summaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/bpf/Kconfig4
-rw-r--r--kernel/bpf/Makefile3
-rw-r--r--kernel/bpf/arena.c4
-rw-r--r--kernel/bpf/arraymap.c54
-rw-r--r--kernel/bpf/bpf_local_storage.c2
-rw-r--r--kernel/bpf/bpf_struct_ops.c10
-rw-r--r--kernel/bpf/btf.c27
-rw-r--r--kernel/bpf/cgroup.c2
-rw-r--r--kernel/bpf/core.c81
-rw-r--r--kernel/bpf/cpumask.c1
-rw-r--r--kernel/bpf/crypto.c385
-rw-r--r--kernel/bpf/disasm.c14
-rw-r--r--kernel/bpf/hashtab.c64
-rw-r--r--kernel/bpf/helpers.c362
-rw-r--r--kernel/bpf/log.c4
-rw-r--r--kernel/bpf/lpm_trie.c31
-rw-r--r--kernel/bpf/syscall.c53
-rw-r--r--kernel/bpf/sysfs_btf.c6
-rw-r--r--kernel/bpf/trampoline.c20
-rw-r--r--kernel/bpf/verifier.c656
-rw-r--r--kernel/configs/hardening.config8
-rw-r--r--kernel/context_tracking.c2
-rw-r--r--kernel/events/core.c273
-rw-r--r--kernel/events/ring_buffer.c4
-rw-r--r--kernel/futex/core.c2
-rw-r--r--kernel/irq/Kconfig4
-rw-r--r--kernel/irq/cpuhotplug.c27
-rw-r--r--kernel/irq/internals.h9
-rw-r--r--kernel/irq/irqdesc.c65
-rw-r--r--kernel/irq/irqdomain.c5
-rw-r--r--kernel/irq/manage.c28
-rw-r--r--kernel/irq/proc.c9
-rw-r--r--kernel/irq/resend.c2
-rw-r--r--kernel/jump_label.c53
-rw-r--r--kernel/kcsan/kcsan_test.c17
-rw-r--r--kernel/kprobes.c63
-rw-r--r--kernel/kthread.c1
-rw-r--r--kernel/livepatch/core.c4
-rw-r--r--kernel/livepatch/patch.c4
-rw-r--r--kernel/livepatch/transition.c54
-rw-r--r--kernel/locking/lock_events.h4
-rw-r--r--kernel/locking/qspinlock.c13
-rw-r--r--kernel/locking/qspinlock_paravirt.h49
-rw-r--r--kernel/module/Kconfig3
-rw-r--r--kernel/module/kallsyms.c2
-rw-r--r--kernel/module/main.c105
-rw-r--r--kernel/padata.c8
-rw-r--r--kernel/power/energy_model.c106
-rw-r--r--kernel/power/hibernate.c2
-rw-r--r--kernel/printk/printk.c26
-rw-r--r--kernel/rcu/Kconfig8
-rw-r--r--kernel/rcu/rcu.h20
-rw-r--r--kernel/rcu/rcutorture.c85
-rw-r--r--kernel/rcu/srcutiny.c31
-rw-r--r--kernel/rcu/srcutree.c5
-rw-r--r--kernel/rcu/sync.c8
-rw-r--r--kernel/rcu/tasks.h44
-rw-r--r--kernel/rcu/tiny.c4
-rw-r--r--kernel/rcu/tree.c430
-rw-r--r--kernel/rcu/tree.h24
-rw-r--r--kernel/rcu/tree_exp.h2
-rw-r--r--kernel/rcu/tree_plugin.h4
-rw-r--r--kernel/rcu/tree_stall.h11
-rw-r--r--kernel/rcu/update.c4
-rw-r--r--kernel/sched/core.c14
-rw-r--r--kernel/sched/cputime.c13
-rw-r--r--kernel/sched/fair.c503
-rw-r--r--kernel/sched/loadavg.c2
-rw-r--r--kernel/sched/pelt.c22
-rw-r--r--kernel/sched/pelt.h16
-rw-r--r--kernel/sched/sched.h71
-rw-r--r--kernel/sched/stats.c5
-rw-r--r--kernel/sched/topology.c56
-rw-r--r--kernel/seccomp.c4
-rw-r--r--kernel/stackleak.c6
-rw-r--r--kernel/time/Kconfig2
-rw-r--r--kernel/time/clockevents.c2
-rw-r--r--kernel/time/clocksource.c44
-rw-r--r--kernel/time/hrtimer.c41
-rw-r--r--kernel/time/timekeeping.c96
-rw-r--r--kernel/time/timer.c2
-rw-r--r--kernel/time/timer_migration.c4
-rw-r--r--kernel/time/vsyscall.c6
-rw-r--r--kernel/trace/Kconfig4
-rw-r--r--kernel/trace/bpf_trace.c162
-rw-r--r--kernel/trace/ftrace.c3
-rw-r--r--kernel/trace/trace_kprobe.c20
-rw-r--r--kernel/trace/trace_probe.c2
-rw-r--r--kernel/ucount.c2
-rw-r--r--kernel/user.c2
-rw-r--r--kernel/watchdog.c215
-rw-r--r--kernel/workqueue.c2
92 files changed, 3417 insertions, 1319 deletions
diff --git a/kernel/bpf/Kconfig b/kernel/bpf/Kconfig
index bc25f5098a25..17067dcb4386 100644
--- a/kernel/bpf/Kconfig
+++ b/kernel/bpf/Kconfig
@@ -28,7 +28,7 @@ config BPF_SYSCALL
bool "Enable bpf() system call"
select BPF
select IRQ_WORK
- select TASKS_RCU if PREEMPTION
+ select NEED_TASKS_RCU
select TASKS_TRACE_RCU
select BINARY_PRINTF
select NET_SOCK_MSG if NET
@@ -43,7 +43,7 @@ config BPF_JIT
bool "Enable BPF Just In Time compiler"
depends on BPF
depends on HAVE_CBPF_JIT || HAVE_EBPF_JIT
- depends on MODULES
+ select EXECMEM
help
BPF programs are normally handled by a BPF interpreter. This option
allows the kernel to generate native code when a program is loaded
diff --git a/kernel/bpf/Makefile b/kernel/bpf/Makefile
index e497011261b8..7eb9ad3a3ae6 100644
--- a/kernel/bpf/Makefile
+++ b/kernel/bpf/Makefile
@@ -44,6 +44,9 @@ obj-$(CONFIG_BPF_SYSCALL) += bpf_struct_ops.o
obj-$(CONFIG_BPF_SYSCALL) += cpumask.o
obj-${CONFIG_BPF_LSM} += bpf_lsm.o
endif
+ifneq ($(CONFIG_CRYPTO),)
+obj-$(CONFIG_BPF_SYSCALL) += crypto.o
+endif
obj-$(CONFIG_BPF_PRELOAD) += preload/
obj-$(CONFIG_BPF_SYSCALL) += relo_core.o
diff --git a/kernel/bpf/arena.c b/kernel/bpf/arena.c
index 343c3456c8dd..f5953f1a95cd 100644
--- a/kernel/bpf/arena.c
+++ b/kernel/bpf/arena.c
@@ -37,7 +37,7 @@
*/
/* number of bytes addressable by LDX/STX insn with 16-bit 'off' field */
-#define GUARD_SZ (1ull << sizeof(((struct bpf_insn *)0)->off) * 8)
+#define GUARD_SZ (1ull << sizeof_field(struct bpf_insn, off) * 8)
#define KERN_VM_SZ (SZ_4G + GUARD_SZ)
struct bpf_arena {
@@ -251,7 +251,7 @@ static vm_fault_t arena_vm_fault(struct vm_fault *vmf)
int ret;
kbase = bpf_arena_get_kern_vm_start(arena);
- kaddr = kbase + (u32)(vmf->address & PAGE_MASK);
+ kaddr = kbase + (u32)(vmf->address);
guard(mutex)(&arena->lock);
page = vmalloc_to_page((void *)kaddr);
diff --git a/kernel/bpf/arraymap.c b/kernel/bpf/arraymap.c
index 13358675ff2e..feabc0193852 100644
--- a/kernel/bpf/arraymap.c
+++ b/kernel/bpf/arraymap.c
@@ -246,6 +246,38 @@ static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key)
return this_cpu_ptr(array->pptrs[index & array->index_mask]);
}
+/* emit BPF instructions equivalent to C code of percpu_array_map_lookup_elem() */
+static int percpu_array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ struct bpf_insn *insn = insn_buf;
+
+ if (!bpf_jit_supports_percpu_insn())
+ return -EOPNOTSUPP;
+
+ if (map->map_flags & BPF_F_INNER_MAP)
+ return -EOPNOTSUPP;
+
+ BUILD_BUG_ON(offsetof(struct bpf_array, map) != 0);
+ *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, offsetof(struct bpf_array, pptrs));
+
+ *insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_2, 0);
+ if (!map->bypass_spec_v1) {
+ *insn++ = BPF_JMP_IMM(BPF_JGE, BPF_REG_0, map->max_entries, 6);
+ *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_0, array->index_mask);
+ } else {
+ *insn++ = BPF_JMP_IMM(BPF_JGE, BPF_REG_0, map->max_entries, 5);
+ }
+
+ *insn++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
+ *insn++ = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
+ *insn++ = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0);
+ *insn++ = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
+ *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
+ *insn++ = BPF_MOV64_IMM(BPF_REG_0, 0);
+ return insn - insn_buf;
+}
+
static void *percpu_array_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
@@ -396,17 +428,22 @@ static void *array_map_vmalloc_addr(struct bpf_array *array)
return (void *)round_down((unsigned long)array, PAGE_SIZE);
}
-static void array_map_free_timers(struct bpf_map *map)
+static void array_map_free_timers_wq(struct bpf_map *map)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
int i;
- /* We don't reset or free fields other than timer on uref dropping to zero. */
- if (!btf_record_has_field(map->record, BPF_TIMER))
- return;
-
- for (i = 0; i < array->map.max_entries; i++)
- bpf_obj_free_timer(map->record, array_map_elem_ptr(array, i));
+ /* We don't reset or free fields other than timer and workqueue
+ * on uref dropping to zero.
+ */
+ if (btf_record_has_field(map->record, BPF_TIMER | BPF_WORKQUEUE)) {
+ for (i = 0; i < array->map.max_entries; i++) {
+ if (btf_record_has_field(map->record, BPF_TIMER))
+ bpf_obj_free_timer(map->record, array_map_elem_ptr(array, i));
+ if (btf_record_has_field(map->record, BPF_WORKQUEUE))
+ bpf_obj_free_workqueue(map->record, array_map_elem_ptr(array, i));
+ }
+ }
}
/* Called when map->refcnt goes to zero, either from workqueue or from syscall */
@@ -750,7 +787,7 @@ const struct bpf_map_ops array_map_ops = {
.map_alloc = array_map_alloc,
.map_free = array_map_free,
.map_get_next_key = array_map_get_next_key,
- .map_release_uref = array_map_free_timers,
+ .map_release_uref = array_map_free_timers_wq,
.map_lookup_elem = array_map_lookup_elem,
.map_update_elem = array_map_update_elem,
.map_delete_elem = array_map_delete_elem,
@@ -776,6 +813,7 @@ const struct bpf_map_ops percpu_array_map_ops = {
.map_free = array_map_free,
.map_get_next_key = array_map_get_next_key,
.map_lookup_elem = percpu_array_map_lookup_elem,
+ .map_gen_lookup = percpu_array_map_gen_lookup,
.map_update_elem = array_map_update_elem,
.map_delete_elem = array_map_delete_elem,
.map_lookup_percpu_elem = percpu_array_map_lookup_percpu_elem,
diff --git a/kernel/bpf/bpf_local_storage.c b/kernel/bpf/bpf_local_storage.c
index bdea1a459153..976cb258a0ed 100644
--- a/kernel/bpf/bpf_local_storage.c
+++ b/kernel/bpf/bpf_local_storage.c
@@ -318,7 +318,7 @@ static bool check_storage_bpf_ma(struct bpf_local_storage *local_storage,
*
* If the local_storage->list is already empty, the caller will not
* care about the bpf_ma value also because the caller is not
- * responsibile to free the local_storage.
+ * responsible to free the local_storage.
*/
if (storage_smap)
diff --git a/kernel/bpf/bpf_struct_ops.c b/kernel/bpf/bpf_struct_ops.c
index 43356faaa057..86c7884abaf8 100644
--- a/kernel/bpf/bpf_struct_ops.c
+++ b/kernel/bpf/bpf_struct_ops.c
@@ -728,8 +728,6 @@ static long bpf_struct_ops_map_update_elem(struct bpf_map *map, void *key,
cur_image = image;
trampoline_start = 0;
}
- if (err < 0)
- goto reset_unlock;
*(void **)(kdata + moff) = image + trampoline_start + cfi_get_offset();
@@ -742,8 +740,12 @@ static long bpf_struct_ops_map_update_elem(struct bpf_map *map, void *key,
if (err)
goto reset_unlock;
}
- for (i = 0; i < st_map->image_pages_cnt; i++)
- arch_protect_bpf_trampoline(st_map->image_pages[i], PAGE_SIZE);
+ for (i = 0; i < st_map->image_pages_cnt; i++) {
+ err = arch_protect_bpf_trampoline(st_map->image_pages[i],
+ PAGE_SIZE);
+ if (err)
+ goto reset_unlock;
+ }
if (st_map->map.map_flags & BPF_F_LINK) {
err = 0;
diff --git a/kernel/bpf/btf.c b/kernel/bpf/btf.c
index 90c4a32d89ff..821063660d9f 100644
--- a/kernel/bpf/btf.c
+++ b/kernel/bpf/btf.c
@@ -218,6 +218,7 @@ enum btf_kfunc_hook {
BTF_KFUNC_HOOK_SOCKET_FILTER,
BTF_KFUNC_HOOK_LWT,
BTF_KFUNC_HOOK_NETFILTER,
+ BTF_KFUNC_HOOK_KPROBE,
BTF_KFUNC_HOOK_MAX,
};
@@ -3464,6 +3465,15 @@ static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
goto end;
}
}
+ if (field_mask & BPF_WORKQUEUE) {
+ if (!strcmp(name, "bpf_wq")) {
+ if (*seen_mask & BPF_WORKQUEUE)
+ return -E2BIG;
+ *seen_mask |= BPF_WORKQUEUE;
+ type = BPF_WORKQUEUE;
+ goto end;
+ }
+ }
field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root");
@@ -3515,6 +3525,7 @@ static int btf_find_struct_field(const struct btf *btf,
switch (field_type) {
case BPF_SPIN_LOCK:
case BPF_TIMER:
+ case BPF_WORKQUEUE:
case BPF_LIST_NODE:
case BPF_RB_NODE:
case BPF_REFCOUNT:
@@ -3582,6 +3593,7 @@ static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
switch (field_type) {
case BPF_SPIN_LOCK:
case BPF_TIMER:
+ case BPF_WORKQUEUE:
case BPF_LIST_NODE:
case BPF_RB_NODE:
case BPF_REFCOUNT:
@@ -3816,6 +3828,7 @@ struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type
rec->spin_lock_off = -EINVAL;
rec->timer_off = -EINVAL;
+ rec->wq_off = -EINVAL;
rec->refcount_off = -EINVAL;
for (i = 0; i < cnt; i++) {
field_type_size = btf_field_type_size(info_arr[i].type);
@@ -3846,6 +3859,11 @@ struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type
/* Cache offset for faster lookup at runtime */
rec->timer_off = rec->fields[i].offset;
break;
+ case BPF_WORKQUEUE:
+ WARN_ON_ONCE(rec->wq_off >= 0);
+ /* Cache offset for faster lookup at runtime */
+ rec->wq_off = rec->fields[i].offset;
+ break;
case BPF_REFCOUNT:
WARN_ON_ONCE(rec->refcount_off >= 0);
/* Cache offset for faster lookup at runtime */
@@ -5642,8 +5660,8 @@ errout_free:
return ERR_PTR(err);
}
-extern char __weak __start_BTF[];
-extern char __weak __stop_BTF[];
+extern char __start_BTF[];
+extern char __stop_BTF[];
extern struct btf *btf_vmlinux;
#define BPF_MAP_TYPE(_id, _ops)
@@ -5971,6 +5989,9 @@ struct btf *btf_parse_vmlinux(void)
struct btf *btf = NULL;
int err;
+ if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF))
+ return ERR_PTR(-ENOENT);
+
env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
if (!env)
return ERR_PTR(-ENOMEM);
@@ -8137,6 +8158,8 @@ static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
return BTF_KFUNC_HOOK_LWT;
case BPF_PROG_TYPE_NETFILTER:
return BTF_KFUNC_HOOK_NETFILTER;
+ case BPF_PROG_TYPE_KPROBE:
+ return BTF_KFUNC_HOOK_KPROBE;
default:
return BTF_KFUNC_HOOK_MAX;
}
diff --git a/kernel/bpf/cgroup.c b/kernel/bpf/cgroup.c
index 82243cb6c54d..8ba73042a239 100644
--- a/kernel/bpf/cgroup.c
+++ b/kernel/bpf/cgroup.c
@@ -2575,8 +2575,6 @@ cgroup_current_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
switch (func_id) {
case BPF_FUNC_get_current_uid_gid:
return &bpf_get_current_uid_gid_proto;
- case BPF_FUNC_get_current_pid_tgid:
- return &bpf_get_current_pid_tgid_proto;
case BPF_FUNC_get_current_comm:
return &bpf_get_current_comm_proto;
#ifdef CONFIG_CGROUP_NET_CLASSID
diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c
index 1ea5ce5bb599..1a6c3faa6e4a 100644
--- a/kernel/bpf/core.c
+++ b/kernel/bpf/core.c
@@ -22,10 +22,10 @@
#include <linux/skbuff.h>
#include <linux/vmalloc.h>
#include <linux/random.h>
-#include <linux/moduleloader.h>
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/objtool.h>
+#include <linux/overflow.h>
#include <linux/rbtree_latch.h>
#include <linux/kallsyms.h>
#include <linux/rcupdate.h>
@@ -37,6 +37,7 @@
#include <linux/nospec.h>
#include <linux/bpf_mem_alloc.h>
#include <linux/memcontrol.h>
+#include <linux/execmem.h>
#include <asm/barrier.h>
#include <asm/unaligned.h>
@@ -747,7 +748,7 @@ const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
unsigned long symbol_start = ksym->start;
unsigned long symbol_end = ksym->end;
- strncpy(sym, ksym->name, KSYM_NAME_LEN);
+ strscpy(sym, ksym->name, KSYM_NAME_LEN);
ret = sym;
if (size)
@@ -813,7 +814,7 @@ int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
if (it++ != symnum)
continue;
- strncpy(sym, ksym->name, KSYM_NAME_LEN);
+ strscpy(sym, ksym->name, KSYM_NAME_LEN);
*value = ksym->start;
*type = BPF_SYM_ELF_TYPE;
@@ -849,7 +850,7 @@ int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
return -EINVAL;
}
- tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
+ tab = krealloc_array(tab, size, sizeof(*poke), GFP_KERNEL);
if (!tab)
return -ENOMEM;
@@ -908,23 +909,30 @@ static LIST_HEAD(pack_list);
static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
{
struct bpf_prog_pack *pack;
+ int err;
pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
GFP_KERNEL);
if (!pack)
return NULL;
pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
- if (!pack->ptr) {
- kfree(pack);
- return NULL;
- }
+ if (!pack->ptr)
+ goto out;
bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
- list_add_tail(&pack->list, &pack_list);
set_vm_flush_reset_perms(pack->ptr);
- set_memory_rox((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
+ err = set_memory_rox((unsigned long)pack->ptr,
+ BPF_PROG_PACK_SIZE / PAGE_SIZE);
+ if (err)
+ goto out;
+ list_add_tail(&pack->list, &pack_list);
return pack;
+
+out:
+ bpf_jit_free_exec(pack->ptr);
+ kfree(pack);
+ return NULL;
}
void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
@@ -939,9 +947,16 @@ void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
size = round_up(size, PAGE_SIZE);
ptr = bpf_jit_alloc_exec(size);
if (ptr) {
+ int err;
+
bpf_fill_ill_insns(ptr, size);
set_vm_flush_reset_perms(ptr);
- set_memory_rox((unsigned long)ptr, size / PAGE_SIZE);
+ err = set_memory_rox((unsigned long)ptr,
+ size / PAGE_SIZE);
+ if (err) {
+ bpf_jit_free_exec(ptr);
+ ptr = NULL;
+ }
}
goto out;
}
@@ -1050,12 +1065,12 @@ void bpf_jit_uncharge_modmem(u32 size)
void *__weak bpf_jit_alloc_exec(unsigned long size)
{
- return module_alloc(size);
+ return execmem_alloc(EXECMEM_BPF, size);
}
void __weak bpf_jit_free_exec(void *addr)
{
- module_memfree(addr);
+ execmem_free(addr);
}
struct bpf_binary_header *
@@ -2204,6 +2219,7 @@ static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn
u64 stack[stack_size / sizeof(u64)]; \
u64 regs[MAX_BPF_EXT_REG] = {}; \
\
+ kmsan_unpoison_memory(stack, sizeof(stack)); \
FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
ARG1 = (u64) (unsigned long) ctx; \
return ___bpf_prog_run(regs, insn); \
@@ -2217,6 +2233,7 @@ static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
u64 stack[stack_size / sizeof(u64)]; \
u64 regs[MAX_BPF_EXT_REG]; \
\
+ kmsan_unpoison_memory(stack, sizeof(stack)); \
FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
BPF_R1 = r1; \
BPF_R2 = r2; \
@@ -2403,7 +2420,9 @@ struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
}
finalize:
- bpf_prog_lock_ro(fp);
+ *err = bpf_prog_lock_ro(fp);
+ if (*err)
+ return fp;
/* The tail call compatibility check can only be done at
* this late stage as we need to determine, if we deal
@@ -2437,13 +2456,14 @@ EXPORT_SYMBOL(bpf_empty_prog_array);
struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
{
+ struct bpf_prog_array *p;
+
if (prog_cnt)
- return kzalloc(sizeof(struct bpf_prog_array) +
- sizeof(struct bpf_prog_array_item) *
- (prog_cnt + 1),
- flags);
+ p = kzalloc(struct_size(p, items, prog_cnt + 1), flags);
+ else
+ p = &bpf_empty_prog_array.hdr;
- return &bpf_empty_prog_array.hdr;
+ return p;
}
void bpf_prog_array_free(struct bpf_prog_array *progs)
@@ -2796,7 +2816,7 @@ void bpf_prog_free(struct bpf_prog *fp)
}
EXPORT_SYMBOL_GPL(bpf_prog_free);
-/* RNG for unpriviledged user space with separated state from prandom_u32(). */
+/* RNG for unprivileged user space with separated state from prandom_u32(). */
static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
void bpf_user_rnd_init_once(void)
@@ -2921,12 +2941,28 @@ bool __weak bpf_jit_needs_zext(void)
return false;
}
+/* Return true if the JIT inlines the call to the helper corresponding to
+ * the imm.
+ *
+ * The verifier will not patch the insn->imm for the call to the helper if
+ * this returns true.
+ */
+bool __weak bpf_jit_inlines_helper_call(s32 imm)
+{
+ return false;
+}
+
/* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
bool __weak bpf_jit_supports_subprog_tailcalls(void)
{
return false;
}
+bool __weak bpf_jit_supports_percpu_insn(void)
+{
+ return false;
+}
+
bool __weak bpf_jit_supports_kfunc_call(void)
{
return false;
@@ -2942,6 +2978,11 @@ bool __weak bpf_jit_supports_arena(void)
return false;
}
+bool __weak bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
+{
+ return false;
+}
+
u64 __weak bpf_arch_uaddress_limit(void)
{
#if defined(CONFIG_64BIT) && defined(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE)
diff --git a/kernel/bpf/cpumask.c b/kernel/bpf/cpumask.c
index dad0fb1c8e87..33c473d676a5 100644
--- a/kernel/bpf/cpumask.c
+++ b/kernel/bpf/cpumask.c
@@ -474,6 +474,7 @@ static int __init cpumask_kfunc_init(void)
ret = bpf_mem_alloc_init(&bpf_cpumask_ma, sizeof(struct bpf_cpumask), false);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &cpumask_kfunc_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &cpumask_kfunc_set);
+ ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &cpumask_kfunc_set);
return ret ?: register_btf_id_dtor_kfuncs(cpumask_dtors,
ARRAY_SIZE(cpumask_dtors),
THIS_MODULE);
diff --git a/kernel/bpf/crypto.c b/kernel/bpf/crypto.c
new file mode 100644
index 000000000000..2bee4af91e38
--- /dev/null
+++ b/kernel/bpf/crypto.c
@@ -0,0 +1,385 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2024 Meta, Inc */
+#include <linux/bpf.h>
+#include <linux/bpf_crypto.h>
+#include <linux/bpf_mem_alloc.h>
+#include <linux/btf.h>
+#include <linux/btf_ids.h>
+#include <linux/filter.h>
+#include <linux/scatterlist.h>
+#include <linux/skbuff.h>
+#include <crypto/skcipher.h>
+
+struct bpf_crypto_type_list {
+ const struct bpf_crypto_type *type;
+ struct list_head list;
+};
+
+/* BPF crypto initialization parameters struct */
+/**
+ * struct bpf_crypto_params - BPF crypto initialization parameters structure
+ * @type: The string of crypto operation type.
+ * @reserved: Reserved member, will be reused for more options in future
+ * Values:
+ * 0
+ * @algo: The string of algorithm to initialize.
+ * @key: The cipher key used to init crypto algorithm.
+ * @key_len: The length of cipher key.
+ * @authsize: The length of authentication tag used by algorithm.
+ */
+struct bpf_crypto_params {
+ char type[14];
+ u8 reserved[2];
+ char algo[128];
+ u8 key[256];
+ u32 key_len;
+ u32 authsize;
+};
+
+static LIST_HEAD(bpf_crypto_types);
+static DECLARE_RWSEM(bpf_crypto_types_sem);
+
+/**
+ * struct bpf_crypto_ctx - refcounted BPF crypto context structure
+ * @type: The pointer to bpf crypto type
+ * @tfm: The pointer to instance of crypto API struct.
+ * @siv_len: Size of IV and state storage for cipher
+ * @rcu: The RCU head used to free the crypto context with RCU safety.
+ * @usage: Object reference counter. When the refcount goes to 0, the
+ * memory is released back to the BPF allocator, which provides
+ * RCU safety.
+ */
+struct bpf_crypto_ctx {
+ const struct bpf_crypto_type *type;
+ void *tfm;
+ u32 siv_len;
+ struct rcu_head rcu;
+ refcount_t usage;
+};
+
+int bpf_crypto_register_type(const struct bpf_crypto_type *type)
+{
+ struct bpf_crypto_type_list *node;
+ int err = -EEXIST;
+
+ down_write(&bpf_crypto_types_sem);
+ list_for_each_entry(node, &bpf_crypto_types, list) {
+ if (!strcmp(node->type->name, type->name))
+ goto unlock;
+ }
+
+ node = kmalloc(sizeof(*node), GFP_KERNEL);
+ err = -ENOMEM;
+ if (!node)
+ goto unlock;
+
+ node->type = type;
+ list_add(&node->list, &bpf_crypto_types);
+ err = 0;
+
+unlock:
+ up_write(&bpf_crypto_types_sem);
+
+ return err;
+}
+EXPORT_SYMBOL_GPL(bpf_crypto_register_type);
+
+int bpf_crypto_unregister_type(const struct bpf_crypto_type *type)
+{
+ struct bpf_crypto_type_list *node;
+ int err = -ENOENT;
+
+ down_write(&bpf_crypto_types_sem);
+ list_for_each_entry(node, &bpf_crypto_types, list) {
+ if (strcmp(node->type->name, type->name))
+ continue;
+
+ list_del(&node->list);
+ kfree(node);
+ err = 0;
+ break;
+ }
+ up_write(&bpf_crypto_types_sem);
+
+ return err;
+}
+EXPORT_SYMBOL_GPL(bpf_crypto_unregister_type);
+
+static const struct bpf_crypto_type *bpf_crypto_get_type(const char *name)
+{
+ const struct bpf_crypto_type *type = ERR_PTR(-ENOENT);
+ struct bpf_crypto_type_list *node;
+
+ down_read(&bpf_crypto_types_sem);
+ list_for_each_entry(node, &bpf_crypto_types, list) {
+ if (strcmp(node->type->name, name))
+ continue;
+
+ if (try_module_get(node->type->owner))
+ type = node->type;
+ break;
+ }
+ up_read(&bpf_crypto_types_sem);
+
+ return type;
+}
+
+__bpf_kfunc_start_defs();
+
+/**
+ * bpf_crypto_ctx_create() - Create a mutable BPF crypto context.
