter,
+ tree_entry);
BUG_ON(w->lock != lock);
return w;
@@ -78,14 +79,14 @@ rt_mutex_top_waiter(struct rt_mutex *lock)
static inline int task_has_pi_waiters(struct task_struct *p)
{
- return !plist_head_empty(&p->pi_waiters);
+ return !RB_EMPTY_ROOT(&p->pi_waiters);
}
static inline struct rt_mutex_waiter *
task_top_pi_waiter(struct task_struct *p)
{
- return plist_first_entry(&p->pi_waiters, struct rt_mutex_waiter,
- pi_list_entry);
+ return rb_entry(p->pi_waiters_leftmost, struct rt_mutex_waiter,
+ pi_tree_entry);
}
/*
diff --git a/kernel/panic.c b/kernel/panic.c
index c00b4ceb39e8..6d6300375090 100644
--- a/kernel/panic.c
+++ b/kernel/panic.c
@@ -33,7 +33,7 @@ static int pause_on_oops;
static int pause_on_oops_flag;
static DEFINE_SPINLOCK(pause_on_oops_lock);
-int panic_timeout;
+int panic_timeout = CONFIG_PANIC_TIMEOUT;
EXPORT_SYMBOL_GPL(panic_timeout);
ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c
index c7f31aa272f7..3b8946416a5f 100644
--- a/kernel/posix-cpu-timers.c
+++ b/kernel/posix-cpu-timers.c
@@ -233,7 +233,8 @@ void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
/*
* Sample a process (thread group) clock for the given group_leader task.
- * Must be called with tasklist_lock held for reading.
+ * Must be called with task sighand lock held for safe while_each_thread()
+ * traversal.
*/
static int cpu_clock_sample_group(const clockid_t which_clock,
struct task_struct *p,
@@ -260,30 +261,53 @@ static int cpu_clock_sample_group(const clockid_t which_clock,
return 0;
}
+static int posix_cpu_clock_get_task(struct task_struct *tsk,
+ const clockid_t which_clock,
+ struct timespec *tp)
+{
+ int err = -EINVAL;
+ unsigned long long rtn;
+
+ if (CPUCLOCK_PERTHREAD(which_clock)) {
+ if (same_thread_group(tsk, current))
+ err = cpu_clock_sample(which_clock, tsk, &rtn);
+ } else {
+ unsigned long flags;
+ struct sighand_struct *sighand;
+
+ /*
+ * while_each_thread() is not yet entirely RCU safe,
+ * keep locking the group while sampling process
+ * clock for now.
+ */
+ sighand = lock_task_sighand(tsk, &flags);
+ if (!sighand)
+ return err;
+
+ if (tsk == current || thread_group_leader(tsk))
+ err = cpu_clock_sample_group(which_clock, tsk, &rtn);
+
+ unlock_task_sighand(tsk, &flags);
+ }
+
+ if (!err)
+ sample_to_timespec(which_clock, rtn, tp);
+
+ return err;
+}
+
static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
{
const pid_t pid = CPUCLOCK_PID(which_clock);
- int error = -EINVAL;
- unsigned long long rtn;
+ int err = -EINVAL;
if (pid == 0) {
/*
* Special case constant value for our own clocks.
* We don't have to do any lookup to find ourselves.
*/
- if (CPUCLOCK_PERTHREAD(which_clock)) {
- /*
- * Sampling just ourselves we can do with no locking.
- */
- error = cpu_clock_sample(which_clock,
- current, &rtn);
- } else {
- read_lock(&tasklist_lock);
- error = cpu_clock_sample_group(which_clock,
- current, &rtn);
- read_unlock(&tasklist_lock);
- }
+ err = posix_cpu_clock_get_task(current, which_clock, tp);
} else {
/*
* Find the given PID, and validate that the caller
@@ -292,29 +316,12 @@ static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
struct task_struct *p;
rcu_read_lock();
p = find_task_by_vpid(pid);
- if (p) {
- if (CPUCLOCK_PERTHREAD(which_clock)) {
- if (same_thread_group(p, current)) {
- error = cpu_clock_sample(which_clock,
- p, &rtn);
- }
- } else {
- read_lock(&tasklist_lock);
- if (thread_group_leader(p) && p->sighand) {
- error =
- cpu_clock_sample_group(which_clock,
- p, &rtn);
- }
- read_unlock(&tasklist_lock);
- }
- }
+ if (p)
+ err = posix_cpu_clock_get_task(p, which_clock, tp);
rcu_read_unlock();
}
- if (error)
- return error;
- sample_to_timespec(which_clock, rtn, tp);
- return 0;
+ return err;
}
@@ -371,36 +378,40 @@ static int posix_cpu_timer_create(struct k_itimer *new_timer)
*/
static int posix_cpu_timer_del(struct k_itimer *timer)
{
- struct task_struct *p = timer->it.cpu.task;
int ret = 0;
+ unsigned long flags;
+ struct sighand_struct *sighand;
+ struct task_struct *p = timer->it.cpu.task;
- if (likely(p != NULL)) {
- read_lock(&tasklist_lock);
- if (unlikely(p->sighand == NULL)) {
- /*
- * We raced with the reaping of the task.
- * The deletion should have cleared us off the list.
- */
- BUG_ON(!list_empty(&timer->it.cpu.entry));
- } else {
- spin_lock(&p->sighand->siglock);
- if (timer->it.cpu.firing)
- ret = TIMER_RETRY;
- else
- list_del(&timer->it.cpu.entry);
- spin_unlock(&p->sighand->siglock);
- }
- read_unlock(&tasklist_lock);
+ WARN_ON_ONCE(p == NULL);
- if (!ret)
- put_task_struct(p);
+ /*
+ * Protect against sighand release/switch in exit/exec and process/
+ * thread timer list entry concurrent read/writes.
+ */
+ sighand = lock_task_sighand(p, &flags);
+ if (unlikely(sighand == NULL)) {
+ /*
+ * We raced with the reaping of the task.
+ * The deletion should have cleared us off the list.
+ */
+ WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
+ } else {
+ if (timer->it.cpu.firing)
+ ret = TIMER_RETRY;
+ else
+ list_del(&timer->it.cpu.entry);
+
+ unlock_task_sighand(p, &flags);
}
+ if (!ret)
+ put_task_struct(p);
+
return ret;
}
-static void cleanup_timers_list(struct list_head *head,
- unsigned long long curr)
+static void cleanup_timers_list(struct list_head *head)
{
struct cpu_timer_list *timer, *next;
@@ -414,16 +425,11 @@ static void cleanup_timers_list(struct list_head *head,
* time for later timer_gettime calls to return.
* This must be called with the siglock held.
*/
-static void cleanup_timers(struct list_head *head,
- cputime_t utime, cputime_t stime,
- unsigned long long sum_exec_runtime)
+static void cleanup_timers(struct list_head *head)
{
-
- cputime_t ptime = utime + stime;
-
- cleanup_timers_list(head, cputime_to_expires(ptime));
- cleanup_timers_list(++head, cputime_to_expires(utime));
- cleanup_timers_list(++head, sum_exec_runtime);
+ cleanup_timers_list(head);
+ cleanup_timers_list(++head);
+ cleanup_timers_list(++head);
}
/*
@@ -433,41 +439,14 @@ static void cleanup_timers(struct list_head *head,
*/
void posix_cpu_timers_exit(struct task_struct *tsk)
{
- cputime_t utime, stime;
-
add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
sizeof(unsigned long long));
- task_cputime(tsk, &utime, &stime);
- cleanup_timers(tsk->cpu_timers,
- utime, stime, tsk->se.sum_exec_runtime);
+ cleanup_timers(tsk->cpu_timers);
}
void posix_cpu_timers_exit_group(struct task_struct *tsk)
{
- struct signal_struct *const sig = tsk->signal;
- cputime_t utime, stime;
-
- task_cputime(tsk, &utime, &stime);
- cleanup_timers(tsk->signal->cpu_timers,
- utime + sig->utime, stime + sig->stime,
- tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
-}
-
-static void clear_dead_task(struct k_itimer *itimer, unsigned long long now)
-{
- struct cpu_timer_list *timer = &itimer->it.cpu;
-
- /*
- * That's all for this thread or process.
- * We leave our residual in expires to be reported.
- */
- put_task_struct(timer->task);
- timer->task = NULL;
- if (timer->expires < now) {
- timer->expires = 0;
- } else {
- timer->expires -= now;
- }
+ cleanup_timers(tsk->signal->cpu_timers);
}
static inline int expires_gt(cputime_t expires, cputime_t new_exp)
@@ -477,8 +456,7 @@ static inline int expires_gt(cputime_t expires, cputime_t new_exp)
/*
* Insert the timer on the appropriate list before any timers that
- * expire later. This must be called with the tasklist_lock held
- * for reading, interrupts disabled and p->sighand->siglock taken.
+ * expire later. This must be called with the sighand lock held.
*/
static void arm_timer(struct k_itimer *timer)
{
@@ -569,7 +547,8 @@ static void cpu_timer_fire(struct k_itimer *timer)
/*
* Sample a process (thread group) timer for the given group_leader task.
- * Must be called with tasklist_lock held for reading.
+ * Must be called with task sighand lock held for safe while_each_thread()
+ * traversal.
*/
static int cpu_timer_sample_group(const clockid_t which_clock,
struct task_struct *p,
@@ -608,7 +587,8 @@ static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
*/
static void posix_cpu_timer_kick_nohz(void)
{
- schedule_work(&nohz_kick_work);
+ if (context_tracking_is_enabled())
+ schedule_work(&nohz_kick_work);
}
bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
@@ -631,43 +611,39 @@ static inline void posix_cpu_timer_kick_nohz(void) { }
* If we return TIMER_RETRY, it's necessary to release the timer's lock
* and try again. (This happens when the timer is in the middle of firing.)
*/
-static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
+static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
struct itimerspec *new, struct itimerspec *old)
{
+ unsigned long flags;
+ struct sighand_struct *sighand;
struct task_struct *p = timer->it.cpu.task;
unsigned long long old_expires, new_expires, old_incr, val;
int ret;
- if (unlikely(p == NULL)) {
- /*
- * Timer refers to a dead task's clock.
- */
- return -ESRCH;
- }
+ WARN_ON_ONCE(p == NULL);
new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
- read_lock(&tasklist_lock);
/*
- * We need the tasklist_lock to protect against reaping that
- * clears p->sighand. If p has just been reaped, we can no
+ * Protect against sighand release/switch in exit/exec and p->cpu_timers
+ * and p->signal->cpu_timers read/write in arm_timer()
+ */
+ sighand = lock_task_sighand(p, &flags);
+ /*
+ * If p has just been reaped, we can no
* longer get any information about it at all.
*/
- if (unlikely(p->sighand == NULL)) {
- read_unlock(&tasklist_lock);
- put_task_struct(p);
- timer->it.cpu.task = NULL;
+ if (unlikely(sighand == NULL)) {
return -ESRCH;
}
/*
* Disarm any old timer after extracting its expiry time.
*/
- BUG_ON(!irqs_disabled());
+ WARN_ON_ONCE(!irqs_disabled());
ret = 0;
old_incr = timer->it.cpu.incr;
- spin_lock(&p->sighand->siglock);
old_expires = timer->it.cpu.expires;
if (unlikely(timer->it.cpu.firing)) {
timer->it.cpu.firing = -1;
@@ -724,12 +700,11 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
* disable this firing since we are already reporting
* it as an overrun (thanks to bump_cpu_timer above).
*/
- spin_unlock(&p->sighand->siglock);
- read_unlock(&tasklist_lock);
+ unlock_task_sighand(p, &flags);
goto out;
}
- if (new_expires != 0 && !(flags & TIMER_ABSTIME)) {
+ if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
new_expires += val;
}
@@ -743,9 +718,7 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
arm_timer(timer);
}
- spin_unlock(&p->sighand->siglock);
- read_unlock(&tasklist_lock);
-
+ unlock_task_sighand(p, &flags);
/*
* Install the new reload setting, and
* set up the signal and overrun bookkeeping.
@@ -787,7 +760,8 @@ static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
{
unsigned long long now;
struct task_struct *p = timer->it.cpu.task;
- int clear_dead;
+
+ WARN_ON_ONCE(p == NULL);
/*
* Easy part: convert the reload time.
@@ -800,52 +774,34 @@ static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
return;
}
- if (unlikely(p == NULL)) {
- /*
- * This task already died and the timer will never fire.
- * In this case, expires is actually the dead value.
- */
- dead:
- sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
- &itp->it_value);
- return;
- }
-
/*
* Sample the clock to take the difference with the expiry time.
*/
if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
cpu_clock_sample(timer->it_clock, p, &now);
- clear_dead = p->exit_state;
} else {
- read_lock(&tasklist_lock);
- if (unlikely(p->sighand == NULL)) {
+ struct sighand_struct *sighand;
+ unsigned long flags;
+
+ /*
+ * Protect against sighand release/switch in exit/exec and
+ * also make timer sampling safe if it ends up calling
+ * thread_group_cputime().
+ */
+ sighand = lock_task_sighand(p, &flags);
+ if (unlikely(sighand == NULL)) {
/*
* The process has been reaped.
* We can't even collect a sample any more.
* Call the timer disarmed, nothing else to do.
*/
- put_task_struct(p);
- timer->it.cpu.task = NULL;
timer->it.cpu.expires = 0;
- read_unlock(&tasklist_lock);
- goto dead;
+ sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
+ &itp->it_value);
} else {
cpu_timer_sample_group(timer->it_clock, p, &now);
- clear_dead = (unlikely(p->exit_state) &&
- thread_group_empty(p));
+ unlock_task_sighand(p, &flags);
}
- read_unlock(&tasklist_lock);
- }
-
- if (unlikely(clear_dead)) {
- /*
- * We've noticed that the thread is dead, but
- * not yet reaped. Take this opportunity to
- * drop our task ref.
- */
- clear_dead_task(timer, now);
- goto dead;
}
if (now < timer->it.cpu.expires) {
@@ -1059,14 +1015,12 @@ static void check_process_timers(struct task_struct *tsk,
*/
void posix_cpu_timer_schedule(struct k_itimer *timer)
{
+ struct sighand_struct *sighand;
+ unsigned long flags;
struct task_struct *p = timer->it.cpu.task;
unsigned long long now;
- if (unlikely(p == NULL))
- /*
- * The task was cleaned up already, no future firings.
- */
- goto out;
+ WARN_ON_ONCE(p == NULL);
/*
* Fetch the current sample and update the timer's expiry time.
@@ -1074,49 +1028,45 @@ void posix_cpu_timer_schedule(struct k_itimer *timer)
if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
cpu_clock_sample(timer->it_clock, p, &now);
bump_cpu_timer(timer, now);
- if (unlikely(p->exit_state)) {
- clear_dead_task(timer, now);
+ if (unlikely(p->exit_state))
+ goto out;
+
+ /* Protect timer list r/w in arm_timer() */
+ sighand = lock_task_sighand(p, &flags);
+ if (!sighand)
goto out;
- }
- read_lock(&tasklist_lock); /* arm_timer needs it. */
- spin_lock(&p->sighand->siglock);
} else {
- read_lock(&tasklist_lock);
- if (unlikely(p->sighand == NULL)) {
+ /*
+ * Protect arm_timer() and timer sampling in case of call to
+ * thread_group_cputime().
+ */
+ sighand = lock_task_sighand(p, &flags);
+ if (unlikely(sighand == NULL)) {
/*
* The process has been reaped.
* We can't even collect a sample any more.
*/
- put_task_struct(p);
- timer->it.cpu.task = p = NULL;
timer->it.cpu.expires = 0;
- goto out_unlock;
+ goto out;
} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
- /*
- * We've noticed that the thread is dead, but
- * not yet reaped. Take this opportunity to
- * drop our task ref.
- */
- cpu_timer_sample_group(timer->it_clock, p, &now);
- clear_dead_task(timer, now);
- goto out_unlock;
+ unlock_task_sighand(p, &flags);
+ /* Optimizations: if the process is dying, no need to rearm */
+ goto out;
}
- spin_lock(&p->sighand->siglock);
cpu_timer_sample_group(timer->it_clock, p, &now);
bump_cpu_timer(timer, now);
- /* Leave the tasklist_lock locked for the call below. */
+ /* Leave the sighand locked for the call below. */
}
/*
* Now re-arm for the new expiry time.
*/
- BUG_ON(!irqs_disabled());
+ WARN_ON_ONCE(!irqs_disabled());
arm_timer(timer);
- spin_unlock(&p->sighand->siglock);
-
-out_unlock:
- read_unlock(&tasklist_lock);
+ unlock_task_sighand(p, &flags);
+ /* Kick full dynticks CPUs in case they need to tick on the new timer */
+ posix_cpu_timer_kick_nohz();
out:
timer->it_overrun_last = timer->it_overrun;
timer->it_overrun = -1;
@@ -1200,7 +1150,7 @@ void run_posix_cpu_timers(struct task_struct *tsk)
struct k_itimer *timer, *next;
unsigned long flags;
- BUG_ON(!irqs_disabled());
+ WARN_ON_ONCE(!irqs_disabled());
/*
* The fast path checks that there are no expired thread or thread
@@ -1256,13 +1206,6 @@ void run_posix_cpu_timers(struct task_struct *tsk)
cpu_timer_fire(timer);
spin_unlock(&timer->it_lock);
}
-
- /*
- * In case some timers were rescheduled after the queue got emptied,
- * wake up full dynticks CPUs.
- */
- if (tsk->signal->cputimer.running)
- posix_cpu_timer_kick_nohz();
}
/*
@@ -1274,7 +1217,7 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
{
unsigned long long now;
- BUG_ON(clock_idx == CPUCLOCK_SCHED);
+ WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
cpu_timer_sample_group(clock_idx, tsk, &now);
if (oldval) {
diff --git a/kernel/power/console.c b/kernel/power/console.c
index 463aa6736751..eacb8bd8cab4 100644
--- a/kernel/power/console.c
+++ b/kernel/power/console.c
@@ -81,6 +81,7 @@ void pm_vt_switch_unregister(struct device *dev)
list_for_each_entry(tmp, &pm_vt_switch_list, head) {
if (tmp->dev == dev) {
list_del(&tmp->head);
+ kfree(tmp);
break;
}
}
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c
index b38109e204af..d9f61a145802 100644
--- a/kernel/power/snapshot.c
+++ b/kernel/power/snapshot.c
@@ -637,7 +637,7 @@ __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
BUG_ON(!region);
} else
/* This allocation cannot fail */
- region = alloc_bootmem(sizeof(struct nosave_region));
+ region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
region->start_pfn = start_pfn;
region->end_pfn = end_pfn;
list_add_tail(&region->list, &nosave_regions);
diff --git a/kernel/printk/printk.c b/kernel/printk/printk.c
index be7c86bae576..f8b41bddc6dc 100644
--- a/kernel/printk/printk.c
+++ b/kernel/printk/printk.c
@@ -757,14 +757,10 @@ void __init setup_log_buf(int early)
return;
if (early) {
- unsigned long mem;
-
- mem = memblock_alloc(new_log_buf_len, PAGE_SIZE);
- if (!mem)
- return;
- new_log_buf = __va(mem);
+ new_log_buf =
+ memblock_virt_alloc(new_log_buf_len, PAGE_SIZE);
} else {
- new_log_buf = alloc_bootmem_nopanic(new_log_buf_len);
+ new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0);
}
if (unlikely(!new_log_buf)) {
diff --git a/kernel/rcu/rcu.h b/kernel/rcu/rcu.h
index 7859a0a3951e..79c3877e9c5b 100644
--- a/kernel/rcu/rcu.h
+++ b/kernel/rcu/rcu.h
@@ -96,19 +96,22 @@ static inline void debug_rcu_head_unqueue(struct rcu_head *head)
}
#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
-extern void kfree(const void *);
+void kfree(const void *);
static inline bool __rcu_reclaim(const char *rn, struct rcu_head *head)
{
unsigned long offset = (unsigned long)head->func;
+ rcu_lock_acquire(&rcu_callback_map);
if (__is_kfree_rcu_offset(offset)) {
RCU_TRACE(trace_rcu_invoke_kfree_callback(rn, head, offset));
kfree((void *)head - offset);
+ rcu_lock_release(&rcu_callback_map);
return 1;
} else {
RCU_TRACE(trace_rcu_invoke_callback(rn, head));
head->func(head);
+ rcu_lock_release(&rcu_callback_map);
return 0;
}
}
diff --git a/kernel/rcu/srcu.c b/kernel/rcu/srcu.c
index 01d5ccb8bfe3..3318d8284384 100644
--- a/kernel/rcu/srcu.c
+++ b/kernel/rcu/srcu.c
@@ -363,6 +363,29 @@ static void srcu_flip(struct srcu_struct *sp)
/*
* Enqueue an SRCU callback on the specified srcu_struct structure,
* initiating grace-period processing if it is not already running.
+ *
+ * Note that all CPUs must agree that the grace period extended beyond
+ * all pre-existing SRCU read-side critical section. On systems with
+ * more than one CPU, this means that when "func()" is invoked, each CPU
+ * is guaranteed to have executed a full memory barrier since the end of
+ * its last corresponding SRCU read-side critical section whose beginning
+ * preceded the call to call_rcu(). It also means that each CPU executing
+ * an SRCU read-side critical section that continues beyond the start of
+ * "func()" must have executed a memory barrier after the call_rcu()
+ * but before the beginning of that SRCU read-side critical section.
+ * Note that these guarantees include CPUs that are offline, idle, or
+ * executing in user mode, as well as CPUs that are executing in the kernel.
+ *
+ * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
+ * resulting SRCU callback function "func()", then both CPU A and CPU
+ * B are guaranteed to execute a full memory barrier during the time
+ * interval between the call to call_rcu() and the invocation of "func()".
+ * This guarantee applies even if CPU A and CPU B are the same CPU (but
+ * again only if the system has more than one CPU).
+ *
+ * Of course, these guarantees apply only for invocations of call_srcu(),
+ * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
+ * srcu_struct structure.
*/
void call_srcu(struct srcu_struct *sp, struct rcu_head *head,
void (*func)(struct rcu_head *head))
@@ -459,7 +482,30 @@ static void __synchronize_srcu(struct srcu_struct *sp, int trycount)
* Note that it is illegal to call synchronize_srcu() from the corresponding
* SRCU read-side critical section; doing so will result in deadlock.
* However, it is perfectly legal to call synchronize_srcu() on one
- * srcu_struct from some other srcu_struct's read-side critical section.
+ * srcu_struct from some other srcu_struct's read-side critical section,
+ * as long as the resulting graph of srcu_structs is acyclic.
+ *
+ * There are memory-ordering constraints implied by synchronize_srcu().
+ * On systems with more than one CPU, when synchronize_srcu() returns,
+ * each CPU is guaranteed to have executed a full memory barrier since
+ * the end of its last corresponding SRCU-sched read-side critical section
+ * whose beginning preceded the call to synchronize_srcu(). In addition,
+ * each CPU having an SRCU read-side critical section that extends beyond
+ * the return from synchronize_srcu() is guaranteed to have executed a
+ * full memory barrier after the beginning of synchronize_srcu() and before
+ * the beginning of that SRCU read-side critical section. Note that these
+ * guarantees include CPUs that are offline, idle, or executing in user mode,
+ * as well as CPUs that are executing in the kernel.
+ *
+ * Furthermore, if CPU A invoked synchronize_srcu(), which returned
+ * to its caller on CPU B, then both CPU A and CPU B are guaranteed
+ * to have executed a full memory barrier during the execution of
+ * synchronize_srcu(). This guarantee applies even if CPU A and CPU B
+ * are the same CPU, but again only if the system has more than one CPU.
+ *
+ * Of course, these memory-ordering guarantees apply only when
+ * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
+ * passed the same srcu_struct structure.
*/
void synchronize_srcu(struct srcu_struct *sp)
{
@@ -476,12 +522,8 @@ EXPORT_SYMBOL_GPL(synchronize_srcu);
* Wait for an SRCU grace period to elapse, but be more aggressive about
* spinning rather than blocking when waiting.
*
- * Note that it is also illegal to call synchronize_srcu_expedited()
- * from the corresponding SRCU read-side critical section;
- * doing so will result in deadlock. However, it is perfectly legal
- * to call synchronize_srcu_expedited() on one srcu_struct from some
- * other srcu_struct's read-side critical section, as long as
- * the resulting graph of srcu_structs is acyclic.
+ * Note that synchronize_srcu_expedited() has the same deadlock and
+ * memory-ordering properties as does synchronize_srcu().
*/
void synchronize_srcu_expedited(struct srcu_struct *sp)
{
@@ -491,6 +533,7 @@ EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
/**
* srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
+ * @sp: srcu_struct on which to wait for in-flight callbacks.
*/
void srcu_barrier(struct srcu_struct *sp)
{
diff --git a/kernel/rcu/torture.c b/kernel/rcu/torture.c
index 3929cd451511..732f8ae3086a 100644
--- a/kernel/rcu/torture.c
+++ b/kernel/rcu/torture.c
@@ -139,8 +139,6 @@ MODULE_PARM_DESC(verbose, "Enable verbose debugging printk()s");
#define VERBOSE_PRINTK_ERRSTRING(s) \
do { if (verbose) pr_alert("%s" TORTURE_FLAG "!!! " s "\n", torture_type); } while (0)
-static char printk_buf[4096];
-
static int nrealreaders;
static struct task_struct *writer_task;
static struct task_struct **fakewriter_tasks;
@@ -376,7 +374,7 @@ struct rcu_torture_ops {
void (*call)(struct rcu_head *head, void (*func)(struct rcu_head *rcu));
void (*cb_barrier)(void);
void (*fqs)(void);
- int (*stats)(char *page);
+ void (*stats)(char *page);
int irq_capable;
int can_boost;
const char *name;
@@ -578,21 +576,19 @@ static void srcu_torture_barrier(void)
srcu_barrier(&srcu_ctl);
}
-static int srcu_torture_stats(char *page)
+static void srcu_torture_stats(char *page)
{
- int cnt = 0;
int cpu;
int idx = srcu_ctl.completed & 0x1;
- cnt += sprintf(&page[cnt], "%s%s per-CPU(idx=%d):",
+ page += sprintf(page, "%s%s per-CPU(idx=%d):",
torture_type, TORTURE_FLAG, idx);
for_each_possible_cpu(cpu) {
- cnt += sprintf(&page[cnt], " %d(%lu,%lu)", cpu,
+ page += sprintf(page, " %d(%lu,%lu)", cpu,
per_cpu_ptr(srcu_ctl.per_cpu_ref, cpu)->c[!idx],
per_cpu_ptr(srcu_ctl.per_cpu_ref, cpu)->c[idx]);
}
- cnt += sprintf(&page[cnt], "\n");
- return cnt;
+ sprintf(page, "\n");
}
static void srcu_torture_synchronize_expedited(void)
@@ -1052,10 +1048,9 @@ rcu_torture_reader(void *arg)
/*
* Create an RCU-torture statistics message in the specified buffer.