+ *
+ * Allocates a crypto context that can be used, acquired, and released by
+ * a BPF program. The crypto context returned by this function must either
+ * be embedded in a map as a kptr, or freed with bpf_crypto_ctx_release().
+ * As crypto API functions use GFP_KERNEL allocations, this function can
+ * only be used in sleepable BPF programs.
+ *
+ * bpf_crypto_ctx_create() allocates memory for crypto context.
+ * It may return NULL if no memory is available.
+ * @params: pointer to struct bpf_crypto_params which contains all the
+ * details needed to initialise crypto context.
+ * @params__sz: size of steuct bpf_crypto_params usef by bpf program
+ * @err: integer to store error code when NULL is returned.
+ */
+__bpf_kfunc struct bpf_crypto_ctx *
+bpf_crypto_ctx_create(const struct bpf_crypto_params *params, u32 params__sz,
+ int *err)
+{
+ const struct bpf_crypto_type *type;
+ struct bpf_crypto_ctx *ctx;
+
+ if (!params || params->reserved[0] || params->reserved[1] ||
+ params__sz != sizeof(struct bpf_crypto_params)) {
+ *err = -EINVAL;
+ return NULL;
+ }
+
+ type = bpf_crypto_get_type(params->type);
+ if (IS_ERR(type)) {
+ *err = PTR_ERR(type);
+ return NULL;
+ }
+
+ if (!type->has_algo(params->algo)) {
+ *err = -EOPNOTSUPP;
+ goto err_module_put;
+ }
+
+ if (!!params->authsize ^ !!type->setauthsize) {
+ *err = -EOPNOTSUPP;
+ goto err_module_put;
+ }
+
+ if (!params->key_len || params->key_len > sizeof(params->key)) {
+ *err = -EINVAL;
+ goto err_module_put;
+ }
+
+ ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
+ if (!ctx) {
+ *err = -ENOMEM;
+ goto err_module_put;
+ }
+
+ ctx->type = type;
+ ctx->tfm = type->alloc_tfm(params->algo);
+ if (IS_ERR(ctx->tfm)) {
+ *err = PTR_ERR(ctx->tfm);
+ goto err_free_ctx;
+ }
+
+ if (params->authsize) {
+ *err = type->setauthsize(ctx->tfm, params->authsize);
+ if (*err)
+ goto err_free_tfm;
+ }
+
+ *err = type->setkey(ctx->tfm, params->key, params->key_len);
+ if (*err)
+ goto err_free_tfm;
+
+ if (type->get_flags(ctx->tfm) & CRYPTO_TFM_NEED_KEY) {
+ *err = -EINVAL;
+ goto err_free_tfm;
+ }
+
+ ctx->siv_len = type->ivsize(ctx->tfm) + type->statesize(ctx->tfm);
+
+ refcount_set(&ctx->usage, 1);
+
+ return ctx;
+
+err_free_tfm:
+ type->free_tfm(ctx->tfm);
+err_free_ctx:
+ kfree(ctx);
+err_module_put:
+ module_put(type->owner);
+
+ return NULL;
+}
+
+static void crypto_free_cb(struct rcu_head *head)
+{
+ struct bpf_crypto_ctx *ctx;
+
+ ctx = container_of(head, struct bpf_crypto_ctx, rcu);
+ ctx->type->free_tfm(ctx->tfm);
+ module_put(ctx->type->owner);
+ kfree(ctx);
+}
+
+/**
+ * bpf_crypto_ctx_acquire() - Acquire a reference to a BPF crypto context.
+ * @ctx: The BPF crypto context being acquired. The ctx must be a trusted
+ * pointer.
+ *
+ * Acquires a reference to a BPF crypto context. The context returned by this function
+ * must either be embedded in a map as a kptr, or freed with
+ * bpf_crypto_ctx_release().
+ */
+__bpf_kfunc struct bpf_crypto_ctx *
+bpf_crypto_ctx_acquire(struct bpf_crypto_ctx *ctx)
+{
+ if (!refcount_inc_not_zero(&ctx->usage))
+ return NULL;
+ return ctx;
+}
+
+/**
+ * bpf_crypto_ctx_release() - Release a previously acquired BPF crypto context.
+ * @ctx: The crypto context being released.
+ *
+ * Releases a previously acquired reference to a BPF crypto context. When the final
+ * reference of the BPF crypto context has been released, its memory
+ * will be released.
+ */
+__bpf_kfunc void bpf_crypto_ctx_release(struct bpf_crypto_ctx *ctx)
+{
+ if (refcount_dec_and_test(&ctx->usage))
+ call_rcu(&ctx->rcu, crypto_free_cb);
+}
+
+static int bpf_crypto_crypt(const struct bpf_crypto_ctx *ctx,
+ const struct bpf_dynptr_kern *src,
+ const struct bpf_dynptr_kern *dst,
+ const struct bpf_dynptr_kern *siv,
+ bool decrypt)
+{
+ u32 src_len, dst_len, siv_len;
+ const u8 *psrc;
+ u8 *pdst, *piv;
+ int err;
+
+ if (__bpf_dynptr_is_rdonly(dst))
+ return -EINVAL;
+
+ siv_len = __bpf_dynptr_size(siv);
+ src_len = __bpf_dynptr_size(src);
+ dst_len = __bpf_dynptr_size(dst);
+ if (!src_len || !dst_len)
+ return -EINVAL;
+
+ if (siv_len != ctx->siv_len)
+ return -EINVAL;
+
+ psrc = __bpf_dynptr_data(src, src_len);
+ if (!psrc)
+ return -EINVAL;
+ pdst = __bpf_dynptr_data_rw(dst, dst_len);
+ if (!pdst)
+ return -EINVAL;
+
+ piv = siv_len ? __bpf_dynptr_data_rw(siv, siv_len) : NULL;
+ if (siv_len && !piv)
+ return -EINVAL;
+
+ err = decrypt ? ctx->type->decrypt(ctx->tfm, psrc, pdst, src_len, piv)
+ : ctx->type->encrypt(ctx->tfm, psrc, pdst, src_len, piv);
+
+ return err;
+}
+
+/**
+ * bpf_crypto_decrypt() - Decrypt buffer using configured context and IV provided.
+ * @ctx: The crypto context being used. The ctx must be a trusted pointer.
+ * @src: bpf_dynptr to the encrypted data. Must be a trusted pointer.
+ * @dst: bpf_dynptr to the buffer where to store the result. Must be a trusted pointer.
+ * @siv: bpf_dynptr to IV data and state data to be used by decryptor.
+ *
+ * Decrypts provided buffer using IV data and the crypto context. Crypto context must be configured.
+ */
+__bpf_kfunc int bpf_crypto_decrypt(struct bpf_crypto_ctx *ctx,
+ const struct bpf_dynptr_kern *src,
+ const struct bpf_dynptr_kern *dst,
+ const struct bpf_dynptr_kern *siv)
+{
+ return bpf_crypto_crypt(ctx, src, dst, siv, true);
+}
+
+/**
+ * bpf_crypto_encrypt() - Encrypt buffer using configured context and IV provided.
+ * @ctx: The crypto context being used. The ctx must be a trusted pointer.
+ * @src: bpf_dynptr to the plain data. Must be a trusted pointer.
+ * @dst: bpf_dynptr to buffer where to store the result. Must be a trusted pointer.
+ * @siv: bpf_dynptr to IV data and state data to be used by decryptor.
+ *
+ * Encrypts provided buffer using IV data and the crypto context. Crypto context must be configured.
+ */
+__bpf_kfunc int bpf_crypto_encrypt(struct bpf_crypto_ctx *ctx,
+ const struct bpf_dynptr_kern *src,
+ const struct bpf_dynptr_kern *dst,
+ const struct bpf_dynptr_kern *siv)
+{
+ return bpf_crypto_crypt(ctx, src, dst, siv, false);
+}
+
+__bpf_kfunc_end_defs();
+
+BTF_KFUNCS_START(crypt_init_kfunc_btf_ids)
+BTF_ID_FLAGS(func, bpf_crypto_ctx_create, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
+BTF_ID_FLAGS(func, bpf_crypto_ctx_release, KF_RELEASE)
+BTF_ID_FLAGS(func, bpf_crypto_ctx_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
+BTF_KFUNCS_END(crypt_init_kfunc_btf_ids)
+
+static const struct btf_kfunc_id_set crypt_init_kfunc_set = {
+ .owner = THIS_MODULE,
+ .set = &crypt_init_kfunc_btf_ids,
+};
+
+BTF_KFUNCS_START(crypt_kfunc_btf_ids)
+BTF_ID_FLAGS(func, bpf_crypto_decrypt, KF_RCU)
+BTF_ID_FLAGS(func, bpf_crypto_encrypt, KF_RCU)
+BTF_KFUNCS_END(crypt_kfunc_btf_ids)
+
+static const struct btf_kfunc_id_set crypt_kfunc_set = {
+ .owner = THIS_MODULE,
+ .set = &crypt_kfunc_btf_ids,
+};
+
+BTF_ID_LIST(bpf_crypto_dtor_ids)
+BTF_ID(struct, bpf_crypto_ctx)
+BTF_ID(func, bpf_crypto_ctx_release)
+
+static int __init crypto_kfunc_init(void)
+{
+ int ret;
+ const struct btf_id_dtor_kfunc bpf_crypto_dtors[] = {
+ {
+ .btf_id = bpf_crypto_dtor_ids[0],
+ .kfunc_btf_id = bpf_crypto_dtor_ids[1]
+ },
+ };
+
+ ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &crypt_kfunc_set);
+ ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &crypt_kfunc_set);
+ ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &crypt_kfunc_set);
+ ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
+ &crypt_init_kfunc_set);
+ return ret ?: register_btf_id_dtor_kfuncs(bpf_crypto_dtors,
+ ARRAY_SIZE(bpf_crypto_dtors),
+ THIS_MODULE);
+}
+
+late_initcall(crypto_kfunc_init);
diff --git a/kernel/bpf/disasm.c b/kernel/bpf/disasm.c
index bd2e2dd04740..309c4aa1b026 100644
--- a/kernel/bpf/disasm.c
+++ b/kernel/bpf/disasm.c
@@ -172,6 +172,17 @@ static bool is_addr_space_cast(const struct bpf_insn *insn)
insn->off == BPF_ADDR_SPACE_CAST;
}
+/* Special (internal-only) form of mov, used to resolve per-CPU addrs:
+ * dst_reg = src_reg + <percpu_base_off>
+ * BPF_ADDR_PERCPU is used as a special insn->off value.
+ */
+#define BPF_ADDR_PERCPU (-1)
+
+static inline bool is_mov_percpu_addr(const struct bpf_insn *insn)
+{
+ return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU;
+}
+
void print_bpf_insn(const struct bpf_insn_cbs *cbs,
const struct bpf_insn *insn,
bool allow_ptr_leaks)
@@ -194,6 +205,9 @@ void print_bpf_insn(const struct bpf_insn_cbs *cbs,
verbose(cbs->private_data, "(%02x) r%d = addr_space_cast(r%d, %d, %d)\n",
insn->code, insn->dst_reg,
insn->src_reg, ((u32)insn->imm) >> 16, (u16)insn->imm);
+ } else if (is_mov_percpu_addr(insn)) {
+ verbose(cbs->private_data, "(%02x) r%d = &(void __percpu *)(r%d)\n",
+ insn->code, insn->dst_reg, insn->src_reg);
} else if (BPF_SRC(insn->code) == BPF_X) {
verbose(cbs->private_data, "(%02x) %c%d %s %s%c%d\n",
insn->code, class == BPF_ALU ? 'w' : 'r',
diff --git a/kernel/bpf/hashtab.c b/kernel/bpf/hashtab.c
index 3a088a5349bc..06115f8728e8 100644
--- a/kernel/bpf/hashtab.c
+++ b/kernel/bpf/hashtab.c
@@ -221,13 +221,11 @@ static bool htab_has_extra_elems(struct bpf_htab *htab)
return !htab_is_percpu(htab) && !htab_is_lru(htab);
}
-static void htab_free_prealloced_timers(struct bpf_htab *htab)
+static void htab_free_prealloced_timers_and_wq(struct bpf_htab *htab)
{
u32 num_entries = htab->map.max_entries;
int i;
- if (!btf_record_has_field(htab->map.record, BPF_TIMER))
- return;
if (htab_has_extra_elems(htab))
num_entries += num_possible_cpus();
@@ -235,7 +233,12 @@ static void htab_free_prealloced_timers(struct bpf_htab *htab)
struct htab_elem *elem;
elem = get_htab_elem(htab, i);
- bpf_obj_free_timer(htab->map.record, elem->key + round_up(htab->map.key_size, 8));
+ if (btf_record_has_field(htab->map.record, BPF_TIMER))
+ bpf_obj_free_timer(htab->map.record,
+ elem->key + round_up(htab->map.key_size, 8));
+ if (btf_record_has_field(htab->map.record, BPF_WORKQUEUE))
+ bpf_obj_free_workqueue(htab->map.record,
+ elem->key + round_up(htab->map.key_size, 8));
cond_resched();
}
}
@@ -1490,11 +1493,12 @@ static void delete_all_elements(struct bpf_htab *htab)
hlist_nulls_del_rcu(&l->hash_node);
htab_elem_free(htab, l);
}
+ cond_resched();
}
migrate_enable();
}
-static void htab_free_malloced_timers(struct bpf_htab *htab)
+static void htab_free_malloced_timers_and_wq(struct bpf_htab *htab)
{
int i;
@@ -1506,24 +1510,29 @@ static void htab_free_malloced_timers(struct bpf_htab *htab)
hlist_nulls_for_each_entry(l, n, head, hash_node) {
/* We only free timer on uref dropping to zero */
- bpf_obj_free_timer(htab->map.record, l->key + round_up(htab->map.key_size, 8));
+ if (btf_record_has_field(htab->map.record, BPF_TIMER))
+ bpf_obj_free_timer(htab->map.record,
+ l->key + round_up(htab->map.key_size, 8));
+ if (btf_record_has_field(htab->map.record, BPF_WORKQUEUE))
+ bpf_obj_free_workqueue(htab->map.record,
+ l->key + round_up(htab->map.key_size, 8));
}
cond_resched_rcu();
}
rcu_read_unlock();
}
-static void htab_map_free_timers(struct bpf_map *map)
+static void htab_map_free_timers_and_wq(struct bpf_map *map)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
- /* We only free timer on uref dropping to zero */
- if (!btf_record_has_field(htab->map.record, BPF_TIMER))
- return;
- if (!htab_is_prealloc(htab))
- htab_free_malloced_timers(htab);
- else
- htab_free_prealloced_timers(htab);
+ /* We only free timer and workqueue on uref dropping to zero */
+ if (btf_record_has_field(htab->map.record, BPF_TIMER | BPF_WORKQUEUE)) {
+ if (!htab_is_prealloc(htab))
+ htab_free_malloced_timers_and_wq(htab);
+ else
+ htab_free_prealloced_timers_and_wq(htab);
+ }
}
/* Called when map->refcnt goes to zero, either from workqueue or from syscall */
@@ -1538,7 +1547,7 @@ static void htab_map_free(struct bpf_map *map)
*/
/* htab no longer uses call_rcu() directly. bpf_mem_alloc does it
- * underneath and is reponsible for waiting for callbacks to finish
+ * underneath and is responsible for waiting for callbacks to finish
* during bpf_mem_alloc_destroy().
*/
if (!htab_is_prealloc(htab)) {
@@ -2259,7 +2268,7 @@ const struct bpf_map_ops htab_map_ops = {
.map_alloc = htab_map_alloc,
.map_free = htab_map_free,
.map_get_next_key = htab_map_get_next_key,
- .map_release_uref = htab_map_free_timers,
+ .map_release_uref = htab_map_free_timers_and_wq,
.map_lookup_elem = htab_map_lookup_elem,
.map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
.map_update_elem = htab_map_update_elem,
@@ -2280,7 +2289,7 @@ const struct bpf_map_ops htab_lru_map_ops = {
.map_alloc = htab_map_alloc,
.map_free = htab_map_free,
.map_get_next_key = htab_map_get_next_key,
- .map_release_uref = htab_map_free_timers,
+ .map_release_uref = htab_map_free_timers_and_wq,
.map_lookup_elem = htab_lru_map_lookup_elem,
.map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
@@ -2307,6 +2316,26 @@ static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
return NULL;
}
+/* inline bpf_map_lookup_elem() call for per-CPU hashmap */
+static int htab_percpu_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
+{
+ struct bpf_insn *insn = insn_buf;
+
+ if (!bpf_jit_supports_percpu_insn())
+ return -EOPNOTSUPP;
+
+ BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
+ (void *(*)(struct bpf_map *map, void *key))NULL));
+ *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
+ *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3);
+ *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_0,
+ offsetof(struct htab_elem, key) + map->key_size);
+ *insn++ = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0);
+ *insn++ = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
+
+ return insn - insn_buf;
+}
+
static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
{
struct htab_elem *l;
@@ -2435,6 +2464,7 @@ const struct bpf_map_ops htab_percpu_map_ops = {
.map_free = htab_map_free,
.map_get_next_key = htab_map_get_next_key,
.map_lookup_elem = htab_percpu_map_lookup_elem,
+ .map_gen_lookup = htab_percpu_map_gen_lookup,
.map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
.map_update_elem = htab_percpu_map_update_elem,
.map_delete_elem = htab_map_delete_elem,
diff --git a/kernel/bpf/helpers.c b/kernel/bpf/helpers.c
index 449b9a5d3fe3..2a69a9a36c0f 100644
--- a/kernel/bpf/helpers.c
+++ b/kernel/bpf/helpers.c
@@ -1079,11 +1079,20 @@ const struct bpf_func_proto bpf_snprintf_proto = {
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
};
+struct bpf_async_cb {
+ struct bpf_map *map;
+ struct bpf_prog *prog;
+ void __rcu *callback_fn;
+ void *value;
+ struct rcu_head rcu;
+ u64 flags;
+};
+
/* BPF map elements can contain 'struct bpf_timer'.
* Such map owns all of its BPF timers.
* 'struct bpf_timer' is allocated as part of map element allocation
* and it's zero initialized.
- * That space is used to keep 'struct bpf_timer_kern'.
+ * That space is used to keep 'struct bpf_async_kern'.
* bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
* remembers 'struct bpf_map *' pointer it's part of.
* bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
@@ -1096,17 +1105,23 @@ const struct bpf_func_proto bpf_snprintf_proto = {
* freeing the timers when inner map is replaced or deleted by user space.
*/
struct bpf_hrtimer {
+ struct bpf_async_cb cb;
struct hrtimer timer;
- struct bpf_map *map;
- struct bpf_prog *prog;
- void __rcu *callback_fn;
- void *value;
- struct rcu_head rcu;
};
-/* the actual struct hidden inside uapi struct bpf_timer */
-struct bpf_timer_kern {
- struct bpf_hrtimer *timer;
+struct bpf_work {
+ struct bpf_async_cb cb;
+ struct work_struct work;
+ struct work_struct delete_work;
+};
+
+/* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */
+struct bpf_async_kern {
+ union {
+ struct bpf_async_cb *cb;
+ struct bpf_hrtimer *timer;
+ struct bpf_work *work;
+ };
/* bpf_spin_lock is used here instead of spinlock_t to make
* sure that it always fits into space reserved by struct bpf_timer
* regardless of LOCKDEP and spinlock debug flags.
@@ -1114,19 +1129,24 @@ struct bpf_timer_kern {
struct bpf_spin_lock lock;
} __attribute__((aligned(8)));
+enum bpf_async_type {
+ BPF_ASYNC_TYPE_TIMER = 0,
+ BPF_ASYNC_TYPE_WQ,
+};
+
static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
{
struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
- struct bpf_map *map = t->map;
- void *value = t->value;
+ struct bpf_map *map = t->cb.map;
+ void *value = t->cb.value;
bpf_callback_t callback_fn;
void *key;
u32 idx;
BTF_TYPE_EMIT(struct bpf_timer);
- callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
+ callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held());
if (!callback_fn)
goto out;
@@ -1155,46 +1175,112 @@ out:
return HRTIMER_NORESTART;
}
-BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
- u64, flags)
+static void bpf_wq_work(struct work_struct *work)
+{
+ struct bpf_work *w = container_of(work, struct bpf_work, work);
+ struct bpf_async_cb *cb = &w->cb;
+ struct bpf_map *map = cb->map;
+ bpf_callback_t callback_fn;
+ void *value = cb->value;
+ void *key;
+ u32 idx;
+
+ BTF_TYPE_EMIT(struct bpf_wq);
+
+ callback_fn = READ_ONCE(cb->callback_fn);
+ if (!callback_fn)
+ return;
+
+ if (map->map_type == BPF_MAP_TYPE_ARRAY) {
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+
+ /* compute the key */
+ idx = ((char *)value - array->value) / array->elem_size;
+ key = &idx;
+ } else { /* hash or lru */
+ key = value - round_up(map->key_size, 8);
+ }
+
+ rcu_read_lock_trace();
+ migrate_disable();
+
+ callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
+
+ migrate_enable();
+ rcu_read_unlock_trace();
+}
+
+static void bpf_wq_delete_work(struct work_struct *work)
+{
+ struct bpf_work *w = container_of(work, struct bpf_work, delete_work);
+
+ cancel_work_sync(&w->work);
+
+ kfree_rcu(w, cb.rcu);
+}
+
+static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags,
+ enum bpf_async_type type)
{
- clockid_t clockid = flags & (MAX_CLOCKS - 1);
+ struct bpf_async_cb *cb;
struct bpf_hrtimer *t;
+ struct bpf_work *w;
+ clockid_t clockid;
+ size_t size;
int ret = 0;
- BUILD_BUG_ON(MAX_CLOCKS != 16);
- BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
- BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
-
if (in_nmi())
return -EOPNOTSUPP;
- if (flags >= MAX_CLOCKS ||
- /* similar to timerfd except _ALARM variants are not supported */
- (clockid != CLOCK_MONOTONIC &&
- clockid != CLOCK_REALTIME &&
- clockid != CLOCK_BOOTTIME))
+ switch (type) {
+ case BPF_ASYNC_TYPE_TIMER:
+ size = sizeof(struct bpf_hrtimer);
+ break;
+ case BPF_ASYNC_TYPE_WQ:
+ size = sizeof(struct bpf_work);
+ break;
+ default:
return -EINVAL;
- __bpf_spin_lock_irqsave(&timer->lock);
- t = timer->timer;
+ }
+
+ __bpf_spin_lock_irqsave(&async->lock);
+ t = async->timer;
if (t) {
ret = -EBUSY;
goto out;
}
+
/* allocate hrtimer via map_kmalloc to use memcg accounting */
- t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
- if (!t) {
+ cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node);
+ if (!cb) {
ret = -ENOMEM;
goto out;
}
- t->value = (void *)timer - map->record->timer_off;
- t->map = map;
- t->prog = NULL;
- rcu_assign_pointer(t->callback_fn, NULL);
- hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
- t->timer.function = bpf_timer_cb;
- WRITE_ONCE(timer->timer, t);
- /* Guarantee the order between timer->timer and map->usercnt. So
+
+ switch (type) {
+ case BPF_ASYNC_TYPE_TIMER:
+ clockid = flags & (MAX_CLOCKS - 1);
+ t = (struct bpf_hrtimer *)cb;
+
+ hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
+ t->timer.function = bpf_timer_cb;
+ cb->value = (void *)async - map->record->timer_off;
+ break;
+ case BPF_ASYNC_TYPE_WQ:
+ w = (struct bpf_work *)cb;
+
+ INIT_WORK(&w->work, bpf_wq_work);
+ INIT_WORK(&w->delete_work, bpf_wq_delete_work);
+ cb->value = (void *)async - map->record->wq_off;
+ break;
+ }
+ cb->map = map;
+ cb->prog = NULL;
+ cb->flags = flags;
+ rcu_assign_pointer(cb->callback_fn, NULL);
+
+ WRITE_ONCE(async->cb, cb);
+ /* Guarantee the order between async->cb and map->usercnt. So
* when there are concurrent uref release and bpf timer init, either
* bpf_timer_cancel_and_free() called by uref release reads a no-NULL
* timer or atomic64_read() below returns a zero usercnt.
@@ -1204,15 +1290,34 @@ BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map
/* maps with timers must be either held by user space
* or pinned in bpffs.
*/
- WRITE_ONCE(timer->timer, NULL);
- kfree(t);
+ WRITE_ONCE(async->cb, NULL);
+ kfree(cb);
ret = -EPERM;
}
out:
- __bpf_spin_unlock_irqrestore(&timer->lock);
+ __bpf_spin_unlock_irqrestore(&async->lock);
return ret;
}
+BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map,
+ u64, flags)
+{
+ clock_t clockid = flags & (MAX_CLOCKS - 1);
+
+ BUILD_BUG_ON(MAX_CLOCKS != 16);
+ BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer));
+ BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer));
+
+ if (flags >= MAX_CLOCKS ||
+ /* similar to timerfd except _ALARM variants are not supported */
+ (clockid != CLOCK_MONOTONIC &&
+ clockid != CLOCK_REALTIME &&
+ clockid != CLOCK_BOOTTIME))
+ return -EINVAL;
+
+ return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER);
+}
+
static const struct bpf_func_proto bpf_timer_init_proto = {
.func = bpf_timer_init,
.gpl_only = true,
@@ -1222,22 +1327,23 @@ static const struct bpf_func_proto bpf_timer_init_proto = {
.arg3_type = ARG_ANYTHING,
};
-BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
- struct bpf_prog_aux *, aux)
+static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn,
+ struct bpf_prog_aux *aux, unsigned int flags,
+ enum bpf_async_type type)
{
struct bpf_prog *prev, *prog = aux->prog;
- struct bpf_hrtimer *t;
+ struct bpf_async_cb *cb;
int ret = 0;
if (in_nmi())
return -EOPNOTSUPP;
- __bpf_spin_lock_irqsave(&timer->lock);
- t = timer->timer;
- if (!t) {
+ __bpf_spin_lock_irqsave(&async->lock);
+ cb = async->cb;
+ if (!cb) {
ret = -EINVAL;
goto out;
}
- if (!atomic64_read(&t->map->usercnt)) {
+ if (!atomic64_read(&cb->map->usercnt)) {
/* maps with timers must be either held by user space
* or pinned in bpffs. Otherwise timer might still be
* running even when bpf prog is detached and user space
@@ -1246,7 +1352,7 @@ BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callb
ret = -EPERM;
goto out;
}
- prev = t->prog;
+ prev = cb->prog;
if (prev != prog) {
/* Bump prog refcnt once. Every bpf_timer_set_callback()
* can pick different callback_fn-s within the same prog.
@@ -1259,14 +1365,20 @@ BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callb
if (prev)
/* Drop prev prog refcnt when swapping with new prog */
bpf_prog_put(prev);
- t->prog = prog;
+ cb->prog = prog;
}
- rcu_assign_pointer(t->callback_fn, callback_fn);
+ rcu_assign_pointer(cb->callback_fn, callback_fn);
out:
- __bpf_spin_unlock_irqrestore(&timer->lock);
+ __bpf_spin_unlock_irqrestore(&async->lock);
return ret;
}
+BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn,
+ struct bpf_prog_aux *, aux)
+{
+ return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER);
+}
+
static const struct bpf_func_proto bpf_timer_set_callback_proto = {
.func = bpf_timer_set_callback,
.gpl_only = true,
@@ -1275,7 +1387,7 @@ static const struct bpf_func_proto bpf_timer_set_callback_proto = {
.arg2_type = ARG_PTR_TO_FUNC,
};
-BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
+BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags)
{
struct bpf_hrtimer *t;
int ret = 0;
@@ -1287,7 +1399,7 @@ BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, fla
return -EINVAL;
__bpf_spin_lock_irqsave(&timer->lock);
t = timer->timer;
- if (!t || !t->prog) {
+ if (!t || !t->cb.prog) {
ret = -EINVAL;
goto out;
}
@@ -1315,18 +1427,18 @@ static const struct bpf_func_proto bpf_timer_start_proto = {
.arg3_type = ARG_ANYTHING,
};
-static void drop_prog_refcnt(struct bpf_hrtimer *t)
+static void drop_prog_refcnt(struct bpf_async_cb *async)
{
- struct bpf_prog *prog = t->prog;
+ struct bpf_prog *prog = async->prog;
if (prog) {
bpf_prog_put(prog);
- t->prog = NULL;
- rcu_assign_pointer(t->callback_fn, NULL);
+ async->prog = NULL;
+ rcu_assign_pointer(async->callback_fn, NULL);
}
}
-BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
+BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer)
{
struct bpf_hrtimer *t;
int ret = 0;
@@ -1348,7 +1460,7 @@ BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
ret = -EDEADLK;
goto out;
}
- drop_prog_refcnt(t);
+ drop_prog_refcnt(&t->cb);
out:
__bpf_spin_unlock_irqrestore(&timer->lock);
/* Cancel the timer and wait for associated callback to finish
@@ -1366,36 +1478,44 @@ static const struct bpf_func_proto bpf_timer_cancel_proto = {
.arg1_type = ARG_PTR_TO_TIMER,
};
-/* This function is called by map_delete/update_elem for individual element and
- * by ops->map_release_uref when the user space reference to a map reaches zero.
- */
-void bpf_timer_cancel_and_free(void *val)
+static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async)
{
- struct bpf_timer_kern *timer = val;
- struct bpf_hrtimer *t;
+ struct bpf_async_cb *cb;
- /* Performance optimization: read timer->timer without lock first. */
- if (!READ_ONCE(timer->timer))
- return;
+ /* Performance optimization: read async->cb without lock first. */
+ if (!READ_ONCE(async->cb))
+ return NULL;
- __bpf_spin_lock_irqsave(&timer->lock);
+ __bpf_spin_lock_irqsave(&async->lock);
/* re-read it under lock */
- t = timer->timer;
- if (!t)
+ cb = async->cb;
+ if (!cb)
goto out;
- drop_prog_refcnt(t);
+ drop_prog_refcnt(cb);
/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
* this timer, since it won't be initialized.
*/
- WRITE_ONCE(timer->timer, NULL);
+ WRITE_ONCE(async->cb, NULL);
out:
- __bpf_spin_unlock_irqrestore(&timer->lock);
+ __bpf_spin_unlock_irqrestore(&async->lock);
+ return cb;
+}
+
+/* This function is called by map_delete/update_elem for individual element and
+ * by ops->map_release_uref when the user space reference to a map reaches zero.
+ */
+void bpf_timer_cancel_and_free(void *val)
+{
+ struct bpf_hrtimer *t;
+
+ t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val);
+
if (!t)
return;
/* Cancel the timer and wait for callback to complete if it was running.
* If hrtimer_cancel() can be safely called it's safe to call kfree(t)
* right after for both preallocated and non-preallocated maps.
- * The timer->timer = NULL was already done and no code path can
+ * The async->cb = NULL was already done and no code path can
* see address 't' anymore.
*
* Check that bpf_map_delete/update_elem() wasn't called from timer
@@ -1404,13 +1524,33 @@ out:
* return -1). Though callback_fn is still running on this cpu it's
* safe to do kfree(t) because bpf_timer_cb() read everything it needed
* from 't'. The bpf subprog callback_fn won't be able to access 't',
- * since timer->timer = NULL was already done. The timer will be
+ * since async->cb = NULL was already done. The timer will be
* effectively cancelled because bpf_timer_cb() will return
* HRTIMER_NORESTART.
*/
if (this_cpu_read(hrtimer_running) != t)
hrtimer_cancel(&t->timer);
- kfree_rcu(t, rcu);
+ kfree_rcu(t, cb.rcu);
+}
+
+/* This function is called by map_delete/update_elem for individual element and
+ * by ops->map_release_uref when the user space reference to a map reaches zero.
+ */
+void bpf_wq_cancel_and_free(void *val)
+{
+ struct bpf_work *work;
+
+ BTF_TYPE_EMIT(struct bpf_wq);
+
+ work = (struct bpf_work *)__bpf_async_cancel_and_free(val);
+ if (!work)
+ return;
+ /* Trigger cancel of the sleepable work, but *do not* wait for
+ * it to finish if it was running as we might not be in a
+ * sleepable context.
+ * kfree will be called once the work has finished.
+ */
+ schedule_work(&work->delete_work);
}
BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
@@ -1443,7 +1583,7 @@ static const struct bpf_func_proto bpf_kptr_xchg_proto = {
#define DYNPTR_SIZE_MASK 0xFFFFFF
#define DYNPTR_RDONLY_BIT BIT(31)
-static bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
+bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
{
return ptr->size & DYNPTR_RDONLY_BIT;
}
@@ -1730,6 +1870,10 @@ bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
return &bpf_strtol_proto;
case BPF_FUNC_strtoul:
return &bpf_strtoul_proto;
+ case BPF_FUNC_get_current_pid_tgid:
+ return &bpf_get_current_pid_tgid_proto;
+ case BPF_FUNC_get_ns_current_pid_tgid:
+ return &bpf_get_ns_current_pid_tgid_proto;
default:
break;
}
@@ -2408,7 +2552,7 @@ __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 o
/* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
*
* For skb-type dynptrs, it is safe to write into the returned pointer
- * if the bpf program allows skb data writes. There are two possiblities
+ * if the bpf program allows skb data writes. There are two possibilities
* that may occur when calling bpf_dynptr_slice_rdwr:
*
* 1) The requested slice is in the head of the skb. In this case, the
@@ -2545,6 +2689,61 @@ __bpf_kfunc void bpf_throw(u64 cookie)
WARN(1, "A call to BPF exception callback should never return\n");
}
+__bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags)
+{
+ struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
+ struct bpf_map *map = p__map;
+
+ BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq));
+ BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq));
+
+ if (flags)
+ return -EINVAL;
+
+ return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ);
+}
+
+__bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags)
+{
+ struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
+ struct bpf_work *w;
+
+ if (in_nmi())
+ return -EOPNOTSUPP;
+ if (flags)
+ return -EINVAL;
+ w = READ_ONCE(async->work);
+ if (!w || !READ_ONCE(w->cb.prog))
+ return -EINVAL;
+
+ schedule_work(&w->work);
+ return 0;
+}
+
+__bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq,
+ int (callback_fn)(void *map, int *key, struct bpf_wq *wq),
+ unsigned int flags,
+ void *aux__ign)
+{
+ struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__ign;
+ struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
+
+ if (flags)
+ return -EINVAL;
+
+ return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ);
+}
+
+__bpf_kfunc void bpf_preempt_disable(void)
+{
+ preempt_disable();
+}
+
+__bpf_kfunc void bpf_preempt_enable(void)
+{
+ preempt_enable();
+}
+
__bpf_kfunc_end_defs();
BTF_KFUNCS_START(generic_btf_ids)
@@ -2621,6 +2820,12 @@ BTF_ID_FLAGS(func, bpf_dynptr_is_null)
BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
BTF_ID_FLAGS(func, bpf_dynptr_size)
BTF_ID_FLAGS(func, bpf_dynptr_clone)
+BTF_ID_FLAGS(func, bpf_modify_return_test_tp)
+BTF_ID_FLAGS(func, bpf_wq_init)
+BTF_ID_FLAGS(func, bpf_wq_set_callback_impl)
+BTF_ID_FLAGS(func, bpf_wq_start)
+BTF_ID_FLAGS(func, bpf_preempt_disable)
+BTF_ID_FLAGS(func, bpf_preempt_enable)
BTF_KFUNCS_END(common_btf_ids)
static const struct btf_kfunc_id_set common_kfunc_set = {
@@ -2648,6 +2853,7 @@ static int __init kfunc_init(void)
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
+ ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set);
ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
ARRAY_SIZE(generic_dtors),
THIS_MODULE);
diff --git a/kernel/bpf/log.c b/kernel/bpf/log.c
index 2a243cf37c60..4bd8f17a9f24 100644
--- a/kernel/bpf/log.c
+++ b/kernel/bpf/log.c
@@ -467,9 +467,9 @@ const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type)
if (type & PTR_MAYBE_NULL) {
if (base_type(type) == PTR_TO_BTF_ID)
- strncpy(postfix, "or_null_", 16);
+ strscpy(postfix, "or_null_");
else
- strncpy(postfix, "_or_null", 16);
+ strscpy(postfix, "_or_null");
}
snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
diff --git a/kernel/bpf/lpm_trie.c b/kernel/bpf/lpm_trie.c
index 050fe1ebf0f7..0218a5132ab5 100644
--- a/kernel/bpf/lpm_trie.c
+++ b/kernel/bpf/lpm_trie.c
@@ -155,16 +155,17 @@ static inline int extract_bit(const u8 *data, size_t index)
}
/**
- * longest_prefix_match() - determine the longest prefix
+ * __longest_prefix_match() - determine the longest prefix
* @trie: The trie to get internal sizes from
* @node: The node to operate on
* @key: The key to compare to @node
*
* Determine the longest prefix of @node that matches the bits in @key.
*/
-static size_t longest_prefix_match(const struct lpm_trie *trie,
- const struct lpm_trie_node *node,
- const struct bpf_lpm_trie_key_u8 *key)
+static __always_inline
+size_t __longest_prefix_match(const struct lpm_trie *trie,
+ const struct lpm_trie_node *node,
+ const struct bpf_lpm_trie_key_u8 *key)
{
u32 limit = min(node->prefixlen, key->prefixlen);
u32 prefixlen = 0, i = 0;
@@ -224,6 +225,13 @@ static size_t longest_prefix_match(const struct lpm_trie *trie,
return prefixlen;
}
+static size_t longest_prefix_match(const struct lpm_trie *trie,
+ const struct lpm_trie_node *node,
+ const struct bpf_lpm_trie_key_u8 *key)
+{
+ return __longest_prefix_match(trie, node, key);
+}
+
/* Called from syscall or from eBPF program */
static void *trie_lookup_elem(struct bpf_map *map, void *_key)
{
@@ -245,7 +253,7 @@ static void *trie_lookup_elem(struct bpf_map *map, void *_key)
* If it's the maximum possible prefix for this trie, we have
* an exact match and can return it directly.
*/
- matchlen = longest_prefix_match(trie, node, key);
+ matchlen = __longest_prefix_match(trie, node, key);
if (matchlen == trie->max_prefixlen) {
found = node;
break;
@@ -308,6 +316,7 @@ static long trie_update_elem(struct bpf_map *map,
{
struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
+ struct lpm_trie_node *free_node = NULL;
struct lpm_trie_node __rcu **slot;
struct bpf_lpm_trie_key_u8 *key = _key;
unsigned long irq_flags;
@@ -382,7 +391,7 @@ static long trie_update_elem(struct bpf_map *map,
trie->n_entries--;
rcu_assign_pointer(*slot, new_node);
- kfree_rcu(node, rcu);
+ free_node = node;
goto out;
}
@@ -429,6 +438,7 @@ out:
}
spin_unlock_irqrestore(&trie->lock, irq_flags);
+ kfree_rcu(free_node, rcu);
return ret;
}
@@ -437,6 +447,7 @@ out:
static long trie_delete_elem(struct bpf_map *map, void *_key)
{
struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
+ struct lpm_trie_node *free_node = NULL, *free_parent = NULL;
struct bpf_lpm_trie_key_u8 *key = _key;
struct lpm_trie_node __rcu **trim, **trim2;
struct lpm_trie_node *node, *parent;
@@ -506,8 +517,8 @@ static long trie_delete_elem(struct bpf_map *map, void *_key)
else
rcu_assign_pointer(
*trim2, rcu_access_pointer(parent->child[0]));
- kfree_rcu(parent, rcu);
- kfree_rcu(node, rcu);
+ free_parent = parent;
+ free_node = node;
goto out;
}
@@ -521,10 +532,12 @@ static long trie_delete_elem(struct bpf_map *map, void *_key)
rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
else
RCU_INIT_POINTER(*trim, NULL);
- kfree_rcu(node, rcu);
+ free_node = node;
out:
spin_unlock_irqrestore(&trie->lock, irq_flags);
+ kfree_rcu(free_parent, rcu);
+ kfree_rcu(free_node, rcu);
return ret;
}
diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c
index c287925471f6..cf6285760aea 100644
--- a/kernel/bpf/syscall.c
+++ b/kernel/bpf/syscall.c
@@ -559,6 +559,7 @@ void btf_record_free(struct btf_record *rec)
case BPF_SPIN_LOCK:
case BPF_TIMER:
case BPF_REFCOUNT:
+ case BPF_WORKQUEUE:
/* Nothing to release */
break;
default:
@@ -608,6 +609,7 @@ struct btf_record *btf_record_dup(const struct btf_record *rec)
case BPF_SPIN_LOCK:
case BPF_TIMER:
case BPF_REFCOUNT:
+ case BPF_WORKQUEUE:
/* Nothing to acquire */
break;
default:
@@ -659,6 +661,13 @@ void bpf_obj_free_timer(const struct btf_record *rec, void *obj)
bpf_timer_cancel_and_free(obj + rec->timer_off);
}
+void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj)
+{
+ if (WARN_ON_ONCE(!btf_record_has_field(rec, BPF_WORKQUEUE)))
+ return;
+ bpf_wq_cancel_and_free(obj + rec->wq_off);
+}
+
void bpf_obj_free_fields(const struct btf_record *rec, void *obj)
{
const struct btf_field *fields;
@@ -679,6 +688,9 @@ void bpf_obj_free_fields(const struct btf_record *rec, void *obj)
case BPF_TIMER:
bpf_timer_cancel_and_free(field_ptr);
break;
+ case BPF_WORKQUEUE:
+ bpf_wq_cancel_and_free(field_ptr);
+ break;
case BPF_KPTR_UNREF:
WRITE_ONCE(*(u64 *)field_ptr, 0);
break;
@@ -1085,7 +1097,7 @@ static int map_check_btf(struct bpf_map *map, struct bpf_token *token,
map->record = btf_parse_fields(btf, value_type,
BPF_SPIN_LOCK | BPF_TIMER | BPF_KPTR | BPF_LIST_HEAD |
- BPF_RB_ROOT | BPF_REFCOUNT,
+ BPF_RB_ROOT | BPF_REFCOUNT | BPF_WORKQUEUE,
map->value_size);
if (!IS_ERR_OR_NULL(map->record)) {
int i;
@@ -1115,6 +1127,7 @@ static int map_check_btf(struct bpf_map *map, struct bpf_token *token,
}
break;
case BPF_TIMER:
+ case BPF_WORKQUEUE:
if (map->map_type != BPF_MAP_TYPE_HASH &&
map->map_type != BPF_MAP_TYPE_LRU_HASH &&
map->map_type != BPF_MAP_TYPE_ARRAY) {
@@ -3498,17 +3511,12 @@ out_put_prog:
return err;
}
-struct bpf_raw_tp_link {
- struct bpf_link link;
- struct bpf_raw_event_map *btp;
-};
-
static void bpf_raw_tp_link_release(struct bpf_link *link)
{
struct bpf_raw_tp_link *raw_tp =
container_of(link, struct bpf_raw_tp_link, link);
- bpf_probe_unregister(raw_tp->btp, raw_tp->link.prog);
+ bpf_probe_unregister(raw_tp->btp, raw_tp);
bpf_put_raw_tracepoint(raw_tp->btp);
}
@@ -3808,7 +3816,7 @@ static int bpf_perf_link_attach(const union bpf_attr *attr, struct bpf_prog *pro
#endif /* CONFIG_PERF_EVENTS */
static int bpf_raw_tp_link_attach(struct bpf_prog *prog,
- const char __user *user_tp_name)
+ const char __user *user_tp_name, u64 cookie)
{
struct bpf_link_primer link_primer;
struct bpf_raw_tp_link *link;
@@ -3855,6 +3863,7 @@ static int bpf_raw_tp_link_attach(struct bpf_prog *prog,
bpf_link_init(&link->link, BPF_LINK_TYPE_RAW_TRACEPOINT,
&bpf_raw_tp_link_lops, prog);
link->btp = btp;
+ link->cookie = cookie;
err = bpf_link_prime(&link->link, &link_primer);
if (err) {
@@ -3862,7 +3871,7 @@ static int bpf_raw_tp_link_attach(struct bpf_prog *prog,
goto out_put_btp;
}
- err = bpf_probe_register(link->btp, prog);
+ err = bpf_probe_register(link->btp, link);
if (err) {
bpf_link_cleanup(&link_primer);
goto out_put_btp;
@@ -3875,11 +3884,13 @@ out_put_btp:
return err;
}
-#define BPF_RAW_TRACEPOINT_OPEN_LAST_FIELD raw_tracepoint.prog_fd
+#define BPF_RAW_TRACEPOINT_OPEN_LAST_FIELD raw_tracepoint.cookie
static int bpf_raw_tracepoint_open(const union bpf_attr *attr)
{
struct bpf_prog *prog;
+ void __user *tp_name;
+ __u64 cookie;
int fd;
if (CHECK_ATTR(BPF_RAW_TRACEPOINT_OPEN))
@@ -3889,7 +3900,9 @@ static int bpf_raw_tracepoint_open(const union bpf_attr *attr)
if (IS_ERR(prog))
return PTR_ERR(prog);
- fd = bpf_raw_tp_link_attach(prog, u64_to_user_ptr(attr->raw_tracepoint.name));
+ tp_name = u64_to_user_ptr(attr->raw_tracepoint.name);
+ cookie = attr->raw_tracepoint.cookie;
+ fd = bpf_raw_tp_link_attach(prog, tp_name, cookie);
if (fd < 0)
bpf_prog_put(prog);
return fd;
@@ -3985,6 +3998,11 @@ static int bpf_prog_attach_check_attach_type(const struct bpf_prog *prog,
* check permissions at attach time.
*/
return -EPERM;
+
+ ptype = attach_type_to_prog_type(attach_type);
+ if (prog->type != ptype)
+ return -EINVAL;
+
return prog->enforce_expected_attach_type &&
prog->expected_attach_type != attach_type ?
-EINVAL : 0;
@@ -4003,11 +4021,15 @@ static int bpf_prog_attach_check_attach_type(const struct bpf_prog *prog,
if (prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI &&
attach_type != BPF_TRACE_KPROBE_MULTI)
return -EINVAL;
+ if (prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION &&
+ attach_type != BPF_TRACE_KPROBE_SESSION)
+ return -EINVAL;
if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI &&
attach_type != BPF_TRACE_UPROBE_MULTI)
return -EINVAL;
if (attach_type != BPF_PERF_EVENT &&
attach_type != BPF_TRACE_KPROBE_MULTI &&
+ attach_type != BPF_TRACE_KPROBE_SESSION &&
attach_type != BPF_TRACE_UPROBE_MULTI)
return -EINVAL;
return 0;
@@ -5227,7 +5249,7 @@ static int link_create(union bpf_attr *attr, bpfptr_t uattr)
goto out;
}
if (prog->expected_attach_type == BPF_TRACE_RAW_TP)
- ret = bpf_raw_tp_link_attach(prog, NULL);
+ ret = bpf_raw_tp_link_attach(prog, NULL, attr->link_create.tracing.cookie);
else if (prog->expected_attach_type == BPF_TRACE_ITER)
ret = bpf_iter_link_attach(attr, uattr, prog);
else if (prog->expected_attach_type == BPF_LSM_CGROUP)
@@ -5242,6 +5264,10 @@ static int link_create(union bpf_attr *attr, bpfptr_t uattr)
case BPF_PROG_TYPE_SK_LOOKUP:
ret = netns_bpf_link_create(attr, prog);
break;
+ case BPF_PROG_TYPE_SK_MSG:
+ case BPF_PROG_TYPE_SK_SKB:
+ ret = sock_map_link_create(attr, prog);
+ break;
#ifdef CONFIG_NET
case BPF_PROG_TYPE_XDP:
ret = bpf_xdp_link_attach(attr, prog);
@@ -5264,7 +5290,8 @@ static int link_create(union bpf_attr *attr, bpfptr_t uattr)
case BPF_PROG_TYPE_KPROBE:
if (attr->link_create.attach_type == BPF_PERF_EVENT)
ret = bpf_perf_link_attach(attr, prog);
- else if (attr->link_create.attach_type == BPF_TRACE_KPROBE_MULTI)
+ else if (attr->link_create.attach_type == BPF_TRACE_KPROBE_MULTI ||
+ attr->link_create.attach_type == BPF_TRACE_KPROBE_SESSION)
ret = bpf_kprobe_multi_link_attach(attr, prog);
else if (attr->link_create.attach_type == BPF_TRACE_UPROBE_MULTI)
ret = bpf_uprobe_multi_link_attach(attr, prog);
diff --git a/kernel/bpf/sysfs_btf.c b/kernel/bpf/sysfs_btf.c
index ef6911aee3bb..fedb54c94cdb 100644
--- a/kernel/bpf/sysfs_btf.c
+++ b/kernel/bpf/sysfs_btf.c
@@ -9,8 +9,8 @@
#include <linux/sysfs.h>
/* See scripts/link-vmlinux.sh, gen_btf() func for details */
-extern char __weak __start_BTF[];
-extern char __weak __stop_BTF[];
+extern char __start_BTF[];
+extern char __stop_BTF[];
static ssize_t
btf_vmlinux_read(struct file *file, struct kobject *kobj,
@@ -32,7 +32,7 @@ static int __init btf_vmlinux_init(void)
{
bin_attr_btf_vmlinux.size = __stop_BTF - __start_BTF;
- if (!__start_BTF || bin_attr_btf_vmlinux.size == 0)
+ if (bin_attr_btf_vmlinux.size == 0)
return 0;
btf_kobj = kobject_create_and_add("btf", kernel_kobj);
diff --git a/kernel/bpf/trampoline.c b/kernel/bpf/trampoline.c
index db7599c59c78..f8302a5ca400 100644
--- a/kernel/bpf/trampoline.c
+++ b/kernel/bpf/trampoline.c
@@ -333,7 +333,7 @@ static void bpf_tramp_image_put(struct bpf_tramp_image *im)
int err = bpf_arch_text_poke(im->ip_after_call, BPF_MOD_JUMP,
NULL, im->ip_epilogue);
WARN_ON(err);
- if (IS_ENABLED(CONFIG_PREEMPTION))
+ if (IS_ENABLED(CONFIG_TASKS_RCU))
call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu_tasks);
else
percpu_ref_kill(&im->pcref);
@@ -456,7 +456,9 @@ again:
if (err < 0)
goto out_free;
- arch_protect_bpf_trampoline(im->image, im->size);
+ err = arch_protect_bpf_trampoline(im->image, im->size);
+ if (err)
+ goto out_free;
WARN_ON(tr->cur_image && total == 0);
if (tr->cur_image)
@@ -883,12 +885,13 @@ static void notrace update_prog_stats(struct bpf_prog *prog,
* Hence check that 'start' is valid.
*/
start > NO_START_TIME) {
+ u64 duration = sched_clock() - start;
unsigned long flags;
stats = this_cpu_ptr(prog->stats);
flags = u64_stats_update_begin_irqsave(&stats->syncp);
u64_stats_inc(&stats->cnt);
- u64_stats_add(&stats->nsecs, sched_clock() - start);
+ u64_stats_add(&stats->nsecs, duration);
u64_stats_update_end_irqrestore(&stats->syncp, flags);
}
}
@@ -1072,17 +1075,10 @@ void __weak arch_free_bpf_trampoline(void *image, unsigned int size)
bpf_jit_free_exec(image);
}
-void __weak arch_protect_bpf_trampoline(void *image, unsigned int size)
-{
- WARN_ON_ONCE(size > PAGE_SIZE);
- set_memory_rox((long)image, 1);
-}
-
-void __weak arch_unprotect_bpf_trampoline(void *image, unsigned int size)
+int __weak arch_protect_bpf_trampoline(void *image, unsigned int size)
{
WARN_ON_ONCE(size > PAGE_SIZE);
- set_memory_nx((long)image, 1);
- set_memory_rw((long)image, 1);
+ return set_memory_rox((long)image, 1);
}
int __weak arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
index cb7ad1f795e1..77da1f438bec 100644
--- a/kernel/bpf/verifier.c
+++ b/kernel/bpf/verifier.c
@@ -172,7 +172,7 @@ static bool bpf_global_percpu_ma_set;
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
struct bpf_verifier_stack_elem {
- /* verifer state is 'st'
+ /* verifier state is 'st'
* before processing instruction 'insn_idx'
* and after processing instruction 'prev_insn_idx'
*/
@@ -190,11 +190,6 @@ struct bpf_verifier_stack_elem {
#define BPF_MAP_KEY_POISON (1ULL << 63)
#define BPF_MAP_KEY_SEEN (1ULL << 62)
-#define BPF_MAP_PTR_UNPRIV 1UL
-#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
- POISON_POINTER_DELTA))
-#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
-
#define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512
static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
@@ -209,21 +204,22 @@ static bool is_trusted_reg(const struct bpf_reg_state *reg);
static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
{
- return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
+ return aux->map_ptr_state.poison;
}
static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
{
- return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
+ return aux->map_ptr_state.unpriv;
}
static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
- const struct bpf_map *map, bool unpriv)
+ struct bpf_map *map,
+ bool unpriv, bool poison)
{
- BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
unpriv |= bpf_map_ptr_unpriv(aux);
- aux->map_ptr_state = (unsigned long)map |
- (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
+ aux->map_ptr_state.unpriv = unpriv;
+ aux->map_ptr_state.poison = poison;
+ aux->map_ptr_state.map_ptr = map;
}
static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
@@ -336,6 +332,10 @@ struct bpf_kfunc_call_arg_meta {
u8 spi;
u8 frameno;
} iter;
+ struct {
+ struct bpf_map *ptr;
+ int uid;
+ } map;
u64 mem_size;
};
@@ -501,8 +501,12 @@ static bool is_dynptr_ref_function(enum bpf_func_id func_id)
}
static bool is_sync_callback_calling_kfunc(u32 btf_id);
+static bool is_async_callback_calling_kfunc(u32 btf_id);
+static bool is_callback_calling_kfunc(u32 btf_id);
static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
+static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id);
+
static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
{
return func_id == BPF_FUNC_for_each_map_elem ||
@@ -530,7 +534,8 @@ static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
static bool is_async_callback_calling_insn(struct bpf_insn *insn)
{
- return bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm);
+ return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) ||
+ (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm));
}
static bool is_may_goto_insn(struct bpf_insn *insn)
@@ -1429,6 +1434,8 @@ static int copy_verifier_state(struct bpf_verifier_state *dst_state,
}
dst_state->speculative = src->speculative;
dst_state->active_rcu_lock = src->active_rcu_lock;
+ dst_state->active_preempt_lock = src->active_preempt_lock;
+ dst_state->in_sleepable = src->in_sleepable;
dst_state->curframe = src->curframe;
dst_state->active_lock.ptr = src->active_lock.ptr;
dst_state->active_lock.id = src->active_lock.id;
@@ -1842,6 +1849,8 @@ static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
*/
if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
reg->map_uid = reg->id;
+ if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE))
+ reg->map_uid = reg->id;
} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
reg->type = PTR_TO_XDP_SOCK;
} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
@@ -2135,7 +2144,7 @@ static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
{
/* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
- * values on both sides of 64-bit range in hope to have tigher range.