*/
-static int
+static void
rcu_torture_printk(char *page)
{
- int cnt = 0;
int cpu;
int i;
long pipesummary[RCU_TORTURE_PIPE_LEN + 1] = { 0 };
@@ -1071,8 +1066,8 @@ rcu_torture_printk(char *page)
if (pipesummary[i] != 0)
break;
}
- cnt += sprintf(&page[cnt], "%s%s ", torture_type, TORTURE_FLAG);
- cnt += sprintf(&page[cnt],
+ page += sprintf(page, "%s%s ", torture_type, TORTURE_FLAG);
+ page += sprintf(page,
"rtc: %p ver: %lu tfle: %d rta: %d rtaf: %d rtf: %d ",
rcu_torture_current,
rcu_torture_current_version,
@@ -1080,53 +1075,52 @@ rcu_torture_printk(char *page)
atomic_read(&n_rcu_torture_alloc),
atomic_read(&n_rcu_torture_alloc_fail),
atomic_read(&n_rcu_torture_free));
- cnt += sprintf(&page[cnt], "rtmbe: %d rtbke: %ld rtbre: %ld ",
+ page += sprintf(page, "rtmbe: %d rtbke: %ld rtbre: %ld ",
atomic_read(&n_rcu_torture_mberror),
n_rcu_torture_boost_ktrerror,
n_rcu_torture_boost_rterror);
- cnt += sprintf(&page[cnt], "rtbf: %ld rtb: %ld nt: %ld ",
+ page += sprintf(page, "rtbf: %ld rtb: %ld nt: %ld ",
n_rcu_torture_boost_failure,
n_rcu_torture_boosts,
n_rcu_torture_timers);
- cnt += sprintf(&page[cnt],
+ page += sprintf(page,
"onoff: %ld/%ld:%ld/%ld %d,%d:%d,%d %lu:%lu (HZ=%d) ",
n_online_successes, n_online_attempts,
n_offline_successes, n_offline_attempts,
min_online, max_online,
min_offline, max_offline,
sum_online, sum_offline, HZ);
- cnt += sprintf(&page[cnt], "barrier: %ld/%ld:%ld",
+ page += sprintf(page, "barrier: %ld/%ld:%ld",
n_barrier_successes,
n_barrier_attempts,
n_rcu_torture_barrier_error);
- cnt += sprintf(&page[cnt], "\n%s%s ", torture_type, TORTURE_FLAG);
+ page += sprintf(page, "\n%s%s ", torture_type, TORTURE_FLAG);
if (atomic_read(&n_rcu_torture_mberror) != 0 ||
n_rcu_torture_barrier_error != 0 ||
n_rcu_torture_boost_ktrerror != 0 ||
n_rcu_torture_boost_rterror != 0 ||
n_rcu_torture_boost_failure != 0 ||
i > 1) {
- cnt += sprintf(&page[cnt], "!!! ");
+ page += sprintf(page, "!!! ");
atomic_inc(&n_rcu_torture_error);
WARN_ON_ONCE(1);
}
- cnt += sprintf(&page[cnt], "Reader Pipe: ");
+ page += sprintf(page, "Reader Pipe: ");
for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++)
- cnt += sprintf(&page[cnt], " %ld", pipesummary[i]);
- cnt += sprintf(&page[cnt], "\n%s%s ", torture_type, TORTURE_FLAG);
- cnt += sprintf(&page[cnt], "Reader Batch: ");
+ page += sprintf(page, " %ld", pipesummary[i]);
+ page += sprintf(page, "\n%s%s ", torture_type, TORTURE_FLAG);
+ page += sprintf(page, "Reader Batch: ");
for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++)
- cnt += sprintf(&page[cnt], " %ld", batchsummary[i]);
- cnt += sprintf(&page[cnt], "\n%s%s ", torture_type, TORTURE_FLAG);
- cnt += sprintf(&page[cnt], "Free-Block Circulation: ");
+ page += sprintf(page, " %ld", batchsummary[i]);
+ page += sprintf(page, "\n%s%s ", torture_type, TORTURE_FLAG);
+ page += sprintf(page, "Free-Block Circulation: ");
for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++) {
- cnt += sprintf(&page[cnt], " %d",
+ page += sprintf(page, " %d",
atomic_read(&rcu_torture_wcount[i]));
}
- cnt += sprintf(&page[cnt], "\n");
+ page += sprintf(page, "\n");
if (cur_ops->stats)
- cnt += cur_ops->stats(&page[cnt]);
- return cnt;
+ cur_ops->stats(page);
}
/*
@@ -1140,10 +1134,17 @@ rcu_torture_printk(char *page)
static void
rcu_torture_stats_print(void)
{
- int cnt;
+ int size = nr_cpu_ids * 200 + 8192;
+ char *buf;
- cnt = rcu_torture_printk(printk_buf);
- pr_alert("%s", printk_buf);
+ buf = kmalloc(size, GFP_KERNEL);
+ if (!buf) {
+ pr_err("rcu-torture: Out of memory, need: %d", size);
+ return;
+ }
+ rcu_torture_printk(buf);
+ pr_alert("%s", buf);
+ kfree(buf);
}
/*
@@ -1578,6 +1579,7 @@ static int rcu_torture_barrier_cbs(void *arg)
{
long myid = (long)arg;
bool lastphase = 0;
+ bool newphase;
struct rcu_head rcu;
init_rcu_head_on_stack(&rcu);
@@ -1585,10 +1587,11 @@ static int rcu_torture_barrier_cbs(void *arg)
set_user_nice(current, 19);
do {
wait_event(barrier_cbs_wq[myid],
- barrier_phase != lastphase ||
+ (newphase =
+ ACCESS_ONCE(barrier_phase)) != lastphase ||
kthread_should_stop() ||
fullstop != FULLSTOP_DONTSTOP);
- lastphase = barrier_phase;
+ lastphase = newphase;
smp_mb(); /* ensure barrier_phase load before ->call(). */
if (kthread_should_stop() || fullstop != FULLSTOP_DONTSTOP)
break;
@@ -1625,7 +1628,7 @@ static int rcu_torture_barrier(void *arg)
if (kthread_should_stop() || fullstop != FULLSTOP_DONTSTOP)
break;
n_barrier_attempts++;
- cur_ops->cb_barrier();
+ cur_ops->cb_barrier(); /* Implies smp_mb() for wait_event(). */
if (atomic_read(&barrier_cbs_invoked) != n_barrier_cbs) {
n_rcu_torture_barrier_error++;
WARN_ON_ONCE(1);
diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c
index dd081987a8ec..b3d116cd072d 100644
--- a/kernel/rcu/tree.c
+++ b/kernel/rcu/tree.c
@@ -369,6 +369,9 @@ static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
bool user)
{
+ struct rcu_state *rsp;
+ struct rcu_data *rdp;
+
trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
if (!user && !is_idle_task(current)) {
struct task_struct *idle __maybe_unused =
@@ -380,6 +383,10 @@ static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
current->pid, current->comm,
idle->pid, idle->comm); /* must be idle task! */
}
+ for_each_rcu_flavor(rsp) {
+ rdp = this_cpu_ptr(rsp->rda);
+ do_nocb_deferred_wakeup(rdp);
+ }
rcu_prepare_for_idle(smp_processor_id());
/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
smp_mb__before_atomic_inc(); /* See above. */
@@ -411,11 +418,12 @@ static void rcu_eqs_enter(bool user)
rdtp = this_cpu_ptr(&rcu_dynticks);
oldval = rdtp->dynticks_nesting;
WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
- if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
+ if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
rdtp->dynticks_nesting = 0;
- else
+ rcu_eqs_enter_common(rdtp, oldval, user);
+ } else {
rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
- rcu_eqs_enter_common(rdtp, oldval, user);
+ }
}
/**
@@ -533,11 +541,12 @@ static void rcu_eqs_exit(bool user)
rdtp = this_cpu_ptr(&rcu_dynticks);
oldval = rdtp->dynticks_nesting;
WARN_ON_ONCE(oldval < 0);
- if (oldval & DYNTICK_TASK_NEST_MASK)
+ if (oldval & DYNTICK_TASK_NEST_MASK) {
rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
- else
+ } else {
rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
- rcu_eqs_exit_common(rdtp, oldval, user);
+ rcu_eqs_exit_common(rdtp, oldval, user);
+ }
}
/**
@@ -716,7 +725,7 @@ bool rcu_lockdep_current_cpu_online(void)
bool ret;
if (in_nmi())
- return 1;
+ return true;
preempt_disable();
rdp = this_cpu_ptr(&rcu_sched_data);
rnp = rdp->mynode;
@@ -755,6 +764,12 @@ static int dyntick_save_progress_counter(struct rcu_data *rdp,
}
/*
+ * This function really isn't for public consumption, but RCU is special in
+ * that context switches can allow the state machine to make progress.
+ */
+extern void resched_cpu(int cpu);
+
+/*
* Return true if the specified CPU has passed through a quiescent
* state by virtue of being in or having passed through an dynticks
* idle state since the last call to dyntick_save_progress_counter()
@@ -812,16 +827,34 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
*/
rcu_kick_nohz_cpu(rdp->cpu);
+ /*
+ * Alternatively, the CPU might be running in the kernel
+ * for an extended period of time without a quiescent state.
+ * Attempt to force the CPU through the scheduler to gain the
+ * needed quiescent state, but only if the grace period has gone
+ * on for an uncommonly long time. If there are many stuck CPUs,
+ * we will beat on the first one until it gets unstuck, then move
+ * to the next. Only do this for the primary flavor of RCU.
+ */
+ if (rdp->rsp == rcu_state &&
+ ULONG_CMP_GE(ACCESS_ONCE(jiffies), rdp->rsp->jiffies_resched)) {
+ rdp->rsp->jiffies_resched += 5;
+ resched_cpu(rdp->cpu);
+ }
+
return 0;
}
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
unsigned long j = ACCESS_ONCE(jiffies);
+ unsigned long j1;
rsp->gp_start = j;
smp_wmb(); /* Record start time before stall time. */
- rsp->jiffies_stall = j + rcu_jiffies_till_stall_check();
+ j1 = rcu_jiffies_till_stall_check();
+ rsp->jiffies_stall = j + j1;
+ rsp->jiffies_resched = j + j1 / 2;
}
/*
@@ -1133,8 +1166,10 @@ rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
* hold it, acquire the root rcu_node structure's lock in order to
* start one (if needed).
*/
- if (rnp != rnp_root)
+ if (rnp != rnp_root) {
raw_spin_lock(&rnp_root->lock);
+ smp_mb__after_unlock_lock();
+ }
/*
* Get a new grace-period number. If there really is no grace
@@ -1354,6 +1389,7 @@ static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
local_irq_restore(flags);
return;
}
+ smp_mb__after_unlock_lock();
__note_gp_changes(rsp, rnp, rdp);
raw_spin_unlock_irqrestore(&rnp->lock, flags);
}
@@ -1368,6 +1404,7 @@ static int rcu_gp_init(struct rcu_state *rsp)
rcu_bind_gp_kthread();
raw_spin_lock_irq(&rnp->lock);
+ smp_mb__after_unlock_lock();
if (rsp->gp_flags == 0) {
/* Spurious wakeup, tell caller to go back to sleep. */
raw_spin_unlock_irq(&rnp->lock);
@@ -1409,6 +1446,7 @@ static int rcu_gp_init(struct rcu_state *rsp)
*/
rcu_for_each_node_breadth_first(rsp, rnp) {
raw_spin_lock_irq(&rnp->lock);
+ smp_mb__after_unlock_lock();
rdp = this_cpu_ptr(rsp->rda);
rcu_preempt_check_blocked_tasks(rnp);
rnp->qsmask = rnp->qsmaskinit;
@@ -1463,6 +1501,7 @@ static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
/* Clear flag to prevent immediate re-entry. */
if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
raw_spin_lock_irq(&rnp->lock);
+ smp_mb__after_unlock_lock();
rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
raw_spin_unlock_irq(&rnp->lock);
}
@@ -1480,6 +1519,7 @@ static void rcu_gp_cleanup(struct rcu_state *rsp)
struct rcu_node *rnp = rcu_get_root(rsp);
raw_spin_lock_irq(&rnp->lock);
+ smp_mb__after_unlock_lock();
gp_duration = jiffies - rsp->gp_start;
if (gp_duration > rsp->gp_max)
rsp->gp_max = gp_duration;
@@ -1505,16 +1545,19 @@ static void rcu_gp_cleanup(struct rcu_state *rsp)
*/
rcu_for_each_node_breadth_first(rsp, rnp) {
raw_spin_lock_irq(&rnp->lock);
+ smp_mb__after_unlock_lock();
ACCESS_ONCE(rnp->completed) = rsp->gpnum;
rdp = this_cpu_ptr(rsp->rda);
if (rnp == rdp->mynode)
__note_gp_changes(rsp, rnp, rdp);
+ /* smp_mb() provided by prior unlock-lock pair. */
nocb += rcu_future_gp_cleanup(rsp, rnp);
raw_spin_unlock_irq(&rnp->lock);
cond_resched();
}
rnp = rcu_get_root(rsp);
raw_spin_lock_irq(&rnp->lock);
+ smp_mb__after_unlock_lock();
rcu_nocb_gp_set(rnp, nocb);
rsp->completed = rsp->gpnum; /* Declare grace period done. */
@@ -1553,6 +1596,7 @@ static int __noreturn rcu_gp_kthread(void *arg)
wait_event_interruptible(rsp->gp_wq,
ACCESS_ONCE(rsp->gp_flags) &
RCU_GP_FLAG_INIT);
+ /* Locking provides needed memory barrier. */
if (rcu_gp_init(rsp))
break;
cond_resched();
@@ -1582,6 +1626,7 @@ static int __noreturn rcu_gp_kthread(void *arg)
(!ACCESS_ONCE(rnp->qsmask) &&
!rcu_preempt_blocked_readers_cgp(rnp)),
j);
+ /* Locking provides needed memory barriers. */
/* If grace period done, leave loop. */
if (!ACCESS_ONCE(rnp->qsmask) &&
!rcu_preempt_blocked_readers_cgp(rnp))
@@ -1749,6 +1794,7 @@ rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
rnp_c = rnp;
rnp = rnp->parent;
raw_spin_lock_irqsave(&rnp->lock, flags);
+ smp_mb__after_unlock_lock();
WARN_ON_ONCE(rnp_c->qsmask);
}
@@ -1778,6 +1824,7 @@ rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
rnp = rdp->mynode;
raw_spin_lock_irqsave(&rnp->lock, flags);
+ smp_mb__after_unlock_lock();
if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
rnp->completed == rnp->gpnum) {
@@ -1901,13 +1948,13 @@ rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
* Adopt the RCU callbacks from the specified rcu_state structure's
* orphanage. The caller must hold the ->orphan_lock.
*/
-static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
+static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
{
int i;
struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
/* No-CBs CPUs are handled specially. */
- if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
+ if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
return;
/* Do the accounting first. */
@@ -1986,12 +2033,13 @@ static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
- rcu_adopt_orphan_cbs(rsp);
+ rcu_adopt_orphan_cbs(rsp, flags);
/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
mask = rdp->grpmask; /* rnp->grplo is constant. */
do {
raw_spin_lock(&rnp->lock); /* irqs already disabled. */
+ smp_mb__after_unlock_lock();
rnp->qsmaskinit &= ~mask;
if (rnp->qsmaskinit != 0) {
if (rnp != rdp->mynode)
@@ -2202,6 +2250,7 @@ static void force_qs_rnp(struct rcu_state *rsp,
cond_resched();
mask = 0;
raw_spin_lock_irqsave(&rnp->lock, flags);
+ smp_mb__after_unlock_lock();
if (!rcu_gp_in_progress(rsp)) {
raw_spin_unlock_irqrestore(&rnp->lock, flags);
return;
@@ -2231,6 +2280,7 @@ static void force_qs_rnp(struct rcu_state *rsp,
rnp = rcu_get_root(rsp);
if (rnp->qsmask == 0) {
raw_spin_lock_irqsave(&rnp->lock, flags);
+ smp_mb__after_unlock_lock();
rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
}
}
@@ -2263,6 +2313,7 @@ static void force_quiescent_state(struct rcu_state *rsp)
/* Reached the root of the rcu_node tree, acquire lock. */
raw_spin_lock_irqsave(&rnp_old->lock, flags);
+ smp_mb__after_unlock_lock();
raw_spin_unlock(&rnp_old->fqslock);
if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
rsp->n_force_qs_lh++;
@@ -2303,6 +2354,9 @@ __rcu_process_callbacks(struct rcu_state *rsp)
/* If there are callbacks ready, invoke them. */
if (cpu_has_callbacks_ready_to_invoke(rdp))
invoke_rcu_callbacks(rsp, rdp);
+
+ /* Do any needed deferred wakeups of rcuo kthreads. */
+ do_nocb_deferred_wakeup(rdp);
}
/*
@@ -2378,6 +2432,7 @@ static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
struct rcu_node *rnp_root = rcu_get_root(rsp);
raw_spin_lock(&rnp_root->lock);
+ smp_mb__after_unlock_lock();
rcu_start_gp(rsp);
raw_spin_unlock(&rnp_root->lock);
} else {
@@ -2437,7 +2492,7 @@ __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
if (cpu != -1)
rdp = per_cpu_ptr(rsp->rda, cpu);
- offline = !__call_rcu_nocb(rdp, head, lazy);
+ offline = !__call_rcu_nocb(rdp, head, lazy, flags);
WARN_ON_ONCE(offline);
/* _call_rcu() is illegal on offline CPU; leak the callback. */
local_irq_restore(flags);
@@ -2757,6 +2812,10 @@ static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
/* Check for CPU stalls, if enabled. */
check_cpu_stall(rsp, rdp);
+ /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
+ if (rcu_nohz_full_cpu(rsp))
+ return 0;
+
/* Is the RCU core waiting for a quiescent state from this CPU? */
if (rcu_scheduler_fully_active &&
rdp->qs_pending && !rdp->passed_quiesce) {
@@ -2790,6 +2849,12 @@ static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
return 1;
}
+ /* Does this CPU need a deferred NOCB wakeup? */
+ if (rcu_nocb_need_deferred_wakeup(rdp)) {
+ rdp->n_rp_nocb_defer_wakeup++;
+ return 1;
+ }
+
/* nothing to do */
rdp->n_rp_need_nothing++;
return 0;
@@ -3214,9 +3279,9 @@ static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
int i;
- for (i = rcu_num_lvls - 1; i > 0; i--)
+ rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
+ for (i = rcu_num_lvls - 2; i >= 0; i--)
rsp->levelspread[i] = CONFIG_RCU_FANOUT;
- rsp->levelspread[0] = rcu_fanout_leaf;
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
@@ -3346,6 +3411,8 @@ static void __init rcu_init_geometry(void)
if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
nr_cpu_ids == NR_CPUS)
return;
+ pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
+ rcu_fanout_leaf, nr_cpu_ids);
/*
* Compute number of nodes that can be handled an rcu_node tree
diff --git a/kernel/rcu/tree.h b/kernel/rcu/tree.h
index 52be957c9fe2..8c19873f1ac9 100644
--- a/kernel/rcu/tree.h
+++ b/kernel/rcu/tree.h
@@ -317,6 +317,7 @@ struct rcu_data {
unsigned long n_rp_cpu_needs_gp;
unsigned long n_rp_gp_completed;
unsigned long n_rp_gp_started;
+ unsigned long n_rp_nocb_defer_wakeup;
unsigned long n_rp_need_nothing;
/* 6) _rcu_barrier() and OOM callbacks. */
@@ -335,6 +336,7 @@ struct rcu_data {
int nocb_p_count_lazy; /* (approximate). */
wait_queue_head_t nocb_wq; /* For nocb kthreads to sleep on. */
struct task_struct *nocb_kthread;
+ bool nocb_defer_wakeup; /* Defer wakeup of nocb_kthread. */
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
/* 8) RCU CPU stall data. */
@@ -453,6 +455,8 @@ struct rcu_state {
/* but in jiffies. */
unsigned long jiffies_stall; /* Time at which to check */
/* for CPU stalls. */
+ unsigned long jiffies_resched; /* Time at which to resched */
+ /* a reluctant CPU. */
unsigned long gp_max; /* Maximum GP duration in */
/* jiffies. */
const char *name; /* Name of structure. */
@@ -548,9 +552,12 @@ static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq);
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp);
static void rcu_init_one_nocb(struct rcu_node *rnp);
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
- bool lazy);
+ bool lazy, unsigned long flags);
static bool rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
- struct rcu_data *rdp);
+ struct rcu_data *rdp,
+ unsigned long flags);
+static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp);
+static void do_nocb_deferred_wakeup(struct rcu_data *rdp);
static void rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp);
static void rcu_spawn_nocb_kthreads(struct rcu_state *rsp);
static void rcu_kick_nohz_cpu(int cpu);
@@ -564,6 +571,7 @@ static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
unsigned long maxj);
static void rcu_bind_gp_kthread(void);
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp);
+static bool rcu_nohz_full_cpu(struct rcu_state *rsp);
#endif /* #ifndef RCU_TREE_NONCORE */
diff --git a/kernel/rcu/tree_plugin.h b/kernel/rcu/tree_plugin.h
index 08a765232432..6e2ef4b2b920 100644
--- a/kernel/rcu/tree_plugin.h
+++ b/kernel/rcu/tree_plugin.h
@@ -204,6 +204,7 @@ static void rcu_preempt_note_context_switch(int cpu)
rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
rnp = rdp->mynode;
raw_spin_lock_irqsave(&rnp->lock, flags);
+ smp_mb__after_unlock_lock();
t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
t->rcu_blocked_node = rnp;
@@ -312,6 +313,7 @@ static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
mask = rnp->grpmask;
raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
+ smp_mb__after_unlock_lock();
rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
}
@@ -361,10 +363,14 @@ void rcu_read_unlock_special(struct task_struct *t)
special = t->rcu_read_unlock_special;
if (special & RCU_READ_UNLOCK_NEED_QS) {
rcu_preempt_qs(smp_processor_id());
+ if (!t->rcu_read_unlock_special) {
+ local_irq_restore(flags);
+ return;
+ }
}
- /* Hardware IRQ handlers cannot block. */
- if (in_irq() || in_serving_softirq()) {
+ /* Hardware IRQ handlers cannot block, complain if they get here. */
+ if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
local_irq_restore(flags);
return;
}
@@ -381,6 +387,7 @@ void rcu_read_unlock_special(struct task_struct *t)
for (;;) {
rnp = t->rcu_blocked_node;
raw_spin_lock(&rnp->lock); /* irqs already disabled. */
+ smp_mb__after_unlock_lock();
if (rnp == t->rcu_blocked_node)
break;
raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
@@ -605,6 +612,7 @@ static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
while (!list_empty(lp)) {
t = list_entry(lp->next, typeof(*t), rcu_node_entry);
raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
+ smp_mb__after_unlock_lock();
list_del(&t->rcu_node_entry);
t->rcu_blocked_node = rnp_root;
list_add(&t->rcu_node_entry, lp_root);
@@ -629,6 +637,7 @@ static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
* in this case.
*/
raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
+ smp_mb__after_unlock_lock();
if (rnp_root->boost_tasks != NULL &&
rnp_root->boost_tasks != rnp_root->gp_tasks &&
rnp_root->boost_tasks != rnp_root->exp_tasks)
@@ -772,6 +781,7 @@ static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
unsigned long mask;
raw_spin_lock_irqsave(&rnp->lock, flags);
+ smp_mb__after_unlock_lock();
for (;;) {
if (!sync_rcu_preempt_exp_done(rnp)) {
raw_spin_unlock_irqrestore(&rnp->lock, flags);
@@ -779,14 +789,17 @@ static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
}
if (rnp->parent == NULL) {
raw_spin_unlock_irqrestore(&rnp->lock, flags);
- if (wake)
+ if (wake) {
+ smp_mb(); /* EGP done before wake_up(). */
wake_up(&sync_rcu_preempt_exp_wq);
+ }
break;
}
mask = rnp->grpmask;
raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
rnp = rnp->parent;
raw_spin_lock(&rnp->lock); /* irqs already disabled */
+ smp_mb__after_unlock_lock();
rnp->expmask &= ~mask;
}
}
@@ -806,6 +819,7 @@ sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
int must_wait = 0;
raw_spin_lock_irqsave(&rnp->lock, flags);
+ smp_mb__after_unlock_lock();
if (list_empty(&rnp->blkd_tasks)) {
raw_spin_unlock_irqrestore(&rnp->lock, flags);
} else {
@@ -886,6 +900,7 @@ void synchronize_rcu_expedited(void)
/* Initialize ->expmask for all non-leaf rcu_node structures. */
rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
raw_spin_lock_irqsave(&rnp->lock, flags);
+ smp_mb__after_unlock_lock();
rnp->expmask = rnp->qsmaskinit;
raw_spin_unlock_irqrestore(&rnp->lock, flags);
}
@@ -1191,6 +1206,7 @@ static int rcu_boost(struct rcu_node *rnp)
return 0; /* Nothing left to boost. */
raw_spin_lock_irqsave(&rnp->lock, flags);
+ smp_mb__after_unlock_lock();
/*
* Recheck under the lock: all tasks in need of boosting
@@ -1377,6 +1393,7 @@ static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
if (IS_ERR(t))
return PTR_ERR(t);
raw_spin_lock_irqsave(&rnp->lock, flags);
+ smp_mb__after_unlock_lock();
rnp->boost_kthread_task = t;
raw_spin_unlock_irqrestore(&rnp->lock, flags);
sp.sched_priority = RCU_BOOST_PRIO;
@@ -1769,6 +1786,7 @@ static void rcu_prepare_for_idle(int cpu)
continue;
rnp = rdp->mynode;
raw_spin_lock(&rnp->lock); /* irqs already disabled. */
+ smp_mb__after_unlock_lock();
rcu_accelerate_cbs(rsp, rnp, rdp);
raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
}
@@ -1852,6 +1870,7 @@ static int rcu_oom_notify(struct notifier_block *self,
/* Wait for callbacks from earlier instance to complete. */
wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
+ smp_mb(); /* Ensure callback reuse happens after callback invocation. */
/*
* Prevent premature wakeup: ensure that all increments happen
@@ -2101,7 +2120,8 @@ bool rcu_is_nocb_cpu(int cpu)
static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
struct rcu_head *rhp,
struct rcu_head **rhtp,
- int rhcount, int rhcount_lazy)
+ int rhcount, int rhcount_lazy,
+ unsigned long flags)
{
int len;
struct rcu_head **old_rhpp;
@@ -2122,9 +2142,16 @@ static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
}
len = atomic_long_read(&rdp->nocb_q_count);
if (old_rhpp == &rdp->nocb_head) {
- wake_up(&rdp->nocb_wq); /* ... only if queue was empty ... */
+ if (!irqs_disabled_flags(flags)) {
+ wake_up(&rdp->nocb_wq); /* ... if queue was empty ... */
+ trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
+ TPS("WakeEmpty"));
+ } else {
+ rdp->nocb_defer_wakeup = true;
+ trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
+ TPS("WakeEmptyIsDeferred"));
+ }
rdp->qlen_last_fqs_check = 0;
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeEmpty"));
} else if (len > rdp->qlen_last_fqs_check + qhimark) {
wake_up_process(t); /* ... or if many callbacks queued. */
rdp->qlen_last_fqs_check = LONG_MAX / 2;
@@ -2145,12 +2172,12 @@ static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
* "rcuo" kthread can find it.
*/
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
- bool lazy)
+ bool lazy, unsigned long flags)
{
if (!rcu_is_nocb_cpu(rdp->cpu))
return 0;
- __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy);
+ __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
if (__is_kfree_rcu_offset((unsigned long)rhp->func))
trace_rcu_kfree_callback(rdp->rsp->name, rhp,
(unsigned long)rhp->func,
@@ -2168,7 +2195,8 @@ static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
* not a no-CBs CPU.