+ * values on both sides of 64-bit range in hope to have tighter range.
* E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
* 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
* With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
@@ -2143,7 +2152,7 @@ static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
* _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
* better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
* We just need to make sure that derived bounds we are intersecting
- * with are well-formed ranges in respecitve s64 or u64 domain, just
+ * with are well-formed ranges in respective s64 or u64 domain, just
* like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
*/
__u64 new_umin, new_umax;
@@ -2359,6 +2368,8 @@ static void mark_btf_ld_reg(struct bpf_verifier_env *env,
regs[regno].type = PTR_TO_BTF_ID | flag;
regs[regno].btf = btf;
regs[regno].btf_id = btf_id;
+ if (type_may_be_null(flag))
+ regs[regno].id = ++env->id_gen;
}
#define DEF_NOT_SUBREG (0)
@@ -2402,7 +2413,7 @@ static void init_func_state(struct bpf_verifier_env *env,
/* Similar to push_stack(), but for async callbacks */
static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
int insn_idx, int prev_insn_idx,
- int subprog)
+ int subprog, bool is_sleepable)
{
struct bpf_verifier_stack_elem *elem;
struct bpf_func_state *frame;
@@ -2429,6 +2440,7 @@ static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
* Initialize it similar to do_check_common().
*/
elem->st.branches = 1;
+ elem->st.in_sleepable = is_sleepable;
frame = kzalloc(sizeof(*frame), GFP_KERNEL);
if (!frame)
goto err;
@@ -3615,7 +3627,8 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
* sreg needs precision before this insn
*/
bt_clear_reg(bt, dreg);
- bt_set_reg(bt, sreg);
+ if (sreg != BPF_REG_FP)
+ bt_set_reg(bt, sreg);
} else {
/* dreg = K
* dreg needs precision after this insn.
@@ -3631,7 +3644,8 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
* both dreg and sreg need precision
* before this insn
*/
- bt_set_reg(bt, sreg);
+ if (sreg != BPF_REG_FP)
+ bt_set_reg(bt, sreg);
} /* else dreg += K
* dreg still needs precision before this insn
*/
@@ -5274,7 +5288,8 @@ bad_type:
static bool in_sleepable(struct bpf_verifier_env *env)
{
- return env->prog->sleepable;
+ return env->prog->sleepable ||
+ (env->cur_state && env->cur_state->in_sleepable);
}
/* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
@@ -5297,6 +5312,7 @@ BTF_ID(struct, cgroup)
BTF_ID(struct, bpf_cpumask)
#endif
BTF_ID(struct, task_struct)
+BTF_ID(struct, bpf_crypto_ctx)
BTF_SET_END(rcu_protected_types)
static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
@@ -5386,8 +5402,6 @@ static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
*/
mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
- /* For mark_ptr_or_null_reg */
- val_reg->id = ++env->id_gen;
} else if (class == BPF_STX) {
val_reg = reg_state(env, value_regno);
if (!register_is_null(val_reg) &&
@@ -5705,7 +5719,8 @@ static bool is_trusted_reg(const struct bpf_reg_state *reg)
return true;
/* Types listed in the reg2btf_ids are always trusted */
- if (reg2btf_ids[base_type(reg->type)])
+ if (reg2btf_ids[base_type(reg->type)] &&
+ !bpf_type_has_unsafe_modifiers(reg->type))
return true;
/* If a register is not referenced, it is trusted if it has the
@@ -6325,6 +6340,7 @@ static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
#define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu)
#define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null)
#define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted)
+#define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null)
/*
* Allow list few fields as RCU trusted or full trusted.
@@ -6388,7 +6404,7 @@ BTF_TYPE_SAFE_TRUSTED(struct dentry) {
struct inode *d_inode;
};
-BTF_TYPE_SAFE_TRUSTED(struct socket) {
+BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
struct sock *sk;
};
@@ -6423,11 +6439,20 @@ static bool type_is_trusted(struct bpf_verifier_env *env,
BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
- BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
}
+static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
+ struct bpf_reg_state *reg,
+ const char *field_name, u32 btf_id)
+{
+ BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
+
+ return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
+ "__safe_trusted_or_null");
+}
+
static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
struct bpf_reg_state *regs,
int regno, int off, int size,
@@ -6536,6 +6561,8 @@ static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
*/
if (type_is_trusted(env, reg, field_name, btf_id)) {
flag |= PTR_TRUSTED;
+ } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
+ flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
if (type_is_rcu(env, reg, field_name, btf_id)) {
/* ignore __rcu tag and mark it MEM_RCU */
@@ -6972,6 +6999,9 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
return err;
}
+static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
+ bool allow_trust_mismatch);
+
static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
{
int load_reg;
@@ -7032,7 +7062,7 @@ static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_i
is_pkt_reg(env, insn->dst_reg) ||
is_flow_key_reg(env, insn->dst_reg) ||
is_sk_reg(env, insn->dst_reg) ||
- is_arena_reg(env, insn->dst_reg)) {
+ (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) {
verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
insn->dst_reg,
reg_type_str(env, reg_state(env, insn->dst_reg)->type));
@@ -7068,6 +7098,11 @@ static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_i
if (err)
return err;
+ if (is_arena_reg(env, insn->dst_reg)) {
+ err = save_aux_ptr_type(env, PTR_TO_ARENA, false);
+ if (err)
+ return err;
+ }
/* Check whether we can write into the same memory. */
err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
@@ -7590,6 +7625,23 @@ static int process_timer_func(struct bpf_verifier_env *env, int regno,
return 0;
}
+static int process_wq_func(struct bpf_verifier_env *env, int regno,
+ struct bpf_kfunc_call_arg_meta *meta)
+{
+ struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
+ struct bpf_map *map = reg->map_ptr;
+ u64 val = reg->var_off.value;
+
+ if (map->record->wq_off != val + reg->off) {
+ verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n",
+ val + reg->off, map->record->wq_off);
+ return -EINVAL;
+ }
+ meta->map.uid = reg->map_uid;
+ meta->map.ptr = map;
+ return 0;
+}
+
static int process_kptr_func(struct bpf_verifier_env *env, int regno,
struct bpf_call_arg_meta *meta)
{
@@ -9484,7 +9536,7 @@ static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *ins
*/
env->subprog_info[subprog].is_cb = true;
if (bpf_pseudo_kfunc_call(insn) &&
- !is_sync_callback_calling_kfunc(insn->imm)) {
+ !is_callback_calling_kfunc(insn->imm)) {
verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
func_id_name(insn->imm), insn->imm);
return -EFAULT;
@@ -9498,10 +9550,11 @@ static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *ins
if (is_async_callback_calling_insn(insn)) {
struct bpf_verifier_state *async_cb;
- /* there is no real recursion here. timer callbacks are async */
+ /* there is no real recursion here. timer and workqueue callbacks are async */
env->subprog_info[subprog].is_async_cb = true;
async_cb = push_async_cb(env, env->subprog_info[subprog].start,
- insn_idx, subprog);
+ insn_idx, subprog,
+ is_bpf_wq_set_callback_impl_kfunc(insn->imm));
if (!async_cb)
return -EFAULT;
callee = async_cb->frame[0];
@@ -9561,6 +9614,13 @@ static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
return -EINVAL;
}
+ /* Only global subprogs cannot be called with preemption disabled. */
+ if (env->cur_state->active_preempt_lock) {
+ verbose(env, "global function calls are not allowed with preemption disabled,\n"
+ "use static function instead\n");
+ return -EINVAL;
+ }
+
if (err) {
verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
subprog, sub_name);
@@ -9653,12 +9713,8 @@ static int set_map_elem_callback_state(struct bpf_verifier_env *env,
struct bpf_map *map;
int err;
- if (bpf_map_ptr_poisoned(insn_aux)) {
- verbose(env, "tail_call abusing map_ptr\n");
- return -EINVAL;
- }
-
- map = BPF_MAP_PTR(insn_aux->map_ptr_state);
+ /* valid map_ptr and poison value does not matter */
+ map = insn_aux->map_ptr_state.map_ptr;
if (!map->ops->map_set_for_each_callback_args ||
!map->ops->map_for_each_callback) {
verbose(env, "callback function not allowed for map\n");
@@ -10017,12 +10073,12 @@ record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
return -EACCES;
}
- if (!BPF_MAP_PTR(aux->map_ptr_state))
+ if (!aux->map_ptr_state.map_ptr)
+ bpf_map_ptr_store(aux, meta->map_ptr,
+ !meta->map_ptr->bypass_spec_v1, false);
+ else if (aux->map_ptr_state.map_ptr != meta->map_ptr)
bpf_map_ptr_store(aux, meta->map_ptr,
- !meta->map_ptr->bypass_spec_v1);
- else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
- bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
- !meta->map_ptr->bypass_spec_v1);
+ !meta->map_ptr->bypass_spec_v1, true);
return 0;
}
@@ -10201,8 +10257,8 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
if (env->ops->get_func_proto)
fn = env->ops->get_func_proto(func_id, env->prog);
if (!fn) {
- verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
- func_id);
+ verbose(env, "program of this type cannot use helper %s#%d\n",
+ func_id_name(func_id), func_id);
return -EINVAL;
}
@@ -10251,6 +10307,17 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
}
+ if (env->cur_state->active_preempt_lock) {
+ if (fn->might_sleep) {
+ verbose(env, "sleepable helper %s#%d in non-preemptible region\n",
+ func_id_name(func_id), func_id);
+ return -EINVAL;
+ }
+
+ if (in_sleepable(env) && is_storage_get_function(func_id))
+ env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
+ }
+
meta.func_id = func_id;
/* check args */
for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
@@ -10839,6 +10906,7 @@ enum {
KF_ARG_LIST_NODE_ID,
KF_ARG_RB_ROOT_ID,
KF_ARG_RB_NODE_ID,
+ KF_ARG_WORKQUEUE_ID,
};
BTF_ID_LIST(kf_arg_btf_ids)
@@ -10847,6 +10915,7 @@ BTF_ID(struct, bpf_list_head)
BTF_ID(struct, bpf_list_node)
BTF_ID(struct, bpf_rb_root)
BTF_ID(struct, bpf_rb_node)
+BTF_ID(struct, bpf_wq)
static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
const struct btf_param *arg, int type)
@@ -10890,6 +10959,11 @@ static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_par
return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
}
+static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg)
+{
+ return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID);
+}
+
static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
const struct btf_param *arg)
{
@@ -10959,6 +11033,7 @@ enum kfunc_ptr_arg_type {
KF_ARG_PTR_TO_NULL,
KF_ARG_PTR_TO_CONST_STR,
KF_ARG_PTR_TO_MAP,
+ KF_ARG_PTR_TO_WORKQUEUE,
};
enum special_kfunc_type {
@@ -10984,7 +11059,11 @@ enum special_kfunc_type {
KF_bpf_percpu_obj_new_impl,
KF_bpf_percpu_obj_drop_impl,
KF_bpf_throw,
+ KF_bpf_wq_set_callback_impl,
+ KF_bpf_preempt_disable,
+ KF_bpf_preempt_enable,
KF_bpf_iter_css_task_new,
+ KF_bpf_session_cookie,
};
BTF_SET_START(special_kfunc_set)
@@ -11008,6 +11087,7 @@ BTF_ID(func, bpf_dynptr_clone)
BTF_ID(func, bpf_percpu_obj_new_impl)
BTF_ID(func, bpf_percpu_obj_drop_impl)
BTF_ID(func, bpf_throw)
+BTF_ID(func, bpf_wq_set_callback_impl)
#ifdef CONFIG_CGROUPS
BTF_ID(func, bpf_iter_css_task_new)
#endif
@@ -11036,11 +11116,15 @@ BTF_ID(func, bpf_dynptr_clone)
BTF_ID(func, bpf_percpu_obj_new_impl)
BTF_ID(func, bpf_percpu_obj_drop_impl)
BTF_ID(func, bpf_throw)
+BTF_ID(func, bpf_wq_set_callback_impl)
+BTF_ID(func, bpf_preempt_disable)
+BTF_ID(func, bpf_preempt_enable)
#ifdef CONFIG_CGROUPS
BTF_ID(func, bpf_iter_css_task_new)
#else
BTF_ID_UNUSED
#endif
+BTF_ID(func, bpf_session_cookie)
static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
{
@@ -11062,6 +11146,16 @@ static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
}
+static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta)
+{
+ return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable];
+}
+
+static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta)
+{
+ return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable];
+}
+
static enum kfunc_ptr_arg_type
get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
struct bpf_kfunc_call_arg_meta *meta,
@@ -11115,6 +11209,9 @@ get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
if (is_kfunc_arg_map(meta->btf, &args[argno]))
return KF_ARG_PTR_TO_MAP;
+ if (is_kfunc_arg_wq(meta->btf, &args[argno]))
+ return KF_ARG_PTR_TO_WORKQUEUE;
+
if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
if (!btf_type_is_struct(ref_t)) {
verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
@@ -11366,12 +11463,28 @@ static bool is_sync_callback_calling_kfunc(u32 btf_id)
return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
}
+static bool is_async_callback_calling_kfunc(u32 btf_id)
+{
+ return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
+}
+
static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
{
return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
insn->imm == special_kfunc_list[KF_bpf_throw];
}
+static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)
+{
+ return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
+}
+
+static bool is_callback_calling_kfunc(u32 btf_id)
+{
+ return is_sync_callback_calling_kfunc(btf_id) ||
+ is_async_callback_calling_kfunc(btf_id);
+}
+
static bool is_rbtree_lock_required_kfunc(u32 btf_id)
{
return is_bpf_rbtree_api_kfunc(btf_id);
@@ -11716,6 +11829,34 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
case KF_ARG_PTR_TO_NULL:
continue;
case KF_ARG_PTR_TO_MAP:
+ if (!reg->map_ptr) {
+ verbose(env, "pointer in R%d isn't map pointer\n", regno);
+ return -EINVAL;
+ }
+ if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) {
+ /* Use map_uid (which is unique id of inner map) to reject:
+ * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
+ * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
+ * if (inner_map1 && inner_map2) {
+ * wq = bpf_map_lookup_elem(inner_map1);
+ * if (wq)
+ * // mismatch would have been allowed
+ * bpf_wq_init(wq, inner_map2);
+ * }
+ *
+ * Comparing map_ptr is enough to distinguish normal and outer maps.
+ */
+ if (meta->map.ptr != reg->map_ptr ||
+ meta->map.uid != reg->map_uid) {
+ verbose(env,
+ "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
+ meta->map.uid, reg->map_uid);
+ return -EINVAL;
+ }
+ }
+ meta->map.ptr = reg->map_ptr;
+ meta->map.uid = reg->map_uid;
+ fallthrough;
case KF_ARG_PTR_TO_ALLOC_BTF_ID:
case KF_ARG_PTR_TO_BTF_ID:
if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
@@ -11748,6 +11889,7 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
case KF_ARG_PTR_TO_CALLBACK:
case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
case KF_ARG_PTR_TO_CONST_STR:
+ case KF_ARG_PTR_TO_WORKQUEUE:
/* Trusted by default */
break;
default:
@@ -12034,6 +12176,15 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
if (ret)
return ret;
break;
+ case KF_ARG_PTR_TO_WORKQUEUE:
+ if (reg->type != PTR_TO_MAP_VALUE) {
+ verbose(env, "arg#%d doesn't point to a map value\n", i);
+ return -EINVAL;
+ }
+ ret = process_wq_func(env, regno, meta);
+ if (ret < 0)
+ return ret;
+ break;
}
}
@@ -12093,11 +12244,11 @@ static int check_return_code(struct bpf_verifier_env *env, int regno, const char
static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
int *insn_idx_p)
{
- const struct btf_type *t, *ptr_type;
+ bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable;
u32 i, nargs, ptr_type_id, release_ref_obj_id;
struct bpf_reg_state *regs = cur_regs(env);
const char *func_name, *ptr_type_name;
- bool sleepable, rcu_lock, rcu_unlock;
+ const struct btf_type *t, *ptr_type;
struct bpf_kfunc_call_arg_meta meta;
struct bpf_insn_aux_data *insn_aux;
int err, insn_idx = *insn_idx_p;
@@ -12145,9 +12296,27 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
}
}
+ if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) {
+ meta.r0_size = sizeof(u64);
+ meta.r0_rdonly = false;
+ }
+
+ if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) {
+ err = push_callback_call(env, insn, insn_idx, meta.subprogno,
+ set_timer_callback_state);
+ if (err) {
+ verbose(env, "kfunc %s#%d failed callback verification\n",
+ func_name, meta.func_id);
+ return err;
+ }
+ }
+
rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
+ preempt_disable = is_kfunc_bpf_preempt_disable(&meta);
+ preempt_enable = is_kfunc_bpf_preempt_enable(&meta);
+
if (env->cur_state->active_rcu_lock) {
struct bpf_func_state *state;
struct bpf_reg_state *reg;
@@ -12180,6 +12349,22 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
return -EINVAL;
}
+ if (env->cur_state->active_preempt_lock) {
+ if (preempt_disable) {
+ env->cur_state->active_preempt_lock++;
+ } else if (preempt_enable) {
+ env->cur_state->active_preempt_lock--;
+ } else if (sleepable) {
+ verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name);
+ return -EACCES;
+ }
+ } else if (preempt_disable) {
+ env->cur_state->active_preempt_lock++;
+ } else if (preempt_enable) {
+ verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name);
+ return -EINVAL;
+ }
+
/* In case of release function, we get register number of refcounted
* PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
*/
@@ -13318,7 +13503,6 @@ static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
bool src_known = tnum_subreg_is_const(src_reg->var_off);
bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
struct tnum var32_off = tnum_subreg(dst_reg->var_off);
- s32 smin_val = src_reg->s32_min_value;
u32 umax_val = src_reg->u32_max_value;
if (src_known && dst_known) {
@@ -13331,18 +13515,16 @@ static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
*/
dst_reg->u32_min_value = var32_off.value;
dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
- if (dst_reg->s32_min_value < 0 || smin_val < 0) {
- /* Lose signed bounds when ANDing negative numbers,
- * ain't nobody got time for that.
- */
- dst_reg->s32_min_value = S32_MIN;
- dst_reg->s32_max_value = S32_MAX;
- } else {
- /* ANDing two positives gives a positive, so safe to
- * cast result into s64.
- */
+
+ /* Safe to set s32 bounds by casting u32 result into s32 when u32
+ * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
+ */
+ if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
dst_reg->s32_min_value = dst_reg->u32_min_value;
dst_reg->s32_max_value = dst_reg->u32_max_value;
+ } else {
+ dst_reg->s32_min_value = S32_MIN;
+ dst_reg->s32_max_value = S32_MAX;
}
}
@@ -13351,7 +13533,6 @@ static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
{
bool src_known = tnum_is_const(src_reg->var_off);
bool dst_known = tnum_is_const(dst_reg->var_off);
- s64 smin_val = src_reg->smin_value;
u64 umax_val = src_reg->umax_value;
if (src_known && dst_known) {
@@ -13364,18 +13545,16 @@ static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
*/
dst_reg->umin_value = dst_reg->var_off.value;
dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
- if (dst_reg->smin_value < 0 || smin_val < 0) {
- /* Lose signed bounds when ANDing negative numbers,
- * ain't nobody got time for that.
- */
- dst_reg->smin_value = S64_MIN;
- dst_reg->smax_value = S64_MAX;
- } else {
- /* ANDing two positives gives a positive, so safe to
- * cast result into s64.
- */
+
+ /* Safe to set s64 bounds by casting u64 result into s64 when u64
+ * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
+ */
+ if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
dst_reg->smin_value = dst_reg->umin_value;
dst_reg->smax_value = dst_reg->umax_value;
+ } else {
+ dst_reg->smin_value = S64_MIN;
+ dst_reg->smax_value = S64_MAX;
}
/* We may learn something more from the var_off */
__update_reg_bounds(dst_reg);
@@ -13387,7 +13566,6 @@ static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
bool src_known = tnum_subreg_is_const(src_reg->var_off);
bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
struct tnum var32_off = tnum_subreg(dst_reg->var_off);
- s32 smin_val = src_reg->s32_min_value;
u32 umin_val = src_reg->u32_min_value;
if (src_known && dst_known) {
@@ -13400,18 +13578,16 @@ static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
*/
dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
dst_reg->u32_max_value = var32_off.value | var32_off.mask;
- if (dst_reg->s32_min_value < 0 || smin_val < 0) {
- /* Lose signed bounds when ORing negative numbers,
- * ain't nobody got time for that.
- */
- dst_reg->s32_min_value = S32_MIN;
- dst_reg->s32_max_value = S32_MAX;
- } else {
- /* ORing two positives gives a positive, so safe to
- * cast result into s64.
- */
+
+ /* Safe to set s32 bounds by casting u32 result into s32 when u32
+ * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
+ */
+ if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
dst_reg->s32_min_value = dst_reg->u32_min_value;
dst_reg->s32_max_value = dst_reg->u32_max_value;
+ } else {
+ dst_reg->s32_min_value = S32_MIN;
+ dst_reg->s32_max_value = S32_MAX;
}
}
@@ -13420,7 +13596,6 @@ static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
{
bool src_known = tnum_is_const(src_reg->var_off);
bool dst_known = tnum_is_const(dst_reg->var_off);
- s64 smin_val = src_reg->smin_value;
u64 umin_val = src_reg->umin_value;
if (src_known && dst_known) {
@@ -13433,18 +13608,16 @@ static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
*/
dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
- if (dst_reg->smin_value < 0 || smin_val < 0) {
- /* Lose signed bounds when ORing negative numbers,
- * ain't nobody got time for that.
- */
- dst_reg->smin_value = S64_MIN;
- dst_reg->smax_value = S64_MAX;
- } else {
- /* ORing two positives gives a positive, so safe to
- * cast result into s64.
- */
+
+ /* Safe to set s64 bounds by casting u64 result into s64 when u64
+ * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
+ */
+ if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
dst_reg->smin_value = dst_reg->umin_value;
dst_reg->smax_value = dst_reg->umax_value;
+ } else {
+ dst_reg->smin_value = S64_MIN;
+ dst_reg->smax_value = S64_MAX;
}
/* We may learn something more from the var_off */
__update_reg_bounds(dst_reg);
@@ -13456,7 +13629,6 @@ static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
bool src_known = tnum_subreg_is_const(src_reg->var_off);
bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
struct tnum var32_off = tnum_subreg(dst_reg->var_off);
- s32 smin_val = src_reg->s32_min_value;
if (src_known && dst_known) {
__mark_reg32_known(dst_reg, var32_off.value);
@@ -13467,10 +13639,10 @@ static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
dst_reg->u32_min_value = var32_off.value;
dst_reg->u32_max_value = var32_off.value | var32_off.mask;
- if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
- /* XORing two positive sign numbers gives a positive,
- * so safe to cast u32 result into s32.
- */
+ /* Safe to set s32 bounds by casting u32 result into s32 when u32
+ * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
+ */
+ if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
dst_reg->s32_min_value = dst_reg->u32_min_value;
dst_reg->s32_max_value = dst_reg->u32_max_value;
} else {
@@ -13484,7 +13656,6 @@ static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
{
bool src_known = tnum_is_const(src_reg->var_off);
bool dst_known = tnum_is_const(dst_reg->var_off);
- s64 smin_val = src_reg->smin_value;
if (src_known && dst_known) {
/* dst_reg->var_off.value has been updated earlier */
@@ -13496,10 +13667,10 @@ static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
dst_reg->umin_value = dst_reg->var_off.value;
dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
- if (dst_reg->smin_value >= 0 && smin_val >= 0) {
- /* XORing two positive sign numbers gives a positive,
- * so safe to cast u64 result into s64.
- */
+ /* Safe to set s64 bounds by casting u64 result into s64 when u64
+ * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
+ */
+ if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
dst_reg->smin_value = dst_reg->umin_value;
dst_reg->smax_value = dst_reg->umax_value;
} else {
@@ -13707,6 +13878,46 @@ static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
__update_reg_bounds(dst_reg);
}
+static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn,
+ const struct bpf_reg_state *src_reg)
+{
+ bool src_is_const = false;
+ u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
+
+ if (insn_bitness == 32) {
+ if (tnum_subreg_is_const(src_reg->var_off)
+ && src_reg->s32_min_value == src_reg->s32_max_value
+ && src_reg->u32_min_value == src_reg->u32_max_value)
+ src_is_const = true;
+ } else {
+ if (tnum_is_const(src_reg->var_off)
+ && src_reg->smin_value == src_reg->smax_value
+ && src_reg->umin_value == src_reg->umax_value)
+ src_is_const = true;
+ }
+
+ switch (BPF_OP(insn->code)) {
+ case BPF_ADD:
+ case BPF_SUB:
+ case BPF_AND:
+ case BPF_XOR:
+ case BPF_OR:
+ case BPF_MUL:
+ return true;
+
+ /* Shift operators range is only computable if shift dimension operand
+ * is a constant. Shifts greater than 31 or 63 are undefined. This
+ * includes shifts by a negative number.
+ */
+ case BPF_LSH:
+ case BPF_RSH:
+ case BPF_ARSH:
+ return (src_is_const && src_reg->umax_value < insn_bitness);
+ default:
+ return false;
+ }
+}
+
/* WARNING: This function does calculations on 64-bit values, but the actual
* execution may occur on 32-bit values. Therefore, things like bitshifts
* need extra checks in the 32-bit case.
@@ -13716,53 +13927,11 @@ static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
struct bpf_reg_state *dst_reg,
struct bpf_reg_state src_reg)
{
- struct bpf_reg_state *regs = cur_regs(env);
u8 opcode = BPF_OP(insn->code);
- bool src_known;
- s64 smin_val, smax_val;
- u64 umin_val, umax_val;
- s32 s32_min_val, s32_max_val;
- u32 u32_min_val, u32_max_val;
- u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
int ret;
- smin_val = src_reg.smin_value;
- smax_val = src_reg.smax_value;
- umin_val = src_reg.umin_value;
- umax_val = src_reg.umax_value;
-
- s32_min_val = src_reg.s32_min_value;
- s32_max_val = src_reg.s32_max_value;
- u32_min_val = src_reg.u32_min_value;
- u32_max_val = src_reg.u32_max_value;
-
- if (alu32) {
- src_known = tnum_subreg_is_const(src_reg.var_off);
- if ((src_known &&
- (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
- s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
- /* Taint dst register if offset had invalid bounds
- * derived from e.g. dead branches.
- */
- __mark_reg_unknown(env, dst_reg);
- return 0;
- }
- } else {
- src_known = tnum_is_const(src_reg.var_off);
- if ((src_known &&
- (smin_val != smax_val || umin_val != umax_val)) ||
- smin_val > smax_val || umin_val > umax_val) {
- /* Taint dst register if offset had invalid bounds
- * derived from e.g. dead branches.
- */
- __mark_reg_unknown(env, dst_reg);
- return 0;
- }
- }
-
- if (!src_known &&
- opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
+ if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) {
__mark_reg_unknown(env, dst_reg);
return 0;
}
@@ -13819,46 +13988,24 @@ static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
scalar_min_max_xor(dst_reg, &src_reg);
break;
case BPF_LSH:
- if (umax_val >= insn_bitness) {
- /* Shifts greater than 31 or 63 are undefined.
- * This includes shifts by a negative number.
- */
- mark_reg_unknown(env, regs, insn->dst_reg);
- break;
- }
if (alu32)
scalar32_min_max_lsh(dst_reg, &src_reg);
else
scalar_min_max_lsh(dst_reg, &src_reg);
break;
case BPF_RSH:
- if (umax_val >= insn_bitness) {
- /* Shifts greater than 31 or 63 are undefined.
- * This includes shifts by a negative number.
- */
- mark_reg_unknown(env, regs, insn->dst_reg);
- break;
- }
if (alu32)
scalar32_min_max_rsh(dst_reg, &src_reg);
else
scalar_min_max_rsh(dst_reg, &src_reg);
break;
case BPF_ARSH:
- if (umax_val >= insn_bitness) {
- /* Shifts greater than 31 or 63 are undefined.
- * This includes shifts by a negative number.
- */
- mark_reg_unknown(env, regs, insn->dst_reg);
- break;
- }
if (alu32)
scalar32_min_max_arsh(dst_reg, &src_reg);
else
scalar_min_max_arsh(dst_reg, &src_reg);
break;
default:
- mark_reg_unknown(env, regs, insn->dst_reg);
break;
}
@@ -14564,7 +14711,19 @@ static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state
struct tnum t;
u64 val;
-again:
+ /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */
+ switch (opcode) {
+ case BPF_JGE:
+ case BPF_JGT:
+ case BPF_JSGE:
+ case BPF_JSGT:
+ opcode = flip_opcode(opcode);
+ swap(reg1, reg2);
+ break;
+ default:
+ break;
+ }
+
switch (opcode) {
case BPF_JEQ:
if (is_jmp32) {
@@ -14707,14 +14866,6 @@ again:
reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
}
break;
- case BPF_JGE:
- case BPF_JGT:
- case BPF_JSGE:
- case BPF_JSGT:
- /* just reuse LE/LT logic above */
- opcode = flip_opcode(opcode);
- swap(reg1, reg2);
- goto again;
default:
return;
}
@@ -14722,7 +14873,7 @@ again:
/* Adjusts the register min/max values in the case that the dst_reg and
* src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
- * check, in which case we havea fake SCALAR_VALUE representing insn->imm).
+ * check, in which case we have a fake SCALAR_VALUE representing insn->imm).
* Technically we can do similar adjustments for pointers to the same object,
* but we don't support that right now.
*/
@@ -15337,6 +15488,11 @@ static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
return -EINVAL;
}
+ if (env->cur_state->active_preempt_lock) {
+ verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_preempt_disable-ed region\n");
+ return -EINVAL;
+ }
+
if (regs[ctx_reg].type != PTR_TO_CTX) {
verbose(env,
"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
@@ -16904,6 +17060,12 @@ static bool states_equal(struct bpf_verifier_env *env,
if (old->active_rcu_lock != cur->active_rcu_lock)
return false;
+ if (old->active_preempt_lock != cur->active_preempt_lock)
+ return false;
+
+ if (old->in_sleepable != cur->in_sleepable)
+ return false;
+
/* for states to be equal callsites have to be the same
* and all frame states need to be equivalent
*/
@@ -17360,7 +17522,7 @@ hit:
err = propagate_liveness(env, &sl->state, cur);
/* if previous state reached the exit with precision and
- * current state is equivalent to it (except precsion marks)
+ * current state is equivalent to it (except precision marks)
* the precision needs to be propagated back in
* the current state.
*/
@@ -17538,7 +17700,7 @@ static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
}
static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
- bool allow_trust_missmatch)
+ bool allow_trust_mismatch)
{
enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
@@ -17556,7 +17718,7 @@ static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type typ
* src_reg == stack|map in some other branch.
* Reject it.
*/
- if (allow_trust_missmatch &&
+ if (allow_trust_mismatch &&
base_type(type) == PTR_TO_BTF_ID &&
base_type(*prev_type) == PTR_TO_BTF_ID) {
/*
@@ -17852,6 +18014,13 @@ process_bpf_exit_full:
return -EINVAL;
}
+ if (env->cur_state->active_preempt_lock && !env->cur_state->curframe) {
+ verbose(env, "%d bpf_preempt_enable%s missing\n",
+ env->cur_state->active_preempt_lock,
+ env->cur_state->active_preempt_lock == 1 ? " is" : "(s) are");
+ return -EINVAL;
+ }
+
/* We must do check_reference_leak here before
* prepare_func_exit to handle the case when
* state->curframe > 0, it may be a callback
@@ -18149,6 +18318,13 @@ static int check_map_prog_compatibility(struct bpf_verifier_env *env,
}
}
+ if (btf_record_has_field(map->record, BPF_WORKQUEUE)) {
+ if (is_tracing_prog_type(prog_type)) {
+ verbose(env, "tracing progs cannot use bpf_wq yet\n");
+ return -EINVAL;
+ }
+ }
+
if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
!bpf_offload_prog_map_match(prog, map)) {
verbose(env, "offload device mismatch between prog and map\n");
@@ -18343,6 +18519,8 @@ static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
}
if (env->used_map_cnt >= MAX_USED_MAPS) {
+ verbose(env, "The total number of maps per program has reached the limit of %u\n",
+ MAX_USED_MAPS);
fdput(f);
return -E2BIG;
}
@@ -18957,6 +19135,12 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env)
insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
type = BPF_WRITE;
+ } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) ||
+ insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) &&
+ env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) {
+ insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code);
+ env->prog->aux->num_exentries++;
+ continue;
} else {
continue;
}
@@ -19143,12 +19327,19 @@ static int jit_subprogs(struct bpf_verifier_env *env)
env->insn_aux_data[i].call_imm = insn->imm;
/* point imm to __bpf_call_base+1 from JITs point of view */
insn->imm = 1;
- if (bpf_pseudo_func(insn))
+ if (bpf_pseudo_func(insn)) {
+#if defined(MODULES_VADDR)
+ u64 addr = MODULES_VADDR;
+#else
+ u64 addr = VMALLOC_START;
+#endif
/* jit (e.g. x86_64) may emit fewer instructions
* if it learns a u32 imm is the same as a u64 imm.
- * Force a non zero here.
+ * Set close enough to possible prog address.
*/
- insn[1].imm = 1;
+ insn[0].imm = (u32)addr;
+ insn[1].imm = addr >> 32;
+ }
}
err = bpf_prog_alloc_jited_linfo(prog);
@@ -19180,6 +19371,7 @@ static int jit_subprogs(struct bpf_verifier_env *env)
if (bpf_prog_calc_tag(func[i]))
goto out_free;
func[i]->is_func = 1;
+ func[i]->sleepable = prog->sleepable;
func[i]->aux->func_idx = i;
/* Below members will be freed only at prog->aux */
func[i]->aux->btf = prog->aux->btf;
@@ -19220,6 +19412,9 @@ static int jit_subprogs(struct bpf_verifier_env *env)
BPF_CLASS(insn->code) == BPF_ST) &&
BPF_MODE(insn->code) == BPF_PROBE_MEM32)
num_exentries++;
+ if (BPF_CLASS(insn->code) == BPF_STX &&
+ BPF_MODE(insn->code) == BPF_PROBE_ATOMIC)
+ num_exentries++;
}
func[i]->aux->num_exentries = num_exentries;
func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
@@ -19284,10 +19479,14 @@ static int jit_subprogs(struct bpf_verifier_env *env)
* bpf_prog_load will add the kallsyms for the main program.
*/
for (i = 1; i < env->subprog_cnt; i++) {
- bpf_prog_lock_ro(func[i]);
- bpf_prog_kallsyms_add(func[i]);
+ err = bpf_prog_lock_ro(func[i]);
+ if (err)
+ goto out_free;
}
+ for (i = 1; i < env->subprog_cnt; i++)
+ bpf_prog_kallsyms_add(func[i]);
+
/* Last step: make now unused interpreter insns from main
* prog consistent for later dump requests, so they can
* later look the same as if they were interpreted only.
@@ -19547,6 +19746,13 @@ static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
*cnt = 1;
+ } else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) {
+ struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) };
+
+ insn_buf[0] = ld_addrs[0];
+ insn_buf[1] = ld_addrs[1];
+ insn_buf[2] = *insn;
+ *cnt = 3;
}
return 0;
}
@@ -19819,6 +20025,10 @@ static int do_misc_fixups(struct bpf_verifier_env *env)
goto next_insn;
}
+ /* Skip inlining the helper call if the JIT does it. */
+ if (bpf_jit_inlines_helper_call(insn->imm))
+ goto next_insn;
+
if (insn->imm == BPF_FUNC_get_route_realm)
prog->dst_needed = 1;
if (insn->imm == BPF_FUNC_get_prandom_u32)
@@ -19852,7 +20062,7 @@ static int do_misc_fixups(struct bpf_verifier_env *env)
!bpf_map_ptr_unpriv(aux)) {
struct bpf_jit_poke_descriptor desc = {
.reason = BPF_POKE_REASON_TAIL_CALL,
- .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
+ .tail_call.map = aux->map_ptr_state.map_ptr,
.tail_call.key = bpf_map_key_immediate(aux),
.insn_idx = i + delta,
};
@@ -19881,7 +20091,7 @@ static int do_misc_fixups(struct bpf_verifier_env *env)
return -EINVAL;
}
- map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
+ map_ptr = aux->map_ptr_state.map_ptr;
insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
map_ptr->max_entries, 2);
insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
@@ -19989,7 +20199,7 @@ static int do_misc_fixups(struct bpf_verifier_env *env)
if (bpf_map_ptr_poisoned(aux))
goto patch_call_imm;
- map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
+ map_ptr = aux->map_ptr_state.map_ptr;
ops = map_ptr->ops;
if (insn->imm == BPF_FUNC_map_lookup_elem &&
ops->map_gen_lookup) {
@@ -20095,6 +20305,30 @@ patch_map_ops_generic:
goto next_insn;
}
+#ifdef CONFIG_X86_64
+ /* Implement bpf_get_smp_processor_id() inline. */
+ if (insn->imm == BPF_FUNC_get_smp_processor_id &&
+ prog->jit_requested && bpf_jit_supports_percpu_insn()) {
+ /* BPF_FUNC_get_smp_processor_id inlining is an
+ * optimization, so if pcpu_hot.cpu_number is ever
+ * changed in some incompatible and hard to support
+ * way, it's fine to back out this inlining logic
+ */
+ insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number);
+ insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
+ insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0);
+ cnt = 3;
+
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ delta += cnt - 1;
+ env->prog = prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ goto next_insn;
+ }
+#endif
/* Implement bpf_get_func_arg inline. */
if (prog_type == BPF_PROG_TYPE_TRACING &&
insn->imm == BPF_FUNC_get_func_arg) {
@@ -20178,6 +20412,62 @@ patch_map_ops_generic:
goto next_insn;
}
+ /* Implement bpf_get_branch_snapshot inline. */
+ if (IS_ENABLED(CONFIG_PERF_EVENTS) &&
+ prog->jit_requested && BITS_PER_LONG == 64 &&
+ insn->imm == BPF_FUNC_get_branch_snapshot) {
+ /* We are dealing with the following func protos:
+ * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags);
+ * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt);
+ */
+ const u32 br_entry_size = sizeof(struct perf_branch_entry);
+
+ /* struct perf_branch_entry is part of UAPI and is
+ * used as an array element, so extremely unlikely to
+ * ever grow or shrink
+ */
+ BUILD_BUG_ON(br_entry_size != 24);
+
+ /* if (unlikely(flags)) return -EINVAL */
+ insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7);
+
+ /* Transform size (bytes) into number of entries (cnt = size / 24).
+ * But to avoid expensive division instruction, we implement
+ * divide-by-3 through multiplication, followed by further
+ * division by 8 through 3-bit right shift.
+ * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr.,
+ * p. 227, chapter "Unsigned Division by 3" for details and proofs.
+ *
+ * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab.
+ */
+ insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab);
+ insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0);
+ insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36);
+
+ /* call perf_snapshot_branch_stack implementation */
+ insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack));
+ /* if (entry_cnt == 0) return -ENOENT */
+ insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4);
+ /* return entry_cnt * sizeof(struct perf_branch_entry) */
+ insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size);
+ insn_buf[7] = BPF_JMP_A(3);
+ /* return -EINVAL; */
+ insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
+ insn_buf[9] = BPF_JMP_A(1);
+ /* return -ENOENT; */
+ insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT);
+ cnt = 11;
+
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ delta += cnt - 1;
+ env->prog = prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ continue;
+ }
+
/* Implement bpf_kptr_xchg inline */
if (prog->jit_requested && BITS_PER_LONG == 64 &&
insn->imm == BPF_FUNC_kptr_xchg &&
diff --git a/kernel/configs/hardening.config b/kernel/configs/hardening.config
index 4b4cfcba3190..8a7ce7a6b3ab 100644
--- a/kernel/configs/hardening.config
+++ b/kernel/configs/hardening.config
@@ -23,6 +23,10 @@ CONFIG_SLAB_FREELIST_HARDENED=y
CONFIG_SHUFFLE_PAGE_ALLOCATOR=y
CONFIG_RANDOM_KMALLOC_CACHES=y
+# Sanity check userspace page table mappings.
+CONFIG_PAGE_TABLE_CHECK=y
+CONFIG_PAGE_TABLE_CHECK_ENFORCED=y
+
# Randomize kernel stack offset on syscall entry.
CONFIG_RANDOMIZE_KSTACK_OFFSET_DEFAULT=y
@@ -82,6 +86,10 @@ CONFIG_SECCOMP_FILTER=y
# Provides some protections against SYN flooding.
CONFIG_SYN_COOKIES=y
+# Enable Kernel Control Flow Integrity (currently Clang only).
+CONFIG_CFI_CLANG=y
+# CONFIG_CFI_PERMISSIVE is not set
+
# Attack surface reduction: do not autoload TTY line disciplines.
# CONFIG_LDISC_AUTOLOAD is not set
diff --git a/kernel/context_tracking.c b/kernel/context_tracking.c
index 70ae70d03823..24b1e1143260 100644
--- a/kernel/context_tracking.c
+++ b/kernel/context_tracking.c
@@ -432,7 +432,7 @@ static __always_inline void ct_kernel_enter(bool user, int offset) { }
#define CREATE_TRACE_POINTS
#include <trace/events/context_tracking.h>
-DEFINE_STATIC_KEY_FALSE(context_tracking_key);
+DEFINE_STATIC_KEY_FALSE_RO(context_tracking_key);
EXPORT_SYMBOL_GPL(context_tracking_key);
static noinstr bool context_tracking_recursion_enter(void)
diff --git a/kernel/events/core.c b/kernel/events/core.c
index 724e6d7e128f..6b0a66ed2ae3 100644
--- a/kernel/events/core.c
+++ b/kernel/events/core.c
@@ -2302,8 +2302,10 @@ event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
if (!is_software_event(event))
cpc->active_oncpu--;
- if (event->attr.freq && event->attr.sample_freq)
+ if (event->attr.freq && event->attr.sample_freq) {
ctx->nr_freq--;
+ epc->nr_freq--;
+ }
if (event->attr.exclusive || !cpc->active_oncpu)
cpc->exclusive = 0;
@@ -2558,9 +2560,10 @@ event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
if (!is_software_event(event))
cpc->active_oncpu++;
- if (event->attr.freq && event->attr.sample_freq)
+ if (event->attr.freq && event->attr.sample_freq) {
ctx->nr_freq++;
-
+ epc->nr_freq++;
+ }
if (event->attr.exclusive)
cpc->exclusive = 1;
@@ -4123,30 +4126,14 @@ static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bo
}
}
-/*
- * combine freq adjustment with unthrottling to avoid two passes over the
- * events. At the same time, make sure, having freq events does not change
- * the rate of unthrottling as that would introduce bias.
- */
-static void
-perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
+static void perf_adjust_freq_unthr_events(struct list_head *event_list)
{
struct perf_event *event;
struct hw_perf_event *hwc;
u64 now, period = TICK_NSEC;
s64 delta;
- /*
- * only need to iterate over all events iff:
- * - context have events in frequency mode (needs freq adjust)
- * - there are events to unthrottle on this cpu
- */
- if (!(ctx->nr_freq || unthrottle))
- return;
-
- raw_spin_lock(&ctx->lock);
-
- list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
+ list_for_each_entry(event, event_list, active_list) {
if (event->state != PERF_EVENT_STATE_ACTIVE)
continue;
@@ -4154,18 +4141,17 @@ perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
if (!event_filter_match(event))
continue;
- perf_pmu_disable(event->pmu);
-
hwc = &event->hw;
if (hwc->interrupts == MAX_INTERRUPTS) {
hwc->interrupts = 0;
perf_log_throttle(event, 1);
- event->pmu->start(event, 0);
+ if (!event->attr.freq || !event->attr.sample_freq)
+ event->pmu->start(event, 0);
}
if (!event->attr.freq || !event->attr.sample_freq)
- goto next;
+ continue;
/*
* stop the event and update event->count
@@ -4187,8 +4173,41 @@ perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
perf_adjust_period(event, period, delta, false);
event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
- next:
- perf_pmu_enable(event->pmu);
+ }
+}
+
+/*
+ * combine freq adjustment with unthrottling to avoid two passes over the
+ * events. At the same time, make sure, having freq events does not change
+ * the rate of unthrottling as that would introduce bias.
+ */
+static void
+perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
+{
+ struct perf_event_pmu_context *pmu_ctx;
+
+ /*
+ * only need to iterate over all events iff:
+ * - context have events in frequency mode (needs freq adjust)
+ * - there are events to unthrottle on this cpu
+ */
+ if (!(ctx->nr_freq || unthrottle))
+ return;
+
+ raw_spin_lock(&ctx->lock);
+
+ list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
+ if (!(pmu_ctx->nr_freq || unthrottle))
+ continue;
+ if (!perf_pmu_ctx_is_active(pmu_ctx))
+ continue;
+ if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
+ continue;
+
+ perf_pmu_disable(pmu_ctx->pmu);
+ perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
+ perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
+ perf_pmu_enable(pmu_ctx->pmu);
}
raw_spin_unlock(&ctx->lock);
@@ -6684,14 +6703,6 @@ static const struct file_operations perf_fops = {
* to user-space before waking everybody up.
*/
-static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
-{
- /* only the parent has fasync state */
- if (event->parent)
- event = event->parent;
- return &event->fasync;
-}
-
void perf_event_wakeup(struct perf_event *event)
{
ring_buffer_wakeup(event);
@@ -9544,6 +9555,100 @@ static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *r
return true;
}
+#ifdef CONFIG_BPF_SYSCALL
+static int bpf_overflow_handler(struct perf_event *event,
+ struct perf_sample_data *data,
+ struct pt_regs *regs)
+{
+ struct bpf_perf_event_data_kern ctx = {
+ .data = data,
+ .event = event,
+ };
+ struct bpf_prog *prog;
+ int ret = 0;
+
+ ctx.regs = perf_arch_bpf_user_pt_regs(regs);
+ if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
+ goto out;
+ rcu_read_lock();
+ prog = READ_ONCE(event->prog);
+ if (prog) {
+ perf_prepare_sample(data, event, regs);
+ ret = bpf_prog_run(prog, &ctx);
+ }
+ rcu_read_unlock();
+out:
+ __this_cpu_dec(bpf_prog_active);
+
+ return ret;
+}
+
+static inline int perf_event_set_bpf_handler(struct perf_event *event,
+ struct bpf_prog *prog,
+ u64 bpf_cookie)
+{
+ if (event->overflow_handler_context)
+ /* hw breakpoint or kernel counter */
+ return -EINVAL;
+
+ if (event->prog)
+ return -EEXIST;
+
+ if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
+ return -EINVAL;
+
+ if (event->attr.precise_ip &&
+ prog->call_get_stack &&
+ (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
+ event->attr.exclude_callchain_kernel ||
+ event->attr.exclude_callchain_user)) {
+ /*
+ * On perf_event with precise_ip, calling bpf_get_stack()
+ * may trigger unwinder warnings and occasional crashes.
+ * bpf_get_[stack|stackid] works around this issue by using
+ * callchain attached to perf_sample_data. If the
+ * perf_event does not full (kernel and user) callchain
+ * attached to perf_sample_data, do not allow attaching BPF
+ * program that calls bpf_get_[stack|stackid].
+ */
+ return -EPROTO;
+ }
+
+ event->prog = prog;
+ event->bpf_cookie = bpf_cookie;
+ return 0;
+}
+
+static inline void perf_event_free_bpf_handler(struct perf_event *event)
+{
+ struct bpf_prog *prog = event->prog;
+
+ if (!prog)
+ return;
+
+ event->prog = NULL;
+ bpf_prog_put(prog);
+}
+#else
+static inline int bpf_overflow_handler(struct perf_event *event,
+ struct perf_sample_data *data,
+ struct pt_regs *regs)
+{
+ return 1;
+}
+
+static inline int perf_event_set_bpf_handler(struct perf_event *event,
+ struct bpf_prog *prog,
+ u64 bpf_cookie)
+{
+ return -EOPNOTSUPP;
+}
+
+static inline void perf_event_free_bpf_handler(struct perf_event *event)
+{
+}
+#endif
+
/*
* Generic event overflow handling, sampling.
*/
@@ -9564,6 +9669,9 @@ static int __perf_event_overflow(struct perf_event *event,
ret = __perf_event_account_interrupt(event, throttle);
+ if (event->prog && !bpf_overflow_handler(event, data, regs))
+ return ret;
+
/*
* XXX event_limit might not quite work as expected on inherited
* events
@@ -10422,97 +10530,6 @@ static void perf_event_free_filter(struct perf_event *event)
ftrace_profile_free_filter(event);
}
-#ifdef CONFIG_BPF_SYSCALL
-static void bpf_overflow_handler(struct perf_event *event,
- struct perf_sample_data *data,
- struct pt_regs *regs)
-{
- struct bpf_perf_event_data_kern ctx = {
- .data = data,
- .event = event,
- };
- struct bpf_prog *prog;
- int ret = 0;
-
- ctx.regs = perf_arch_bpf_user_pt_regs(regs);
- if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
- goto out;
- rcu_read_lock();
- prog = READ_ONCE(event->prog);
- if (prog) {
- perf_prepare_sample(data, event, regs);
- ret = bpf_prog_run(prog, &ctx);
- }
- rcu_read_unlock();
-out:
- __this_cpu_dec(bpf_prog_active);
- if (!ret)
- return;
-
- event->orig_overflow_handler(event, data, regs);
-}
-
-static int perf_event_set_bpf_handler(struct perf_event *event,
- struct bpf_prog *prog,
- u64 bpf_cookie)
-{
- if (event->overflow_handler_context)
- /* hw breakpoint or kernel counter */
- return -EINVAL;
-
- if (event->prog)
- return -EEXIST;
-
- if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
- return -EINVAL;
-
- if (event->attr.precise_ip &&
- prog->call_get_stack &&
- (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
- event->attr.exclude_callchain_kernel ||
- event->attr.exclude_callchain_user)) {
- /*
- * On perf_event with precise_ip, calling bpf_get_stack()
- * may trigger unwinder warnings and occasional crashes.
- * bpf_get_[stack|stackid] works around this issue by using
- * callchain attached to perf_sample_data. If the
- * perf_event does not full (kernel and user) callchain
- * attached to perf_sample_data, do not allow attaching BPF
- * program that calls bpf_get_[stack|stackid].
- */
- return -EPROTO;
- }
-
- event->prog = prog;
- event->bpf_cookie = bpf_cookie;
- event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
- WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
- return 0;
-}
-
-static void perf_event_free_bpf_handler(struct perf_event *event)
-{
- struct bpf_prog *prog = event->prog;
-
- if (!prog)
- return;
-
- WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
- event->prog = NULL;
- bpf_prog_put(prog);
-}
-#else
-static int perf_event_set_bpf_handler(struct perf_event *event,
- struct bpf_prog *prog,
- u64 bpf_cookie)
-{
- return -EOPNOTSUPP;
-}
-static void perf_event_free_bpf_handler(struct perf_event *event)
-{
-}
-#endif
-
/*
* returns true if the event is a tracepoint, or a kprobe/upprobe created
* with perf_event_open()
@@ -11971,13 +11988,11 @@ perf_event_alloc(struct perf_event_attr *attr, int cpu,
overflow_handler = parent_event->overflow_handler;
context = parent_event->overflow_handler_context;
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
- if (overflow_handler == bpf_overflow_handler) {
+ if (parent_event->prog) {
struct bpf_prog *prog = parent_event->prog;
bpf_prog_inc(prog);
event->prog = prog;
- event->orig_overflow_handler =
- parent_event->orig_overflow_handler;
}
#endif
}
diff --git a/kernel/events/ring_buffer.c b/kernel/events/ring_buffer.c
index 60ed43d1c29e..4013408ce012 100644
--- a/kernel/events/ring_buffer.c
+++ b/kernel/events/ring_buffer.c
@@ -22,6 +22,10 @@ static void perf_output_wakeup(struct perf_output_handle *handle)
atomic_set(&handle->rb->poll, EPOLLIN);
handle->event->pending_wakeup = 1;
+
+ if (*perf_event_fasync(handle->event) && !handle->event->pending_kill)
+ handle->event->pending_kill = POLL_IN;
+
irq_work_queue(&handle->event->pending_irq);
}
diff --git a/kernel/futex/core.c b/kernel/futex/core.c
index 1e78ef24321e..06a1f091be81 100644
--- a/kernel/futex/core.c
+++ b/kernel/futex/core.c
@@ -1150,7 +1150,7 @@ static int __init futex_init(void)
unsigned int futex_shift;
unsigned long i;
-#if CONFIG_BASE_SMALL
+#ifdef CONFIG_BASE_SMALL
futex_hashsize = 16;
#else
futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
diff --git a/kernel/irq/Kconfig b/kernel/irq/Kconfig
index 2531f3496ab6..529adb1f5859 100644
--- a/kernel/irq/Kconfig
+++ b/kernel/irq/Kconfig
@@ -108,6 +108,10 @@ config GENERIC_IRQ_MATRIX_ALLOCATOR
config GENERIC_IRQ_RESERVATION_MODE
bool
+# Snapshot for interrupt statistics
+config GENERIC_IRQ_STAT_SNAPSHOT
+ bool
+
# Support forced irq threading
config IRQ_FORCED_THREADING
bool
diff --git a/kernel/irq/cpuhotplug.c b/kernel/irq/cpuhotplug.c
index 1ed2b1739363..75cadbc3c232 100644
--- a/kernel/irq/cpuhotplug.c
+++ b/kernel/irq/cpuhotplug.c
@@ -130,6 +130,22 @@ static bool migrate_one_irq(struct irq_desc *desc)
* CPU.
*/
err = irq_do_set_affinity(d, affinity, false);
+
+ /*
+ * If there are online CPUs in the affinity mask, but they have no
+ * vectors left to make the migration work, try to break the
+ * affinity by migrating to any online CPU.
+ */
+ if (err == -ENOSPC && !irqd_affinity_is_managed(d) && affinity != cpu_online_mask) {
+ pr_debug("IRQ%u: set affinity failed for %*pbl, re-try with online CPUs\n",
+ d->irq, cpumask_pr_args(affinity));
+
+ affinity = cpu_online_mask;
+ brokeaff = true;
+
+ err = irq_do_set_affinity(d, affinity, false);
+ }
+
if (err) {
pr_warn_ratelimited("IRQ%u: set affinity failed(%d).\n",
d->irq, err);
@@ -195,10 +211,15 @@ static void irq_restore_affinity_of_irq(struct irq_desc *desc, unsigned int cpu)
!irq_data_get_irq_chip(data) || !cpumask_test_cpu(cpu, affinity))
return;
- if (irqd_is_managed_and_shutdown(data)) {
- irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
+ /*
+ * Don't restore suspended interrupts here when a system comes back
+ * from S3. They are reenabled via resume_device_irqs().