*/
static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
- struct rcu_data *rdp)
+ struct rcu_data *rdp,
+ unsigned long flags)
{
long ql = rsp->qlen;
long qll = rsp->qlen_lazy;
@@ -2182,14 +2210,14 @@ static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
/* First, enqueue the donelist, if any. This preserves CB ordering. */
if (rsp->orphan_donelist != NULL) {
__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
- rsp->orphan_donetail, ql, qll);
+ rsp->orphan_donetail, ql, qll, flags);
ql = qll = 0;
rsp->orphan_donelist = NULL;
rsp->orphan_donetail = &rsp->orphan_donelist;
}
if (rsp->orphan_nxtlist != NULL) {
__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
- rsp->orphan_nxttail, ql, qll);
+ rsp->orphan_nxttail, ql, qll, flags);
ql = qll = 0;
rsp->orphan_nxtlist = NULL;
rsp->orphan_nxttail = &rsp->orphan_nxtlist;
@@ -2209,6 +2237,7 @@ static void rcu_nocb_wait_gp(struct rcu_data *rdp)
struct rcu_node *rnp = rdp->mynode;
raw_spin_lock_irqsave(&rnp->lock, flags);
+ smp_mb__after_unlock_lock();
c = rcu_start_future_gp(rnp, rdp);
raw_spin_unlock_irqrestore(&rnp->lock, flags);
@@ -2250,6 +2279,7 @@ static int rcu_nocb_kthread(void *arg)
trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
TPS("Sleep"));
wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
+ /* Memory barrier provide by xchg() below. */
} else if (firsttime) {
firsttime = 0;
trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
@@ -2310,6 +2340,22 @@ static int rcu_nocb_kthread(void *arg)
return 0;
}
+/* Is a deferred wakeup of rcu_nocb_kthread() required? */
+static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
+{
+ return ACCESS_ONCE(rdp->nocb_defer_wakeup);
+}
+
+/* Do a deferred wakeup of rcu_nocb_kthread(). */
+static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
+{
+ if (!rcu_nocb_need_deferred_wakeup(rdp))
+ return;
+ ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
+ wake_up(&rdp->nocb_wq);
+ trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
+}
+
/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
@@ -2365,13 +2411,14 @@ static void rcu_init_one_nocb(struct rcu_node *rnp)
}
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
- bool lazy)
+ bool lazy, unsigned long flags)
{
return 0;
}
static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
- struct rcu_data *rdp)
+ struct rcu_data *rdp,
+ unsigned long flags)
{
return 0;
}
@@ -2380,6 +2427,15 @@ static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}
+static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
+{
+ return false;
+}
+
+static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
+{
+}
+
static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
{
}
@@ -2829,3 +2885,23 @@ static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
}
#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
+
+/*
+ * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
+ * grace-period kthread will do force_quiescent_state() processing?
+ * The idea is to avoid waking up RCU core processing on such a
+ * CPU unless the grace period has extended for too long.
+ *
+ * This code relies on the fact that all NO_HZ_FULL CPUs are also
+ * CONFIG_RCU_NOCB_CPUs.
+ */
+static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
+{
+#ifdef CONFIG_NO_HZ_FULL
+ if (tick_nohz_full_cpu(smp_processor_id()) &&
+ (!rcu_gp_in_progress(rsp) ||
+ ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
+ return 1;
+#endif /* #ifdef CONFIG_NO_HZ_FULL */
+ return 0;
+}
diff --git a/kernel/rcu/tree_trace.c b/kernel/rcu/tree_trace.c
index 3596797b7e46..4def475336d4 100644
--- a/kernel/rcu/tree_trace.c
+++ b/kernel/rcu/tree_trace.c
@@ -364,9 +364,10 @@ static void print_one_rcu_pending(struct seq_file *m, struct rcu_data *rdp)
rdp->n_rp_report_qs,
rdp->n_rp_cb_ready,
rdp->n_rp_cpu_needs_gp);
- seq_printf(m, "gpc=%ld gps=%ld nn=%ld\n",
+ seq_printf(m, "gpc=%ld gps=%ld nn=%ld ndw%ld\n",
rdp->n_rp_gp_completed,
rdp->n_rp_gp_started,
+ rdp->n_rp_nocb_defer_wakeup,
rdp->n_rp_need_nothing);
}
diff --git a/kernel/rcu/update.c b/kernel/rcu/update.c
index 6cb3dff89e2b..802365ccd591 100644
--- a/kernel/rcu/update.c
+++ b/kernel/rcu/update.c
@@ -128,6 +128,11 @@ struct lockdep_map rcu_sched_lock_map =
STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
+static struct lock_class_key rcu_callback_key;
+struct lockdep_map rcu_callback_map =
+ STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
+EXPORT_SYMBOL_GPL(rcu_callback_map);
+
int notrace debug_lockdep_rcu_enabled(void)
{
return rcu_scheduler_active && debug_locks &&
diff --git a/kernel/reboot.c b/kernel/reboot.c
index f813b3474646..662c83fc16b7 100644
--- a/kernel/reboot.c
+++ b/kernel/reboot.c
@@ -104,7 +104,7 @@ int unregister_reboot_notifier(struct notifier_block *nb)
}
EXPORT_SYMBOL(unregister_reboot_notifier);
-static void migrate_to_reboot_cpu(void)
+void migrate_to_reboot_cpu(void)
{
/* The boot cpu is always logical cpu 0 */
int cpu = reboot_cpu;
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
index 7b621409cf15..9a95c8c2af2a 100644
--- a/kernel/sched/Makefile
+++ b/kernel/sched/Makefile
@@ -11,9 +11,10 @@ ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y)
CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer
endif
-obj-y += core.o proc.o clock.o cputime.o idle_task.o fair.o rt.o stop_task.o
+obj-y += core.o proc.o clock.o cputime.o
+obj-y += idle_task.o fair.o rt.o deadline.o stop_task.o
obj-y += wait.o completion.o
-obj-$(CONFIG_SMP) += cpupri.o
+obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o
obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o
obj-$(CONFIG_SCHEDSTATS) += stats.o
obj-$(CONFIG_SCHED_DEBUG) += debug.o
diff --git a/kernel/sched/clock.c b/kernel/sched/clock.c
index c3ae1446461c..6bd6a6731b21 100644
--- a/kernel/sched/clock.c
+++ b/kernel/sched/clock.c
@@ -26,9 +26,10 @@
* at 0 on boot (but people really shouldn't rely on that).
*
* cpu_clock(i) -- can be used from any context, including NMI.
- * sched_clock_cpu(i) -- must be used with local IRQs disabled (implied by NMI)
* local_clock() -- is cpu_clock() on the current cpu.
*
+ * sched_clock_cpu(i)
+ *
* How:
*
* The implementation either uses sched_clock() when
@@ -50,15 +51,6 @@
* Furthermore, explicit sleep and wakeup hooks allow us to account for time
* that is otherwise invisible (TSC gets stopped).
*
- *
- * Notes:
- *
- * The !IRQ-safetly of sched_clock() and sched_clock_cpu() comes from things
- * like cpufreq interrupts that can change the base clock (TSC) multiplier
- * and cause funny jumps in time -- although the filtering provided by
- * sched_clock_cpu() should mitigate serious artifacts we cannot rely on it
- * in general since for !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK we fully rely on
- * sched_clock().
*/
#include <linux/spinlock.h>
#include <linux/hardirq.h>
@@ -66,6 +58,8 @@
#include <linux/percpu.h>
#include <linux/ktime.h>
#include <linux/sched.h>
+#include <linux/static_key.h>
+#include <linux/workqueue.h>
/*
* Scheduler clock - returns current time in nanosec units.
@@ -82,7 +76,37 @@ EXPORT_SYMBOL_GPL(sched_clock);
__read_mostly int sched_clock_running;
#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
-__read_mostly int sched_clock_stable;
+static struct static_key __sched_clock_stable = STATIC_KEY_INIT;
+
+int sched_clock_stable(void)
+{
+ if (static_key_false(&__sched_clock_stable))
+ return false;
+ return true;
+}
+
+void set_sched_clock_stable(void)
+{
+ if (!sched_clock_stable())
+ static_key_slow_dec(&__sched_clock_stable);
+}
+
+static void __clear_sched_clock_stable(struct work_struct *work)
+{
+ /* XXX worry about clock continuity */
+ if (sched_clock_stable())
+ static_key_slow_inc(&__sched_clock_stable);
+}
+
+static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable);
+
+void clear_sched_clock_stable(void)
+{
+ if (keventd_up())
+ schedule_work(&sched_clock_work);
+ else
+ __clear_sched_clock_stable(&sched_clock_work);
+}
struct sched_clock_data {
u64 tick_raw;
@@ -242,20 +266,20 @@ u64 sched_clock_cpu(int cpu)
struct sched_clock_data *scd;
u64 clock;
- WARN_ON_ONCE(!irqs_disabled());
-
- if (sched_clock_stable)
+ if (sched_clock_stable())
return sched_clock();
if (unlikely(!sched_clock_running))
return 0ull;
+ preempt_disable();
scd = cpu_sdc(cpu);
if (cpu != smp_processor_id())
clock = sched_clock_remote(scd);
else
clock = sched_clock_local(scd);
+ preempt_enable();
return clock;
}
@@ -265,7 +289,7 @@ void sched_clock_tick(void)
struct sched_clock_data *scd;
u64 now, now_gtod;
- if (sched_clock_stable)
+ if (sched_clock_stable())
return;
if (unlikely(!sched_clock_running))
@@ -316,14 +340,10 @@ EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
*/
u64 cpu_clock(int cpu)
{
- u64 clock;
- unsigned long flags;
-
- local_irq_save(flags);
- clock = sched_clock_cpu(cpu);
- local_irq_restore(flags);
+ if (static_key_false(&__sched_clock_stable))
+ return sched_clock_cpu(cpu);
- return clock;
+ return sched_clock();
}
/*
@@ -335,14 +355,10 @@ u64 cpu_clock(int cpu)
*/
u64 local_clock(void)
{
- u64 clock;
- unsigned long flags;
+ if (static_key_false(&__sched_clock_stable))
+ return sched_clock_cpu(raw_smp_processor_id());
- local_irq_save(flags);
- clock = sched_clock_cpu(smp_processor_id());
- local_irq_restore(flags);
-
- return clock;
+ return sched_clock();
}
#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
@@ -362,12 +378,12 @@ u64 sched_clock_cpu(int cpu)
u64 cpu_clock(int cpu)
{
- return sched_clock_cpu(cpu);
+ return sched_clock();
}
u64 local_clock(void)
{
- return sched_clock_cpu(0);
+ return sched_clock();
}
#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index e85cda20ab2b..4d6964e49711 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -296,8 +296,6 @@ __read_mostly int scheduler_running;
*/
int sysctl_sched_rt_runtime = 950000;
-
-
/*
* __task_rq_lock - lock the rq @p resides on.
*/
@@ -899,7 +897,9 @@ static inline int normal_prio(struct task_struct *p)
{
int prio;
- if (task_has_rt_policy(p))
+ if (task_has_dl_policy(p))
+ prio = MAX_DL_PRIO-1;
+ else if (task_has_rt_policy(p))
prio = MAX_RT_PRIO-1 - p->rt_priority;
else
prio = __normal_prio(p);
@@ -945,7 +945,7 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p,
if (prev_class->switched_from)
prev_class->switched_from(rq, p);
p->sched_class->switched_to(rq, p);
- } else if (oldprio != p->prio)
+ } else if (oldprio != p->prio || dl_task(p))
p->sched_class->prio_changed(rq, p, oldprio);
}
@@ -1108,6 +1108,7 @@ int migrate_swap(struct task_struct *cur, struct task_struct *p)
if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
goto out;
+ trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
out:
@@ -1499,8 +1500,7 @@ void scheduler_ipi(void)
* TIF_NEED_RESCHED remotely (for the first time) will also send
* this IPI.
*/
- if (tif_need_resched())
- set_preempt_need_resched();
+ preempt_fold_need_resched();
if (llist_empty(&this_rq()->wake_list)
&& !tick_nohz_full_cpu(smp_processor_id())
@@ -1717,6 +1717,13 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
memset(&p->se.statistics, 0, sizeof(p->se.statistics));
#endif
+ RB_CLEAR_NODE(&p->dl.rb_node);
+ hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+ p->dl.dl_runtime = p->dl.runtime = 0;
+ p->dl.dl_deadline = p->dl.deadline = 0;
+ p->dl.dl_period = 0;
+ p->dl.flags = 0;
+
INIT_LIST_HEAD(&p->rt.run_list);
#ifdef CONFIG_PREEMPT_NOTIFIERS
@@ -1768,7 +1775,7 @@ void set_numabalancing_state(bool enabled)
/*
* fork()/clone()-time setup:
*/
-void sched_fork(unsigned long clone_flags, struct task_struct *p)
+int sched_fork(unsigned long clone_flags, struct task_struct *p)
{
unsigned long flags;
int cpu = get_cpu();
@@ -1790,7 +1797,7 @@ void sched_fork(unsigned long clone_flags, struct task_struct *p)
* Revert to default priority/policy on fork if requested.
*/
if (unlikely(p->sched_reset_on_fork)) {
- if (task_has_rt_policy(p)) {
+ if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
p->policy = SCHED_NORMAL;
p->static_prio = NICE_TO_PRIO(0);
p->rt_priority = 0;
@@ -1807,8 +1814,14 @@ void sched_fork(unsigned long clone_flags, struct task_struct *p)
p->sched_reset_on_fork = 0;
}
- if (!rt_prio(p->prio))
+ if (dl_prio(p->prio)) {
+ put_cpu();
+ return -EAGAIN;
+ } else if (rt_prio(p->prio)) {
+ p->sched_class = &rt_sched_class;
+ } else {
p->sched_class = &fair_sched_class;
+ }
if (p->sched_class->task_fork)
p->sched_class->task_fork(p);
@@ -1834,11 +1847,124 @@ void sched_fork(unsigned long clone_flags, struct task_struct *p)
init_task_preempt_count(p);
#ifdef CONFIG_SMP
plist_node_init(&p->pushable_tasks, MAX_PRIO);
+ RB_CLEAR_NODE(&p->pushable_dl_tasks);
#endif
put_cpu();
+ return 0;
+}
+
+unsigned long to_ratio(u64 period, u64 runtime)
+{
+ if (runtime == RUNTIME_INF)
+ return 1ULL << 20;
+
+ /*
+ * Doing this here saves a lot of checks in all
+ * the calling paths, and returning zero seems
+ * safe for them anyway.
+ */
+ if (period == 0)
+ return 0;
+
+ return div64_u64(runtime << 20, period);
+}
+
+#ifdef CONFIG_SMP
+inline struct dl_bw *dl_bw_of(int i)
+{
+ return &cpu_rq(i)->rd->dl_bw;
}
+static inline int dl_bw_cpus(int i)
+{
+ struct root_domain *rd = cpu_rq(i)->rd;
+ int cpus = 0;
+
+ for_each_cpu_and(i, rd->span, cpu_active_mask)
+ cpus++;
+
+ return cpus;
+}
+#else
+inline struct dl_bw *dl_bw_of(int i)
+{
+ return &cpu_rq(i)->dl.dl_bw;
+}
+
+static inline int dl_bw_cpus(int i)
+{
+ return 1;
+}
+#endif
+
+static inline
+void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
+{
+ dl_b->total_bw -= tsk_bw;
+}
+
+static inline
+void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
+{
+ dl_b->total_bw += tsk_bw;
+}
+
+static inline
+bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
+{
+ return dl_b->bw != -1 &&
+ dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
+}
+
+/*
+ * We must be sure that accepting a new task (or allowing changing the
+ * parameters of an existing one) is consistent with the bandwidth
+ * constraints. If yes, this function also accordingly updates the currently
+ * allocated bandwidth to reflect the new situation.
+ *
+ * This function is called while holding p's rq->lock.
+ */
+static int dl_overflow(struct task_struct *p, int policy,
+ const struct sched_attr *attr)
+{
+
+ struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
+ u64 period = attr->sched_period;
+ u64 runtime = attr->sched_runtime;
+ u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
+ int cpus, err = -1;
+
+ if (new_bw == p->dl.dl_bw)
+ return 0;
+
+ /*
+ * Either if a task, enters, leave, or stays -deadline but changes
+ * its parameters, we may need to update accordingly the total
+ * allocated bandwidth of the container.
+ */
+ raw_spin_lock(&dl_b->lock);
+ cpus = dl_bw_cpus(task_cpu(p));
+ if (dl_policy(policy) && !task_has_dl_policy(p) &&
+ !__dl_overflow(dl_b, cpus, 0, new_bw)) {
+ __dl_add(dl_b, new_bw);
+ err = 0;
+ } else if (dl_policy(policy) && task_has_dl_policy(p) &&
+ !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
+ __dl_clear(dl_b, p->dl.dl_bw);
+ __dl_add(dl_b, new_bw);
+ err = 0;
+ } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
+ __dl_clear(dl_b, p->dl.dl_bw);
+ err = 0;
+ }
+ raw_spin_unlock(&dl_b->lock);
+
+ return err;
+}
+
+extern void init_dl_bw(struct dl_bw *dl_b);
+
/*
* wake_up_new_task - wake up a newly created task for the first time.
*
@@ -2003,6 +2129,9 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev)
if (unlikely(prev_state == TASK_DEAD)) {
task_numa_free(prev);
+ if (prev->sched_class->task_dead)
+ prev->sched_class->task_dead(prev);
+
/*
* Remove function-return probe instances associated with this
* task and put them back on the free list.
@@ -2296,7 +2425,7 @@ void scheduler_tick(void)
#ifdef CONFIG_SMP
rq->idle_balance = idle_cpu(cpu);
- trigger_load_balance(rq, cpu);
+ trigger_load_balance(rq);
#endif
rq_last_tick_reset(rq);
}
@@ -2414,10 +2543,10 @@ static inline void schedule_debug(struct task_struct *prev)
{
/*
* Test if we are atomic. Since do_exit() needs to call into
- * schedule() atomically, we ignore that path for now.
- * Otherwise, whine if we are scheduling when we should not be.
+ * schedule() atomically, we ignore that path. Otherwise whine
+ * if we are scheduling when we should not.
*/
- if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
+ if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
__schedule_bug(prev);
rcu_sleep_check();
@@ -2761,11 +2890,11 @@ EXPORT_SYMBOL(sleep_on_timeout);
*/
void rt_mutex_setprio(struct task_struct *p, int prio)
{
- int oldprio, on_rq, running;
+ int oldprio, on_rq, running, enqueue_flag = 0;
struct rq *rq;
const struct sched_class *prev_class;
- BUG_ON(prio < 0 || prio > MAX_PRIO);
+ BUG_ON(prio > MAX_PRIO);
rq = __task_rq_lock(p);
@@ -2788,6 +2917,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
}
trace_sched_pi_setprio(p, prio);
+ p->pi_top_task = rt_mutex_get_top_task(p);
oldprio = p->prio;
prev_class = p->sched_class;
on_rq = p->on_rq;
@@ -2797,23 +2927,49 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
if (running)
p->sched_class->put_prev_task(rq, p);
- if (rt_prio(prio))
+ /*
+ * Boosting condition are:
+ * 1. -rt task is running and holds mutex A
+ * --> -dl task blocks on mutex A
+ *
+ * 2. -dl task is running and holds mutex A
+ * --> -dl task blocks on mutex A and could preempt the
+ * running task
+ */
+ if (dl_prio(prio)) {
+ if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
+ dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
+ p->dl.dl_boosted = 1;
+ p->dl.dl_throttled = 0;
+ enqueue_flag = ENQUEUE_REPLENISH;
+ } else
+ p->dl.dl_boosted = 0;
+ p->sched_class = &dl_sched_class;
+ } else if (rt_prio(prio)) {
+ if (dl_prio(oldprio))
+ p->dl.dl_boosted = 0;
+ if (oldprio < prio)
+ enqueue_flag = ENQUEUE_HEAD;
p->sched_class = &rt_sched_class;
- else
+ } else {
+ if (dl_prio(oldprio))
+ p->dl.dl_boosted = 0;
p->sched_class = &fair_sched_class;
+ }
p->prio = prio;
if (running)
p->sched_class->set_curr_task(rq);
if (on_rq)
- enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
+ enqueue_task(rq, p, enqueue_flag);
check_class_changed(rq, p, prev_class, oldprio);
out_unlock:
__task_rq_unlock(rq);
}
#endif
+
void set_user_nice(struct task_struct *p, long nice)
{
int old_prio, delta, on_rq;
@@ -2831,9 +2987,9 @@ void set_user_nice(struct task_struct *p, long nice)
* The RT priorities are set via sched_setscheduler(), but we still
* allow the 'normal' nice value to be set - but as expected
* it wont have any effect on scheduling until the task is
- * SCHED_FIFO/SCHED_RR:
+ * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
*/
- if (task_has_rt_policy(p)) {
+ if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
p->static_prio = NICE_TO_PRIO(nice);
goto out_unlock;
}
@@ -2988,22 +3144,95 @@ static struct task_struct *find_process_by_pid(pid_t pid)
return pid ? find_task_by_vpid(pid) : current;
}
-/* Actually do priority change: must hold rq lock. */
+/*
+ * This function initializes the sched_dl_entity of a newly becoming
+ * SCHED_DEADLINE task.
+ *
+ * Only the static values are considered here, the actual runtime and the
+ * absolute deadline will be properly calculated when the task is enqueued
+ * for the first time with its new policy.
+ */
static void
-__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
+__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
+{
+ struct sched_dl_entity *dl_se = &p->dl;
+
+ init_dl_task_timer(dl_se);
+ dl_se->dl_runtime = attr->sched_runtime;
+ dl_se->dl_deadline = attr->sched_deadline;
+ dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
+ dl_se->flags = attr->sched_flags;
+ dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
+ dl_se->dl_throttled = 0;
+ dl_se->dl_new = 1;
+}
+
+/* Actually do priority change: must hold pi & rq lock. */
+static void __setscheduler(struct rq *rq, struct task_struct *p,
+ const struct sched_attr *attr)
{
+ int policy = attr->sched_policy;
+
+ if (policy == -1) /* setparam */
+ policy = p->policy;
+
p->policy = policy;
- p->rt_priority = prio;
+
+ if (dl_policy(policy))
+ __setparam_dl(p, attr);
+ else if (fair_policy(policy))
+ p->static_prio = NICE_TO_PRIO(attr->sched_nice);
+
+ /*
+ * __sched_setscheduler() ensures attr->sched_priority == 0 when
+ * !rt_policy. Always setting this ensures that things like
+ * getparam()/getattr() don't report silly values for !rt tasks.
+ */
+ p->rt_priority = attr->sched_priority;
+
p->normal_prio = normal_prio(p);
- /* we are holding p->pi_lock already */
p->prio = rt_mutex_getprio(p);
- if (rt_prio(p->prio))
+
+ if (dl_prio(p->prio))
+ p->sched_class = &dl_sched_class;
+ else if (rt_prio(p->prio))
p->sched_class = &rt_sched_class;
else
p->sched_class = &fair_sched_class;
+
set_load_weight(p);
}
+static void
+__getparam_dl(struct task_struct *p, struct sched_attr *attr)
+{
+ struct sched_dl_entity *dl_se = &p->dl;
+
+ attr->sched_priority = p->rt_priority;
+ attr->sched_runtime = dl_se->dl_runtime;
+ attr->sched_deadline = dl_se->dl_deadline;
+ attr->sched_period = dl_se->dl_period;
+ attr->sched_flags = dl_se->flags;
+}
+
+/*
+ * This function validates the new parameters of a -deadline task.
+ * We ask for the deadline not being zero, and greater or equal
+ * than the runtime, as well as the period of being zero or
+ * greater than deadline. Furthermore, we have to be sure that
+ * user parameters are above the internal resolution (1us); we
+ * check sched_runtime only since it is always the smaller one.
+ */
+static bool
+__checkparam_dl(const struct sched_attr *attr)
+{
+ return attr && attr->sched_deadline != 0 &&
+ (attr->sched_period == 0 ||
+ (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
+ (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
+ attr->sched_runtime >= (2 << (DL_SCALE - 1));
+}
+
/*
* check the target process has a UID that matches the current process's
*/
@@ -3020,10 +3249,12 @@ static bool check_same_owner(struct task_struct *p)
return match;
}
-static int __sched_setscheduler(struct task_struct *p, int policy,
- const struct sched_param *param, bool user)
+static int __sched_setscheduler(struct task_struct *p,
+ const struct sched_attr *attr,
+ bool user)
{
int retval, oldprio, oldpolicy = -1, on_rq, running;
+ int policy = attr->sched_policy;
unsigned long flags;
const struct sched_class *prev_class;
struct rq *rq;
@@ -3037,31 +3268,40 @@ recheck:
reset_on_fork = p->sched_reset_on_fork;
policy = oldpolicy = p->policy;
} else {
- reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
- policy &= ~SCHED_RESET_ON_FORK;
+ reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
- if (policy != SCHED_FIFO && policy != SCHED_RR &&
+ if (policy != SCHED_DEADLINE &&
+ policy != SCHED_FIFO && policy != SCHED_RR &&
policy != SCHED_NORMAL && policy != SCHED_BATCH &&
policy != SCHED_IDLE)
return -EINVAL;
}
+ if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
+ return -EINVAL;
+
/*
* Valid priorities for SCHED_FIFO and SCHED_RR are
* 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
* SCHED_BATCH and SCHED_IDLE is 0.
*/
- if (param->sched_priority < 0 ||
- (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
- (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
+ if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
+ (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
return -EINVAL;
- if (rt_policy(policy) != (param->sched_priority != 0))
+ if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
+ (rt_policy(policy) != (attr->sched_priority != 0)))
return -EINVAL;
/*
* Allow unprivileged RT tasks to decrease priority:
*/
if (user && !capable(CAP_SYS_NICE)) {
+ if (fair_policy(policy)) {
+ if (attr->sched_nice < TASK_NICE(p) &&
+ !can_nice(p, attr->sched_nice))
+ return -EPERM;
+ }
+
if (rt_policy(policy)) {
unsigned long rlim_rtprio =
task_rlimit(p, RLIMIT_RTPRIO);
@@ -3071,8 +3311,8 @@ recheck:
return -EPERM;
/* can't increase priority */
- if (param->sched_priority > p->rt_priority &&
- param->sched_priority > rlim_rtprio)
+ if (attr->sched_priority > p->rt_priority &&
+ attr->sched_priority > rlim_rtprio)
return -EPERM;
}
@@ -3120,14 +3360,21 @@ recheck:
/*
* If not changing anything there's no need to proceed further:
*/
- if (unlikely(policy == p->policy && (!rt_policy(policy) ||
- param->sched_priority == p->rt_priority))) {
+ if (unlikely(policy == p->policy)) {
+ if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
+ goto change;
+ if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
+ goto change;
+ if (dl_policy(policy))
+ goto change;
+
task_rq_unlock(rq, p, &flags);
return 0;
}
+change:
-#ifdef CONFIG_RT_GROUP_SCHED
if (user) {
+#ifdef CONFIG_RT_GROUP_SCHED
/*
* Do not allow realtime tasks into groups that have no runtime
* assigned.
@@ -3138,8 +3385,24 @@ recheck:
task_rq_unlock(rq, p, &flags);
return -EPERM;
}
- }
#endif
+#ifdef CONFIG_SMP
+ if (dl_bandwidth_enabled() && dl_policy(policy)) {
+ cpumask_t *span = rq->rd->span;
+
+ /*
+ * Don't allow tasks with an affinity mask smaller than
+ * the entire root_domain to become SCHED_DEADLINE. We
+ * will also fail if there's no bandwidth available.
+ */
+ if (!cpumask_subset(span, &p->cpus_allowed) ||
+ rq->rd->dl_bw.bw == 0) {
+ task_rq_unlock(rq, p, &flags);
+ return -EPERM;
+ }
+ }
+#endif
+ }
/* recheck policy now with rq lock held */
if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
@@ -3147,6 +3410,17 @@ recheck:
task_rq_unlock(rq, p, &flags);
goto recheck;
}
+
+ /*
+ * If setscheduling to SCHED_DEADLINE (or changing the parameters
+ * of a SCHED_DEADLINE task) we need to check if enough bandwidth
+ * is available.
+ */
+ if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
+ task_rq_unlock(rq, p, &flags);
+ return -EBUSY;
+ }
+
on_rq = p->on_rq;
running = task_current(rq, p);
if (on_rq)
@@ -3158,7 +3432,7 @@ recheck:
oldprio = p->prio;
prev_class = p->sched_class;
- __setscheduler(rq, p, policy, param->sched_priority);
+ __setscheduler(rq, p, attr);
if (running)
p->sched_class->set_curr_task(rq);
@@ -3173,6 +3447,26 @@ recheck:
return 0;
}
+static int _sched_setscheduler(struct task_struct *p, int policy,
+ const struct sched_param *param, bool check)
+{
+ struct sched_attr attr = {
+ .sched_policy = policy,
+ .sched_priority = param->sched_priority,
+ .sched_nice = PRIO_TO_NICE(p->static_prio),
+ };
+
+ /*
+ * Fixup the legacy SCHED_RESET_ON_FORK hack
+ */
+ if (policy & SCHED_RESET_ON_FORK) {
+ attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
+ policy &= ~SCHED_RESET_ON_FORK;
+ attr.sched_policy = policy;
+ }
+
+ return __sched_setscheduler(p, &attr, check);
+}
/**
* sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
* @p: the task in question.
@@ -3186,10 +3480,16 @@ recheck:
int sched_setscheduler(struct task_struct *p, int policy,
const struct sched_param *param)
{
- return __sched_setscheduler(p, policy, param, true);
+ return _sched_setscheduler(p, policy, param, true);
}
EXPORT_SYMBOL_GPL(sched_setscheduler);
+int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
+{
+ return __sched_setscheduler(p, attr, true);
+}
+EXPORT_SYMBOL_GPL(sched_setattr);
+
/**
* sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
* @p: the task in question.
@@ -3206,7 +3506,7 @@ EXPORT_SYMBOL_GPL(sched_setscheduler);
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
const struct sched_param *param)
{
- return __sched_setscheduler(p, policy, param, false);
+ return _sched_setscheduler(p, policy, param, false);
}
static int
@@ -3231,6 +3531,79 @@ do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
return retval;
}
+/*
+ * Mimics kernel/events/core.c perf_copy_attr().
+ */
+static int sched_copy_attr(struct sched_attr __user *uattr,
+ struct sched_attr *attr)
+{
+ u32 size;
+ int ret;
+
+ if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
+ return -EFAULT;
+
+ /*
+ * zero the full structure, so that a short copy will be nice.
+ */
+ memset(attr, 0, sizeof(*attr));
+
+ ret = get_user(size, &uattr->size);
+ if (ret)
+ return ret;
+
+ if (size > PAGE_SIZE) /* silly large */
+ goto err_size;
+
+ if (!size) /* abi compat */
+ size = SCHED_ATTR_SIZE_VER0;
+
+ if (size < SCHED_ATTR_SIZE_VER0)
+ goto err_size;
+
+ /*
+ * If we're handed a bigger struct than we know of,
+ * ensure all the unknown bits are 0 - i.e. new
+ * user-space does not rely on any kernel feature
+ * extensions we dont know about yet.
+ */
+ if (size > sizeof(*attr)) {
+ unsigned char __user *addr;
+ unsigned char __user *end;
+ unsigned char val;
+
+ addr = (void __user *)uattr + sizeof(*attr);
+ end = (void __user *)uattr + size;
+
+ for (; addr < end; addr++) {
+ ret = get_user(val, addr);
+ if (ret)
+ return ret;
+ if (val)
+ goto err_size;
+ }
+ size = sizeof(*attr);
+ }
+
+ ret = copy_from_user(attr, uattr, size);
+ if (ret)
+ return -EFAULT;
+
+ /*
+ * XXX: do we want to be lenient like existing syscalls; or do we want
+ * to be strict and return an error on out-of-bounds values?
+ */
+ attr->sched_nice = clamp(attr->sched_nice, -20, 19);
+
+out:
+ return ret;
+
+err_size:
+ put_user(sizeof(*attr), &uattr->size);
+ ret = -E2BIG;
+ goto out;
+}
+
/**
* sys_sched_setscheduler - set/change the scheduler policy and RT priority
* @pid: the pid in question.
@@ -3262,6 +3635,33 @@ SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
}
/**
+ * sys_sched_setattr - same as above, but with extended sched_attr
+ * @pid: the pid in question.
+ * @uattr: structure containing the extended parameters.
+ */
+SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
+{
+ struct sched_attr attr;
+ struct task_struct *p;
+ int retval;
+
+ if (!uattr || pid < 0)
+ return -EINVAL;
+
+ if (sched_copy_attr(uattr, &attr))
+ return -EFAULT;
+
+ rcu_read_lock();
+ retval = -ESRCH;
+ p = find_process_by_pid(pid);
+ if (p != NULL)
+ retval = sched_setattr(p, &attr);
+ rcu_read_unlock();
+
+ return retval;
+}
+
+/**
* sys_sched_getscheduler - get the policy (scheduling class) of a thread
* @pid: the pid in question.
*
@@ -3316,6 +3716,10 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
if (retval)
goto out_unlock;
+ if (task_has_dl_policy(p)) {
+ retval = -EINVAL;
+ goto out_unlock;
+ }
lp.sched_priority = p->rt_priority;
rcu_read_unlock();
@@ -3331,6 +3735,96 @@ out_unlock:
return retval;
}
+static int sched_read_attr(struct sched_attr __user *uattr,
+ struct sched_attr *attr,
+ unsigned int usize)
+{
+ int ret;
+
+ if (!access_ok(VERIFY_WRITE, uattr, usize))
+ return -EFAULT;
+
+ /*
+ * If we're handed a smaller struct than we know of,
+ * ensure all the unknown bits are 0 - i.e. old
+ * user-space does not get uncomplete information.
+ */
+ if (usize < sizeof(*attr)) {
+ unsigned char *addr;
+ unsigned char *end;
+
+ addr = (void *)attr + usize;
+ end = (void *)attr + sizeof(*attr);
+
+ for (; addr < end; addr++) {
+ if (*addr)
+ goto err_size;
+ }
+
+ attr->size = usize;
+ }
+
+ ret = copy_to_user(uattr, attr, usize);
+ if (ret)
+ return -EFAULT;
+
+out:
+ return ret;
+
+err_size:
+ ret = -E2BIG;
+ goto out;
+}
+
+/**
+ * sys_sched_getattr - similar to sched_getparam, but with sched_attr
+ * @pid: the pid in question.
+ * @uattr: structure containing the extended parameters.
+ * @size: sizeof(attr) for fwd/bwd comp.
+ */
+SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
+ unsigned int, size)
+{
+ struct sched_attr attr = {
+ .size = sizeof(struct sched_attr),
+ };
+ struct task_struct *p;
+ int retval;
+
+ if (!uattr || pid < 0 || size > PAGE_SIZE ||
+ size < SCHED_ATTR_SIZE_VER0)
+ return -EINVAL;
+
+ rcu_read_lock();
+ p = find_process_by_pid(pid);
+ retval = -ESRCH;
+ if (!p)
+ goto out_unlock;
+
+ retval = security_task_getscheduler(p);
+ if (retval)
+ goto out_unlock;
+
+ attr.sched_policy = p->policy;
+ if (p->sched_reset_on_fork)
+ attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
+ if (task_has_dl_policy(p))
+ __getparam_dl(p, &attr);
+ else if (task_has_rt_policy(p))
+ attr.sched_priority = p->rt_priority;
+ else
+ attr.sched_nice = TASK_NICE(p);
+
+ rcu_read_unlock();
+
+ retval = sched_read_attr(uattr, &attr, size);
+ return retval;
+
+out_unlock:
+ rcu_read_unlock();
+ return retval;
+}
+
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
{
cpumask_var_t cpus_allowed, new_mask;
@@ -3375,8 +3869,26 @@ long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
if (retval)
goto out_unlock;
+
cpuset_cpus_allowed(p, cpus_allowed);
cpumask_and(new_mask, in_mask, cpus_allowed);
+
+ /*
+ * Since bandwidth control happens on root_domain basis,
+ * if admission test is enabled, we only admit -deadline
+ * tasks allowed to run on all the CPUs in the task's
+ * root_domain.
+ */
+#ifdef CONFIG_SMP
+ if (task_has_dl_policy(p)) {
+ const struct cpumask *span = task_rq(p)->rd->span;
+
+ if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
+ retval = -EBUSY;
+ goto out_unlock;
+ }
+ }
+#endif
again:
retval = set_cpus_allowed_ptr(p, new_mask);
@@ -3653,7 +4165,7 @@ again:
}
double_rq_lock(rq, p_rq);
- while (task_rq(p) != p_rq) {
+ if (task_rq(p) != p_rq) {
double_rq_unlock(rq, p_rq);
goto again;
}
@@ -3742,6 +4254,7 @@ SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
case SCHED_RR:
ret = MAX_USER_RT_PRIO-1;
break;
+ case SCHED_DEADLINE:
case SCHED_NORMAL:
case SCHED_BATCH:
case SCHED_IDLE:
@@ -3768,6 +4281,7 @@ SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
case SCHED_RR:
ret = 1;
break;
+ case SCHED_DEADLINE:
case SCHED_NORMAL:
case SCHED_BATCH:
case SCHED_IDLE:
@@ -4090,6 +4604,7 @@ int migrate_task_to(struct task_struct *p, int target_cpu)
/* TODO: This is not properly updating schedstats */
+ trace_sched_move_numa(p, curr_cpu, target_cpu);
return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
@@ -4514,13 +5029,31 @@ static int sched_cpu_active(struct notifier_block *nfb,
static int sched_cpu_inactive(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
+ unsigned long flags;
+ long cpu = (long)hcpu;
+
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_DOWN_PREPARE:
- set_cpu_active((long)hcpu, false);
+ set_cpu_active(cpu, false);
+
+ /* explicitly allow suspend */
+ if (!(action & CPU_TASKS_FROZEN)) {
+ struct dl_bw *dl_b = dl_bw_of(cpu);
+ bool overflow;
+ int cpus;
+
+ raw_spin_lock_irqsave(&dl_b->lock, flags);
+ cpus = dl_bw_cpus(cpu);
+ overflow = __dl_overflow(dl_b, cpus, 0, 0);
+ raw_spin_unlock_irqrestore(&dl_b->lock, flags);
+
+ if (overflow)
+ return notifier_from_errno(-EBUSY);
+ }
return NOTIFY_OK;
- default:
- return NOTIFY_DONE;
}
+
+ return NOTIFY_DONE;
}
static int __init migration_init(void)
@@ -4739,6 +5272,8 @@ static void free_rootdomain(struct rcu_head *rcu)
struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
cpupri_cleanup(&rd->cpupri);
+ cpudl_cleanup(&rd->cpudl);
+ free_cpumask_var(rd->dlo_mask);
free_cpumask_var(rd->rto_mask);
free_cpumask_var(rd->online);
free_cpumask_var(rd->span);
@@ -4790,8 +5325,14 @@ static int init_rootdomain(struct root_domain *rd)
goto out;
if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
goto free_span;
- if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
+ if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
goto free_online;
+ if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
+ goto free_dlo_mask;
+
+ init_dl_bw(&rd->dl_bw);
+ if (cpudl_init(&rd->cpudl) != 0)
+ goto free_dlo_mask;
if (cpupri_init(&rd->cpupri) != 0)
goto free_rto_mask;
@@ -4799,6 +5340,8 @@ static int init_rootdomain(struct root_domain *rd)
free_rto_mask:
free_cpumask_var(rd->rto_mask);
+free_dlo_mask:
+ free_cpumask_var(rd->dlo_mask);
free_online:
free_cpumask_var(rd->online);
free_span:
@@ -4902,6 +5445,7 @@ DEFINE_PER_CPU(struct sched_domain *, sd_asym);
static void update_top_cache_domain(int cpu)
{
struct sched_domain *sd;
+ struct sched_domain *busy_sd = NULL;
int id = cpu;
int size = 1;
@@ -4909,9 +5453,9 @@ static void update_top_cache_domain(int cpu)
if (sd) {
id = cpumask_first(sched_domain_span(sd));
size = cpumask_weight(sched_domain_span(sd));
- sd = sd->parent; /* sd_busy */
+ busy_sd = sd->parent; /* sd_busy */
}
- rcu_assign_pointer(per_cpu(sd_busy, cpu), sd);
+ rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
per_cpu(sd_llc_size, cpu) = size;
@@ -5112,6 +5656,7 @@ build_overlap_sched_groups(struct sched_domain *sd, int cpu)
* die on a /0 trap.
*/
sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
+ sg->sgp->power_orig = sg->sgp->power;
/*
* Make sure the first group of this domain contains the
@@ -6148,6 +6693,7 @@ void __init sched_init_smp(void)
free_cpumask_var(non_isolated_cpus);
init_sched_rt_class();
+ init_sched_dl_class();
}
#else
void __init sched_init_smp(void)
@@ -6217,13 +6763,15 @@ void __init sched_init(void)
#endif /* CONFIG_CPUMASK_OFFSTACK */
}
+ init_rt_bandwidth(&def_rt_bandwidth,
+ global_rt_period(), global_rt_runtime());
+ init_dl_bandwidth(&def_dl_bandwidth,
+ global_rt_period(), global_rt_runtime());
+
#ifdef CONFIG_SMP
init_defrootdomain();
#endif
- init_rt_bandwidth(&def_rt_bandwidth,
- global_rt_period(), global_rt_runtime());
-
#ifdef CONFIG_RT_GROUP_SCHED
init_rt_bandwidth(&root_task_group.rt_bandwidth,
global_rt_period(), global_rt_runtime());
@@ -6247,6 +6795,7 @@ void __init sched_init(void)
rq->calc_load_update = jiffies + LOAD_FREQ;
init_cfs_rq(&rq->cfs);
init_rt_rq(&rq->rt, rq);
+ init_dl_rq(&rq->dl, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
root_task_group.shares = ROOT_TASK_GROUP_LOAD;
INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
@@ -6318,10 +6867,6 @@ void __init sched_init(void)
INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif
-#ifdef CONFIG_RT_MUTEXES
- plist_head_init(&init_task.pi_waiters);
-#endif
-
/*
* The boot idle thread does lazy MMU switching as well:
*/
@@ -6395,13 +6940,16 @@ EXPORT_SYMBOL(__might_sleep);
static void normalize_task(struct rq *rq, struct task_struct *p)
{
const struct sched_class *prev_class = p->sched_class;
+ struct sched_attr attr = {
+ .sched_policy = SCHED_NORMAL,
+ };
int old_prio = p->prio;
int on_rq;
on_rq = p->on_rq;
if (on_rq)
dequeue_task(rq, p, 0);
- __setscheduler(rq, p, SCHED_NORMAL, 0);
+ __setscheduler(rq, p, &attr);
if (on_rq) {
enqueue_task(rq, p, 0);
resched_task(rq->curr);
@@ -6431,7 +6979,7 @@ void normalize_rt_tasks(void)
p->se.statistics.block_start = 0;
#endif
- if (!rt_task(p)) {
+ if (!dl_task(p) && !rt_task(p)) {
/*
* Renice negative nice level userspace
* tasks back to 0:
@@ -6626,16 +7174,6 @@ void sched_move_task(struct task_struct *tsk)
}
#endif /* CONFIG_CGROUP_SCHED */
-#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
-static unsigned long to_ratio(u64 period, u64 runtime)
-{
- if (runtime == RUNTIME_INF)
- return 1ULL << 20;
-
- return div64_u64(runtime << 20, period);
-}
-#endif
-
#ifdef CONFIG_RT_GROUP_SCHED
/*
* Ensure that the real time constraints are schedulable.
@@ -6809,24 +7347,13 @@ static long sched_group_rt_period(struct task_group *tg)
do_div(rt_period_us, NSEC_PER_USEC);
return rt_period_us;
}
+#endif /* CONFIG_RT_GROUP_SCHED */
+#ifdef CONFIG_RT_GROUP_SCHED
static int sched_rt_global_constraints(void)
{
- u64 runtime, period;
int ret = 0;
- if (sysctl_sched_rt_period <= 0)
- return -EINVAL;
-
- runtime = global_rt_runtime();
- period = global_rt_period();
-
- /*
- * Sanity check on the sysctl variables.
- */
- if (runtime > period && runtime != RUNTIME_INF)
- return -EINVAL;
-
mutex_lock(&rt_constraints_mutex);
read_lock(&tasklist_lock);
ret = __rt_schedulable(NULL, 0, 0);
@@ -6849,17 +7376,7 @@ static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
static int sched_rt_global_constraints(void)
{
unsigned long flags;
- int i;
-
- if (sysctl_sched_rt_period <= 0)
- return -EINVAL;
-
- /*
- * There's always some RT tasks in the root group
- * -- migration, kstopmachine etc..
- */
- if (sysctl_sched_rt_runtime == 0)
- return -EBUSY;
+ int i, ret = 0;
raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
for_each_possible_cpu(i) {
@@ -6871,36 +7388,88 @@ static int sched_rt_global_constraints(void)
}
raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
- return 0;
+ return ret;
}
#endif /* CONFIG_RT_GROUP_SCHED */
-int sched_rr_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp,
- loff_t *ppos)
+static int sched_dl_global_constraints(void)
{
- int ret;
- static DEFINE_MUTEX(mutex);
+ u64 runtime = global_rt_runtime();
+ u64 period = global_rt_period();
+ u64 new_bw = to_ratio(period, runtime);
+ int cpu, ret = 0;
- mutex_lock(&mutex);
- ret = proc_dointvec(table, write, buffer, lenp, ppos);
- /* make sure that internally we keep jiffies */
- /* also, writing zero resets timeslice to default */
- if (!ret && write) {
- sched_rr_timeslice = sched_rr_timeslice <= 0 ?
- RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
+ /*
+ * Here we want to check the bandwidth not being set to some
+ * value smaller than the currently allocated bandwidth in
+ * any of the root_domains.
+ *
+ * FIXME: Cycling on all the CPUs is overdoing, but simpler than
+ * cycling on root_domains... Discussion on different/better
+ * solutions is welcome!
+ */
+ for_each_possible_cpu(cpu) {
+ struct dl_bw *dl_b = dl_bw_of(cpu);
+
+ raw_spin_lock(&dl_b->lock);
+ if (new_bw < dl_b->total_bw)
+ ret = -EBUSY;
+ raw_spin_unlock(&dl_b->lock);
+
+ if (ret)
+ break;
}
- mutex_unlock(&mutex);
+
return ret;
}
+static void sched_dl_do_global(void)
+{
+ u64 new_bw = -1;
+ int cpu;
+
+ def_dl_bandwidth.dl_period = global_rt_period();
+ def_dl_bandwidth.dl_runtime = global_rt_runtime();
+
+ if (global_rt_runtime() != RUNTIME_INF)
+ new_bw = to_ratio(global_rt_period(), global_rt_runtime());
+
+ /*
+ * FIXME: As above...
+ */
+ for_each_possible_cpu(cpu) {
+ struct dl_bw *dl_b = dl_bw_of(cpu);
+
+ raw_spin_lock(&dl_b->lock);
+ dl_b->bw = new_bw;
+ raw_spin_unlock(&dl_b->lock);
+ }
+}
+
+static int sched_rt_global_validate(void)
+{
+ if (sysctl_sched_rt_period <= 0)
+ return -EINVAL;
+
+ if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
+ return -EINVAL;
+
+ return 0;
+}
+
+static void sched_rt_do_global(void)
+{
+ def_rt_bandwidth.rt_runtime = global_rt_runtime();
+ def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
+}
+
int sched_rt_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
- int ret;
int old_period, old_runtime;
static DEFINE_MUTEX(mutex);
+ int ret;
mutex_lock(&mutex);
old_period = sysctl_sched_rt_period;
@@ -6909,21 +7478,50 @@ int sched_rt_handler(struct ctl_table *table, int write,
ret = proc_dointvec(table, write, buffer, lenp, ppos);
if (!ret && write) {
+ ret = sched_rt_global_validate();
+ if (ret)
+ goto undo;
+
ret = sched_rt_global_constraints();
- if (ret) {
- sysctl_sched_rt_period = old_period;
- sysctl_sched_rt_runtime = old_runtime;
- } else {
- def_rt_bandwidth.rt_runtime = global_rt_runtime();
- def_rt_bandwidth.rt_period =
- ns_to_ktime(global_rt_period());
- }
+ if (ret)
+ goto undo;
+
+ ret = sched_dl_global_constraints();
+ if (ret)
+ goto undo;
+
+ sched_rt_do_global();
+ sched_dl_do_global();
+ }
+ if (0) {
+undo:
+ sysctl_sched_rt_period = old_period;
+ sysctl_sched_rt_runtime = old_runtime;
}
mutex_unlock(&mutex);
return ret;
}
+int sched_rr_handler(struct ctl_table *table, int write,
+ void __user *buffer, size_t *lenp,
+ loff_t *ppos)
+{
+ int ret;
+ static DEFINE_MUTEX(mutex);
+
+ mutex_lock(&mutex);
+ ret = proc_dointvec(table, write, buffer, lenp, ppos);
+ /* make sure that internally we keep jiffies */
+ /* also, writing zero resets timeslice to default */
+ if (!ret && write) {
+ sched_rr_timeslice = sched_rr_timeslice <= 0 ?
+ RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
+ }
+ mutex_unlock(&mutex);
+ return ret;
+}
+
#ifdef CONFIG_CGROUP_SCHED
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
@@ -7256,15 +7854,14 @@ static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
return ret;
}
-static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
- struct cgroup_map_cb *cb)
+static int cpu_stats_show(struct seq_file *sf, void *v)
{
- struct task_group *tg = css_tg(css);
+ struct task_group *tg = css_tg(seq_css(sf));
struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
- cb->fill(cb, "nr_periods", cfs_b->nr_periods);
- cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
- cb->fill(cb, "throttled_time", cfs_b->throttled_time);
+ seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
+ seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
+ seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
return 0;
}
@@ -7318,7 +7915,7 @@ static struct cftype cpu_files[] = {
},
{
.name = "stat",
- .read_map = cpu_stats_show,
+ .seq_show = cpu_stats_show,
},
#endif
#ifdef CONFIG_RT_GROUP_SCHED
diff --git a/kernel/sched/cpuacct.c b/kernel/sched/cpuacct.c
index f64722ff0299..622e0818f905 100644
--- a/kernel/sched/cpuacct.c
+++ b/kernel/sched/cpuacct.c
@@ -163,10 +163,9 @@ out:
return err;
}
-static int cpuacct_percpu_seq_read(struct cgroup_subsys_state *css,
- struct cftype *cft, struct seq_file *m)
+static int cpuacct_percpu_seq_show(struct seq_file *m, void *V)
{
- struct cpuacct *ca = css_ca(css);
+ struct cpuacct *ca = css_ca(seq_css(m));
u64 percpu;
int i;
@@ -183,10 +182,9 @@ static const char * const cpuacct_stat_desc[] = {
[CPUACCT_STAT_SYSTEM] = "system",
};
-static int cpuacct_stats_show(struct cgroup_subsys_state *css,
- struct cftype *cft, struct cgroup_map_cb *cb)
+static int cpuacct_stats_show(struct seq_file *sf, void *v)
{
- struct cpuacct *ca = css_ca(css);
+ struct cpuacct *ca = css_ca(seq_css(sf));
int cpu;
s64 val = 0;
@@ -196,7 +194,7 @@ static int cpuacct_stats_show(struct cgroup_subsys_state *css,
val += kcpustat->cpustat[CPUTIME_NICE];
}
val = cputime64_to_clock_t(val);
- cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
+ seq_printf(sf, "%s %lld\n", cpuacct_stat_desc[CPUACCT_STAT_USER], val);
val = 0;
for_each_online_cpu(cpu) {
@@ -207,7 +205,7 @@ static int cpuacct_stats_show(struct cgroup_subsys_state *css,
}
val = cputime64_to_clock_t(val);
- cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
+ seq_printf(sf, "%s %lld\n", cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
return 0;
}
@@ -220,11 +218,11 @@ static struct cftype files[] = {
},
{
.name = "usage_percpu",
- .read_seq_string = cpuacct_percpu_seq_read,
+ .seq_show = cpuacct_percpu_seq_show,
},
{
.name = "stat",
- .read_map = cpuacct_stats_show,
+ .seq_show = cpuacct_stats_show,
},
{ } /* terminate */
};
diff --git a/kernel/sched/cpudeadline.c b/kernel/sched/cpudeadline.c
new file mode 100644
index 000000000000..045fc74e3f09
--- /dev/null
+++ b/kernel/sched/cpudeadline.c
@@ -0,0 +1,216 @@
+/*
+ * kernel/sched/cpudl.c
+ *
+ * Global CPU deadline management
+ *
+ * Author: Juri Lelli <j.lelli@sssup.it>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; version 2
+ * of the License.
+ */
+
+#include <linux/gfp.h>
+#include <linux/kernel.h>
+#include "cpudeadline.h"
+
+static inline int parent(int i)
+{
+ return (i - 1) >> 1;
+}
+
+static inline int left_child(int i)
+{
+ return (i << 1) + 1;
+}
+
+static inline int right_child(int i)
+{
+ return (i << 1) + 2;
+}
+
+static inline int dl_time_before(u64 a, u64 b)
+{
+ return (s64)(a - b) < 0;
+}
+
+static void cpudl_exchange(struct cpudl *cp, int a, int b)
+{
+ int cpu_a = cp->elements[a].cpu, cpu_b = cp->elements[b].cpu;
+
+ swap(cp->elements[a], cp->elements[b]);
+ swap(cp->cpu_to_idx[cpu_a], cp->cpu_to_idx[cpu_b]);
+}
+
+static void cpudl_heapify(struct cpudl *cp, int idx)
+{
+ int l, r, largest;
+
+ /* adapted from lib/prio_heap.c */
+ while(1) {
+ l = left_child(idx);
+ r = right_child(idx);
+ largest = idx;
+
+ if ((l < cp->size) && dl_time_before(cp->elements[idx].dl,
+ cp->elements[l].dl))
+ largest = l;
+ if ((r < cp->size) && dl_time_before(cp->elements[largest].dl,
+ cp->elements[r].dl))
+ largest = r;
+ if (largest == idx)
+ break;
+
+ /* Push idx down the heap one level and bump one up */
+ cpudl_exchange(cp, largest, idx);
+ idx = largest;
+ }
+}
+
+static void cpudl_change_key(struct cpudl *cp, int idx, u64 new_dl)
+{
+ WARN_ON(idx > num_present_cpus() || idx == IDX_INVALID);
+
+ if (dl_time_before(new_dl, cp->elements[idx].dl)) {
+ cp->elements[idx].dl = new_dl;
+ cpudl_heapify(cp, idx);
+ } else {
+ cp->elements[idx].dl = new_dl;
+ while (idx > 0 && dl_time_before(cp->elements[parent(idx)].dl,
+ cp->elements[idx].dl)) {
+ cpudl_exchange(cp, idx, parent(idx));
+ idx = parent(idx);
+ }
+ }
+}
+
+static inline int cpudl_maximum(struct cpudl *cp)
+{
+ return cp->elements[0].cpu;
+}
+
+/*
+ * cpudl_find - find the best (later-dl) CPU in the system
+ * @cp: the cpudl max-heap context
+ * @p: the task
+ * @later_mask: a mask to fill in with the selected CPUs (or NULL)
+ *
+ * Returns: int - best CPU (heap maximum if suitable)
+ */
+int cpudl_find(struct cpudl *cp, struct task_struct *p,
+ struct cpumask *later_mask)
+{
+ int best_cpu = -1;
+ const struct sched_dl_entity *dl_se = &p->dl;
+
+ if (later_mask && cpumask_and(later_mask, cp->free_cpus,
+ &p->cpus_allowed) && cpumask_and(later_mask,
+ later_mask, cpu_active_mask)) {
+ best_cpu = cpumask_any(later_mask);
+ goto out;
+ } else if (cpumask_test_cpu(cpudl_maximum(cp), &p->cpus_allowed) &&
+ dl_time_before(dl_se->deadline, cp->elements[0].dl)) {
+ best_cpu = cpudl_maximum(cp);
+ if (later_mask)
+ cpumask_set_cpu(best_cpu, later_mask);
+ }
+
+out:
+ WARN_ON(best_cpu > num_present_cpus() && best_cpu != -1);
+
+ return best_cpu;
+}
+
+/*
+ * cpudl_set - update the cpudl max-heap
+ * @cp: the cpudl max-heap context
+ * @cpu: the target cpu
+ * @dl: the new earliest deadline for this cpu
+ *
+ * Notes: assumes cpu_rq(cpu)->lock is locked
+ *
+ * Returns: (void)
+ */
+void cpudl_set(struct cpudl *cp, int cpu, u64 dl, int is_valid)
+{
+ int old_idx, new_cpu;
+ unsigned long flags;
+
+ WARN_ON(cpu > num_present_cpus());
+
+ raw_spin_lock_irqsave(&cp->lock, flags);
+ old_idx = cp->cpu_to_idx[cpu];
+ if (!is_valid) {
+ /* remove item */
+ if (old_idx == IDX_INVALID) {
+ /*
+ * Nothing to remove if old_idx was invalid.