+ */
+ if (desc->istate & IRQS_SUSPENDED)
return;
- }
+
+ if (irqd_is_managed_and_shutdown(data))
+ irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
/*
* If the interrupt can only be directed to a single target
diff --git a/kernel/irq/internals.h b/kernel/irq/internals.h
index bcc7f21db9ee..ed28059e9849 100644
--- a/kernel/irq/internals.h
+++ b/kernel/irq/internals.h
@@ -98,6 +98,8 @@ extern void mask_irq(struct irq_desc *desc);
extern void unmask_irq(struct irq_desc *desc);
extern void unmask_threaded_irq(struct irq_desc *desc);
+extern unsigned int kstat_irqs_desc(struct irq_desc *desc, const struct cpumask *cpumask);
+
#ifdef CONFIG_SPARSE_IRQ
static inline void irq_mark_irq(unsigned int irq) { }
#else
@@ -258,7 +260,7 @@ static inline void irq_state_set_masked(struct irq_desc *desc)
static inline void __kstat_incr_irqs_this_cpu(struct irq_desc *desc)
{
- __this_cpu_inc(*desc->kstat_irqs);
+ __this_cpu_inc(desc->kstat_irqs->cnt);
__this_cpu_inc(kstat.irqs_sum);
}
@@ -278,6 +280,11 @@ static inline int irq_desc_is_chained(struct irq_desc *desc)
return (desc->action && desc->action == &chained_action);
}
+static inline bool irq_is_nmi(struct irq_desc *desc)
+{
+ return desc->istate & IRQS_NMI;
+}
+
#ifdef CONFIG_PM_SLEEP
bool irq_pm_check_wakeup(struct irq_desc *desc);
void irq_pm_install_action(struct irq_desc *desc, struct irqaction *action);
diff --git a/kernel/irq/irqdesc.c b/kernel/irq/irqdesc.c
index 4c6b32318ce3..88ac3652fcf2 100644
--- a/kernel/irq/irqdesc.c
+++ b/kernel/irq/irqdesc.c
@@ -134,7 +134,7 @@ static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node,
desc->name = NULL;
desc->owner = owner;
for_each_possible_cpu(cpu)
- *per_cpu_ptr(desc->kstat_irqs, cpu) = 0;
+ *per_cpu_ptr(desc->kstat_irqs, cpu) = (struct irqstat) { };
desc_smp_init(desc, node, affinity);
}
@@ -186,7 +186,7 @@ static int init_desc(struct irq_desc *desc, int irq, int node,
const struct cpumask *affinity,
struct module *owner)
{
- desc->kstat_irqs = alloc_percpu(unsigned int);
+ desc->kstat_irqs = alloc_percpu(struct irqstat);
if (!desc->kstat_irqs)
return -ENOMEM;
@@ -911,10 +911,7 @@ int irq_set_percpu_devid_partition(unsigned int irq,
{
struct irq_desc *desc = irq_to_desc(irq);
- if (!desc)
- return -EINVAL;
-
- if (desc->percpu_enabled)
+ if (!desc || desc->percpu_enabled)
return -EINVAL;
desc->percpu_enabled = kzalloc(sizeof(*desc->percpu_enabled), GFP_KERNEL);
@@ -922,10 +919,7 @@ int irq_set_percpu_devid_partition(unsigned int irq,
if (!desc->percpu_enabled)
return -ENOMEM;
- if (affinity)
- desc->percpu_affinity = affinity;
- else
- desc->percpu_affinity = cpu_possible_mask;
+ desc->percpu_affinity = affinity ? : cpu_possible_mask;
irq_set_percpu_devid_flags(irq);
return 0;
@@ -968,33 +962,58 @@ unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
{
struct irq_desc *desc = irq_to_desc(irq);
- return desc && desc->kstat_irqs ?
- *per_cpu_ptr(desc->kstat_irqs, cpu) : 0;
+ return desc && desc->kstat_irqs ? per_cpu(desc->kstat_irqs->cnt, cpu) : 0;
}
-static bool irq_is_nmi(struct irq_desc *desc)
+unsigned int kstat_irqs_desc(struct irq_desc *desc, const struct cpumask *cpumask)
{
- return desc->istate & IRQS_NMI;
-}
-
-static unsigned int kstat_irqs(unsigned int irq)
-{
- struct irq_desc *desc = irq_to_desc(irq);
unsigned int sum = 0;
int cpu;
- if (!desc || !desc->kstat_irqs)
- return 0;
if (!irq_settings_is_per_cpu_devid(desc) &&
!irq_settings_is_per_cpu(desc) &&
!irq_is_nmi(desc))
return data_race(desc->tot_count);
- for_each_possible_cpu(cpu)
- sum += data_race(*per_cpu_ptr(desc->kstat_irqs, cpu));
+ for_each_cpu(cpu, cpumask)
+ sum += data_race(per_cpu(desc->kstat_irqs->cnt, cpu));
return sum;
}
+static unsigned int kstat_irqs(unsigned int irq)
+{
+ struct irq_desc *desc = irq_to_desc(irq);
+
+ if (!desc || !desc->kstat_irqs)
+ return 0;
+ return kstat_irqs_desc(desc, cpu_possible_mask);
+}
+
+#ifdef CONFIG_GENERIC_IRQ_STAT_SNAPSHOT
+
+void kstat_snapshot_irqs(void)
+{
+ struct irq_desc *desc;
+ unsigned int irq;
+
+ for_each_irq_desc(irq, desc) {
+ if (!desc->kstat_irqs)
+ continue;
+ this_cpu_write(desc->kstat_irqs->ref, this_cpu_read(desc->kstat_irqs->cnt));
+ }
+}
+
+unsigned int kstat_get_irq_since_snapshot(unsigned int irq)
+{
+ struct irq_desc *desc = irq_to_desc(irq);
+
+ if (!desc || !desc->kstat_irqs)
+ return 0;
+ return this_cpu_read(desc->kstat_irqs->cnt) - this_cpu_read(desc->kstat_irqs->ref);
+}
+
+#endif
+
/**
* kstat_irqs_usr - Get the statistics for an interrupt from thread context
* @irq: The interrupt number
diff --git a/kernel/irq/irqdomain.c b/kernel/irq/irqdomain.c
index 3dd1c871e091..aadc8891cc16 100644
--- a/kernel/irq/irqdomain.c
+++ b/kernel/irq/irqdomain.c
@@ -909,10 +909,11 @@ EXPORT_SYMBOL_GPL(irq_create_of_mapping);
*/
void irq_dispose_mapping(unsigned int virq)
{
- struct irq_data *irq_data = irq_get_irq_data(virq);
+ struct irq_data *irq_data;
struct irq_domain *domain;
- if (!virq || !irq_data)
+ irq_data = virq ? irq_get_irq_data(virq) : NULL;
+ if (!irq_data)
return;
domain = irq_data->domain;
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c
index bf9ae8a8686f..71b0fc2d0aea 100644
--- a/kernel/irq/manage.c
+++ b/kernel/irq/manage.c
@@ -564,7 +564,7 @@ irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
/* The release function is promised process context */
might_sleep();
- if (!desc || desc->istate & IRQS_NMI)
+ if (!desc || irq_is_nmi(desc))
return -EINVAL;
/* Complete initialisation of *notify */
@@ -800,10 +800,14 @@ void __enable_irq(struct irq_desc *desc)
irq_settings_set_noprobe(desc);
/*
* Call irq_startup() not irq_enable() here because the
- * interrupt might be marked NOAUTOEN. So irq_startup()
- * needs to be invoked when it gets enabled the first
- * time. If it was already started up, then irq_startup()
- * will invoke irq_enable() under the hood.
+ * interrupt might be marked NOAUTOEN so irq_startup()
+ * needs to be invoked when it gets enabled the first time.
+ * This is also required when __enable_irq() is invoked for
+ * a managed and shutdown interrupt from the S3 resume
+ * path.
+ *
+ * If it was already started up, then irq_startup() will
+ * invoke irq_enable() under the hood.
*/
irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
break;
@@ -898,7 +902,7 @@ int irq_set_irq_wake(unsigned int irq, unsigned int on)
return -EINVAL;
/* Don't use NMIs as wake up interrupts please */
- if (desc->istate & IRQS_NMI) {
+ if (irq_is_nmi(desc)) {
ret = -EINVAL;
goto out_unlock;
}
@@ -1624,7 +1628,7 @@ __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
*/
unsigned int oldtype;
- if (desc->istate & IRQS_NMI) {
+ if (irq_is_nmi(desc)) {
pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
new->name, irq, desc->irq_data.chip->name);
ret = -EINVAL;
@@ -2082,7 +2086,7 @@ const void *free_nmi(unsigned int irq, void *dev_id)
unsigned long flags;
const void *devname;
- if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
+ if (!desc || WARN_ON(!irq_is_nmi(desc)))
return NULL;
if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
@@ -2548,7 +2552,7 @@ void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
if (!desc || !irq_settings_is_per_cpu_devid(desc))
return;
- if (WARN_ON(!(desc->istate & IRQS_NMI)))
+ if (WARN_ON(!irq_is_nmi(desc)))
return;
kfree(__free_percpu_irq(irq, dev_id));
@@ -2684,7 +2688,7 @@ int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
return -EINVAL;
/* The line cannot already be NMI */
- if (desc->istate & IRQS_NMI)
+ if (irq_is_nmi(desc))
return -EINVAL;
action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
@@ -2745,7 +2749,7 @@ int prepare_percpu_nmi(unsigned int irq)
if (!desc)
return -EINVAL;
- if (WARN(!(desc->istate & IRQS_NMI),
+ if (WARN(!irq_is_nmi(desc),
KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
irq)) {
ret = -EINVAL;
@@ -2787,7 +2791,7 @@ void teardown_percpu_nmi(unsigned int irq)
if (!desc)
return;
- if (WARN_ON(!(desc->istate & IRQS_NMI)))
+ if (WARN_ON(!irq_is_nmi(desc)))
goto out;
irq_nmi_teardown(desc);
diff --git a/kernel/irq/proc.c b/kernel/irq/proc.c
index 623b8136e9af..5c320c3f10a7 100644
--- a/kernel/irq/proc.c
+++ b/kernel/irq/proc.c
@@ -488,18 +488,15 @@ int show_interrupts(struct seq_file *p, void *v)
if (!desc || irq_settings_is_hidden(desc))
goto outsparse;
- if (desc->kstat_irqs) {
- for_each_online_cpu(j)
- any_count |= data_race(*per_cpu_ptr(desc->kstat_irqs, j));
- }
+ if (desc->kstat_irqs)
+ any_count = kstat_irqs_desc(desc, cpu_online_mask);
if ((!desc->action || irq_desc_is_chained(desc)) && !any_count)
goto outsparse;
seq_printf(p, "%*d: ", prec, i);
for_each_online_cpu(j)
- seq_printf(p, "%10u ", desc->kstat_irqs ?
- *per_cpu_ptr(desc->kstat_irqs, j) : 0);
+ seq_printf(p, "%10u ", desc->kstat_irqs ? per_cpu(desc->kstat_irqs->cnt, j) : 0);
raw_spin_lock_irqsave(&desc->lock, flags);
if (desc->irq_data.chip) {
diff --git a/kernel/irq/resend.c b/kernel/irq/resend.c
index 5f2c66860ac6..b07a2d732ffb 100644
--- a/kernel/irq/resend.c
+++ b/kernel/irq/resend.c
@@ -190,7 +190,7 @@ int irq_inject_interrupt(unsigned int irq)
* - not NMI type
* - activated
*/
- if ((desc->istate & IRQS_NMI) || !irqd_is_activated(&desc->irq_data))
+ if (irq_is_nmi(desc) || !irqd_is_activated(&desc->irq_data))
err = -EINVAL;
else
err = check_irq_resend(desc, true);
diff --git a/kernel/jump_label.c b/kernel/jump_label.c
index d9c822bbffb8..3218fa5688b9 100644
--- a/kernel/jump_label.c
+++ b/kernel/jump_label.c
@@ -530,6 +530,45 @@ void __init jump_label_init(void)
cpus_read_unlock();
}
+static inline bool static_key_sealed(struct static_key *key)
+{
+ return (key->type & JUMP_TYPE_LINKED) && !(key->type & ~JUMP_TYPE_MASK);
+}
+
+static inline void static_key_seal(struct static_key *key)
+{
+ unsigned long type = key->type & JUMP_TYPE_TRUE;
+ key->type = JUMP_TYPE_LINKED | type;
+}
+
+void jump_label_init_ro(void)
+{
+ struct jump_entry *iter_start = __start___jump_table;
+ struct jump_entry *iter_stop = __stop___jump_table;
+ struct jump_entry *iter;
+
+ if (WARN_ON_ONCE(!static_key_initialized))
+ return;
+
+ cpus_read_lock();
+ jump_label_lock();
+
+ for (iter = iter_start; iter < iter_stop; iter++) {
+ struct static_key *iterk = jump_entry_key(iter);
+
+ if (!is_kernel_ro_after_init((unsigned long)iterk))
+ continue;
+
+ if (static_key_sealed(iterk))
+ continue;
+
+ static_key_seal(iterk);
+ }
+
+ jump_label_unlock();
+ cpus_read_unlock();
+}
+
#ifdef CONFIG_MODULES
enum jump_label_type jump_label_init_type(struct jump_entry *entry)
@@ -650,6 +689,15 @@ static int jump_label_add_module(struct module *mod)
static_key_set_entries(key, iter);
continue;
}
+
+ /*
+ * If the key was sealed at init, then there's no need to keep a
+ * reference to its module entries - just patch them now and be
+ * done with it.
+ */
+ if (static_key_sealed(key))
+ goto do_poke;
+
jlm = kzalloc(sizeof(struct static_key_mod), GFP_KERNEL);
if (!jlm)
return -ENOMEM;
@@ -675,6 +723,7 @@ static int jump_label_add_module(struct module *mod)
static_key_set_linked(key);
/* Only update if we've changed from our initial state */
+do_poke:
if (jump_label_type(iter) != jump_label_init_type(iter))
__jump_label_update(key, iter, iter_stop, true);
}
@@ -699,6 +748,10 @@ static void jump_label_del_module(struct module *mod)
if (within_module((unsigned long)key, mod))
continue;
+ /* No @jlm allocated because key was sealed at init. */
+ if (static_key_sealed(key))
+ continue;
+
/* No memory during module load */
if (WARN_ON(!static_key_linked(key)))
continue;
diff --git a/kernel/kcsan/kcsan_test.c b/kernel/kcsan/kcsan_test.c
index 015586217875..0c17b4c83e1c 100644
--- a/kernel/kcsan/kcsan_test.c
+++ b/kernel/kcsan/kcsan_test.c
@@ -304,6 +304,7 @@ static long test_array[3 * PAGE_SIZE / sizeof(long)];
static struct {
long val[8];
} test_struct;
+static long __data_racy test_data_racy;
static DEFINE_SEQLOCK(test_seqlock);
static DEFINE_SPINLOCK(test_spinlock);
static DEFINE_MUTEX(test_mutex);
@@ -358,6 +359,8 @@ static noinline void test_kernel_write_uninstrumented(void) { test_var++; }
static noinline void test_kernel_data_race(void) { data_race(test_var++); }
+static noinline void test_kernel_data_racy_qualifier(void) { test_data_racy++; }
+
static noinline void test_kernel_assert_writer(void)
{
ASSERT_EXCLUSIVE_WRITER(test_var);
@@ -1009,6 +1012,19 @@ static void test_data_race(struct kunit *test)
KUNIT_EXPECT_FALSE(test, match_never);
}
+/* Test the __data_racy type qualifier. */
+__no_kcsan
+static void test_data_racy_qualifier(struct kunit *test)
+{
+ bool match_never = false;
+
+ begin_test_checks(test_kernel_data_racy_qualifier, test_kernel_data_racy_qualifier);
+ do {
+ match_never = report_available();
+ } while (!end_test_checks(match_never));
+ KUNIT_EXPECT_FALSE(test, match_never);
+}
+
__no_kcsan
static void test_assert_exclusive_writer(struct kunit *test)
{
@@ -1424,6 +1440,7 @@ static struct kunit_case kcsan_test_cases[] = {
KCSAN_KUNIT_CASE(test_read_plain_atomic_rmw),
KCSAN_KUNIT_CASE(test_zero_size_access),
KCSAN_KUNIT_CASE(test_data_race),
+ KCSAN_KUNIT_CASE(test_data_racy_qualifier),
KCSAN_KUNIT_CASE(test_assert_exclusive_writer),
KCSAN_KUNIT_CASE(test_assert_exclusive_access),
KCSAN_KUNIT_CASE(test_assert_exclusive_access_writer),
diff --git a/kernel/kprobes.c b/kernel/kprobes.c
index 65adc815fc6e..ca2c6cbd42d2 100644
--- a/kernel/kprobes.c
+++ b/kernel/kprobes.c
@@ -26,7 +26,6 @@
#include <linux/slab.h>
#include <linux/stddef.h>
#include <linux/export.h>
-#include <linux/moduleloader.h>
#include <linux/kallsyms.h>
#include <linux/freezer.h>
#include <linux/seq_file.h>
@@ -39,6 +38,7 @@
#include <linux/jump_label.h>
#include <linux/static_call.h>
#include <linux/perf_event.h>
+#include <linux/execmem.h>
#include <asm/sections.h>
#include <asm/cacheflush.h>
@@ -113,17 +113,17 @@ enum kprobe_slot_state {
void __weak *alloc_insn_page(void)
{
/*
- * Use module_alloc() so this page is within +/- 2GB of where the
+ * Use execmem_alloc() so this page is within +/- 2GB of where the
* kernel image and loaded module images reside. This is required
* for most of the architectures.
* (e.g. x86-64 needs this to handle the %rip-relative fixups.)
*/
- return module_alloc(PAGE_SIZE);
+ return execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE);
}
static void free_insn_page(void *page)
{
- module_memfree(page);
+ execmem_free(page);
}
struct kprobe_insn_cache kprobe_insn_slots = {
@@ -1588,7 +1588,7 @@ static int check_kprobe_address_safe(struct kprobe *p,
}
/* Get module refcount and reject __init functions for loaded modules. */
- if (*probed_mod) {
+ if (IS_ENABLED(CONFIG_MODULES) && *probed_mod) {
/*
* We must hold a refcount of the probed module while updating
* its code to prohibit unexpected unloading.
@@ -1603,12 +1603,13 @@ static int check_kprobe_address_safe(struct kprobe *p,
* kprobes in there.
*/
if (within_module_init((unsigned long)p->addr, *probed_mod) &&
- (*probed_mod)->state != MODULE_STATE_COMING) {
+ !module_is_coming(*probed_mod)) {
module_put(*probed_mod);
*probed_mod = NULL;
ret = -ENOENT;
}
}
+
out:
preempt_enable();
jump_label_unlock();
@@ -2488,24 +2489,6 @@ int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
return 0;
}
-/* Remove all symbols in given area from kprobe blacklist */
-static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
-{
- struct kprobe_blacklist_entry *ent, *n;
-
- list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
- if (ent->start_addr < start || ent->start_addr >= end)
- continue;
- list_del(&ent->list);
- kfree(ent);
- }
-}
-
-static void kprobe_remove_ksym_blacklist(unsigned long entry)
-{
- kprobe_remove_area_blacklist(entry, entry + 1);
-}
-
int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
char *type, char *sym)
{
@@ -2570,6 +2553,25 @@ static int __init populate_kprobe_blacklist(unsigned long *start,
return ret ? : arch_populate_kprobe_blacklist();
}
+#ifdef CONFIG_MODULES
+/* Remove all symbols in given area from kprobe blacklist */
+static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
+{
+ struct kprobe_blacklist_entry *ent, *n;
+
+ list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
+ if (ent->start_addr < start || ent->start_addr >= end)
+ continue;
+ list_del(&ent->list);
+ kfree(ent);
+ }
+}
+
+static void kprobe_remove_ksym_blacklist(unsigned long entry)
+{
+ kprobe_remove_area_blacklist(entry, entry + 1);
+}
+
static void add_module_kprobe_blacklist(struct module *mod)
{
unsigned long start, end;
@@ -2672,6 +2674,17 @@ static struct notifier_block kprobe_module_nb = {
.priority = 0
};
+static int kprobe_register_module_notifier(void)
+{
+ return register_module_notifier(&kprobe_module_nb);
+}
+#else
+static int kprobe_register_module_notifier(void)
+{
+ return 0;
+}
+#endif /* CONFIG_MODULES */
+
void kprobe_free_init_mem(void)
{
void *start = (void *)(&__init_begin);
@@ -2731,7 +2744,7 @@ static int __init init_kprobes(void)
if (!err)
err = register_die_notifier(&kprobe_exceptions_nb);
if (!err)
- err = register_module_notifier(&kprobe_module_nb);
+ err = kprobe_register_module_notifier();
kprobes_initialized = (err == 0);
kprobe_sysctls_init();
diff --git a/kernel/kthread.c b/kernel/kthread.c
index c5e40830c1f2..f7be976ff88a 100644
--- a/kernel/kthread.c
+++ b/kernel/kthread.c
@@ -315,6 +315,7 @@ void __noreturn kthread_exit(long result)
kthread->result = result;
do_exit(0);
}
+EXPORT_SYMBOL(kthread_exit);
/**
* kthread_complete_and_exit - Exit the current kthread.
diff --git a/kernel/livepatch/core.c b/kernel/livepatch/core.c
index ecbc9b6aba3a..52426665eecc 100644
--- a/kernel/livepatch/core.c
+++ b/kernel/livepatch/core.c
@@ -973,7 +973,7 @@ static int __klp_disable_patch(struct klp_patch *patch)
if (klp_transition_patch)
return -EBUSY;
- klp_init_transition(patch, KLP_UNPATCHED);
+ klp_init_transition(patch, KLP_TRANSITION_UNPATCHED);
klp_for_each_object(patch, obj)
if (obj->patched)
@@ -1008,7 +1008,7 @@ static int __klp_enable_patch(struct klp_patch *patch)
pr_notice("enabling patch '%s'\n", patch->mod->name);
- klp_init_transition(patch, KLP_PATCHED);
+ klp_init_transition(patch, KLP_TRANSITION_PATCHED);
/*
* Enforce the order of the func->transition writes in
diff --git a/kernel/livepatch/patch.c b/kernel/livepatch/patch.c
index 4152c71507e2..90408500e5a3 100644
--- a/kernel/livepatch/patch.c
+++ b/kernel/livepatch/patch.c
@@ -95,9 +95,9 @@ static void notrace klp_ftrace_handler(unsigned long ip,
patch_state = current->patch_state;
- WARN_ON_ONCE(patch_state == KLP_UNDEFINED);
+ WARN_ON_ONCE(patch_state == KLP_TRANSITION_IDLE);
- if (patch_state == KLP_UNPATCHED) {
+ if (patch_state == KLP_TRANSITION_UNPATCHED) {
/*
* Use the previously patched version of the function.
* If no previous patches exist, continue with the
diff --git a/kernel/livepatch/transition.c b/kernel/livepatch/transition.c
index e54c3d60a904..ba069459c101 100644
--- a/kernel/livepatch/transition.c
+++ b/kernel/livepatch/transition.c
@@ -23,7 +23,7 @@ static DEFINE_PER_CPU(unsigned long[MAX_STACK_ENTRIES], klp_stack_entries);
struct klp_patch *klp_transition_patch;
-static int klp_target_state = KLP_UNDEFINED;
+static int klp_target_state = KLP_TRANSITION_IDLE;
static unsigned int klp_signals_cnt;
@@ -96,16 +96,16 @@ static void klp_complete_transition(void)
pr_debug("'%s': completing %s transition\n",
klp_transition_patch->mod->name,
- klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
+ klp_target_state == KLP_TRANSITION_PATCHED ? "patching" : "unpatching");
- if (klp_transition_patch->replace && klp_target_state == KLP_PATCHED) {
+ if (klp_transition_patch->replace && klp_target_state == KLP_TRANSITION_PATCHED) {
klp_unpatch_replaced_patches(klp_transition_patch);
klp_discard_nops(klp_transition_patch);
}
- if (klp_target_state == KLP_UNPATCHED) {
+ if (klp_target_state == KLP_TRANSITION_UNPATCHED) {
/*
- * All tasks have transitioned to KLP_UNPATCHED so we can now
+ * All tasks have transitioned to KLP_TRANSITION_UNPATCHED so we can now
* remove the new functions from the func_stack.
*/
klp_unpatch_objects(klp_transition_patch);
@@ -123,36 +123,36 @@ static void klp_complete_transition(void)
klp_for_each_func(obj, func)
func->transition = false;
- /* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */
- if (klp_target_state == KLP_PATCHED)
+ /* Prevent klp_ftrace_handler() from seeing KLP_TRANSITION_IDLE state */
+ if (klp_target_state == KLP_TRANSITION_PATCHED)
klp_synchronize_transition();
read_lock(&tasklist_lock);
for_each_process_thread(g, task) {
WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
- task->patch_state = KLP_UNDEFINED;
+ task->patch_state = KLP_TRANSITION_IDLE;
}
read_unlock(&tasklist_lock);
for_each_possible_cpu(cpu) {
task = idle_task(cpu);
WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
- task->patch_state = KLP_UNDEFINED;
+ task->patch_state = KLP_TRANSITION_IDLE;
}
klp_for_each_object(klp_transition_patch, obj) {
if (!klp_is_object_loaded(obj))
continue;
- if (klp_target_state == KLP_PATCHED)
+ if (klp_target_state == KLP_TRANSITION_PATCHED)
klp_post_patch_callback(obj);
- else if (klp_target_state == KLP_UNPATCHED)
+ else if (klp_target_state == KLP_TRANSITION_UNPATCHED)
klp_post_unpatch_callback(obj);
}
pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name,
- klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
+ klp_target_state == KLP_TRANSITION_PATCHED ? "patching" : "unpatching");
- klp_target_state = KLP_UNDEFINED;
+ klp_target_state = KLP_TRANSITION_IDLE;
klp_transition_patch = NULL;
}
@@ -164,13 +164,13 @@ static void klp_complete_transition(void)
*/
void klp_cancel_transition(void)
{
- if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED))
+ if (WARN_ON_ONCE(klp_target_state != KLP_TRANSITION_PATCHED))
return;
pr_debug("'%s': canceling patching transition, going to unpatch\n",
klp_transition_patch->mod->name);
- klp_target_state = KLP_UNPATCHED;
+ klp_target_state = KLP_TRANSITION_UNPATCHED;
klp_complete_transition();
}
@@ -218,7 +218,7 @@ static int klp_check_stack_func(struct klp_func *func, unsigned long *entries,
struct klp_ops *ops;
int i;
- if (klp_target_state == KLP_UNPATCHED) {
+ if (klp_target_state == KLP_TRANSITION_UNPATCHED) {
/*
* Check for the to-be-unpatched function
* (the func itself).
@@ -455,7 +455,7 @@ void klp_try_complete_transition(void)
struct klp_patch *patch;
bool complete = true;
- WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
+ WARN_ON_ONCE(klp_target_state == KLP_TRANSITION_IDLE);
/*
* Try to switch the tasks to the target patch state by walking their
@@ -532,11 +532,11 @@ void klp_start_transition(void)
struct task_struct *g, *task;
unsigned int cpu;
- WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
+ WARN_ON_ONCE(klp_target_state == KLP_TRANSITION_IDLE);
pr_notice("'%s': starting %s transition\n",
klp_transition_patch->mod->name,
- klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
+ klp_target_state == KLP_TRANSITION_PATCHED ? "patching" : "unpatching");
/*
* Mark all normal tasks as needing a patch state update. They'll
@@ -578,7 +578,7 @@ void klp_init_transition(struct klp_patch *patch, int state)
struct klp_func *func;
int initial_state = !state;
- WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED);
+ WARN_ON_ONCE(klp_target_state != KLP_TRANSITION_IDLE);
klp_transition_patch = patch;
@@ -589,7 +589,7 @@ void klp_init_transition(struct klp_patch *patch, int state)
klp_target_state = state;
pr_debug("'%s': initializing %s transition\n", patch->mod->name,
- klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
+ klp_target_state == KLP_TRANSITION_PATCHED ? "patching" : "unpatching");
/*
* Initialize all tasks to the initial patch state to prepare them for
@@ -597,7 +597,7 @@ void klp_init_transition(struct klp_patch *patch, int state)
*/
read_lock(&tasklist_lock);
for_each_process_thread(g, task) {
- WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
+ WARN_ON_ONCE(task->patch_state != KLP_TRANSITION_IDLE);
task->patch_state = initial_state;
}
read_unlock(&tasklist_lock);
@@ -607,19 +607,19 @@ void klp_init_transition(struct klp_patch *patch, int state)
*/
for_each_possible_cpu(cpu) {
task = idle_task(cpu);
- WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
+ WARN_ON_ONCE(task->patch_state != KLP_TRANSITION_IDLE);
task->patch_state = initial_state;
}
/*
* Enforce the order of the task->patch_state initializations and the
* func->transition updates to ensure that klp_ftrace_handler() doesn't
- * see a func in transition with a task->patch_state of KLP_UNDEFINED.