+ * This could happen if a rq_offline_dl is
+ * called for a CPU without -dl tasks running.
+ */
+ goto out;
+ }
+ new_cpu = cp->elements[cp->size - 1].cpu;
+ cp->elements[old_idx].dl = cp->elements[cp->size - 1].dl;
+ cp->elements[old_idx].cpu = new_cpu;
+ cp->size--;
+ cp->cpu_to_idx[new_cpu] = old_idx;
+ cp->cpu_to_idx[cpu] = IDX_INVALID;
+ while (old_idx > 0 && dl_time_before(
+ cp->elements[parent(old_idx)].dl,
+ cp->elements[old_idx].dl)) {
+ cpudl_exchange(cp, old_idx, parent(old_idx));
+ old_idx = parent(old_idx);
+ }
+ cpumask_set_cpu(cpu, cp->free_cpus);
+ cpudl_heapify(cp, old_idx);
+
+ goto out;
+ }
+
+ if (old_idx == IDX_INVALID) {
+ cp->size++;
+ cp->elements[cp->size - 1].dl = 0;
+ cp->elements[cp->size - 1].cpu = cpu;
+ cp->cpu_to_idx[cpu] = cp->size - 1;
+ cpudl_change_key(cp, cp->size - 1, dl);
+ cpumask_clear_cpu(cpu, cp->free_cpus);
+ } else {
+ cpudl_change_key(cp, old_idx, dl);
+ }
+
+out:
+ raw_spin_unlock_irqrestore(&cp->lock, flags);
+}
+
+/*
+ * cpudl_init - initialize the cpudl structure
+ * @cp: the cpudl max-heap context
+ */
+int cpudl_init(struct cpudl *cp)
+{
+ int i;
+
+ memset(cp, 0, sizeof(*cp));
+ raw_spin_lock_init(&cp->lock);
+ cp->size = 0;
+ for (i = 0; i < NR_CPUS; i++)
+ cp->cpu_to_idx[i] = IDX_INVALID;
+ if (!alloc_cpumask_var(&cp->free_cpus, GFP_KERNEL))
+ return -ENOMEM;
+ cpumask_setall(cp->free_cpus);
+
+ return 0;
+}
+
+/*
+ * cpudl_cleanup - clean up the cpudl structure
+ * @cp: the cpudl max-heap context
+ */
+void cpudl_cleanup(struct cpudl *cp)
+{
+ /*
+ * nothing to do for the moment
+ */
+}
diff --git a/kernel/sched/cpudeadline.h b/kernel/sched/cpudeadline.h
new file mode 100644
index 000000000000..a202789a412c
--- /dev/null
+++ b/kernel/sched/cpudeadline.h
@@ -0,0 +1,33 @@
+#ifndef _LINUX_CPUDL_H
+#define _LINUX_CPUDL_H
+
+#include <linux/sched.h>
+
+#define IDX_INVALID -1
+
+struct array_item {
+ u64 dl;
+ int cpu;
+};
+
+struct cpudl {
+ raw_spinlock_t lock;
+ int size;
+ int cpu_to_idx[NR_CPUS];
+ struct array_item elements[NR_CPUS];
+ cpumask_var_t free_cpus;
+};
+
+
+#ifdef CONFIG_SMP
+int cpudl_find(struct cpudl *cp, struct task_struct *p,
+ struct cpumask *later_mask);
+void cpudl_set(struct cpudl *cp, int cpu, u64 dl, int is_valid);
+int cpudl_init(struct cpudl *cp);
+void cpudl_cleanup(struct cpudl *cp);
+#else
+#define cpudl_set(cp, cpu, dl) do { } while (0)
+#define cpudl_init() do { } while (0)
+#endif /* CONFIG_SMP */
+
+#endif /* _LINUX_CPUDL_H */
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
new file mode 100644
index 000000000000..0de248202879
--- /dev/null
+++ b/kernel/sched/deadline.c
@@ -0,0 +1,1640 @@
+/*
+ * Deadline Scheduling Class (SCHED_DEADLINE)
+ *
+ * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
+ *
+ * Tasks that periodically executes their instances for less than their
+ * runtime won't miss any of their deadlines.
+ * Tasks that are not periodic or sporadic or that tries to execute more
+ * than their reserved bandwidth will be slowed down (and may potentially
+ * miss some of their deadlines), and won't affect any other task.
+ *
+ * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
+ * Juri Lelli <juri.lelli@gmail.com>,
+ * Michael Trimarchi <michael@amarulasolutions.com>,
+ * Fabio Checconi <fchecconi@gmail.com>
+ */
+#include "sched.h"
+
+#include <linux/slab.h>
+
+struct dl_bandwidth def_dl_bandwidth;
+
+static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
+{
+ return container_of(dl_se, struct task_struct, dl);
+}
+
+static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
+{
+ return container_of(dl_rq, struct rq, dl);
+}
+
+static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
+{
+ struct task_struct *p = dl_task_of(dl_se);
+ struct rq *rq = task_rq(p);
+
+ return &rq->dl;
+}
+
+static inline int on_dl_rq(struct sched_dl_entity *dl_se)
+{
+ return !RB_EMPTY_NODE(&dl_se->rb_node);
+}
+
+static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
+{
+ struct sched_dl_entity *dl_se = &p->dl;
+
+ return dl_rq->rb_leftmost == &dl_se->rb_node;
+}
+
+void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
+{
+ raw_spin_lock_init(&dl_b->dl_runtime_lock);
+ dl_b->dl_period = period;
+ dl_b->dl_runtime = runtime;
+}
+
+extern unsigned long to_ratio(u64 period, u64 runtime);
+
+void init_dl_bw(struct dl_bw *dl_b)
+{
+ raw_spin_lock_init(&dl_b->lock);
+ raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
+ if (global_rt_runtime() == RUNTIME_INF)
+ dl_b->bw = -1;
+ else
+ dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
+ raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
+ dl_b->total_bw = 0;
+}
+
+void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq)
+{
+ dl_rq->rb_root = RB_ROOT;
+
+#ifdef CONFIG_SMP
+ /* zero means no -deadline tasks */
+ dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
+
+ dl_rq->dl_nr_migratory = 0;
+ dl_rq->overloaded = 0;
+ dl_rq->pushable_dl_tasks_root = RB_ROOT;
+#else
+ init_dl_bw(&dl_rq->dl_bw);
+#endif
+}
+
+#ifdef CONFIG_SMP
+
+static inline int dl_overloaded(struct rq *rq)
+{
+ return atomic_read(&rq->rd->dlo_count);
+}
+
+static inline void dl_set_overload(struct rq *rq)
+{
+ if (!rq->online)
+ return;
+
+ cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
+ /*
+ * Must be visible before the overload count is
+ * set (as in sched_rt.c).
+ *
+ * Matched by the barrier in pull_dl_task().
+ */
+ smp_wmb();
+ atomic_inc(&rq->rd->dlo_count);
+}
+
+static inline void dl_clear_overload(struct rq *rq)
+{
+ if (!rq->online)
+ return;
+
+ atomic_dec(&rq->rd->dlo_count);
+ cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
+}
+
+static void update_dl_migration(struct dl_rq *dl_rq)
+{
+ if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_total > 1) {
+ if (!dl_rq->overloaded) {
+ dl_set_overload(rq_of_dl_rq(dl_rq));
+ dl_rq->overloaded = 1;
+ }
+ } else if (dl_rq->overloaded) {
+ dl_clear_overload(rq_of_dl_rq(dl_rq));
+ dl_rq->overloaded = 0;
+ }
+}
+
+static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+ struct task_struct *p = dl_task_of(dl_se);
+ dl_rq = &rq_of_dl_rq(dl_rq)->dl;
+
+ dl_rq->dl_nr_total++;
+ if (p->nr_cpus_allowed > 1)
+ dl_rq->dl_nr_migratory++;
+
+ update_dl_migration(dl_rq);
+}
+
+static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+ struct task_struct *p = dl_task_of(dl_se);
+ dl_rq = &rq_of_dl_rq(dl_rq)->dl;
+
+ dl_rq->dl_nr_total--;
+ if (p->nr_cpus_allowed > 1)
+ dl_rq->dl_nr_migratory--;
+
+ update_dl_migration(dl_rq);
+}
+
+/*
+ * The list of pushable -deadline task is not a plist, like in
+ * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
+ */
+static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
+{
+ struct dl_rq *dl_rq = &rq->dl;
+ struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
+ struct rb_node *parent = NULL;
+ struct task_struct *entry;
+ int leftmost = 1;
+
+ BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
+
+ while (*link) {
+ parent = *link;
+ entry = rb_entry(parent, struct task_struct,
+ pushable_dl_tasks);
+ if (dl_entity_preempt(&p->dl, &entry->dl))
+ link = &parent->rb_left;
+ else {
+ link = &parent->rb_right;
+ leftmost = 0;
+ }
+ }
+
+ if (leftmost)
+ dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
+
+ rb_link_node(&p->pushable_dl_tasks, parent, link);
+ rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
+}
+
+static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
+{
+ struct dl_rq *dl_rq = &rq->dl;
+
+ if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
+ return;
+
+ if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
+ struct rb_node *next_node;
+
+ next_node = rb_next(&p->pushable_dl_tasks);
+ dl_rq->pushable_dl_tasks_leftmost = next_node;
+ }
+
+ rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
+ RB_CLEAR_NODE(&p->pushable_dl_tasks);
+}
+
+static inline int has_pushable_dl_tasks(struct rq *rq)
+{
+ return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
+}
+
+static int push_dl_task(struct rq *rq);
+
+#else
+
+static inline
+void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
+{
+}
+
+static inline
+void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
+{
+}
+
+static inline
+void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+}
+
+static inline
+void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+}
+
+#endif /* CONFIG_SMP */
+
+static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
+static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
+static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
+ int flags);
+
+/*
+ * We are being explicitly informed that a new instance is starting,
+ * and this means that:
+ * - the absolute deadline of the entity has to be placed at
+ * current time + relative deadline;
+ * - the runtime of the entity has to be set to the maximum value.
+ *
+ * The capability of specifying such event is useful whenever a -deadline
+ * entity wants to (try to!) synchronize its behaviour with the scheduler's
+ * one, and to (try to!) reconcile itself with its own scheduling
+ * parameters.
+ */
+static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
+ struct sched_dl_entity *pi_se)
+{
+ struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+ struct rq *rq = rq_of_dl_rq(dl_rq);
+
+ WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
+
+ /*
+ * We use the regular wall clock time to set deadlines in the
+ * future; in fact, we must consider execution overheads (time
+ * spent on hardirq context, etc.).
+ */
+ dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
+ dl_se->runtime = pi_se->dl_runtime;
+ dl_se->dl_new = 0;
+}
+
+/*
+ * Pure Earliest Deadline First (EDF) scheduling does not deal with the
+ * possibility of a entity lasting more than what it declared, and thus
+ * exhausting its runtime.
+ *
+ * Here we are interested in making runtime overrun possible, but we do
+ * not want a entity which is misbehaving to affect the scheduling of all
+ * other entities.
+ * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
+ * is used, in order to confine each entity within its own bandwidth.
+ *
+ * This function deals exactly with that, and ensures that when the runtime
+ * of a entity is replenished, its deadline is also postponed. That ensures
+ * the overrunning entity can't interfere with other entity in the system and
+ * can't make them miss their deadlines. Reasons why this kind of overruns
+ * could happen are, typically, a entity voluntarily trying to overcome its
+ * runtime, or it just underestimated it during sched_setscheduler_ex().
+ */
+static void replenish_dl_entity(struct sched_dl_entity *dl_se,
+ struct sched_dl_entity *pi_se)
+{
+ struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+ struct rq *rq = rq_of_dl_rq(dl_rq);
+
+ BUG_ON(pi_se->dl_runtime <= 0);
+
+ /*
+ * This could be the case for a !-dl task that is boosted.
+ * Just go with full inherited parameters.
+ */
+ if (dl_se->dl_deadline == 0) {
+ dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
+ dl_se->runtime = pi_se->dl_runtime;
+ }
+
+ /*
+ * We keep moving the deadline away until we get some
+ * available runtime for the entity. This ensures correct
+ * handling of situations where the runtime overrun is
+ * arbitrary large.
+ */
+ while (dl_se->runtime <= 0) {
+ dl_se->deadline += pi_se->dl_period;
+ dl_se->runtime += pi_se->dl_runtime;
+ }
+
+ /*
+ * At this point, the deadline really should be "in
+ * the future" with respect to rq->clock. If it's
+ * not, we are, for some reason, lagging too much!
+ * Anyway, after having warn userspace abut that,
+ * we still try to keep the things running by
+ * resetting the deadline and the budget of the
+ * entity.
+ */
+ if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
+ static bool lag_once = false;
+
+ if (!lag_once) {
+ lag_once = true;
+ printk_sched("sched: DL replenish lagged to much\n");
+ }
+ dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
+ dl_se->runtime = pi_se->dl_runtime;
+ }
+}
+
+/*
+ * Here we check if --at time t-- an entity (which is probably being
+ * [re]activated or, in general, enqueued) can use its remaining runtime
+ * and its current deadline _without_ exceeding the bandwidth it is
+ * assigned (function returns true if it can't). We are in fact applying
+ * one of the CBS rules: when a task wakes up, if the residual runtime
+ * over residual deadline fits within the allocated bandwidth, then we
+ * can keep the current (absolute) deadline and residual budget without
+ * disrupting the schedulability of the system. Otherwise, we should
+ * refill the runtime and set the deadline a period in the future,
+ * because keeping the current (absolute) deadline of the task would
+ * result in breaking guarantees promised to other tasks.
+ *
+ * This function returns true if:
+ *
+ * runtime / (deadline - t) > dl_runtime / dl_period ,
+ *
+ * IOW we can't recycle current parameters.
+ *
+ * Notice that the bandwidth check is done against the period. For
+ * task with deadline equal to period this is the same of using
+ * dl_deadline instead of dl_period in the equation above.
+ */
+static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
+ struct sched_dl_entity *pi_se, u64 t)
+{
+ u64 left, right;
+
+ /*
+ * left and right are the two sides of the equation above,
+ * after a bit of shuffling to use multiplications instead
+ * of divisions.
+ *
+ * Note that none of the time values involved in the two
+ * multiplications are absolute: dl_deadline and dl_runtime
+ * are the relative deadline and the maximum runtime of each
+ * instance, runtime is the runtime left for the last instance
+ * and (deadline - t), since t is rq->clock, is the time left
+ * to the (absolute) deadline. Even if overflowing the u64 type
+ * is very unlikely to occur in both cases, here we scale down
+ * as we want to avoid that risk at all. Scaling down by 10
+ * means that we reduce granularity to 1us. We are fine with it,
+ * since this is only a true/false check and, anyway, thinking
+ * of anything below microseconds resolution is actually fiction
+ * (but still we want to give the user that illusion >;).
+ */
+ left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
+ right = ((dl_se->deadline - t) >> DL_SCALE) *
+ (pi_se->dl_runtime >> DL_SCALE);
+
+ return dl_time_before(right, left);
+}
+
+/*
+ * When a -deadline entity is queued back on the runqueue, its runtime and
+ * deadline might need updating.
+ *
+ * The policy here is that we update the deadline of the entity only if:
+ * - the current deadline is in the past,
+ * - using the remaining runtime with the current deadline would make
+ * the entity exceed its bandwidth.
+ */
+static void update_dl_entity(struct sched_dl_entity *dl_se,
+ struct sched_dl_entity *pi_se)
+{
+ struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+ struct rq *rq = rq_of_dl_rq(dl_rq);
+
+ /*
+ * The arrival of a new instance needs special treatment, i.e.,
+ * the actual scheduling parameters have to be "renewed".
+ */
+ if (dl_se->dl_new) {
+ setup_new_dl_entity(dl_se, pi_se);
+ return;
+ }
+
+ if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
+ dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
+ dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
+ dl_se->runtime = pi_se->dl_runtime;
+ }
+}
+
+/*
+ * If the entity depleted all its runtime, and if we want it to sleep
+ * while waiting for some new execution time to become available, we
+ * set the bandwidth enforcement timer to the replenishment instant
+ * and try to activate it.
+ *
+ * Notice that it is important for the caller to know if the timer
+ * actually started or not (i.e., the replenishment instant is in
+ * the future or in the past).
+ */
+static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
+{
+ struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+ struct rq *rq = rq_of_dl_rq(dl_rq);
+ ktime_t now, act;
+ ktime_t soft, hard;
+ unsigned long range;
+ s64 delta;
+
+ if (boosted)
+ return 0;
+ /*
+ * We want the timer to fire at the deadline, but considering
+ * that it is actually coming from rq->clock and not from
+ * hrtimer's time base reading.
+ */
+ act = ns_to_ktime(dl_se->deadline);
+ now = hrtimer_cb_get_time(&dl_se->dl_timer);
+ delta = ktime_to_ns(now) - rq_clock(rq);
+ act = ktime_add_ns(act, delta);
+
+ /*
+ * If the expiry time already passed, e.g., because the value
+ * chosen as the deadline is too small, don't even try to
+ * start the timer in the past!
+ */
+ if (ktime_us_delta(act, now) < 0)
+ return 0;
+
+ hrtimer_set_expires(&dl_se->dl_timer, act);
+
+ soft = hrtimer_get_softexpires(&dl_se->dl_timer);
+ hard = hrtimer_get_expires(&dl_se->dl_timer);
+ range = ktime_to_ns(ktime_sub(hard, soft));
+ __hrtimer_start_range_ns(&dl_se->dl_timer, soft,
+ range, HRTIMER_MODE_ABS, 0);
+
+ return hrtimer_active(&dl_se->dl_timer);
+}
+
+/*
+ * This is the bandwidth enforcement timer callback. If here, we know
+ * a task is not on its dl_rq, since the fact that the timer was running
+ * means the task is throttled and needs a runtime replenishment.
+ *
+ * However, what we actually do depends on the fact the task is active,
+ * (it is on its rq) or has been removed from there by a call to
+ * dequeue_task_dl(). In the former case we must issue the runtime
+ * replenishment and add the task back to the dl_rq; in the latter, we just
+ * do nothing but clearing dl_throttled, so that runtime and deadline
+ * updating (and the queueing back to dl_rq) will be done by the
+ * next call to enqueue_task_dl().
+ */
+static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
+{
+ struct sched_dl_entity *dl_se = container_of(timer,
+ struct sched_dl_entity,
+ dl_timer);
+ struct task_struct *p = dl_task_of(dl_se);
+ struct rq *rq = task_rq(p);
+ raw_spin_lock(&rq->lock);
+
+ /*
+ * We need to take care of a possible races here. In fact, the
+ * task might have changed its scheduling policy to something
+ * different from SCHED_DEADLINE or changed its reservation
+ * parameters (through sched_setscheduler()).
+ */
+ if (!dl_task(p) || dl_se->dl_new)
+ goto unlock;
+
+ sched_clock_tick();
+ update_rq_clock(rq);
+ dl_se->dl_throttled = 0;
+ if (p->on_rq) {
+ enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
+ if (task_has_dl_policy(rq->curr))
+ check_preempt_curr_dl(rq, p, 0);
+ else
+ resched_task(rq->curr);
+#ifdef CONFIG_SMP
+ /*
+ * Queueing this task back might have overloaded rq,
+ * check if we need to kick someone away.
+ */
+ if (has_pushable_dl_tasks(rq))
+ push_dl_task(rq);
+#endif
+ }
+unlock:
+ raw_spin_unlock(&rq->lock);
+
+ return HRTIMER_NORESTART;
+}
+
+void init_dl_task_timer(struct sched_dl_entity *dl_se)
+{
+ struct hrtimer *timer = &dl_se->dl_timer;
+
+ if (hrtimer_active(timer)) {
+ hrtimer_try_to_cancel(timer);
+ return;
+ }
+
+ hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+ timer->function = dl_task_timer;
+}
+
+static
+int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
+{
+ int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq));
+ int rorun = dl_se->runtime <= 0;
+
+ if (!rorun && !dmiss)
+ return 0;
+
+ /*
+ * If we are beyond our current deadline and we are still
+ * executing, then we have already used some of the runtime of
+ * the next instance. Thus, if we do not account that, we are
+ * stealing bandwidth from the system at each deadline miss!
+ */
+ if (dmiss) {
+ dl_se->runtime = rorun ? dl_se->runtime : 0;
+ dl_se->runtime -= rq_clock(rq) - dl_se->deadline;
+ }
+
+ return 1;
+}
+
+/*
+ * Update the current task's runtime statistics (provided it is still
+ * a -deadline task and has not been removed from the dl_rq).
+ */
+static void update_curr_dl(struct rq *rq)
+{
+ struct task_struct *curr = rq->curr;
+ struct sched_dl_entity *dl_se = &curr->dl;
+ u64 delta_exec;
+
+ if (!dl_task(curr) || !on_dl_rq(dl_se))
+ return;
+
+ /*
+ * Consumed budget is computed considering the time as
+ * observed by schedulable tasks (excluding time spent
+ * in hardirq context, etc.). Deadlines are instead
+ * computed using hard walltime. This seems to be the more
+ * natural solution, but the full ramifications of this
+ * approach need further study.
+ */
+ delta_exec = rq_clock_task(rq) - curr->se.exec_start;
+ if (unlikely((s64)delta_exec < 0))
+ delta_exec = 0;
+
+ schedstat_set(curr->se.statistics.exec_max,
+ max(curr->se.statistics.exec_max, delta_exec));
+
+ curr->se.sum_exec_runtime += delta_exec;
+ account_group_exec_runtime(curr, delta_exec);
+
+ curr->se.exec_start = rq_clock_task(rq);
+ cpuacct_charge(curr, delta_exec);
+
+ sched_rt_avg_update(rq, delta_exec);
+
+ dl_se->runtime -= delta_exec;
+ if (dl_runtime_exceeded(rq, dl_se)) {
+ __dequeue_task_dl(rq, curr, 0);
+ if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted)))
+ dl_se->dl_throttled = 1;
+ else
+ enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
+
+ if (!is_leftmost(curr, &rq->dl))
+ resched_task(curr);
+ }
+
+ /*
+ * Because -- for now -- we share the rt bandwidth, we need to
+ * account our runtime there too, otherwise actual rt tasks
+ * would be able to exceed the shared quota.
+ *
+ * Account to the root rt group for now.
+ *
+ * The solution we're working towards is having the RT groups scheduled
+ * using deadline servers -- however there's a few nasties to figure
+ * out before that can happen.
+ */
+ if (rt_bandwidth_enabled()) {
+ struct rt_rq *rt_rq = &rq->rt;
+
+ raw_spin_lock(&rt_rq->rt_runtime_lock);
+ rt_rq->rt_time += delta_exec;
+ /*
+ * We'll let actual RT tasks worry about the overflow here, we
+ * have our own CBS to keep us inline -- see above.
+ */
+ raw_spin_unlock(&rt_rq->rt_runtime_lock);
+ }
+}
+
+#ifdef CONFIG_SMP
+
+static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
+
+static inline u64 next_deadline(struct rq *rq)
+{
+ struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
+
+ if (next && dl_prio(next->prio))
+ return next->dl.deadline;
+ else
+ return 0;
+}
+
+static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
+{
+ struct rq *rq = rq_of_dl_rq(dl_rq);
+
+ if (dl_rq->earliest_dl.curr == 0 ||
+ dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
+ /*
+ * If the dl_rq had no -deadline tasks, or if the new task
+ * has shorter deadline than the current one on dl_rq, we
+ * know that the previous earliest becomes our next earliest,
+ * as the new task becomes the earliest itself.
+ */
+ dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
+ dl_rq->earliest_dl.curr = deadline;
+ cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
+ } else if (dl_rq->earliest_dl.next == 0 ||
+ dl_time_before(deadline, dl_rq->earliest_dl.next)) {
+ /*
+ * On the other hand, if the new -deadline task has a
+ * a later deadline than the earliest one on dl_rq, but
+ * it is earlier than the next (if any), we must
+ * recompute the next-earliest.
+ */
+ dl_rq->earliest_dl.next = next_deadline(rq);
+ }
+}
+
+static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
+{
+ struct rq *rq = rq_of_dl_rq(dl_rq);
+
+ /*
+ * Since we may have removed our earliest (and/or next earliest)
+ * task we must recompute them.
+ */
+ if (!dl_rq->dl_nr_running) {
+ dl_rq->earliest_dl.curr = 0;
+ dl_rq->earliest_dl.next = 0;
+ cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
+ } else {
+ struct rb_node *leftmost = dl_rq->rb_leftmost;
+ struct sched_dl_entity *entry;
+
+ entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
+ dl_rq->earliest_dl.curr = entry->deadline;
+ dl_rq->earliest_dl.next = next_deadline(rq);
+ cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
+ }
+}
+
+#else
+
+static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
+static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
+
+#endif /* CONFIG_SMP */
+
+static inline
+void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+ int prio = dl_task_of(dl_se)->prio;
+ u64 deadline = dl_se->deadline;
+
+ WARN_ON(!dl_prio(prio));
+ dl_rq->dl_nr_running++;
+
+ inc_dl_deadline(dl_rq, deadline);
+ inc_dl_migration(dl_se, dl_rq);
+}
+
+static inline
+void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+ int prio = dl_task_of(dl_se)->prio;
+
+ WARN_ON(!dl_prio(prio));
+ WARN_ON(!dl_rq->dl_nr_running);
+ dl_rq->dl_nr_running--;
+
+ dec_dl_deadline(dl_rq, dl_se->deadline);
+ dec_dl_migration(dl_se, dl_rq);
+}
+
+static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
+{
+ struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+ struct rb_node **link = &dl_rq->rb_root.rb_node;
+ struct rb_node *parent = NULL;
+ struct sched_dl_entity *entry;
+ int leftmost = 1;
+
+ BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
+
+ while (*link) {
+ parent = *link;
+ entry = rb_entry(parent, struct sched_dl_entity, rb_node);
+ if (dl_time_before(dl_se->deadline, entry->deadline))
+ link = &parent->rb_left;
+ else {
+ link = &parent->rb_right;
+ leftmost = 0;
+ }
+ }
+
+ if (leftmost)
+ dl_rq->rb_leftmost = &dl_se->rb_node;
+
+ rb_link_node(&dl_se->rb_node, parent, link);
+ rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
+
+ inc_dl_tasks(dl_se, dl_rq);
+}
+
+static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
+{
+ struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+
+ if (RB_EMPTY_NODE(&dl_se->rb_node))
+ return;
+
+ if (dl_rq->rb_leftmost == &dl_se->rb_node) {
+ struct rb_node *next_node;
+
+ next_node = rb_next(&dl_se->rb_node);
+ dl_rq->rb_leftmost = next_node;
+ }
+
+ rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
+ RB_CLEAR_NODE(&dl_se->rb_node);
+
+ dec_dl_tasks(dl_se, dl_rq);
+}
+
+static void
+enqueue_dl_entity(struct sched_dl_entity *dl_se,
+ struct sched_dl_entity *pi_se, int flags)
+{
+ BUG_ON(on_dl_rq(dl_se));
+
+ /*
+ * If this is a wakeup or a new instance, the scheduling
+ * parameters of the task might need updating. Otherwise,
+ * we want a replenishment of its runtime.
+ */
+ if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH)
+ replenish_dl_entity(dl_se, pi_se);
+ else
+ update_dl_entity(dl_se, pi_se);
+
+ __enqueue_dl_entity(dl_se);
+}
+
+static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
+{
+ __dequeue_dl_entity(dl_se);
+}
+
+static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
+{
+ struct task_struct *pi_task = rt_mutex_get_top_task(p);
+ struct sched_dl_entity *pi_se = &p->dl;
+
+ /*
+ * Use the scheduling parameters of the top pi-waiter
+ * task if we have one and its (relative) deadline is
+ * smaller than our one... OTW we keep our runtime and
+ * deadline.
+ */
+ if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio))
+ pi_se = &pi_task->dl;
+
+ /*
+ * If p is throttled, we do nothing. In fact, if it exhausted
+ * its budget it needs a replenishment and, since it now is on
+ * its rq, the bandwidth timer callback (which clearly has not
+ * run yet) will take care of this.
+ */
+ if (p->dl.dl_throttled)
+ return;
+
+ enqueue_dl_entity(&p->dl, pi_se, flags);
+
+ if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
+ enqueue_pushable_dl_task(rq, p);
+
+ inc_nr_running(rq);
+}
+
+static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
+{
+ dequeue_dl_entity(&p->dl);
+ dequeue_pushable_dl_task(rq, p);
+}
+
+static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
+{
+ update_curr_dl(rq);
+ __dequeue_task_dl(rq, p, flags);
+
+ dec_nr_running(rq);
+}
+
+/*
+ * Yield task semantic for -deadline tasks is:
+ *
+ * get off from the CPU until our next instance, with
+ * a new runtime. This is of little use now, since we
+ * don't have a bandwidth reclaiming mechanism. Anyway,
+ * bandwidth reclaiming is planned for the future, and
+ * yield_task_dl will indicate that some spare budget
+ * is available for other task instances to use it.
+ */
+static void yield_task_dl(struct rq *rq)
+{
+ struct task_struct *p = rq->curr;
+
+ /*
+ * We make the task go to sleep until its current deadline by
+ * forcing its runtime to zero. This way, update_curr_dl() stops
+ * it and the bandwidth timer will wake it up and will give it
+ * new scheduling parameters (thanks to dl_new=1).
+ */
+ if (p->dl.runtime > 0) {
+ rq->curr->dl.dl_new = 1;
+ p->dl.runtime = 0;
+ }
+ update_curr_dl(rq);
+}
+
+#ifdef CONFIG_SMP
+
+static int find_later_rq(struct task_struct *task);
+
+static int
+select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
+{
+ struct task_struct *curr;
+ struct rq *rq;
+
+ if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
+ goto out;
+
+ rq = cpu_rq(cpu);
+
+ rcu_read_lock();
+ curr = ACCESS_ONCE(rq->curr); /* unlocked access */
+
+ /*
+ * If we are dealing with a -deadline task, we must
+ * decide where to wake it up.
+ * If it has a later deadline and the current task
+ * on this rq can't move (provided the waking task
+ * can!) we prefer to send it somewhere else. On the
+ * other hand, if it has a shorter deadline, we
+ * try to make it stay here, it might be important.
+ */
+ if (unlikely(dl_task(curr)) &&
+ (curr->nr_cpus_allowed < 2 ||
+ !dl_entity_preempt(&p->dl, &curr->dl)) &&
+ (p->nr_cpus_allowed > 1)) {
+ int target = find_later_rq(p);
+
+ if (target != -1)
+ cpu = target;
+ }
+ rcu_read_unlock();
+
+out:
+ return cpu;
+}
+
+static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
+{
+ /*
+ * Current can't be migrated, useless to reschedule,
+ * let's hope p can move out.
+ */
+ if (rq->curr->nr_cpus_allowed == 1 ||
+ cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
+ return;
+
+ /*
+ * p is migratable, so let's not schedule it and
+ * see if it is pushed or pulled somewhere else.
+ */
+ if (p->nr_cpus_allowed != 1 &&
+ cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
+ return;
+
+ resched_task(rq->curr);
+}
+
+#endif /* CONFIG_SMP */
+
+/*
+ * Only called when both the current and waking task are -deadline
+ * tasks.
+ */
+static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
+ int flags)
+{
+ if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
+ resched_task(rq->curr);
+ return;
+ }
+
+#ifdef CONFIG_SMP
+ /*
+ * In the unlikely case current and p have the same deadline
+ * let us try to decide what's the best thing to do...
+ */
+ if ((p->dl.deadline == rq->curr->dl.deadline) &&
+ !test_tsk_need_resched(rq->curr))
+ check_preempt_equal_dl(rq, p);
+#endif /* CONFIG_SMP */
+}
+
+#ifdef CONFIG_SCHED_HRTICK
+static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
+{
+ s64 delta = p->dl.dl_runtime - p->dl.runtime;
+
+ if (delta > 10000)
+ hrtick_start(rq, p->dl.runtime);
+}
+#endif
+
+static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
+ struct dl_rq *dl_rq)
+{
+ struct rb_node *left = dl_rq->rb_leftmost;
+
+ if (!left)
+ return NULL;
+
+ return rb_entry(left, struct sched_dl_entity, rb_node);
+}
+
+struct task_struct *pick_next_task_dl(struct rq *rq)
+{
+ struct sched_dl_entity *dl_se;
+ struct task_struct *p;
+ struct dl_rq *dl_rq;
+
+ dl_rq = &rq->dl;
+
+ if (unlikely(!dl_rq->dl_nr_running))
+ return NULL;
+
+ dl_se = pick_next_dl_entity(rq, dl_rq);
+ BUG_ON(!dl_se);
+
+ p = dl_task_of(dl_se);
+ p->se.exec_start = rq_clock_task(rq);
+
+ /* Running task will never be pushed. */
+ dequeue_pushable_dl_task(rq, p);
+
+#ifdef CONFIG_SCHED_HRTICK
+ if (hrtick_enabled(rq))
+ start_hrtick_dl(rq, p);
+#endif
+
+#ifdef CONFIG_SMP
+ rq->post_schedule = has_pushable_dl_tasks(rq);
+#endif /* CONFIG_SMP */
+
+ return p;
+}
+
+static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
+{
+ update_curr_dl(rq);
+
+ if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
+ enqueue_pushable_dl_task(rq, p);
+}
+
+static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
+{
+ update_curr_dl(rq);
+
+#ifdef CONFIG_SCHED_HRTICK
+ if (hrtick_enabled(rq) && queued && p->dl.runtime > 0)
+ start_hrtick_dl(rq, p);
+#endif
+}
+
+static void task_fork_dl(struct task_struct *p)
+{
+ /*
+ * SCHED_DEADLINE tasks cannot fork and this is achieved through
+ * sched_fork()
+ */
+}
+
+static void task_dead_dl(struct task_struct *p)
+{
+ struct hrtimer *timer = &p->dl.dl_timer;
+ struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
+
+ /*
+ * Since we are TASK_DEAD we won't slip out of the domain!
+ */
+ raw_spin_lock_irq(&dl_b->lock);
+ dl_b->total_bw -= p->dl.dl_bw;
+ raw_spin_unlock_irq(&dl_b->lock);
+
+ hrtimer_cancel(timer);
+}
+
+static void set_curr_task_dl(struct rq *rq)
+{
+ struct task_struct *p = rq->curr;
+
+ p->se.exec_start = rq_clock_task(rq);
+
+ /* You can't push away the running task */
+ dequeue_pushable_dl_task(rq, p);
+}
+
+#ifdef CONFIG_SMP
+
+/* Only try algorithms three times */
+#define DL_MAX_TRIES 3
+
+static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
+{
+ if (!task_running(rq, p) &&
+ (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
+ (p->nr_cpus_allowed > 1))
+ return 1;
+
+ return 0;
+}
+
+/* Returns the second earliest -deadline task, NULL otherwise */
+static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
+{
+ struct rb_node *next_node = rq->dl.rb_leftmost;
+ struct sched_dl_entity *dl_se;
+ struct task_struct *p = NULL;
+
+next_node:
+ next_node = rb_next(next_node);
+ if (next_node) {
+ dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
+ p = dl_task_of(dl_se);
+
+ if (pick_dl_task(rq, p, cpu))
+ return p;
+
+ goto next_node;
+ }
+
+ return NULL;
+}
+
+static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
+
+static int find_later_rq(struct task_struct *task)
+{
+ struct sched_domain *sd;
+ struct cpumask *later_mask = __get_cpu_var(local_cpu_mask_dl);
+ int this_cpu = smp_processor_id();
+ int best_cpu, cpu = task_cpu(task);
+
+ /* Make sure the mask is initialized first */
+ if (unlikely(!later_mask))
+ return -1;
+
+ if (task->nr_cpus_allowed == 1)
+ return -1;
+
+ best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
+ task, later_mask);
+ if (best_cpu == -1)
+ return -1;
+
+ /*
+ * If we are here, some target has been found,
+ * the most suitable of which is cached in best_cpu.
+ * This is, among the runqueues where the current tasks
+ * have later deadlines than the task's one, the rq
+ * with the latest possible one.
+ *
+ * Now we check how well this matches with task's
+ * affinity and system topology.
+ *
+ * The last cpu where the task run is our first
+ * guess, since it is most likely cache-hot there.
+ */
+ if (cpumask_test_cpu(cpu, later_mask))
+ return cpu;
+ /*
+ * Check if this_cpu is to be skipped (i.e., it is
+ * not in the mask) or not.
+ */
+ if (!cpumask_test_cpu(this_cpu, later_mask))
+ this_cpu = -1;
+
+ rcu_read_lock();
+ for_each_domain(cpu, sd) {
+ if (sd->flags & SD_WAKE_AFFINE) {
+
+ /*
+ * If possible, preempting this_cpu is
+ * cheaper than migrating.
+ */
+ if (this_cpu != -1 &&
+ cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
+ rcu_read_unlock();
+ return this_cpu;
+ }
+
+ /*
+ * Last chance: if best_cpu is valid and is
+ * in the mask, that becomes our choice.
+ */
+ if (best_cpu < nr_cpu_ids &&
+ cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
+ rcu_read_unlock();
+ return best_cpu;
+ }
+ }
+ }
+ rcu_read_unlock();
+
+ /*
+ * At this point, all our guesses failed, we just return
+ * 'something', and let the caller sort the things out.
+ */
+ if (this_cpu != -1)
+ return this_cpu;
+
+ cpu = cpumask_any(later_mask);
+ if (cpu < nr_cpu_ids)
+ return cpu;
+
+ return -1;
+}
+
+/* Locks the rq it finds */
+static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
+{
+ struct rq *later_rq = NULL;
+ int tries;
+ int cpu;
+
+ for (tries = 0; tries < DL_MAX_TRIES; tries++) {
+ cpu = find_later_rq(task);
+
+ if ((cpu == -1) || (cpu == rq->cpu))
+ break;
+
+ later_rq = cpu_rq(cpu);
+
+ /* Retry if something changed. */
+ if (double_lock_balance(rq, later_rq)) {
+ if (unlikely(task_rq(task) != rq ||
+ !cpumask_test_cpu(later_rq->cpu,
+ &task->cpus_allowed) ||
+ task_running(rq, task) || !task->on_rq)) {
+ double_unlock_balance(rq, later_rq);
+ later_rq = NULL;
+ break;
+ }
+ }
+
+ /*
+ * If the rq we found has no -deadline task, or
+ * its earliest one has a later deadline than our
+ * task, the rq is a good one.
+ */
+ if (!later_rq->dl.dl_nr_running ||
+ dl_time_before(task->dl.deadline,
+ later_rq->dl.earliest_dl.curr))
+ break;
+
+ /* Otherwise we try again. */
+ double_unlock_balance(rq, later_rq);
+ later_rq = NULL;
+ }
+
+ return later_rq;
+}
+
+static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
+{
+ struct task_struct *p;
+
+ if (!has_pushable_dl_tasks(rq))
+ return NULL;
+
+ p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
+ struct task_struct, pushable_dl_tasks);
+
+ BUG_ON(rq->cpu != task_cpu(p));
+ BUG_ON(task_current(rq, p));
+ BUG_ON(p->nr_cpus_allowed <= 1);
+
+ BUG_ON(!p->on_rq);
+ BUG_ON(!dl_task(p));
+
+ return p;
+}
+
+/*
+ * See if the non running -deadline tasks on this rq
+ * can be sent to some other CPU where they can preempt
+ * and start executing.
+ */
+static int push_dl_task(struct rq *rq)
+{
+ struct task_struct *next_task;
+ struct rq *later_rq;
+
+ if (!rq->dl.overloaded)
+ return 0;
+
+ next_task = pick_next_pushable_dl_task(rq);
+ if (!next_task)
+ return 0;
+
+retry:
+ if (unlikely(next_task == rq->curr)) {
+ WARN_ON(1);
+ return 0;
+ }
+
+ /*
+ * If next_task preempts rq->curr, and rq->curr
+ * can move away, it makes sense to just reschedule
+ * without going further in pushing next_task.
+ */
+ if (dl_task(rq->curr) &&
+ dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
+ rq->curr->nr_cpus_allowed > 1) {
+ resched_task(rq->curr);
+ return 0;
+ }
+
+ /* We might release rq lock */
+ get_task_struct(next_task);
+
+ /* Will lock the rq it'll find */
+ later_rq = find_lock_later_rq(next_task, rq);
+ if (!later_rq) {
+ struct task_struct *task;
+
+ /*
+ * We must check all this again, since
+ * find_lock_later_rq releases rq->lock and it is
+ * then possible that next_task has migrated.
+ */
+ task = pick_next_pushable_dl_task(rq);
+ if (task_cpu(next_task) == rq->cpu && task == next_task) {
+ /*
+ * The task is still there. We don't try
+ * again, some other cpu will pull it when ready.
+ */
+ dequeue_pushable_dl_task(rq, next_task);
+ goto out;
+ }
+
+ if (!task)
+ /* No more tasks */
+ goto out;
+
+ put_task_struct(next_task);
+ next_task = task;
+ goto retry;
+ }
+
+ deactivate_task(rq, next_task, 0);
+ set_task_cpu(next_task, later_rq->cpu);
+ activate_task(later_rq, next_task, 0);
+
+ resched_task(later_rq->curr);
+
+ double_unlock_balance(rq, later_rq);
+
+out:
+ put_task_struct(next_task);
+
+ return 1;
+}
+
+static void push_dl_tasks(struct rq *rq)
+{
+ /* Terminates as it moves a -deadline task */
+ while (push_dl_task(rq))
+ ;
+}
+
+static int pull_dl_task(struct rq *this_rq)
+{
+ int this_cpu = this_rq->cpu, ret = 0, cpu;
+ struct task_struct *p;
+ struct rq *src_rq;
+ u64 dmin = LONG_MAX;
+
+ if (likely(!dl_overloaded(this_rq)))
+ return 0;
+
+ /*
+ * Match the barrier from dl_set_overloaded; this guarantees that if we
+ * see overloaded we must also see the dlo_mask bit.
+ */
+ smp_rmb();
+
+ for_each_cpu(cpu, this_rq->rd->dlo_mask) {
+ if (this_cpu == cpu)
+ continue;
+
+ src_rq = cpu_rq(cpu);
+
+ /*
+ * It looks racy, abd it is! However, as in sched_rt.c,
+ * we are fine with this.
+ */
+ if (this_rq->dl.dl_nr_running &&
+ dl_time_before(this_rq->dl.earliest_dl.curr,
+ src_rq->dl.earliest_dl.next))
+ continue;
+
+ /* Might drop this_rq->lock */
+ double_lock_balance(this_rq, src_rq);
+
+ /*
+ * If there are no more pullable tasks on the
+ * rq, we're done with it.
+ */
+ if (src_rq->dl.dl_nr_running <= 1)
+ goto skip;
+
+ p = pick_next_earliest_dl_task(src_rq, this_cpu);
+
+ /*
+ * We found a task to be pulled if:
+ * - it preempts our current (if there's one),
+ * - it will preempt the last one we pulled (if any).
+ */
+ if (p && dl_time_before(p->dl.deadline, dmin) &&
+ (!this_rq->dl.dl_nr_running ||
+ dl_time_before(p->dl.deadline,
+ this_rq->dl.earliest_dl.curr))) {
+ WARN_ON(p == src_rq->curr);
+ WARN_ON(!p->on_rq);
+
+ /*
+ * Then we pull iff p has actually an earlier
+ * deadline than the current task of its runqueue.
+ */
+ if (dl_time_before(p->dl.deadline,
+ src_rq->curr->dl.deadline))
+ goto skip;
+
+ ret = 1;
+
+ deactivate_task(src_rq, p, 0);
+ set_task_cpu(p, this_cpu);
+ activate_task(this_rq, p, 0);
+ dmin = p->dl.deadline;
+
+ /* Is there any other task even earlier? */
+ }
+skip:
+ double_unlock_balance(this_rq, src_rq);
+ }
+
+ return ret;
+}
+
+static void pre_schedule_dl(struct rq *rq, struct task_struct *prev)
+{
+ /* Try to pull other tasks here */
+ if (dl_task(prev))
+ pull_dl_task(rq);
+}
+
+static void post_schedule_dl(struct rq *rq)
+{
+ push_dl_tasks(rq);
+}
+
+/*
+ * Since the task is not running and a reschedule is not going to happen
+ * anytime soon on its runqueue, we try pushing it away now.
+ */
+static void task_woken_dl(struct rq *rq, struct task_struct *p)
+{
+ if (!task_running(rq, p) &&
+ !test_tsk_need_resched(rq->curr) &&
+ has_pushable_dl_tasks(rq) &&
+ p->nr_cpus_allowed > 1 &&
+ dl_task(rq->curr) &&
+ (rq->curr->nr_cpus_allowed < 2 ||
+ dl_entity_preempt(&rq->curr->dl, &p->dl))) {
+ push_dl_tasks(rq);
+ }
+}
+
+static void set_cpus_allowed_dl(struct task_struct *p,
+ const struct cpumask *new_mask)
+{
+ struct rq *rq;
+ int weight;
+
+ BUG_ON(!dl_task(p));
+
+ /*
+ * Update only if the task is actually running (i.e.,
+ * it is on the rq AND it is not throttled).
+ */
+ if (!on_dl_rq(&p->dl))
+ return;
+
+ weight = cpumask_weight(new_mask);
+
+ /*
+ * Only update if the process changes its state from whether it
+ * can migrate or not.
+ */
+ if ((p->nr_cpus_allowed > 1) == (weight > 1))
+ return;
+
+ rq = task_rq(p);
+
+ /*
+ * The process used to be able to migrate OR it can now migrate
+ */
+ if (weight <= 1) {
+ if (!task_current(rq, p))
+ dequeue_pushable_dl_task(rq, p);
+ BUG_ON(!rq->dl.dl_nr_migratory);
+ rq->dl.dl_nr_migratory--;
+ } else {
+ if (!task_current(rq, p))
+ enqueue_pushable_dl_task(rq, p);
+ rq->dl.dl_nr_migratory++;
+ }
+
+ update_dl_migration(&rq->dl);
+}
+
+/* Assumes rq->lock is held */
+static void rq_online_dl(struct rq *rq)
+{
+ if (rq->dl.overloaded)
+ dl_set_overload(rq);
+
+ if (rq->dl.dl_nr_running > 0)
+ cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
+}
+
+/* Assumes rq->lock is held */
+static void rq_offline_dl(struct rq *rq)
+{
+ if (rq->dl.overloaded)
+ dl_clear_overload(rq);
+
+ cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
+}
+
+void init_sched_dl_class(void)
+{
+ unsigned int i;
+
+ for_each_possible_cpu(i)
+ zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
+ GFP_KERNEL, cpu_to_node(i));
+}
+
+#endif /* CONFIG_SMP */
+
+static void switched_from_dl(struct rq *rq, struct task_struct *p)
+{
+ if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy))
+ hrtimer_try_to_cancel(&p->dl.dl_timer);
+
+#ifdef CONFIG_SMP
+ /*
+ * Since this might be the only -deadline task on the rq,
+ * this is the right place to try to pull some other one
+ * from an overloaded cpu, if any.
+ */
+ if (!rq->dl.dl_nr_running)
+ pull_dl_task(rq);
+#endif
+}
+
+/*
+ * When switching to -deadline, we may overload the rq, then
+ * we try to push someone off, if possible.
+ */
+static void switched_to_dl(struct rq *rq, struct task_struct *p)
+{
+ int check_resched = 1;
+
+ /*
+ * If p is throttled, don't consider the possibility
+ * of preempting rq->curr, the check will be done right
+ * after its runtime will get replenished.
+ */
+ if (unlikely(p->dl.dl_throttled))
+ return;
+
+ if (p->on_rq || rq->curr != p) {
+#ifdef CONFIG_SMP
+ if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p))
+ /* Only reschedule if pushing failed */
+ check_resched = 0;
+#endif /* CONFIG_SMP */
+ if (check_resched && task_has_dl_policy(rq->curr))
+ check_preempt_curr_dl(rq, p, 0);
+ }
+}
+
+/*
+ * If the scheduling parameters of a -deadline task changed,
+ * a push or pull operation might be needed.
+ */
+static void prio_changed_dl(struct rq *rq, struct task_struct *p,
+ int oldprio)
+{
+ if (p->on_rq || rq->curr == p) {
+#ifdef CONFIG_SMP
+ /*
+ * This might be too much, but unfortunately
+ * we don't have the old deadline value, and
+ * we can't argue if the task is increasing
+ * or lowering its prio, so...
+ */
+ if (!rq->dl.overloaded)
+ pull_dl_task(rq);
+
+ /*
+ * If we now have a earlier deadline task than p,
+ * then reschedule, provided p is still on this
+ * runqueue.
+ */
+ if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
+ rq->curr == p)
+ resched_task(p);
+#else
+ /*
+ * Again, we don't know if p has a earlier
+ * or later deadline, so let's blindly set a
+ * (maybe not needed) rescheduling point.
+ */
+ resched_task(p);
+#endif /* CONFIG_SMP */
+ } else
+ switched_to_dl(rq, p);
+}
+
+const struct sched_class dl_sched_class = {
+ .next = &rt_sched_class,
+ .enqueue_task = enqueue_task_dl,
+ .dequeue_task = dequeue_task_dl,
+ .yield_task = yield_task_dl,
+
+ .check_preempt_curr = check_preempt_curr_dl,
+
+ .pick_next_task = pick_next_task_dl,
+ .put_prev_task = put_prev_task_dl,
+
+#ifdef CONFIG_SMP
+ .select_task_rq = select_task_rq_dl,
+ .set_cpus_allowed = set_cpus_allowed_dl,
+ .rq_online = rq_online_dl,
+ .rq_offline = rq_offline_dl,
+ .pre_schedule = pre_schedule_dl,
+ .post_schedule = post_schedule_dl,
+ .task_woken = task_woken_dl,
+#endif
+
+ .set_curr_task = set_curr_task_dl,
+ .task_tick = task_tick_dl,
+ .task_fork = task_fork_dl,
+ .task_dead = task_dead_dl,
+
+ .prio_changed = prio_changed_dl,
+ .switched_from = switched_from_dl,
+ .switched_to = switched_to_dl,
+};
diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c
index 5c34d1817e8f..dd52e7ffb10e 100644
--- a/kernel/sched/debug.c
+++ b/kernel/sched/debug.c
@@ -139,7 +139,7 @@ print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
#endif
#ifdef CONFIG_NUMA_BALANCING
- SEQ_printf(m, " %d", cpu_to_node(task_cpu(p)));
+ SEQ_printf(m, " %d", task_node(p));
#endif
#ifdef CONFIG_CGROUP_SCHED
SEQ_printf(m, " %s", task_group_path(task_group(p)));
@@ -371,7 +371,7 @@ static void sched_debug_header(struct seq_file *m)
PN(cpu_clk);
P(jiffies);
#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
- P(sched_clock_stable);
+ P(sched_clock_stable());
#endif
#undef PN
#undef P
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index fd773ade1a31..867b0a4b0893 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -178,59 +178,61 @@ void sched_init_granularity(void)
update_sysctl();
}
-#if BITS_PER_LONG == 32
-# define WMULT_CONST (~0UL)
-#else
-# define WMULT_CONST (1UL << 32)
-#endif
-
+#define WMULT_CONST (~0U)
#define WMULT_SHIFT 32
-/*
- * Shift right and round:
- */
-#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
+static void __update_inv_weight(struct load_weight *lw)
+{
+ unsigned long w;
+
+ if (likely(lw->inv_weight))
+ return;
+
+ w = scale_load_down(lw->weight);
+
+ if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
+ lw->inv_weight = 1;
+ else if (unlikely(!w))
+ lw->inv_weight = WMULT_CONST;
+ else
+ lw->inv_weight = WMULT_CONST / w;
+}
/*
- * delta *= weight / lw
+ * delta_exec * weight / lw.weight
+ * OR
+ * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
+ *
+ * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
+ * we're guaranteed shift stays positive because inv_weight is guaranteed to
+ * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
+ *
+ * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
+ * weight/lw.weight <= 1, and therefore our shift will also be positive.
*/
-static unsigned long
-calc_delta_mine(unsigned long delta_exec, unsigned long weight,
- struct load_weight *lw)
+static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
{
- u64 tmp;
+ u64 fact = scale_load_down(weight);
+ int shift = WMULT_SHIFT;
- /*
- * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
- * entities since MIN_SHARES = 2. Treat weight as 1 if less than
- * 2^SCHED_LOAD_RESOLUTION.