+ * see a func in transition with a task->patch_state of KLP_TRANSITION_IDLE.
*
* Also enforce the order of the klp_target_state write and future
* TIF_PATCH_PENDING writes to ensure klp_update_patch_state() and
* __klp_sched_try_switch() don't set a task->patch_state to
- * KLP_UNDEFINED.
+ * KLP_TRANSITION_IDLE.
*/
smp_wmb();
@@ -652,7 +652,7 @@ void klp_reverse_transition(void)
pr_debug("'%s': reversing transition from %s\n",
klp_transition_patch->mod->name,
- klp_target_state == KLP_PATCHED ? "patching to unpatching" :
+ klp_target_state == KLP_TRANSITION_PATCHED ? "patching to unpatching" :
"unpatching to patching");
/*
@@ -741,7 +741,7 @@ void klp_force_transition(void)
klp_update_patch_state(idle_task(cpu));
/* Set forced flag for patches being removed. */
- if (klp_target_state == KLP_UNPATCHED)
+ if (klp_target_state == KLP_TRANSITION_UNPATCHED)
klp_transition_patch->forced = true;
else if (klp_transition_patch->replace) {
klp_for_each_patch(patch) {
diff --git a/kernel/locking/lock_events.h b/kernel/locking/lock_events.h
index a6016b91803d..d2345e9c0190 100644
--- a/kernel/locking/lock_events.h
+++ b/kernel/locking/lock_events.h
@@ -53,8 +53,8 @@ static inline void __lockevent_add(enum lock_events event, int inc)
#else /* CONFIG_LOCK_EVENT_COUNTS */
#define lockevent_inc(ev)
-#define lockevent_add(ev, c)
-#define lockevent_cond_inc(ev, c)
+#define lockevent_add(ev, c) do { (void)(c); } while (0)
+#define lockevent_cond_inc(ev, c) do { (void)(c); } while (0)
#endif /* CONFIG_LOCK_EVENT_COUNTS */
diff --git a/kernel/locking/qspinlock.c b/kernel/locking/qspinlock.c
index ebe6b8ec7cb3..1df5fef8a656 100644
--- a/kernel/locking/qspinlock.c
+++ b/kernel/locking/qspinlock.c
@@ -220,21 +220,18 @@ static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
*/
static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
{
- u32 old, new, val = atomic_read(&lock->val);
+ u32 old, new;
- for (;;) {
- new = (val & _Q_LOCKED_PENDING_MASK) | tail;
+ old = atomic_read(&lock->val);
+ do {
+ new = (old & _Q_LOCKED_PENDING_MASK) | tail;
/*
* We can use relaxed semantics since the caller ensures that
* the MCS node is properly initialized before updating the
* tail.
*/
- old = atomic_cmpxchg_relaxed(&lock->val, val, new);
- if (old == val)
- break;
+ } while (!atomic_try_cmpxchg_relaxed(&lock->val, &old, new));
- val = old;
- }
return old;
}
#endif /* _Q_PENDING_BITS == 8 */
diff --git a/kernel/locking/qspinlock_paravirt.h b/kernel/locking/qspinlock_paravirt.h
index ae2b12f68b90..f5a36e67b593 100644
--- a/kernel/locking/qspinlock_paravirt.h
+++ b/kernel/locking/qspinlock_paravirt.h
@@ -86,9 +86,10 @@ static inline bool pv_hybrid_queued_unfair_trylock(struct qspinlock *lock)
*/
for (;;) {
int val = atomic_read(&lock->val);
+ u8 old = 0;
if (!(val & _Q_LOCKED_PENDING_MASK) &&
- (cmpxchg_acquire(&lock->locked, 0, _Q_LOCKED_VAL) == 0)) {
+ try_cmpxchg_acquire(&lock->locked, &old, _Q_LOCKED_VAL)) {
lockevent_inc(pv_lock_stealing);
return true;
}
@@ -116,11 +117,12 @@ static __always_inline void set_pending(struct qspinlock *lock)
* barrier. Therefore, an atomic cmpxchg_acquire() is used to acquire the
* lock just to be sure that it will get it.
*/
-static __always_inline int trylock_clear_pending(struct qspinlock *lock)
+static __always_inline bool trylock_clear_pending(struct qspinlock *lock)
{
+ u16 old = _Q_PENDING_VAL;
+
return !READ_ONCE(lock->locked) &&
- (cmpxchg_acquire(&lock->locked_pending, _Q_PENDING_VAL,
- _Q_LOCKED_VAL) == _Q_PENDING_VAL);
+ try_cmpxchg_acquire(&lock->locked_pending, &old, _Q_LOCKED_VAL);
}
#else /* _Q_PENDING_BITS == 8 */
static __always_inline void set_pending(struct qspinlock *lock)
@@ -128,27 +130,21 @@ static __always_inline void set_pending(struct qspinlock *lock)
atomic_or(_Q_PENDING_VAL, &lock->val);
}
-static __always_inline int trylock_clear_pending(struct qspinlock *lock)
+static __always_inline bool trylock_clear_pending(struct qspinlock *lock)
{
- int val = atomic_read(&lock->val);
-
- for (;;) {
- int old, new;
-
- if (val & _Q_LOCKED_MASK)
- break;
+ int old, new;
+ old = atomic_read(&lock->val);
+ do {
+ if (old & _Q_LOCKED_MASK)
+ return false;
/*
* Try to clear pending bit & set locked bit
*/
- old = val;
- new = (val & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL;
- val = atomic_cmpxchg_acquire(&lock->val, old, new);
+ new = (old & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL;
+ } while (!atomic_try_cmpxchg_acquire (&lock->val, &old, new));
- if (val == old)
- return 1;
- }
- return 0;
+ return true;
}
#endif /* _Q_PENDING_BITS == 8 */
@@ -216,8 +212,9 @@ static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node)
int hopcnt = 0;
for_each_hash_entry(he, offset, hash) {
+ struct qspinlock *old = NULL;
hopcnt++;
- if (!cmpxchg(&he->lock, NULL, lock)) {
+ if (try_cmpxchg(&he->lock, &old, lock)) {
WRITE_ONCE(he->node, node);
lockevent_pv_hop(hopcnt);
return &he->lock;
@@ -294,7 +291,7 @@ static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
{
struct pv_node *pn = (struct pv_node *)node;
struct pv_node *pp = (struct pv_node *)prev;
- bool __maybe_unused wait_early;
+ bool wait_early;
int loop;
for (;;) {
@@ -360,7 +357,7 @@ static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
{
struct pv_node *pn = (struct pv_node *)node;
-
+ enum vcpu_state old = vcpu_halted;
/*
* If the vCPU is indeed halted, advance its state to match that of
* pv_wait_node(). If OTOH this fails, the vCPU was running and will
@@ -377,8 +374,7 @@ static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
* subsequent writes.
*/
smp_mb__before_atomic();
- if (cmpxchg_relaxed(&pn->state, vcpu_halted, vcpu_hashed)
- != vcpu_halted)
+ if (!try_cmpxchg_relaxed(&pn->state, &old, vcpu_hashed))
return;
/*
@@ -546,15 +542,14 @@ __pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked)
#ifndef __pv_queued_spin_unlock
__visible __lockfunc void __pv_queued_spin_unlock(struct qspinlock *lock)
{
- u8 locked;
+ u8 locked = _Q_LOCKED_VAL;
/*
* We must not unlock if SLOW, because in that case we must first
* unhash. Otherwise it would be possible to have multiple @lock
* entries, which would be BAD.
*/
- locked = cmpxchg_release(&lock->locked, _Q_LOCKED_VAL, 0);
- if (likely(locked == _Q_LOCKED_VAL))
+ if (try_cmpxchg_release(&lock->locked, &locked, 0))
return;
__pv_queued_spin_unlock_slowpath(lock, locked);
diff --git a/kernel/module/Kconfig b/kernel/module/Kconfig
index f3e0329337f6..4047b6d48255 100644
--- a/kernel/module/Kconfig
+++ b/kernel/module/Kconfig
@@ -2,6 +2,7 @@
menuconfig MODULES
bool "Enable loadable module support"
modules
+ select EXECMEM
help
Kernel modules are small pieces of compiled code which can
be inserted in the running kernel, rather than being
@@ -392,7 +393,7 @@ config UNUSED_KSYMS_WHITELIST
exported at all times, even in absence of in-tree users. The value to
set here is the path to a text file containing the list of symbols,
one per line. The path can be absolute, or relative to the kernel
- source tree.
+ source or obj tree.
config MODULES_TREE_LOOKUP
def_bool y
diff --git a/kernel/module/kallsyms.c b/kernel/module/kallsyms.c
index ef73ae7c8909..62fb57bb9f16 100644
--- a/kernel/module/kallsyms.c
+++ b/kernel/module/kallsyms.c
@@ -348,7 +348,7 @@ const char *module_address_lookup(unsigned long addr,
}
/* Make a copy in here where it's safe */
if (ret) {
- strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
+ strscpy(namebuf, ret, KSYM_NAME_LEN);
ret = namebuf;
}
preempt_enable();
diff --git a/kernel/module/main.c b/kernel/module/main.c
index e1e8a7a9d6c1..91e185607d4b 100644
--- a/kernel/module/main.c
+++ b/kernel/module/main.c
@@ -57,6 +57,7 @@
#include <linux/audit.h>
#include <linux/cfi.h>
#include <linux/debugfs.h>
+#include <linux/execmem.h>
#include <uapi/linux/module.h>
#include "internal.h"
@@ -1179,16 +1180,6 @@ resolve_symbol_wait(struct module *mod,
return ksym;
}
-void __weak module_memfree(void *module_region)
-{
- /*
- * This memory may be RO, and freeing RO memory in an interrupt is not
- * supported by vmalloc.
- */
- WARN_ON(in_interrupt());
- vfree(module_region);
-}
-
void __weak module_arch_cleanup(struct module *mod)
{
}
@@ -1197,25 +1188,47 @@ void __weak module_arch_freeing_init(struct module *mod)
{
}
-static bool mod_mem_use_vmalloc(enum mod_mem_type type)
+static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
{
- return IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC) &&
- mod_mem_type_is_core_data(type);
-}
+ unsigned int size = PAGE_ALIGN(mod->mem[type].size);
+ enum execmem_type execmem_type;
+ void *ptr;
-static void *module_memory_alloc(unsigned int size, enum mod_mem_type type)
-{
- if (mod_mem_use_vmalloc(type))
- return vzalloc(size);
- return module_alloc(size);
+ mod->mem[type].size = size;
+
+ if (mod_mem_type_is_data(type))
+ execmem_type = EXECMEM_MODULE_DATA;
+ else
+ execmem_type = EXECMEM_MODULE_TEXT;
+
+ ptr = execmem_alloc(execmem_type, size);
+ if (!ptr)
+ return -ENOMEM;
+
+ /*
+ * The pointer to these blocks of memory are stored on the module
+ * structure and we keep that around so long as the module is
+ * around. We only free that memory when we unload the module.
+ * Just mark them as not being a leak then. The .init* ELF
+ * sections *do* get freed after boot so we *could* treat them
+ * slightly differently with kmemleak_ignore() and only grey
+ * them out as they work as typical memory allocations which
+ * *do* eventually get freed, but let's just keep things simple
+ * and avoid *any* false positives.
+ */
+ kmemleak_not_leak(ptr);
+
+ memset(ptr, 0, size);
+ mod->mem[type].base = ptr;
+
+ return 0;
}
-static void module_memory_free(void *ptr, enum mod_mem_type type)
+static void module_memory_free(struct module *mod, enum mod_mem_type type)
{
- if (mod_mem_use_vmalloc(type))
- vfree(ptr);
- else
- module_memfree(ptr);
+ void *ptr = mod->mem[type].base;
+
+ execmem_free(ptr);
}
static void free_mod_mem(struct module *mod)
@@ -1229,12 +1242,12 @@ static void free_mod_mem(struct module *mod)
/* Free lock-classes; relies on the preceding sync_rcu(). */
lockdep_free_key_range(mod_mem->base, mod_mem->size);
if (mod_mem->size)
- module_memory_free(mod_mem->base, type);
+ module_memory_free(mod, type);
}
/* MOD_DATA hosts mod, so free it at last */
lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
- module_memory_free(mod->mem[MOD_DATA].base, MOD_DATA);
+ module_memory_free(mod, MOD_DATA);
}
/* Free a module, remove from lists, etc. */
@@ -1610,13 +1623,6 @@ static void free_modinfo(struct module *mod)
}
}
-void * __weak module_alloc(unsigned long size)
-{
- return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
- GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
- NUMA_NO_NODE, __builtin_return_address(0));
-}
-
bool __weak module_init_section(const char *name)
{
return strstarts(name, ".init");
@@ -2225,7 +2231,6 @@ static int find_module_sections(struct module *mod, struct load_info *info)
static int move_module(struct module *mod, struct load_info *info)
{
int i;
- void *ptr;
enum mod_mem_type t = 0;
int ret = -ENOMEM;
@@ -2234,26 +2239,12 @@ static int move_module(struct module *mod, struct load_info *info)
mod->mem[type].base = NULL;
continue;
}
- mod->mem[type].size = PAGE_ALIGN(mod->mem[type].size);
- ptr = module_memory_alloc(mod->mem[type].size, type);
- /*
- * The pointer to these blocks of memory are stored on the module
- * structure and we keep that around so long as the module is
- * around. We only free that memory when we unload the module.
- * Just mark them as not being a leak then. The .init* ELF
- * sections *do* get freed after boot so we *could* treat them
- * slightly differently with kmemleak_ignore() and only grey
- * them out as they work as typical memory allocations which
- * *do* eventually get freed, but let's just keep things simple
- * and avoid *any* false positives.
- */
- kmemleak_not_leak(ptr);
- if (!ptr) {
+
+ ret = module_memory_alloc(mod, type);
+ if (ret) {
t = type;
goto out_enomem;
}
- memset(ptr, 0, mod->mem[type].size);
- mod->mem[type].base = ptr;
}
/* Transfer each section which specifies SHF_ALLOC */
@@ -2296,7 +2287,7 @@ static int move_module(struct module *mod, struct load_info *info)
return 0;
out_enomem:
for (t--; t >= 0; t--)
- module_memory_free(mod->mem[t].base, t);
+ module_memory_free(mod, t);
return ret;
}
@@ -2482,9 +2473,9 @@ static void do_free_init(struct work_struct *w)
llist_for_each_safe(pos, n, list) {
initfree = container_of(pos, struct mod_initfree, node);
- module_memfree(initfree->init_text);
- module_memfree(initfree->init_data);
- module_memfree(initfree->init_rodata);
+ execmem_free(initfree->init_text);
+ execmem_free(initfree->init_data);
+ execmem_free(initfree->init_rodata);
kfree(initfree);
}
}
@@ -2594,10 +2585,10 @@ static noinline int do_init_module(struct module *mod)
* We want to free module_init, but be aware that kallsyms may be
* walking this with preempt disabled. In all the failure paths, we
* call synchronize_rcu(), but we don't want to slow down the success
- * path. module_memfree() cannot be called in an interrupt, so do the
+ * path. execmem_free() cannot be called in an interrupt, so do the
* work and call synchronize_rcu() in a work queue.
*
- * Note that module_alloc() on most architectures creates W+X page
+ * Note that execmem_alloc() on most architectures creates W+X page
* mappings which won't be cleaned up until do_free_init() runs. Any
* code such as mark_rodata_ro() which depends on those mappings to
* be cleaned up needs to sync with the queued work by invoking
diff --git a/kernel/padata.c b/kernel/padata.c
index e3f639ff1670..53f4bc912712 100644
--- a/kernel/padata.c
+++ b/kernel/padata.c
@@ -106,7 +106,7 @@ static int __init padata_work_alloc_mt(int nworks, void *data,
{
int i;
- spin_lock(&padata_works_lock);
+ spin_lock_bh(&padata_works_lock);
/* Start at 1 because the current task participates in the job. */
for (i = 1; i < nworks; ++i) {
struct padata_work *pw = padata_work_alloc();
@@ -116,7 +116,7 @@ static int __init padata_work_alloc_mt(int nworks, void *data,
padata_work_init(pw, padata_mt_helper, data, 0);
list_add(&pw->pw_list, head);
}
- spin_unlock(&padata_works_lock);
+ spin_unlock_bh(&padata_works_lock);
return i;
}
@@ -134,12 +134,12 @@ static void __init padata_works_free(struct list_head *works)
if (list_empty(works))
return;
- spin_lock(&padata_works_lock);
+ spin_lock_bh(&padata_works_lock);
list_for_each_entry_safe(cur, next, works, pw_list) {
list_del(&cur->pw_list);
padata_work_free(cur);
}
- spin_unlock(&padata_works_lock);
+ spin_unlock_bh(&padata_works_lock);
}
static void padata_parallel_worker(struct work_struct *parallel_work)
diff --git a/kernel/power/energy_model.c b/kernel/power/energy_model.c
index 9e1c9aa399ea..927cc55ba0b3 100644
--- a/kernel/power/energy_model.c
+++ b/kernel/power/energy_model.c
@@ -674,23 +674,15 @@ void em_dev_unregister_perf_domain(struct device *dev)
}
EXPORT_SYMBOL_GPL(em_dev_unregister_perf_domain);
-/*
- * Adjustment of CPU performance values after boot, when all CPUs capacites
- * are correctly calculated.
- */
-static void em_adjust_new_capacity(struct device *dev,
- struct em_perf_domain *pd,
- u64 max_cap)
+static struct em_perf_table __rcu *em_table_dup(struct em_perf_domain *pd)
{
struct em_perf_table __rcu *em_table;
struct em_perf_state *ps, *new_ps;
- int ret, ps_size;
+ int ps_size;
em_table = em_table_alloc(pd);
- if (!em_table) {
- dev_warn(dev, "EM: allocation failed\n");
- return;
- }
+ if (!em_table)
+ return NULL;
new_ps = em_table->state;
@@ -702,24 +694,52 @@ static void em_adjust_new_capacity(struct device *dev,
rcu_read_unlock();
- em_init_performance(dev, pd, new_ps, pd->nr_perf_states);
- ret = em_compute_costs(dev, new_ps, NULL, pd->nr_perf_states,
+ return em_table;
+}
+
+static int em_recalc_and_update(struct device *dev, struct em_perf_domain *pd,
+ struct em_perf_table __rcu *em_table)
+{
+ int ret;
+
+ ret = em_compute_costs(dev, em_table->state, NULL, pd->nr_perf_states,
pd->flags);
- if (ret) {
- dev_warn(dev, "EM: compute costs failed\n");
- return;
- }
+ if (ret)
+ goto free_em_table;
ret = em_dev_update_perf_domain(dev, em_table);
if (ret)
- dev_warn(dev, "EM: update failed %d\n", ret);
+ goto free_em_table;
/*
* This is one-time-update, so give up the ownership in this updater.
* The EM framework has incremented the usage counter and from now
* will keep the reference (then free the memory when needed).
*/
+free_em_table:
em_table_free(em_table);
+ return ret;
+}
+
+/*
+ * Adjustment of CPU performance values after boot, when all CPUs capacites
+ * are correctly calculated.
+ */
+static void em_adjust_new_capacity(struct device *dev,
+ struct em_perf_domain *pd,
+ u64 max_cap)
+{
+ struct em_perf_table __rcu *em_table;
+
+ em_table = em_table_dup(pd);
+ if (!em_table) {
+ dev_warn(dev, "EM: allocation failed\n");
+ return;
+ }
+
+ em_init_performance(dev, pd, em_table->state, pd->nr_perf_states);
+
+ em_recalc_and_update(dev, pd, em_table);
}
static void em_check_capacity_update(void)
@@ -788,3 +808,51 @@ static void em_update_workfn(struct work_struct *work)
{
em_check_capacity_update();
}
+
+/**
+ * em_dev_update_chip_binning() - Update Energy Model after the new voltage
+ * information is present in the OPPs.
+ * @dev : Device for which the Energy Model has to be updated.
+ *
+ * This function allows to update easily the EM with new values available in
+ * the OPP framework and DT. It can be used after the chip has been properly
+ * verified by device drivers and the voltages adjusted for the 'chip binning'.
+ */
+int em_dev_update_chip_binning(struct device *dev)
+{
+ struct em_perf_table __rcu *em_table;
+ struct em_perf_domain *pd;
+ int i, ret;
+
+ if (IS_ERR_OR_NULL(dev))
+ return -EINVAL;
+
+ pd = em_pd_get(dev);
+ if (!pd) {
+ dev_warn(dev, "Couldn't find Energy Model\n");
+ return -EINVAL;
+ }
+
+ em_table = em_table_dup(pd);
+ if (!em_table) {
+ dev_warn(dev, "EM: allocation failed\n");
+ return -ENOMEM;
+ }
+
+ /* Update power values which might change due to new voltage in OPPs */
+ for (i = 0; i < pd->nr_perf_states; i++) {
+ unsigned long freq = em_table->state[i].frequency;
+ unsigned long power;
+
+ ret = dev_pm_opp_calc_power(dev, &power, &freq);
+ if (ret) {
+ em_table_free(em_table);
+ return ret;
+ }
+
+ em_table->state[i].power = power;
+ }
+
+ return em_recalc_and_update(dev, pd, em_table);
+}
+EXPORT_SYMBOL_GPL(em_dev_update_chip_binning);
diff --git a/kernel/power/hibernate.c b/kernel/power/hibernate.c
index 43b1a82e800c..0a213f69a9e4 100644
--- a/kernel/power/hibernate.c
+++ b/kernel/power/hibernate.c
@@ -1361,7 +1361,7 @@ static int __init resume_setup(char *str)
if (noresume)
return 1;
- strncpy(resume_file, str, 255);
+ strscpy(resume_file, str);
return 1;
}
diff --git a/kernel/printk/printk.c b/kernel/printk/printk.c
index adf99c05adca..3160d287d4cf 100644
--- a/kernel/printk/printk.c
+++ b/kernel/printk/printk.c
@@ -178,9 +178,9 @@ static int __init control_devkmsg(char *str)
* Set sysctl string accordingly:
*/
if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
- strcpy(devkmsg_log_str, "on");
+ strscpy(devkmsg_log_str, "on");
else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
- strcpy(devkmsg_log_str, "off");
+ strscpy(devkmsg_log_str, "off");
/* else "ratelimit" which is set by default. */
/*
@@ -209,7 +209,7 @@ int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
return -EINVAL;
old = devkmsg_log;
- strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
+ strscpy(old_str, devkmsg_log_str);
}
err = proc_dostring(table, write, buffer, lenp, ppos);
@@ -227,7 +227,7 @@ int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
/* ... and restore old setting. */
devkmsg_log = old;
- strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
+ strscpy(devkmsg_log_str, old_str);
return -EINVAL;
}
@@ -2506,22 +2506,22 @@ static int __init console_setup(char *str)
/*
* Decode str into name, index, options.
*/
- if (str[0] >= '0' && str[0] <= '9') {
- strcpy(buf, "ttyS");
- strncpy(buf + 4, str, sizeof(buf) - 5);
- } else {
- strncpy(buf, str, sizeof(buf) - 1);
- }
- buf[sizeof(buf) - 1] = 0;
+ if (isdigit(str[0]))
+ scnprintf(buf, sizeof(buf), "ttyS%s", str);
+ else
+ strscpy(buf, str);
+
options = strchr(str, ',');
if (options)
*(options++) = 0;
+
#ifdef __sparc__
if (!strcmp(str, "ttya"))
- strcpy(buf, "ttyS0");
+ strscpy(buf, "ttyS0");
if (!strcmp(str, "ttyb"))
- strcpy(buf, "ttyS1");
+ strscpy(buf, "ttyS1");
#endif
+
for (s = buf; *s; s++)
if (isdigit(*s) || *s == ',')
break;
diff --git a/kernel/rcu/Kconfig b/kernel/rcu/Kconfig
index e7d2dd267593..3e079de0f5b4 100644
--- a/kernel/rcu/Kconfig
+++ b/kernel/rcu/Kconfig
@@ -31,7 +31,7 @@ config PREEMPT_RCU
config TINY_RCU
bool
- default y if !PREEMPTION && !SMP
+ default y if !PREEMPT_RCU && !SMP
help
This option selects the RCU implementation that is
designed for UP systems from which real-time response
@@ -85,9 +85,13 @@ config FORCE_TASKS_RCU
idle, and user-mode execution as quiescent states. Not for
manual selection in most cases.
-config TASKS_RCU
+config NEED_TASKS_RCU
bool
default n
+
+config TASKS_RCU
+ bool
+ default NEED_TASKS_RCU && (PREEMPTION || PREEMPT_AUTO)
select IRQ_WORK
config FORCE_TASKS_RUDE_RCU
diff --git a/kernel/rcu/rcu.h b/kernel/rcu/rcu.h
index 86fce206560e..38238e595a61 100644
--- a/kernel/rcu/rcu.h
+++ b/kernel/rcu/rcu.h
@@ -522,12 +522,18 @@ static inline void show_rcu_tasks_gp_kthreads(void) {}
#ifdef CONFIG_TASKS_RCU
struct task_struct *get_rcu_tasks_gp_kthread(void);
+void rcu_tasks_get_gp_data(int *flags, unsigned long *gp_seq);
#endif // # ifdef CONFIG_TASKS_RCU
#ifdef CONFIG_TASKS_RUDE_RCU
struct task_struct *get_rcu_tasks_rude_gp_kthread(void);
+void rcu_tasks_rude_get_gp_data(int *flags, unsigned long *gp_seq);
#endif // # ifdef CONFIG_TASKS_RUDE_RCU
+#ifdef CONFIG_TASKS_TRACE_RCU
+void rcu_tasks_trace_get_gp_data(int *flags, unsigned long *gp_seq);
+#endif
+
#ifdef CONFIG_TASKS_RCU_GENERIC
void tasks_cblist_init_generic(void);
#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
@@ -557,8 +563,7 @@ static inline void rcu_set_jiffies_lazy_flush(unsigned long j) { }
#endif
#if defined(CONFIG_TREE_RCU)
-void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
- unsigned long *gp_seq);
+void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq);
void do_trace_rcu_torture_read(const char *rcutorturename,
struct rcu_head *rhp,
unsigned long secs,
@@ -566,8 +571,7 @@ void do_trace_rcu_torture_read(const char *rcutorturename,
unsigned long c);
void rcu_gp_set_torture_wait(int duration);
#else
-static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
- int *flags, unsigned long *gp_seq)
+static inline void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq)
{
*flags = 0;
*gp_seq = 0;
@@ -587,20 +591,16 @@ static inline void rcu_gp_set_torture_wait(int duration) { }
#ifdef CONFIG_TINY_SRCU
-static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
- struct srcu_struct *sp, int *flags,
+static inline void srcutorture_get_gp_data(struct srcu_struct *sp, int *flags,
unsigned long *gp_seq)
{
- if (test_type != SRCU_FLAVOR)
- return;
*flags = 0;
*gp_seq = sp->srcu_idx;
}
#elif defined(CONFIG_TREE_SRCU)
-void srcutorture_get_gp_data(enum rcutorture_type test_type,
- struct srcu_struct *sp, int *flags,
+void srcutorture_get_gp_data(struct srcu_struct *sp, int *flags,
unsigned long *gp_seq);
#endif
diff --git a/kernel/rcu/rcutorture.c b/kernel/rcu/rcutorture.c
index 45d6b4c3d199..807fbf6123a7 100644
--- a/kernel/rcu/rcutorture.c
+++ b/kernel/rcu/rcutorture.c
@@ -381,6 +381,9 @@ struct rcu_torture_ops {
void (*gp_kthread_dbg)(void);
bool (*check_boost_failed)(unsigned long gp_state, int *cpup);
int (*stall_dur)(void);
+ void (*get_gp_data)(int *flags, unsigned long *gp_seq);
+ void (*gp_slow_register)(atomic_t *rgssp);
+ void (*gp_slow_unregister)(atomic_t *rgssp);
long cbflood_max;
int irq_capable;
int can_boost;
@@ -461,12 +464,13 @@ rcu_torture_pipe_update_one(struct rcu_torture *rp)
WRITE_ONCE(rp->rtort_chkp, NULL);
smp_store_release(&rtrcp->rtc_ready, 1); // Pair with smp_load_acquire().