- */
- if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
- tmp = (u64)delta_exec * scale_load_down(weight);
- else
- tmp = (u64)delta_exec;
+ __update_inv_weight(lw);
- if (!lw->inv_weight) {
- unsigned long w = scale_load_down(lw->weight);
-
- if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
- lw->inv_weight = 1;
- else if (unlikely(!w))
- lw->inv_weight = WMULT_CONST;
- else
- lw->inv_weight = WMULT_CONST / w;
+ if (unlikely(fact >> 32)) {
+ while (fact >> 32) {
+ fact >>= 1;
+ shift--;
+ }
}
- /*
- * Check whether we'd overflow the 64-bit multiplication:
- */
- if (unlikely(tmp > WMULT_CONST))
- tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
- WMULT_SHIFT/2);
- else
- tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
+ /* hint to use a 32x32->64 mul */
+ fact = (u64)(u32)fact * lw->inv_weight;
- return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
+ while (fact >> 32) {
+ fact >>= 1;
+ shift--;
+ }
+
+ return mul_u64_u32_shr(delta_exec, fact, shift);
}
@@ -443,7 +445,7 @@ find_matching_se(struct sched_entity **se, struct sched_entity **pse)
#endif /* CONFIG_FAIR_GROUP_SCHED */
static __always_inline
-void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
+void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
/**************************************************************
* Scheduling class tree data structure manipulation methods:
@@ -612,11 +614,10 @@ int sched_proc_update_handler(struct ctl_table *table, int write,
/*
* delta /= w
*/
-static inline unsigned long
-calc_delta_fair(unsigned long delta, struct sched_entity *se)
+static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
{
if (unlikely(se->load.weight != NICE_0_LOAD))
- delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
+ delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
return delta;
}
@@ -665,7 +666,7 @@ static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
update_load_add(&lw, se->load.weight);
load = &lw;
}
- slice = calc_delta_mine(slice, se->load.weight, load);
+ slice = __calc_delta(slice, se->load.weight, load);
}
return slice;
}
@@ -703,47 +704,32 @@ void init_task_runnable_average(struct task_struct *p)
#endif
/*
- * Update the current task's runtime statistics. Skip current tasks that
- * are not in our scheduling class.
+ * Update the current task's runtime statistics.
*/
-static inline void
-__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
- unsigned long delta_exec)
-{
- unsigned long delta_exec_weighted;
-
- schedstat_set(curr->statistics.exec_max,
- max((u64)delta_exec, curr->statistics.exec_max));
-
- curr->sum_exec_runtime += delta_exec;
- schedstat_add(cfs_rq, exec_clock, delta_exec);
- delta_exec_weighted = calc_delta_fair(delta_exec, curr);
-
- curr->vruntime += delta_exec_weighted;
- update_min_vruntime(cfs_rq);
-}
-
static void update_curr(struct cfs_rq *cfs_rq)
{
struct sched_entity *curr = cfs_rq->curr;
u64 now = rq_clock_task(rq_of(cfs_rq));
- unsigned long delta_exec;
+ u64 delta_exec;
if (unlikely(!curr))
return;
- /*
- * Get the amount of time the current task was running
- * since the last time we changed load (this cannot
- * overflow on 32 bits):
- */
- delta_exec = (unsigned long)(now - curr->exec_start);
- if (!delta_exec)
+ delta_exec = now - curr->exec_start;
+ if (unlikely((s64)delta_exec <= 0))
return;
- __update_curr(cfs_rq, curr, delta_exec);
curr->exec_start = now;
+ schedstat_set(curr->statistics.exec_max,
+ max(delta_exec, curr->statistics.exec_max));
+
+ curr->sum_exec_runtime += delta_exec;
+ schedstat_add(cfs_rq, exec_clock, delta_exec);
+
+ curr->vruntime += calc_delta_fair(delta_exec, curr);
+ update_min_vruntime(cfs_rq);
+
if (entity_is_task(curr)) {
struct task_struct *curtask = task_of(curr);
@@ -886,15 +872,6 @@ static unsigned int task_scan_max(struct task_struct *p)
return max(smin, smax);
}
-/*
- * Once a preferred node is selected the scheduler balancer will prefer moving
- * a task to that node for sysctl_numa_balancing_settle_count number of PTE
- * scans. This will give the process the chance to accumulate more faults on
- * the preferred node but still allow the scheduler to move the task again if
- * the nodes CPUs are overloaded.
- */
-unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
-
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
rq->nr_numa_running += (p->numa_preferred_nid != -1);
@@ -944,7 +921,8 @@ static inline unsigned long group_faults(struct task_struct *p, int nid)
if (!p->numa_group)
return 0;
- return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
+ return p->numa_group->faults[task_faults_idx(nid, 0)] +
+ p->numa_group->faults[task_faults_idx(nid, 1)];
}
/*
@@ -1037,7 +1015,7 @@ struct task_numa_env {
struct numa_stats src_stats, dst_stats;
- int imbalance_pct, idx;
+ int imbalance_pct;
struct task_struct *best_task;
long best_imp;
@@ -1225,7 +1203,7 @@ static int task_numa_migrate(struct task_struct *p)
* elsewhere, so there is no point in (re)trying.
*/
if (unlikely(!sd)) {
- p->numa_preferred_nid = cpu_to_node(task_cpu(p));
+ p->numa_preferred_nid = task_node(p);
return -EINVAL;
}
@@ -1272,11 +1250,15 @@ static int task_numa_migrate(struct task_struct *p)
p->numa_scan_period = task_scan_min(p);
if (env.best_task == NULL) {
- int ret = migrate_task_to(p, env.best_cpu);
+ ret = migrate_task_to(p, env.best_cpu);
+ if (ret != 0)
+ trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
return ret;
}
ret = migrate_swap(p, env.best_task);
+ if (ret != 0)
+ trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
put_task_struct(env.best_task);
return ret;
}
@@ -1292,7 +1274,7 @@ static void numa_migrate_preferred(struct task_struct *p)
p->numa_migrate_retry = jiffies + HZ;
/* Success if task is already running on preferred CPU */
- if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
+ if (task_node(p) == p->numa_preferred_nid)
return;
/* Otherwise, try migrate to a CPU on the preferred node */
@@ -1364,7 +1346,6 @@ static void update_task_scan_period(struct task_struct *p,
* scanning faster if shared accesses dominate as it may
* simply bounce migrations uselessly
*/
- period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
}
@@ -1752,6 +1733,13 @@ void task_numa_work(struct callback_head *work)
(vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
continue;
+ /*
+ * Skip inaccessible VMAs to avoid any confusion between
+ * PROT_NONE and NUMA hinting ptes
+ */
+ if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
+ continue;
+
do {
start = max(start, vma->vm_start);
end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
@@ -3015,8 +3003,7 @@ static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
}
}
-static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
- unsigned long delta_exec)
+static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
{
/* dock delta_exec before expiring quota (as it could span periods) */
cfs_rq->runtime_remaining -= delta_exec;
@@ -3034,7 +3021,7 @@ static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
}
static __always_inline
-void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
+void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
{
if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
return;
@@ -3574,8 +3561,7 @@ static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
return rq_clock_task(rq_of(cfs_rq));
}
-static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
- unsigned long delta_exec) {}
+static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
@@ -3932,7 +3918,7 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
{
struct sched_entity *se = tg->se[cpu];
- if (!tg->parent || !wl) /* the trivial, non-cgroup case */
+ if (!tg->parent) /* the trivial, non-cgroup case */
return wl;
for_each_sched_entity(se) {
@@ -4110,12 +4096,16 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
*/
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
- int this_cpu, int load_idx)
+ int this_cpu, int sd_flag)
{
struct sched_group *idlest = NULL, *group = sd->groups;
unsigned long min_load = ULONG_MAX, this_load = 0;
+ int load_idx = sd->forkexec_idx;
int imbalance = 100 + (sd->imbalance_pct-100)/2;
+ if (sd_flag & SD_BALANCE_WAKE)
+ load_idx = sd->wake_idx;
+
do {
unsigned long load, avg_load;
int local_group;
@@ -4283,7 +4273,6 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
}
while (sd) {
- int load_idx = sd->forkexec_idx;
struct sched_group *group;
int weight;
@@ -4292,10 +4281,7 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
continue;
}
- if (sd_flag & SD_BALANCE_WAKE)
- load_idx = sd->wake_idx;
-
- group = find_idlest_group(sd, p, cpu, load_idx);
+ group = find_idlest_group(sd, p, cpu, sd_flag);
if (!group) {
sd = sd->child;
continue;
@@ -5521,7 +5507,6 @@ static inline void update_sg_lb_stats(struct lb_env *env,
struct sched_group *group, int load_idx,
int local_group, struct sg_lb_stats *sgs)
{
- unsigned long nr_running;
unsigned long load;
int i;
@@ -5530,8 +5515,6 @@ static inline void update_sg_lb_stats(struct lb_env *env,
for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
struct rq *rq = cpu_rq(i);
- nr_running = rq->nr_running;
-
/* Bias balancing toward cpus of our domain */
if (local_group)
load = target_load(i, load_idx);
@@ -5539,7 +5522,7 @@ static inline void update_sg_lb_stats(struct lb_env *env,
load = source_load(i, load_idx);
sgs->group_load += load;
- sgs->sum_nr_running += nr_running;
+ sgs->sum_nr_running += rq->nr_running;
#ifdef CONFIG_NUMA_BALANCING
sgs->nr_numa_running += rq->nr_numa_running;
sgs->nr_preferred_running += rq->nr_preferred_running;
@@ -6530,7 +6513,7 @@ static struct {
unsigned long next_balance; /* in jiffy units */
} nohz ____cacheline_aligned;
-static inline int find_new_ilb(int call_cpu)
+static inline int find_new_ilb(void)
{
int ilb = cpumask_first(nohz.idle_cpus_mask);
@@ -6545,13 +6528,13 @@ static inline int find_new_ilb(int call_cpu)
* nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
* CPU (if there is one).
*/
-static void nohz_balancer_kick(int cpu)
+static void nohz_balancer_kick(void)
{
int ilb_cpu;
nohz.next_balance++;
- ilb_cpu = find_new_ilb(cpu);
+ ilb_cpu = find_new_ilb();
if (ilb_cpu >= nr_cpu_ids)
return;
@@ -6661,10 +6644,10 @@ void update_max_interval(void)
*
* Balancing parameters are set up in init_sched_domains.
*/
-static void rebalance_domains(int cpu, enum cpu_idle_type idle)
+static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
{
int continue_balancing = 1;
- struct rq *rq = cpu_rq(cpu);
+ int cpu = rq->cpu;
unsigned long interval;
struct sched_domain *sd;
/* Earliest time when we have to do rebalance again */
@@ -6761,9 +6744,9 @@ out:
* In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
* rebalancing for all the cpus for whom scheduler ticks are stopped.
*/
-static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
+static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
{
- struct rq *this_rq = cpu_rq(this_cpu);
+ int this_cpu = this_rq->cpu;
struct rq *rq;
int balance_cpu;
@@ -6790,7 +6773,7 @@ static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
update_idle_cpu_load(rq);
raw_spin_unlock_irq(&rq->lock);
- rebalance_domains(balance_cpu, CPU_IDLE);
+ rebalance_domains(rq, CPU_IDLE);
if (time_after(this_rq->next_balance, rq->next_balance))
this_rq->next_balance = rq->next_balance;
@@ -6809,14 +6792,14 @@ end:
* - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
* domain span are idle.
*/
-static inline int nohz_kick_needed(struct rq *rq, int cpu)
+static inline int nohz_kick_needed(struct rq *rq)
{
unsigned long now = jiffies;
struct sched_domain *sd;
struct sched_group_power *sgp;
- int nr_busy;
+ int nr_busy, cpu = rq->cpu;
- if (unlikely(idle_cpu(cpu)))
+ if (unlikely(rq->idle_balance))
return 0;
/*
@@ -6865,7 +6848,7 @@ need_kick:
return 1;
}
#else
-static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
+static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
#endif
/*
@@ -6874,38 +6857,39 @@ static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
*/
static void run_rebalance_domains(struct softirq_action *h)
{
- int this_cpu = smp_processor_id();
- struct rq *this_rq = cpu_rq(this_cpu);
+ struct rq *this_rq = this_rq();
enum cpu_idle_type idle = this_rq->idle_balance ?
CPU_IDLE : CPU_NOT_IDLE;
- rebalance_domains(this_cpu, idle);
+ rebalance_domains(this_rq, idle);
/*
* If this cpu has a pending nohz_balance_kick, then do the
* balancing on behalf of the other idle cpus whose ticks are
* stopped.
*/
- nohz_idle_balance(this_cpu, idle);
+ nohz_idle_balance(this_rq, idle);
}
-static inline int on_null_domain(int cpu)
+static inline int on_null_domain(struct rq *rq)
{
- return !rcu_dereference_sched(cpu_rq(cpu)->sd);
+ return !rcu_dereference_sched(rq->sd);
}
/*
* Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
*/
-void trigger_load_balance(struct rq *rq, int cpu)
+void trigger_load_balance(struct rq *rq)
{
/* Don't need to rebalance while attached to NULL domain */
- if (time_after_eq(jiffies, rq->next_balance) &&
- likely(!on_null_domain(cpu)))
+ if (unlikely(on_null_domain(rq)))
+ return;
+
+ if (time_after_eq(jiffies, rq->next_balance))
raise_softirq(SCHED_SOFTIRQ);
#ifdef CONFIG_NO_HZ_COMMON
- if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
- nohz_balancer_kick(cpu);
+ if (nohz_kick_needed(rq))
+ nohz_balancer_kick();
#endif
}
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index 7d57275fc396..a2740b775b45 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -901,6 +901,13 @@ inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
struct rq *rq = rq_of_rt_rq(rt_rq);
+#ifdef CONFIG_RT_GROUP_SCHED
+ /*
+ * Change rq's cpupri only if rt_rq is the top queue.
+ */
+ if (&rq->rt != rt_rq)
+ return;
+#endif
if (rq->online && prio < prev_prio)
cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
}
@@ -910,6 +917,13 @@ dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
struct rq *rq = rq_of_rt_rq(rt_rq);
+#ifdef CONFIG_RT_GROUP_SCHED
+ /*
+ * Change rq's cpupri only if rt_rq is the top queue.
+ */
+ if (&rq->rt != rt_rq)
+ return;
+#endif
if (rq->online && rt_rq->highest_prio.curr != prev_prio)
cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
}
@@ -1724,7 +1738,7 @@ static void task_woken_rt(struct rq *rq, struct task_struct *p)
!test_tsk_need_resched(rq->curr) &&
has_pushable_tasks(rq) &&
p->nr_cpus_allowed > 1 &&
- rt_task(rq->curr) &&
+ (dl_task(rq->curr) || rt_task(rq->curr)) &&
(rq->curr->nr_cpus_allowed < 2 ||
rq->curr->prio <= p->prio))
push_rt_tasks(rq);
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 88c85b21d633..c2119fd20f8b 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -2,6 +2,7 @@
#include <linux/sched.h>
#include <linux/sched/sysctl.h>
#include <linux/sched/rt.h>
+#include <linux/sched/deadline.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/stop_machine.h>
@@ -9,6 +10,7 @@
#include <linux/slab.h>
#include "cpupri.h"
+#include "cpudeadline.h"
#include "cpuacct.h"
struct rq;
@@ -73,6 +75,13 @@ extern void update_cpu_load_active(struct rq *this_rq);
#define NICE_0_SHIFT SCHED_LOAD_SHIFT
/*
+ * Single value that decides SCHED_DEADLINE internal math precision.
+ * 10 -> just above 1us
+ * 9 -> just above 0.5us
+ */
+#define DL_SCALE (10)
+
+/*
* These are the 'tuning knobs' of the scheduler:
*/
@@ -81,11 +90,19 @@ extern void update_cpu_load_active(struct rq *this_rq);
*/
#define RUNTIME_INF ((u64)~0ULL)
+static inline int fair_policy(int policy)
+{
+ return policy == SCHED_NORMAL || policy == SCHED_BATCH;
+}
+
static inline int rt_policy(int policy)
{
- if (policy == SCHED_FIFO || policy == SCHED_RR)
- return 1;
- return 0;
+ return policy == SCHED_FIFO || policy == SCHED_RR;
+}
+
+static inline int dl_policy(int policy)
+{
+ return policy == SCHED_DEADLINE;
}
static inline int task_has_rt_policy(struct task_struct *p)
@@ -93,6 +110,25 @@ static inline int task_has_rt_policy(struct task_struct *p)
return rt_policy(p->policy);
}
+static inline int task_has_dl_policy(struct task_struct *p)
+{
+ return dl_policy(p->policy);
+}
+
+static inline bool dl_time_before(u64 a, u64 b)
+{
+ return (s64)(a - b) < 0;
+}
+
+/*
+ * Tells if entity @a should preempt entity @b.
+ */
+static inline bool
+dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
+{
+ return dl_time_before(a->deadline, b->deadline);
+}
+
/*
* This is the priority-queue data structure of the RT scheduling class:
*/
@@ -108,6 +144,47 @@ struct rt_bandwidth {
u64 rt_runtime;
struct hrtimer rt_period_timer;
};
+/*
+ * To keep the bandwidth of -deadline tasks and groups under control
+ * we need some place where:
+ * - store the maximum -deadline bandwidth of the system (the group);
+ * - cache the fraction of that bandwidth that is currently allocated.
+ *
+ * This is all done in the data structure below. It is similar to the
+ * one used for RT-throttling (rt_bandwidth), with the main difference
+ * that, since here we are only interested in admission control, we
+ * do not decrease any runtime while the group "executes", neither we
+ * need a timer to replenish it.
+ *
+ * With respect to SMP, the bandwidth is given on a per-CPU basis,
+ * meaning that:
+ * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
+ * - dl_total_bw array contains, in the i-eth element, the currently
+ * allocated bandwidth on the i-eth CPU.
+ * Moreover, groups consume bandwidth on each CPU, while tasks only
+ * consume bandwidth on the CPU they're running on.
+ * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
+ * that will be shown the next time the proc or cgroup controls will
+ * be red. It on its turn can be changed by writing on its own
+ * control.
+ */
+struct dl_bandwidth {
+ raw_spinlock_t dl_runtime_lock;
+ u64 dl_runtime;
+ u64 dl_period;
+};
+
+static inline int dl_bandwidth_enabled(void)
+{
+ return sysctl_sched_rt_runtime >= 0;
+}
+
+extern struct dl_bw *dl_bw_of(int i);
+
+struct dl_bw {
+ raw_spinlock_t lock;
+ u64 bw, total_bw;
+};
extern struct mutex sched_domains_mutex;
@@ -364,6 +441,42 @@ struct rt_rq {
#endif
};
+/* Deadline class' related fields in a runqueue */
+struct dl_rq {
+ /* runqueue is an rbtree, ordered by deadline */
+ struct rb_root rb_root;
+ struct rb_node *rb_leftmost;
+
+ unsigned long dl_nr_running;
+
+#ifdef CONFIG_SMP
+ /*
+ * Deadline values of the currently executing and the
+ * earliest ready task on this rq. Caching these facilitates
+ * the decision wether or not a ready but not running task
+ * should migrate somewhere else.
+ */
+ struct {
+ u64 curr;
+ u64 next;
+ } earliest_dl;
+
+ unsigned long dl_nr_migratory;
+ unsigned long dl_nr_total;
+ int overloaded;
+
+ /*
+ * Tasks on this rq that can be pushed away. They are kept in
+ * an rb-tree, ordered by tasks' deadlines, with caching
+ * of the leftmost (earliest deadline) element.
+ */
+ struct rb_root pushable_dl_tasks_root;
+ struct rb_node *pushable_dl_tasks_leftmost;
+#else
+ struct dl_bw dl_bw;
+#endif
+};
+
#ifdef CONFIG_SMP
/*
@@ -382,6 +495,15 @@ struct root_domain {
cpumask_var_t online;
/*
+ * The bit corresponding to a CPU gets set here if such CPU has more
+ * than one runnable -deadline task (as it is below for RT tasks).
+ */
+ cpumask_var_t dlo_mask;
+ atomic_t dlo_count;
+ struct dl_bw dl_bw;
+ struct cpudl cpudl;
+
+ /*
* The "RT overload" flag: it gets set if a CPU has more than
* one runnable RT task.
*/
@@ -432,6 +554,7 @@ struct rq {
struct cfs_rq cfs;
struct rt_rq rt;
+ struct dl_rq dl;
#ifdef CONFIG_FAIR_GROUP_SCHED
/* list of leaf cfs_rq on this cpu: */
@@ -827,8 +950,6 @@ static inline u64 global_rt_runtime(void)
return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
-
-
static inline int task_current(struct rq *rq, struct task_struct *p)
{
return rq->curr == p;
@@ -988,6 +1109,7 @@ static const u32 prio_to_wmult[40] = {
#else
#define ENQUEUE_WAKING 0
#endif
+#define ENQUEUE_REPLENISH 8
#define DEQUEUE_SLEEP 1
@@ -1023,6 +1145,7 @@ struct sched_class {
void (*set_curr_task) (struct rq *rq);
void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
void (*task_fork) (struct task_struct *p);
+ void (*task_dead) (struct task_struct *p);
void (*switched_from) (struct rq *this_rq, struct task_struct *task);
void (*switched_to) (struct rq *this_rq, struct task_struct *task);
@@ -1042,6 +1165,7 @@ struct sched_class {
for (class = sched_class_highest; class; class = class->next)
extern const struct sched_class stop_sched_class;
+extern const struct sched_class dl_sched_class;
extern const struct sched_class rt_sched_class;
extern const struct sched_class fair_sched_class;
extern const struct sched_class idle_sched_class;
@@ -1051,7 +1175,7 @@ extern const struct sched_class idle_sched_class;
extern void update_group_power(struct sched_domain *sd, int cpu);
-extern void trigger_load_balance(struct rq *rq, int cpu);
+extern void trigger_load_balance(struct rq *rq);
extern void idle_balance(int this_cpu, struct rq *this_rq);
extern void idle_enter_fair(struct rq *this_rq);
@@ -1068,8 +1192,11 @@ static inline void idle_balance(int cpu, struct rq *rq)
extern void sysrq_sched_debug_show(void);
extern void sched_init_granularity(void);
extern void update_max_interval(void);
+
+extern void init_sched_dl_class(void);
extern void init_sched_rt_class(void);
extern void init_sched_fair_class(void);
+extern void init_sched_dl_class(void);
extern void resched_task(struct task_struct *p);
extern void resched_cpu(int cpu);
@@ -1077,6 +1204,12 @@ extern void resched_cpu(int cpu);
extern struct rt_bandwidth def_rt_bandwidth;
extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
+extern struct dl_bandwidth def_dl_bandwidth;
+extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
+extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
+
+unsigned long to_ratio(u64 period, u64 runtime);
+
extern void update_idle_cpu_load(struct rq *this_rq);
extern void init_task_runnable_average(struct task_struct *p);
@@ -1353,6 +1486,7 @@ extern void print_rt_stats(struct seq_file *m, int cpu);
extern void init_cfs_rq(struct cfs_rq *cfs_rq);
extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
+extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
extern void cfs_bandwidth_usage_inc(void);
extern void cfs_bandwidth_usage_dec(void);
diff --git a/kernel/sched/stop_task.c b/kernel/sched/stop_task.c
index 47197de8abd9..fdb6bb0b3356 100644
--- a/kernel/sched/stop_task.c
+++ b/kernel/sched/stop_task.c
@@ -103,7 +103,7 @@ get_rr_interval_stop(struct rq *rq, struct task_struct *task)
* Simple, special scheduling class for the per-CPU stop tasks:
*/
const struct sched_class stop_sched_class = {
- .next = &rt_sched_class,
+ .next = &dl_sched_class,
.enqueue_task = enqueue_task_stop,
.dequeue_task = dequeue_task_stop,
diff --git a/kernel/softirq.c b/kernel/softirq.c
index 11025ccc06dd..8a1e6e104892 100644
--- a/kernel/softirq.c
+++ b/kernel/softirq.c
@@ -89,7 +89,7 @@ static void wakeup_softirqd(void)
* where hardirqs are disabled legitimately:
*/
#ifdef CONFIG_TRACE_IRQFLAGS
-static void __local_bh_disable(unsigned long ip, unsigned int cnt)
+void __local_bh_disable_ip(unsigned long ip, unsigned int cnt)
{
unsigned long flags;
@@ -107,33 +107,21 @@ static void __local_bh_disable(unsigned long ip, unsigned int cnt)
/*
* Were softirqs turned off above:
*/
- if (softirq_count() == cnt)
+ if (softirq_count() == (cnt & SOFTIRQ_MASK))
trace_softirqs_off(ip);
raw_local_irq_restore(flags);
if (preempt_count() == cnt)
trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
}
-#else /* !CONFIG_TRACE_IRQFLAGS */
-static inline void __local_bh_disable(unsigned long ip, unsigned int cnt)
-{
- preempt_count_add(cnt);
- barrier();
-}
+EXPORT_SYMBOL(__local_bh_disable_ip);
#endif /* CONFIG_TRACE_IRQFLAGS */
-void local_bh_disable(void)
-{
- __local_bh_disable(_RET_IP_, SOFTIRQ_DISABLE_OFFSET);
-}
-
-EXPORT_SYMBOL(local_bh_disable);
-
static void __local_bh_enable(unsigned int cnt)
{
WARN_ON_ONCE(!irqs_disabled());
- if (softirq_count() == cnt)
+ if (softirq_count() == (cnt & SOFTIRQ_MASK))
trace_softirqs_on(_RET_IP_);
preempt_count_sub(cnt);
}
@@ -151,7 +139,7 @@ void _local_bh_enable(void)
EXPORT_SYMBOL(_local_bh_enable);
-static inline void _local_bh_enable_ip(unsigned long ip)
+void __local_bh_enable_ip(unsigned long ip, unsigned int cnt)
{
WARN_ON_ONCE(in_irq() || irqs_disabled());
#ifdef CONFIG_TRACE_IRQFLAGS
@@ -166,7 +154,7 @@ static inline void _local_bh_enable_ip(unsigned long ip)
* Keep preemption disabled until we are done with
* softirq processing:
*/
- preempt_count_sub(SOFTIRQ_DISABLE_OFFSET - 1);
+ preempt_count_sub(cnt - 1);
if (unlikely(!in_interrupt() && local_softirq_pending())) {
/*
@@ -182,18 +170,7 @@ static inline void _local_bh_enable_ip(unsigned long ip)
#endif
preempt_check_resched();
}
-
-void local_bh_enable(void)
-{
- _local_bh_enable_ip(_RET_IP_);
-}
-EXPORT_SYMBOL(local_bh_enable);
-
-void local_bh_enable_ip(unsigned long ip)
-{
- _local_bh_enable_ip(ip);
-}
-EXPORT_SYMBOL(local_bh_enable_ip);
+EXPORT_SYMBOL(__local_bh_enable_ip);
/*
* We restart softirq processing for at most MAX_SOFTIRQ_RESTART times,
@@ -211,14 +188,48 @@ EXPORT_SYMBOL(local_bh_enable_ip);
#define MAX_SOFTIRQ_TIME msecs_to_jiffies(2)
#define MAX_SOFTIRQ_RESTART 10
+#ifdef CONFIG_TRACE_IRQFLAGS
+/*
+ * When we run softirqs from irq_exit() and thus on the hardirq stack we need
+ * to keep the lockdep irq context tracking as tight as possible in order to
+ * not miss-qualify lock contexts and miss possible deadlocks.
+ */
+
+static inline bool lockdep_softirq_start(void)
+{
+ bool in_hardirq = false;
+
+ if (trace_hardirq_context(current)) {
+ in_hardirq = true;
+ trace_hardirq_exit();
+ }
+
+ lockdep_softirq_enter();
+
+ return in_hardirq;
+}
+
+static inline void lockdep_softirq_end(bool in_hardirq)
+{
+ lockdep_softirq_exit();
+
+ if (in_hardirq)
+ trace_hardirq_enter();
+}
+#else
+static inline bool lockdep_softirq_start(void) { return false; }
+static inline void lockdep_softirq_end(bool in_hardirq) { }
+#endif
+
asmlinkage void __do_softirq(void)
{
- struct softirq_action *h;
- __u32 pending;
unsigned long end = jiffies + MAX_SOFTIRQ_TIME;
- int cpu;
unsigned long old_flags = current->flags;
int max_restart = MAX_SOFTIRQ_RESTART;
+ struct softirq_action *h;
+ bool in_hardirq;
+ __u32 pending;
+ int cpu;
/*
* Mask out PF_MEMALLOC s current task context is borrowed for the
@@ -230,8 +241,8 @@ asmlinkage void __do_softirq(void)
pending = local_softirq_pending();
account_irq_enter_time(current);
- __local_bh_disable(_RET_IP_, SOFTIRQ_OFFSET);
- lockdep_softirq_enter();
+ __local_bh_disable_ip(_RET_IP_, SOFTIRQ_OFFSET);
+ in_hardirq = lockdep_softirq_start();
cpu = smp_processor_id();
restart:
@@ -278,16 +289,13 @@ restart:
wakeup_softirqd();
}
- lockdep_softirq_exit();
-
+ lockdep_softirq_end(in_hardirq);
account_irq_exit_time(current);
__local_bh_enable(SOFTIRQ_OFFSET);
WARN_ON_ONCE(in_interrupt());
tsk_restore_flags(current, old_flags, PF_MEMALLOC);
}
-
-
asmlinkage void do_softirq(void)
{
__u32 pending;
@@ -311,8 +319,6 @@ asmlinkage void do_softirq(void)
*/
void irq_enter(void)
{
- int cpu = smp_processor_id();
-
rcu_irq_enter();
if (is_idle_task(current) && !in_interrupt()) {
/*
@@ -320,7 +326,7 @@ void irq_enter(void)
* here, as softirq will be serviced on return from interrupt.
*/
local_bh_disable();
- tick_check_idle(cpu);
+ tick_check_idle();
_local_bh_enable();
}
@@ -375,13 +381,13 @@ void irq_exit(void)
#endif
account_irq_exit_time(current);
- trace_hardirq_exit();
preempt_count_sub(HARDIRQ_OFFSET);
if (!in_interrupt() && local_softirq_pending())
invoke_softirq();
tick_irq_exit();
rcu_irq_exit();
+ trace_hardirq_exit(); /* must be last! */
}
/*
diff --git a/kernel/sysctl.c b/kernel/sysctl.c
index 34a604726d0b..332cefcdb04b 100644
--- a/kernel/sysctl.c
+++ b/kernel/sysctl.c
@@ -95,8 +95,6 @@
#if defined(CONFIG_SYSCTL)
/* External variables not in a header file. */
-extern int sysctl_overcommit_memory;
-extern int sysctl_overcommit_ratio;
extern int max_threads;
extern int suid_dumpable;
#ifdef CONFIG_COREDUMP
@@ -385,13 +383,6 @@ static struct ctl_table kern_table[] = {
.proc_handler = proc_dointvec,
},
{
- .procname = "numa_balancing_settle_count",
- .data = &sysctl_numa_balancing_settle_count,
- .maxlen = sizeof(unsigned int),
- .mode = 0644,
- .proc_handler = proc_dointvec,
- },
- {
.procname = "numa_balancing_migrate_deferred",
.data = &sysctl_numa_balancing_migrate_deferred,
.maxlen = sizeof(unsigned int),
@@ -1128,7 +1119,14 @@ static struct ctl_table vm_table[] = {
.data = &sysctl_overcommit_ratio,
.maxlen = sizeof(sysctl_overcommit_ratio),
.mode = 0644,
- .proc_handler = proc_dointvec,
+ .proc_handler = overcommit_ratio_handler,
+ },
+ {
+ .procname = "overcommit_kbytes",
+ .data = &sysctl_overcommit_kbytes,
+ .maxlen = sizeof(sysctl_overcommit_kbytes),
+ .mode = 0644,
+ .proc_handler = overcommit_kbytes_handler,
},
{
.procname = "page-cluster",
diff --git a/kernel/time/sched_clock.c b/kernel/time/sched_clock.c
index 68b799375981..0abb36464281 100644
--- a/kernel/time/sched_clock.c
+++ b/kernel/time/sched_clock.c
@@ -74,7 +74,7 @@ unsigned long long notrace sched_clock(void)
return cd.epoch_ns;
do {
- seq = read_seqcount_begin(&cd.seq);
+ seq = raw_read_seqcount_begin(&cd.seq);
epoch_cyc = cd.epoch_cyc;
epoch_ns = cd.epoch_ns;
} while (read_seqcount_retry(&cd.seq, seq));
@@ -99,10 +99,10 @@ static void notrace update_sched_clock(void)
cd.mult, cd.shift);
raw_local_irq_save(flags);
- write_seqcount_begin(&cd.seq);
+ raw_write_seqcount_begin(&cd.seq);
cd.epoch_ns = ns;
cd.epoch_cyc = cyc;
- write_seqcount_end(&cd.seq);
+ raw_write_seqcount_end(&cd.seq);
raw_local_irq_restore(flags);
}
diff --git a/kernel/time/tick-broadcast.c b/kernel/time/tick-broadcast.c
index 9532690daaa9..43780ab5e279 100644
--- a/kernel/time/tick-broadcast.c
+++ b/kernel/time/tick-broadcast.c
@@ -538,10 +538,10 @@ int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
* Called from irq_enter() when idle was interrupted to reenable the
* per cpu device.
*/
-void tick_check_oneshot_broadcast(int cpu)
+void tick_check_oneshot_broadcast_this_cpu(void)
{
- if (cpumask_test_cpu(cpu, tick_broadcast_oneshot_mask)) {
- struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
+ if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
+ struct tick_device *td = &__get_cpu_var(tick_cpu_device);
/*
* We might be in the middle of switching over from
diff --git a/kernel/time/tick-common.c b/kernel/time/tick-common.c
index 162b03ab0ad2..20b2fe37d105 100644
--- a/kernel/time/tick-common.c
+++ b/kernel/time/tick-common.c
@@ -85,6 +85,7 @@ static void tick_periodic(int cpu)
do_timer(1);
write_sequnlock(&jiffies_lock);
+ update_wall_time();
}
update_process_times(user_mode(get_irq_regs()));
diff --git a/kernel/time/tick-internal.h b/kernel/time/tick-internal.h
index 18e71f7fbc2a..8329669b51ec 100644
--- a/kernel/time/tick-internal.h
+++ b/kernel/time/tick-internal.h
@@ -51,7 +51,7 @@ extern void tick_broadcast_switch_to_oneshot(void);
extern void tick_shutdown_broadcast_oneshot(unsigned int *cpup);
extern int tick_resume_broadcast_oneshot(struct clock_event_device *bc);
extern int tick_broadcast_oneshot_active(void);
-extern void tick_check_oneshot_broadcast(int cpu);
+extern void tick_check_oneshot_broadcast_this_cpu(void);
bool tick_broadcast_oneshot_available(void);
# else /* BROADCAST */
static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
@@ -62,7 +62,7 @@ static inline void tick_broadcast_oneshot_control(unsigned long reason) { }
static inline void tick_broadcast_switch_to_oneshot(void) { }
static inline void tick_shutdown_broadcast_oneshot(unsigned int *cpup) { }
static inline int tick_broadcast_oneshot_active(void) { return 0; }
-static inline void tick_check_oneshot_broadcast(int cpu) { }
+static inline void tick_check_oneshot_broadcast_this_cpu(void) { }
static inline bool tick_broadcast_oneshot_available(void) { return true; }
# endif /* !BROADCAST */
@@ -155,3 +155,4 @@ static inline int tick_device_is_functional(struct clock_event_device *dev)
#endif
extern void do_timer(unsigned long ticks);
+extern void update_wall_time(void);
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index ea20f7d1ac2c..08cb0c3b8ccb 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -86,6 +86,7 @@ static void tick_do_update_jiffies64(ktime_t now)
tick_next_period = ktime_add(last_jiffies_update, tick_period);
}
write_sequnlock(&jiffies_lock);
+ update_wall_time();
}
/*
@@ -177,7 +178,7 @@ static bool can_stop_full_tick(void)
* TODO: kick full dynticks CPUs when
* sched_clock_stable is set.
*/
- if (!sched_clock_stable) {
+ if (!sched_clock_stable()) {
trace_tick_stop(0, "unstable sched clock\n");
/*
* Don't allow the user to think they can get
@@ -391,11 +392,9 @@ __setup("nohz=", setup_tick_nohz);
*/
static void tick_nohz_update_jiffies(ktime_t now)
{
- int cpu = smp_processor_id();
- struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
unsigned long flags;
- ts->idle_waketime = now;
+ __this_cpu_write(tick_cpu_sched.idle_waketime, now);
local_irq_save(flags);
tick_do_update_jiffies64(now);
@@ -426,17 +425,15 @@ update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_upda
}
-static void tick_nohz_stop_idle(int cpu, ktime_t now)
+static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
{
- struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
-
- update_ts_time_stats(cpu, ts, now, NULL);
+ update_ts_time_stats(smp_processor_id(), ts, now, NULL);
ts->idle_active = 0;
sched_clock_idle_wakeup_event(0);
}
-static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
+static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
{
ktime_t now = ktime_get();
@@ -754,7 +751,7 @@ static void __tick_nohz_idle_enter(struct tick_sched *ts)
ktime_t now, expires;
int cpu = smp_processor_id();
- now = tick_nohz_start_idle(cpu, ts);
+ now = tick_nohz_start_idle(ts);
if (can_stop_idle_tick(cpu, ts)) {
int was_stopped = ts->tick_stopped;
@@ -911,8 +908,7 @@ static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
*/
void tick_nohz_idle_exit(void)
{
- int cpu = smp_processor_id();
- struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
+ struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
ktime_t now;
local_irq_disable();
@@ -925,7 +921,7 @@ void tick_nohz_idle_exit(void)
now = ktime_get();
if (ts->idle_active)
- tick_nohz_stop_idle(cpu, now);
+ tick_nohz_stop_idle(ts, now);
if (ts->tick_stopped) {
tick_nohz_restart_sched_tick(ts, now);
@@ -1009,12 +1005,10 @@ static void tick_nohz_switch_to_nohz(void)
* timer and do not touch the other magic bits which need to be done
* when idle is left.
*/
-static void tick_nohz_kick_tick(int cpu, ktime_t now)
+static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
{
#if 0
/* Switch back to 2.6.27 behaviour */
-
- struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
ktime_t delta;
/*
@@ -1029,36 +1023,36 @@ static void tick_nohz_kick_tick(int cpu, ktime_t now)
#endif
}
-static inline void tick_check_nohz(int cpu)
+static inline void tick_check_nohz_this_cpu(void)
{
- struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
+ struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
ktime_t now;
if (!ts->idle_active && !ts->tick_stopped)
return;
now = ktime_get();
if (ts->idle_active)
- tick_nohz_stop_idle(cpu, now);
+ tick_nohz_stop_idle(ts, now);
if (ts->tick_stopped) {
tick_nohz_update_jiffies(now);
- tick_nohz_kick_tick(cpu, now);
+ tick_nohz_kick_tick(ts, now);
}
}
#else
static inline void tick_nohz_switch_to_nohz(void) { }
-static inline void tick_check_nohz(int cpu) { }
+static inline void tick_check_nohz_this_cpu(void) { }
#endif /* CONFIG_NO_HZ_COMMON */
/*
* Called from irq_enter to notify about the possible interruption of idle()
*/
-void tick_check_idle(int cpu)
+void tick_check_idle(void)
{
- tick_check_oneshot_broadcast(cpu);
- tick_check_nohz(cpu);
+ tick_check_oneshot_broadcast_this_cpu();
+ tick_check_nohz_this_cpu();
}
/*
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c
index 87b4f00284c9..0aa4ce81bc16 100644
--- a/kernel/time/timekeeping.c
+++ b/kernel/time/timekeeping.c
@@ -77,7 +77,7 @@ static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
tk->wall_to_monotonic = wtm;
set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
tk->offs_real = timespec_to_ktime(tmp);
- tk->offs_tai = ktime_sub(tk->offs_real, ktime_set(tk->tai_offset, 0));
+ tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
}
static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
@@ -90,8 +90,9 @@ static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
}
/**
- * timekeeper_setup_internals - Set up internals to use clocksource clock.
+ * tk_setup_internals - Set up internals to use clocksource clock.
*
+ * @tk: The target timekeeper to setup.
* @clock: Pointer to clocksource.
*
* Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
@@ -595,7 +596,7 @@ s32 timekeeping_get_tai_offset(void)
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
{
tk->tai_offset = tai_offset;
- tk->offs_tai = ktime_sub(tk->offs_real, ktime_set(tai_offset, 0));
+ tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
}
/**
@@ -610,6 +611,7 @@ void timekeeping_set_tai_offset(s32 tai_offset)
raw_spin_lock_irqsave(&timekeeper_lock, flags);
write_seqcount_begin(&timekeeper_seq);
__timekeeping_set_tai_offset(tk, tai_offset);
+ timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
write_seqcount_end(&timekeeper_seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
clock_was_set();
@@ -1023,6 +1025,8 @@ static int timekeeping_suspend(void)
timekeeping_suspend_time =
timespec_add(timekeeping_suspend_time, delta_delta);
}
+
+ timekeeping_update(tk, TK_MIRROR);
write_seqcount_end(&timekeeper_seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
@@ -1130,16 +1134,6 @@ static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
* we can adjust by 1.
*/
error >>= 2;
- /*
- * XXX - In update_wall_time, we round up to the next
- * nanosecond, and store the amount rounded up into
- * the error. This causes the likely below to be unlikely.
- *
- * The proper fix is to avoid rounding up by using
- * the high precision tk->xtime_nsec instead of
- * xtime.tv_nsec everywhere. Fixing this will take some
- * time.
- */
if (likely(error <= interval))
adj = 1;
else
@@ -1255,7 +1249,7 @@ out_adjust:
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
{
u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
- unsigned int action = 0;
+ unsigned int clock_set = 0;
while (tk->xtime_nsec >= nsecps) {
int leap;
@@ -1277,11 +1271,10 @@ static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
- clock_was_set_delayed();
- action = TK_CLOCK_WAS_SET;
+ clock_set = TK_CLOCK_WAS_SET;
}
}
- return action;
+ return clock_set;
}
/**
@@ -1294,7 +1287,8 @@ static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
* Returns the unconsumed cycles.
*/
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
- u32 shift)
+ u32 shift,
+ unsigned int *clock_set)
{
cycle_t interval = tk->cycle_interval << shift;
u64 raw_nsecs;
@@ -1308,7 +1302,7 @@ static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
tk->cycle_last += interval;
tk->xtime_nsec += tk->xtime_interval << shift;
- accumulate_nsecs_to_secs(tk);
+ *clock_set |= accumulate_nsecs_to_secs(tk);
/* Accumulate raw time */
raw_nsecs = (u64)tk->raw_interval << shift;
@@ -1359,14 +1353,14 @@ static inline void old_vsyscall_fixup(struct timekeeper *tk)
* update_wall_time - Uses the current clocksource to increment the wall time
*
*/
-static void update_wall_time(void)
+void update_wall_time(void)
{
struct clocksource *clock;
struct timekeeper *real_tk = &timekeeper;
struct timekeeper *tk = &shadow_timekeeper;
cycle_t offset;
int shift = 0, maxshift;
- unsigned int action;
+ unsigned int clock_set = 0;
unsigned long flags;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
@@ -1401,7 +1395,8 @@ static void update_wall_time(void)
maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
shift = min(shift, maxshift);
while (offset >= tk->cycle_interval) {
- offset = logarithmic_accumulation(tk, offset, shift);
+ offset = logarithmic_accumulation(tk, offset, shift,
+ &clock_set);
if (offset < tk->cycle_interval<<shift)
shift--;
}
@@ -1419,7 +1414,7 @@ static void update_wall_time(void)
* Finally, make sure that after the rounding
* xtime_nsec isn't larger than NSEC_PER_SEC
*/
- action = accumulate_nsecs_to_secs(tk);
+ clock_set |= accumulate_nsecs_to_secs(tk);
write_seqcount_begin(&timekeeper_seq);
/* Update clock->cycle_last with the new value */
@@ -1435,10 +1430,12 @@ static void update_wall_time(void)
* updating.
*/
memcpy(real_tk, tk, sizeof(*tk));
- timekeeping_update(real_tk, action);
+ timekeeping_update(real_tk, clock_set);
write_seqcount_end(&timekeeper_seq);
out:
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ if (clock_set)
+ clock_was_set();
}
/**
@@ -1583,7 +1580,6 @@ struct timespec get_monotonic_coarse(void)
void do_timer(unsigned long ticks)
{
jiffies_64 += ticks;
- update_wall_time();
calc_global_load(ticks);
}
@@ -1698,12 +1694,14 @@ int do_adjtimex(struct timex *txc)
if (tai != orig_tai) {
__timekeeping_set_tai_offset(tk, tai);
- update_pvclock_gtod(tk, true);
- clock_was_set_delayed();
+ timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
}
write_seqcount_end(&timekeeper_seq);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ if (tai != orig_tai)
+ clock_was_set();
+
ntp_notify_cmos_timer();
return ret;
@@ -1739,4 +1737,5 @@ void xtime_update(unsigned long ticks)
write_seqlock(&jiffies_lock);
do_timer(ticks);
write_sequnlock(&jiffies_lock);
+ update_wall_time();
}
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c
index 7181ad15923b..cd7f76d1eb86 100644
--- a/kernel/trace/ftrace.c
+++ b/kernel/trace/ftrace.c
@@ -809,7 +809,7 @@ static int ftrace_profile_init(void)
int cpu;
int ret = 0;
- for_each_online_cpu(cpu) {
+ for_each_possible_cpu(cpu) {
ret = ftrace_profile_init_cpu(cpu);
if (ret)
break;
diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c
index cc2f66f68dc5..294b8a271a04 100644
--- a/kernel/trace/ring_buffer.c
+++ b/kernel/trace/ring_buffer.c
@@ -2558,7 +2558,7 @@ rb_reserve_next_event(struct ring_buffer *buffer,
if (unlikely(test_time_stamp(delta))) {
int local_clock_stable = 1;
#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
- local_clock_stable = sched_clock_stable;
+ local_clock_stable = sched_clock_stable();
#endif
WARN_ONCE(delta > (1ULL << 59),
KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
diff --git a/kernel/trace/trace_sched_wakeup.c b/kernel/trace/trace_sched_wakeup.c
index fee77e15d815..6e32635e5e57 100644
--- a/kernel/trace/trace_sched_wakeup.c
+++ b/kernel/trace/trace_sched_wakeup.c
@@ -16,6 +16,7 @@
#include <linux/uaccess.h>
#include <linux/ftrace.h>
#include <linux/sched/rt.h>
+#include <linux/sched/deadline.h>
#include <trace/events/sched.h>
#include "trace.h"
@@ -27,6 +28,8 @@ static int wakeup_cpu;
static int wakeup_current_cpu;
static unsigned wakeup_prio = -1;
static int wakeup_rt;
+static int wakeup_dl;
+static int tracing_dl = 0;
static arch_spinlock_t wakeup_lock =
(arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
@@ -437,6 +440,7 @@ static void __wakeup_reset(struct trace_array *tr)
{
wakeup_cpu = -1;
wakeup_prio = -1;
+ tracing_dl = 0;
if (wakeup_task)
put_task_struct(wakeup_task);
@@ -472,9 +476,17 @@ probe_wakeup(void *ignore, struct task_struct *p, int success)
tracing_record_cmdline(p);
tracing_record_cmdline(current);
- if ((wakeup_rt && !rt_task(p)) ||
- p->prio >= wakeup_prio ||
- p->prio >= current->prio)
+ /*
+ * Semantic is like this:
+ * - wakeup tracer handles all tasks in the system, independently
+ * from their scheduling class;
+ * - wakeup_rt tracer handles tasks belonging to sched_dl and
+ * sched_rt class;
+ * - wakeup_dl handles tasks belonging to sched_dl class only.
+ */
+ if (tracing_dl || (wakeup_dl && !dl_task(p)) ||
+ (wakeup_rt && !dl_task(p) && !rt_task(p)) ||
+ (!dl_task(p) && (p->prio >= wakeup_prio || p->prio >= current->prio)))
return;
pc = preempt_count();
@@ -486,7 +498,8 @@ probe_wakeup(void *ignore, struct task_struct *p, int success)
arch_spin_lock(&wakeup_lock);
/* check for races. */
- if (!tracer_enabled || p->prio >= wakeup_prio)
+ if (!tracer_enabled || tracing_dl ||
+ (!dl_task(p) && p->prio >= wakeup_prio))
goto out_locked;
/* reset the trace */
@@ -496,6 +509,15 @@ probe_wakeup(void *ignore, struct task_struct *p, int success)
wakeup_current_cpu = wakeup_cpu;
wakeup_prio = p->prio;
+ /*
+ * Once you start tracing a -deadline task, don't bother tracing
+ * another task until the first one wakes up.
+ */
+ if (dl_task(p))
+ tracing_dl = 1;
+ else
+ tracing_dl = 0;
+
wakeup_task = p;
get_task_struct(wakeup_task);
@@ -597,16 +619,25 @@ static int __wakeup_tracer_init(struct trace_array *tr)
static int wakeup_tracer_init(struct trace_array *tr)
{
+ wakeup_dl = 0;
wakeup_rt = 0;
return __wakeup_tracer_init(tr);
}
static int wakeup_rt_tracer_init(struct trace_array *tr)
{
+ wakeup_dl = 0;
wakeup_rt = 1;
return __wakeup_tracer_init(tr);
}
+static int wakeup_dl_tracer_init(struct trace_array *tr)
+{
+ wakeup_dl = 1;
+ wakeup_rt = 0;
+ return __wakeup_tracer_init(tr);
+}
+
static void wakeup_tracer_reset(struct trace_array *tr)
{
int lat_flag = save_flags & TRACE_ITER_LATENCY_FMT;
@@ -674,6 +705,28 @@ static struct tracer wakeup_rt_tracer __read_mostly =
.use_max_tr = true,
};
+static struct tracer wakeup_dl_tracer __read_mostly =
+{
+ .name = "wakeup_dl",
+ .init = wakeup_dl_tracer_init,
+ .reset = wakeup_tracer_reset,
+ .start = wakeup_tracer_start,
+ .stop = wakeup_tracer_stop,
+ .wait_pipe = poll_wait_pipe,
+ .print_max = true,
+ .print_header = wakeup_print_header,
+ .print_line = wakeup_print_line,
+ .flags = &tracer_flags,
+ .set_flag = wakeup_set_flag,
+ .flag_changed = wakeup_flag_changed,
+#ifdef CONFIG_FTRACE_SELFTEST
+ .selftest = trace_selftest_startup_wakeup,
+#endif
+ .open = wakeup_trace_open,
+ .close = wakeup_trace_close,
+ .use_max_tr = true,
+};
+
__init static int init_wakeup_tracer(void)
{
int ret;
@@ -686,6 +739,10 @@ __init static int init_wakeup_tracer(void)
if (ret)
return ret;
+ ret = register_tracer(&wakeup_dl_tracer);
+ if (ret)
+ return ret;
+
return 0;
}
core_initcall(init_wakeup_tracer);
diff --git a/kernel/trace/trace_selftest.c b/kernel/trace/trace_selftest.c
index a7329b7902f8..e98fca60974f 100644
--- a/kernel/trace/trace_selftest.c
+++ b/kernel/trace/trace_selftest.c
@@ -1022,11 +1022,16 @@ trace_selftest_startup_nop(struct tracer *trace, struct trace_array *tr)
#ifdef CONFIG_SCHED_TRACER
static int trace_wakeup_test_thread(void *data)
{
- /* Make this a RT thread, doesn't need to be too high */
- static const struct sched_param param = { .sched_priority = 5 };
+ /* Make this a -deadline thread */
+ static const struct sched_attr attr = {
+ .sched_policy = SCHED_DEADLINE,
+ .sched_runtime = 100000ULL,
+ .sched_deadline = 10000000ULL,
+ .sched_period = 10000000ULL
+ };
struct completion *x = data;
- sched_setscheduler(current, SCHED_FIFO, &param);
+ sched_setattr(current, &attr);
/* Make it know we have a new prio */
complete(x);
@@ -1040,8 +1045,8 @@ static int trace_wakeup_test_thread(void *data)
/* we are awake, now wait to disappear */
while (!kthread_should_stop()) {
/*
- * This is an RT task, do short sleeps to let
- * others run.
+ * This will likely be the system top priority
+ * task, do short sleeps to let others run.
*/
msleep(100);
}
@@ -1054,21 +1059,21 @@ trace_selftest_startup_wakeup(struct tracer *trace, struct trace_array *tr)
{
unsigned long save_max = tracing_max_latency;
struct task_struct *p;
- struct completion isrt;
+ struct completion is_ready;
unsigned long count;
int ret;
- init_completion(&isrt);
+ init_completion(&is_ready);
- /* create a high prio thread */
- p = kthread_run(trace_wakeup_test_thread, &isrt, "ftrace-test");
+ /* create a -deadline thread */
+ p = kthread_run(trace_wakeup_test_thread, &is_ready, "ftrace-test");
if (IS_ERR(p)) {
printk(KERN_CONT "Failed to create ftrace wakeup test thread ");
return -1;
}
- /* make sure the thread is running at an RT prio */
- wait_for_completion(&isrt);
+ /* make sure the thread is running at -deadline policy */
+ wait_for_completion(&is_ready);
/* start the tracing */
ret = tracer_init(trace, tr);
@@ -1082,19 +1087,19 @@ trace_selftest_startup_wakeup(struct tracer *trace, struct trace_array *tr)
while (p->on_rq) {
/*
- * Sleep to make sure the RT thread is asleep too.
+ * Sleep to make sure the -deadline thread is asleep too.
* On virtual machines we can't rely on timings,
* but we want to make sure this test still works.
*/
msleep(100);
}
- init_completion(&isrt);
+ init_completion(&is_ready);
wake_up_process(p);
/* Wait for the task to wake up */
- wait_for_completion(&isrt);
+ wait_for_completion(&is_ready);
/* stop the tracing. */
tracing_stop();
diff --git a/kernel/user.c b/kernel/user.c
index a3a0dbfda329..c006131beb77 100644
--- a/kernel/user.c
+++ b/kernel/user.c
@@ -51,9 +51,9 @@ struct user_namespace init_user_ns = {
.owner = GLOBAL_ROOT_UID,
.group = GLOBAL_ROOT_GID,
.proc_inum = PROC_USER_INIT_INO,
-#ifdef CONFIG_KEYS_KERBEROS_CACHE
- .krb_cache_register_sem =
- __RWSEM_INITIALIZER(init_user_ns.krb_cache_register_sem),
+#ifdef CONFIG_PERSISTENT_KEYRINGS
+ .persistent_keyring_register_sem =
+ __RWSEM_INITIALIZER(init_user_ns.persistent_keyring_register_sem),
#endif
};
EXPORT_SYMBOL_GPL(init_user_ns);
diff --git a/kernel/workqueue.c b/kernel/workqueue.c
index b010eac595d2..82ef9f3b7473 100644
--- a/kernel/workqueue.c
+++ b/kernel/workqueue.c
@@ -4789,6 +4789,7 @@ static int workqueue_cpu_down_callback(struct notifier_block *nfb,
/* wait for per-cpu unbinding to finish */
flush_work(&unbind_work);
+ destroy_work_on_stack(&unbind_work);
break;
}
return NOTIFY_OK;
@@ -4828,6 +4829,7 @@ long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
schedule_work_on(cpu, &wfc.work);
flush_work(&wfc.work);
+ destroy_work_on_stack(&wfc.work);
return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);