}
- i = READ_ONCE(rp->rtort_pipe_count);
+ i = rp->rtort_pipe_count;
if (i > RCU_TORTURE_PIPE_LEN)
i = RCU_TORTURE_PIPE_LEN;
atomic_inc(&rcu_torture_wcount[i]);
WRITE_ONCE(rp->rtort_pipe_count, i + 1);
- if (rp->rtort_pipe_count >= RCU_TORTURE_PIPE_LEN) {
+ ASSERT_EXCLUSIVE_WRITER(rp->rtort_pipe_count);
+ if (i + 1 >= RCU_TORTURE_PIPE_LEN) {
rp->rtort_mbtest = 0;
return true;
}
@@ -564,10 +568,12 @@ static struct rcu_torture_ops rcu_ops = {
.call = call_rcu_hurry,
.cb_barrier = rcu_barrier,
.fqs = rcu_force_quiescent_state,
- .stats = NULL,
.gp_kthread_dbg = show_rcu_gp_kthreads,
.check_boost_failed = rcu_check_boost_fail,
.stall_dur = rcu_jiffies_till_stall_check,
+ .get_gp_data = rcutorture_get_gp_data,
+ .gp_slow_register = rcu_gp_slow_register,
+ .gp_slow_unregister = rcu_gp_slow_unregister,
.irq_capable = 1,
.can_boost = IS_ENABLED(CONFIG_RCU_BOOST),
.extendables = RCUTORTURE_MAX_EXTEND,
@@ -611,9 +617,6 @@ static struct rcu_torture_ops rcu_busted_ops = {
.sync = synchronize_rcu_busted,
.exp_sync = synchronize_rcu_busted,
.call = call_rcu_busted,
- .cb_barrier = NULL,
- .fqs = NULL,
- .stats = NULL,
.irq_capable = 1,
.name = "busted"
};
@@ -627,6 +630,11 @@ static struct srcu_struct srcu_ctld;
static struct srcu_struct *srcu_ctlp = &srcu_ctl;
static struct rcu_torture_ops srcud_ops;
+static void srcu_get_gp_data(int *flags, unsigned long *gp_seq)
+{
+ srcutorture_get_gp_data(srcu_ctlp, flags, gp_seq);
+}
+
static int srcu_torture_read_lock(void)
{
if (cur_ops == &srcud_ops)
@@ -735,6 +743,7 @@ static struct rcu_torture_ops srcu_ops = {
.call = srcu_torture_call,
.cb_barrier = srcu_torture_barrier,
.stats = srcu_torture_stats,
+ .get_gp_data = srcu_get_gp_data,
.cbflood_max = 50000,
.irq_capable = 1,
.no_pi_lock = IS_ENABLED(CONFIG_TINY_SRCU),
@@ -773,6 +782,7 @@ static struct rcu_torture_ops srcud_ops = {
.call = srcu_torture_call,
.cb_barrier = srcu_torture_barrier,
.stats = srcu_torture_stats,
+ .get_gp_data = srcu_get_gp_data,
.cbflood_max = 50000,
.irq_capable = 1,
.no_pi_lock = IS_ENABLED(CONFIG_TINY_SRCU),
@@ -837,8 +847,6 @@ static struct rcu_torture_ops trivial_ops = {
.get_gp_seq = rcu_no_completed,
.sync = synchronize_rcu_trivial,
.exp_sync = synchronize_rcu_trivial,
- .fqs = NULL,
- .stats = NULL,
.irq_capable = 1,
.name = "trivial"
};
@@ -881,8 +889,7 @@ static struct rcu_torture_ops tasks_ops = {
.call = call_rcu_tasks,
.cb_barrier = rcu_barrier_tasks,
.gp_kthread_dbg = show_rcu_tasks_classic_gp_kthread,
- .fqs = NULL,
- .stats = NULL,
+ .get_gp_data = rcu_tasks_get_gp_data,
.irq_capable = 1,
.slow_gps = 1,
.name = "tasks"
@@ -921,9 +928,8 @@ static struct rcu_torture_ops tasks_rude_ops = {
.call = call_rcu_tasks_rude,
.cb_barrier = rcu_barrier_tasks_rude,
.gp_kthread_dbg = show_rcu_tasks_rude_gp_kthread,
+ .get_gp_data = rcu_tasks_rude_get_gp_data,
.cbflood_max = 50000,
- .fqs = NULL,
- .stats = NULL,
.irq_capable = 1,
.name = "tasks-rude"
};
@@ -973,9 +979,8 @@ static struct rcu_torture_ops tasks_tracing_ops = {
.call = call_rcu_tasks_trace,
.cb_barrier = rcu_barrier_tasks_trace,
.gp_kthread_dbg = show_rcu_tasks_trace_gp_kthread,
+ .get_gp_data = rcu_tasks_trace_get_gp_data,
.cbflood_max = 50000,
- .fqs = NULL,
- .stats = NULL,
.irq_capable = 1,
.slow_gps = 1,
.name = "tasks-tracing"
@@ -1399,6 +1404,7 @@ rcu_torture_writer(void *arg)
if (rp == NULL)
continue;
rp->rtort_pipe_count = 0;
+ ASSERT_EXCLUSIVE_WRITER(rp->rtort_pipe_count);
rcu_torture_writer_state = RTWS_DELAY;
udelay(torture_random(&rand) & 0x3ff);
rcu_torture_writer_state = RTWS_REPLACE;
@@ -1414,6 +1420,7 @@ rcu_torture_writer(void *arg)
atomic_inc(&rcu_torture_wcount[i]);
WRITE_ONCE(old_rp->rtort_pipe_count,
old_rp->rtort_pipe_count + 1);
+ ASSERT_EXCLUSIVE_WRITER(old_rp->rtort_pipe_count);
// Make sure readers block polled grace periods.
if (cur_ops->get_gp_state && cur_ops->poll_gp_state) {
@@ -1586,7 +1593,8 @@ rcu_torture_writer(void *arg)
if (list_empty(&rcu_tortures[i].rtort_free) &&
rcu_access_pointer(rcu_torture_current) != &rcu_tortures[i]) {
tracing_off();
- show_rcu_gp_kthreads();
+ if (cur_ops->gp_kthread_dbg)
+ cur_ops->gp_kthread_dbg();
WARN(1, "%s: rtort_pipe_count: %d\n", __func__, rcu_tortures[i].rtort_pipe_count);
rcu_ftrace_dump(DUMP_ALL);
}
@@ -1997,7 +2005,8 @@ static bool rcu_torture_one_read(struct torture_random_state *trsp, long myid)
preempt_disable();
pipe_count = READ_ONCE(p->rtort_pipe_count);
if (pipe_count > RCU_TORTURE_PIPE_LEN) {
- /* Should not happen, but... */
+ // Should not happen in a correct RCU implementation,
+ // happens quite often for torture_type=busted.
pipe_count = RCU_TORTURE_PIPE_LEN;
}
completed = cur_ops->get_gp_seq();
@@ -2259,10 +2268,8 @@ rcu_torture_stats_print(void)
int __maybe_unused flags = 0;
unsigned long __maybe_unused gp_seq = 0;
- rcutorture_get_gp_data(cur_ops->ttype,
- &flags, &gp_seq);
- srcutorture_get_gp_data(cur_ops->ttype, srcu_ctlp,
- &flags, &gp_seq);
+ if (cur_ops->get_gp_data)
+ cur_ops->get_gp_data(&flags, &gp_seq);
wtp = READ_ONCE(writer_task);
pr_alert("??? Writer stall state %s(%d) g%lu f%#x ->state %#x cpu %d\n",
rcu_torture_writer_state_getname(),
@@ -2486,8 +2493,8 @@ static int rcu_torture_stall(void *args)
preempt_disable();
pr_alert("%s start on CPU %d.\n",
__func__, raw_smp_processor_id());
- while (ULONG_CMP_LT((unsigned long)ktime_get_seconds(),
- stop_at))
+ while (ULONG_CMP_LT((unsigned long)ktime_get_seconds(), stop_at) &&
+ !kthread_should_stop())
if (stall_cpu_block) {
#ifdef CONFIG_PREEMPTION
preempt_schedule();
@@ -2832,13 +2839,14 @@ static void rcu_torture_fwd_prog_cr(struct rcu_fwd *rfp)
if (!torture_must_stop() && !READ_ONCE(rcu_fwd_emergency_stop) &&
!shutdown_time_arrived()) {
- WARN_ON(n_max_gps < MIN_FWD_CBS_LAUNDERED);
- pr_alert("%s Duration %lu barrier: %lu pending %ld n_launders: %ld n_launders_sa: %ld n_max_gps: %ld n_max_cbs: %ld cver %ld gps %ld\n",
+ if (WARN_ON(n_max_gps < MIN_FWD_CBS_LAUNDERED) && cur_ops->gp_kthread_dbg)
+ cur_ops->gp_kthread_dbg();
+ pr_alert("%s Duration %lu barrier: %lu pending %ld n_launders: %ld n_launders_sa: %ld n_max_gps: %ld n_max_cbs: %ld cver %ld gps %ld #online %u\n",
__func__,
stoppedat - rfp->rcu_fwd_startat, jiffies - stoppedat,
n_launders + n_max_cbs - n_launders_cb_snap,
n_launders, n_launders_sa,
- n_max_gps, n_max_cbs, cver, gps);
+ n_max_gps, n_max_cbs, cver, gps, num_online_cpus());
atomic_long_add(n_max_cbs, &rcu_fwd_max_cbs);
mutex_lock(&rcu_fwd_mutex); // Serialize histograms.
rcu_torture_fwd_cb_hist(rfp);
@@ -3040,11 +3048,12 @@ static void rcu_torture_barrier_cbf(struct rcu_head *rcu)
}
/* IPI handler to get callback posted on desired CPU, if online. */
-static void rcu_torture_barrier1cb(void *rcu_void)
+static int rcu_torture_barrier1cb(void *rcu_void)
{
struct rcu_head *rhp = rcu_void;
cur_ops->call(rhp, rcu_torture_barrier_cbf);
+ return 0;
}
/* kthread function to register callbacks used to test RCU barriers. */
@@ -3070,11 +3079,9 @@ static int rcu_torture_barrier_cbs(void *arg)
* The above smp_load_acquire() ensures barrier_phase load
* is ordered before the following ->call().
*/
- if (smp_call_function_single(myid, rcu_torture_barrier1cb,
- &rcu, 1)) {
- // IPI failed, so use direct call from current CPU.
+ if (smp_call_on_cpu(myid, rcu_torture_barrier1cb, &rcu, 1))
cur_ops->call(&rcu, rcu_torture_barrier_cbf);
- }
+
if (atomic_dec_and_test(&barrier_cbs_count))
wake_up(&barrier_wq);
} while (!torture_must_stop());
@@ -3340,12 +3347,12 @@ rcu_torture_cleanup(void)
pr_info("%s: Invoking %pS().\n", __func__, cur_ops->cb_barrier);
cur_ops->cb_barrier();
}
- rcu_gp_slow_unregister(NULL);
+ if (cur_ops->gp_slow_unregister)
+ cur_ops->gp_slow_unregister(NULL);
return;
}
if (!cur_ops) {
torture_cleanup_end();
- rcu_gp_slow_unregister(NULL);
return;
}
@@ -3384,8 +3391,8 @@ rcu_torture_cleanup(void)
fakewriter_tasks = NULL;
}
- rcutorture_get_gp_data(cur_ops->ttype, &flags, &gp_seq);
- srcutorture_get_gp_data(cur_ops->ttype, srcu_ctlp, &flags, &gp_seq);
+ if (cur_ops->get_gp_data)
+ cur_ops->get_gp_data(&flags, &gp_seq);
pr_alert("%s: End-test grace-period state: g%ld f%#x total-gps=%ld\n",
cur_ops->name, (long)gp_seq, flags,
rcutorture_seq_diff(gp_seq, start_gp_seq));
@@ -3444,7 +3451,8 @@ rcu_torture_cleanup(void)
else
rcu_torture_print_module_parms(cur_ops, "End of test: SUCCESS");
torture_cleanup_end();
- rcu_gp_slow_unregister(&rcu_fwd_cb_nodelay);
+ if (cur_ops->gp_slow_unregister)
+ cur_ops->gp_slow_unregister(NULL);
}
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
@@ -3756,8 +3764,8 @@ rcu_torture_init(void)
nrealreaders = 1;
}
rcu_torture_print_module_parms(cur_ops, "Start of test");
- rcutorture_get_gp_data(cur_ops->ttype, &flags, &gp_seq);
- srcutorture_get_gp_data(cur_ops->ttype, srcu_ctlp, &flags, &gp_seq);
+ if (cur_ops->get_gp_data)
+ cur_ops->get_gp_data(&flags, &gp_seq);
start_gp_seq = gp_seq;
pr_alert("%s: Start-test grace-period state: g%ld f%#x\n",
cur_ops->name, (long)gp_seq, flags);
@@ -3926,7 +3934,8 @@ rcu_torture_init(void)
if (object_debug)
rcu_test_debug_objects();
torture_init_end();
- rcu_gp_slow_register(&rcu_fwd_cb_nodelay);
+ if (cur_ops->gp_slow_register && !WARN_ON_ONCE(!cur_ops->gp_slow_unregister))
+ cur_ops->gp_slow_register(&rcu_fwd_cb_nodelay);
return 0;
unwind:
diff --git a/kernel/rcu/srcutiny.c b/kernel/rcu/srcutiny.c
index c38e5933a5d6..5afd5cf494db 100644
--- a/kernel/rcu/srcutiny.c
+++ b/kernel/rcu/srcutiny.c
@@ -96,9 +96,12 @@ EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
*/
void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
{
- int newval = READ_ONCE(ssp->srcu_lock_nesting[idx]) - 1;
+ int newval;
+ preempt_disable(); // Needed for PREEMPT_AUTO
+ newval = READ_ONCE(ssp->srcu_lock_nesting[idx]) - 1;
WRITE_ONCE(ssp->srcu_lock_nesting[idx], newval);
+ preempt_enable();
if (!newval && READ_ONCE(ssp->srcu_gp_waiting) && in_task())
swake_up_one(&ssp->srcu_wq);
}
@@ -117,8 +120,11 @@ void srcu_drive_gp(struct work_struct *wp)
struct srcu_struct *ssp;
ssp = container_of(wp, struct srcu_struct, srcu_work);
- if (ssp->srcu_gp_running || ULONG_CMP_GE(ssp->srcu_idx, READ_ONCE(ssp->srcu_idx_max)))
+ preempt_disable(); // Needed for PREEMPT_AUTO
+ if (ssp->srcu_gp_running || ULONG_CMP_GE(ssp->srcu_idx, READ_ONCE(ssp->srcu_idx_max))) {
return; /* Already running or nothing to do. */
+ preempt_enable();
+ }
/* Remove recently arrived callbacks and wait for readers. */
WRITE_ONCE(ssp->srcu_gp_running, true);
@@ -130,9 +136,12 @@ void srcu_drive_gp(struct work_struct *wp)
idx = (ssp->srcu_idx & 0x2) / 2;
WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1);
WRITE_ONCE(ssp->srcu_gp_waiting, true); /* srcu_read_unlock() wakes! */
+ preempt_enable();
swait_event_exclusive(ssp->srcu_wq, !READ_ONCE(ssp->srcu_lock_nesting[idx]));
+ preempt_disable(); // Needed for PREEMPT_AUTO
WRITE_ONCE(ssp->srcu_gp_waiting, false); /* srcu_read_unlock() cheap. */
WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1);
+ preempt_enable();
/* Invoke the callbacks we removed above. */
while (lh) {
@@ -150,8 +159,11 @@ void srcu_drive_gp(struct work_struct *wp)
* at interrupt level, but the ->srcu_gp_running checks will
* straighten that out.
*/
+ preempt_disable(); // Needed for PREEMPT_AUTO
WRITE_ONCE(ssp->srcu_gp_running, false);
- if (ULONG_CMP_LT(ssp->srcu_idx, READ_ONCE(ssp->srcu_idx_max)))
+ idx = ULONG_CMP_LT(ssp->srcu_idx, READ_ONCE(ssp->srcu_idx_max));
+ preempt_enable();
+ if (idx)
schedule_work(&ssp->srcu_work);
}
EXPORT_SYMBOL_GPL(srcu_drive_gp);
@@ -160,9 +172,12 @@ static void srcu_gp_start_if_needed(struct srcu_struct *ssp)
{
unsigned long cookie;
+ preempt_disable(); // Needed for PREEMPT_AUTO
cookie = get_state_synchronize_srcu(ssp);
- if (ULONG_CMP_GE(READ_ONCE(ssp->srcu_idx_max), cookie))
+ if (ULONG_CMP_GE(READ_ONCE(ssp->srcu_idx_max), cookie)) {
+ preempt_enable();
return;
+ }
WRITE_ONCE(ssp->srcu_idx_max, cookie);
if (!READ_ONCE(ssp->srcu_gp_running)) {
if (likely(srcu_init_done))
@@ -170,6 +185,7 @@ static void srcu_gp_start_if_needed(struct srcu_struct *ssp)
else if (list_empty(&ssp->srcu_work.entry))
list_add(&ssp->srcu_work.entry, &srcu_boot_list);
}
+ preempt_enable();
}
/*
@@ -183,11 +199,13 @@ void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
rhp->func = func;
rhp->next = NULL;
+ preempt_disable(); // Needed for PREEMPT_AUTO
local_irq_save(flags);
*ssp->srcu_cb_tail = rhp;
ssp->srcu_cb_tail = &rhp->next;
local_irq_restore(flags);
srcu_gp_start_if_needed(ssp);
+ preempt_enable();
}
EXPORT_SYMBOL_GPL(call_srcu);
@@ -241,9 +259,12 @@ EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
*/
unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
{
- unsigned long ret = get_state_synchronize_srcu(ssp);
+ unsigned long ret;
+ preempt_disable(); // Needed for PREEMPT_AUTO
+ ret = get_state_synchronize_srcu(ssp);
srcu_gp_start_if_needed(ssp);
+ preempt_enable();
return ret;
}
EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
diff --git a/kernel/rcu/srcutree.c b/kernel/rcu/srcutree.c
index e4d673fc30f4..bc4b58b0204e 100644
--- a/kernel/rcu/srcutree.c
+++ b/kernel/rcu/srcutree.c
@@ -1826,12 +1826,9 @@ static void process_srcu(struct work_struct *work)
srcu_reschedule(ssp, curdelay);
}
-void srcutorture_get_gp_data(enum rcutorture_type test_type,
- struct srcu_struct *ssp, int *flags,
+void srcutorture_get_gp_data(struct srcu_struct *ssp, int *flags,
unsigned long *gp_seq)
{
- if (test_type != SRCU_FLAVOR)
- return;
*flags = 0;
*gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
}
diff --git a/kernel/rcu/sync.c b/kernel/rcu/sync.c
index 86df878a2fee..6c2bd9001adc 100644
--- a/kernel/rcu/sync.c
+++ b/kernel/rcu/sync.c
@@ -122,7 +122,7 @@ void rcu_sync_enter(struct rcu_sync *rsp)
* we are called at early boot time but this shouldn't happen.
*/
}
- rsp->gp_count++;
+ WRITE_ONCE(rsp->gp_count, rsp->gp_count + 1);
spin_unlock_irq(&rsp->rss_lock);
if (gp_state == GP_IDLE) {
@@ -151,11 +151,15 @@ void rcu_sync_enter(struct rcu_sync *rsp)
*/
void rcu_sync_exit(struct rcu_sync *rsp)
{
+ int gpc;
+
WARN_ON_ONCE(READ_ONCE(rsp->gp_state) == GP_IDLE);
WARN_ON_ONCE(READ_ONCE(rsp->gp_count) == 0);
spin_lock_irq(&rsp->rss_lock);
- if (!--rsp->gp_count) {
+ gpc = rsp->gp_count - 1;
+ WRITE_ONCE(rsp->gp_count, gpc);
+ if (!gpc) {
if (rsp->gp_state == GP_PASSED) {
WRITE_ONCE(rsp->gp_state, GP_EXIT);
rcu_sync_call(rsp);
diff --git a/kernel/rcu/tasks.h b/kernel/rcu/tasks.h
index 147b5945d67a..e1bf33018e6d 100644
--- a/kernel/rcu/tasks.h
+++ b/kernel/rcu/tasks.h
@@ -74,6 +74,7 @@ struct rcu_tasks_percpu {
* @holdouts_func: This flavor's holdout-list scan function (optional).
* @postgp_func: This flavor's post-grace-period function (optional).
* @call_func: This flavor's call_rcu()-equivalent function.
+ * @wait_state: Task state for synchronous grace-period waits (default TASK_UNINTERRUPTIBLE).
* @rtpcpu: This flavor's rcu_tasks_percpu structure.
* @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
* @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
@@ -107,6 +108,7 @@ struct rcu_tasks {
holdouts_func_t holdouts_func;
postgp_func_t postgp_func;
call_rcu_func_t call_func;
+ unsigned int wait_state;
struct rcu_tasks_percpu __percpu *rtpcpu;
int percpu_enqueue_shift;
int percpu_enqueue_lim;
@@ -134,6 +136,7 @@ static struct rcu_tasks rt_name = \
.tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \
.gp_func = gp, \
.call_func = call, \
+ .wait_state = TASK_UNINTERRUPTIBLE, \
.rtpcpu = &rt_name ## __percpu, \
.lazy_jiffies = DIV_ROUND_UP(HZ, 4), \
.name = n, \
@@ -147,7 +150,7 @@ static struct rcu_tasks rt_name = \
#ifdef CONFIG_TASKS_RCU
-/* Report delay in synchronize_srcu() completion in rcu_tasks_postscan(). */
+/* Report delay of scan exiting tasklist in rcu_tasks_postscan(). */
static void tasks_rcu_exit_srcu_stall(struct timer_list *unused);
static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall);
#endif
@@ -638,7 +641,7 @@ static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
// If the grace-period kthread is running, use it.
if (READ_ONCE(rtp->kthread_ptr)) {
- wait_rcu_gp(rtp->call_func);
+ wait_rcu_gp_state(rtp->wait_state, rtp->call_func);
return;
}
rcu_tasks_one_gp(rtp, true);
@@ -1160,6 +1163,7 @@ static int __init rcu_spawn_tasks_kthread(void)
rcu_tasks.postscan_func = rcu_tasks_postscan;
rcu_tasks.holdouts_func = check_all_holdout_tasks;
rcu_tasks.postgp_func = rcu_tasks_postgp;
+ rcu_tasks.wait_state = TASK_IDLE;
rcu_spawn_tasks_kthread_generic(&rcu_tasks);
return 0;
}
@@ -1178,6 +1182,13 @@ struct task_struct *get_rcu_tasks_gp_kthread(void)
}
EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread);
+void rcu_tasks_get_gp_data(int *flags, unsigned long *gp_seq)
+{
+ *flags = 0;
+ *gp_seq = rcu_seq_current(&rcu_tasks.tasks_gp_seq);
+}
+EXPORT_SYMBOL_GPL(rcu_tasks_get_gp_data);
+
/*
* Protect against tasklist scan blind spot while the task is exiting and
* may be removed from the tasklist. Do this by adding the task to yet
@@ -1199,8 +1210,7 @@ void exit_tasks_rcu_start(void)
rtpcp = this_cpu_ptr(rcu_tasks.rtpcpu);
t->rcu_tasks_exit_cpu = smp_processor_id();
raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
- if (!rtpcp->rtp_exit_list.next)
- INIT_LIST_HEAD(&rtpcp->rtp_exit_list);
+ WARN_ON_ONCE(!rtpcp->rtp_exit_list.next);
list_add(&t->rcu_tasks_exit_list, &rtpcp->rtp_exit_list);
raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
preempt_enable();
@@ -1358,6 +1368,13 @@ struct task_struct *get_rcu_tasks_rude_gp_kthread(void)
}
EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread);
+void rcu_tasks_rude_get_gp_data(int *flags, unsigned long *gp_seq)
+{
+ *flags = 0;
+ *gp_seq = rcu_seq_current(&rcu_tasks_rude.tasks_gp_seq);
+}
+EXPORT_SYMBOL_GPL(rcu_tasks_rude_get_gp_data);
+
#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
////////////////////////////////////////////////////////////////////////
@@ -1457,6 +1474,7 @@ static void rcu_st_need_qs(struct task_struct *t, u8 v)
/*
* Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for
* the four-byte operand-size restriction of some platforms.
+ *
* Returns the old value, which is often ignored.
*/
u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
@@ -1468,7 +1486,14 @@ u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
if (trs_old.b.need_qs != old)
return trs_old.b.need_qs;
trs_new.b.need_qs = new;
- ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s);
+
+ // Although cmpxchg() appears to KCSAN to update all four bytes,
+ // only the .b.need_qs byte actually changes.
+ instrument_atomic_read_write(&t->trc_reader_special.b.need_qs,
+ sizeof(t->trc_reader_special.b.need_qs));
+ // Avoid false-positive KCSAN failures.
+ ret.s = data_race(cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s));
+
return ret.b.need_qs;
}
EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs);
@@ -1994,7 +2019,7 @@ void show_rcu_tasks_trace_gp_kthread(void)
{
char buf[64];
- sprintf(buf, "N%lu h:%lu/%lu/%lu",
+ snprintf(buf, sizeof(buf), "N%lu h:%lu/%lu/%lu",
data_race(n_trc_holdouts),
data_race(n_heavy_reader_ofl_updates),
data_race(n_heavy_reader_updates),
@@ -2010,6 +2035,13 @@ struct task_struct *get_rcu_tasks_trace_gp_kthread(void)
}
EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread);
+void rcu_tasks_trace_get_gp_data(int *flags, unsigned long *gp_seq)
+{
+ *flags = 0;
+ *gp_seq = rcu_seq_current(&rcu_tasks_trace.tasks_gp_seq);
+}
+EXPORT_SYMBOL_GPL(rcu_tasks_trace_get_gp_data);
+
#else /* #ifdef CONFIG_TASKS_TRACE_RCU */
static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
#endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
diff --git a/kernel/rcu/tiny.c b/kernel/rcu/tiny.c
index 705c0d16850a..4402d6f5f857 100644
--- a/kernel/rcu/tiny.c
+++ b/kernel/rcu/tiny.c
@@ -130,9 +130,7 @@ static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused
next = list->next;
prefetch(next);
debug_rcu_head_unqueue(list);
- local_bh_disable();
rcu_reclaim_tiny(list);
- local_bh_enable();
list = next;
}
}
@@ -155,7 +153,9 @@ void synchronize_rcu(void)
lock_is_held(&rcu_lock_map) ||
lock_is_held(&rcu_sched_lock_map),
"Illegal synchronize_rcu() in RCU read-side critical section");
+ preempt_disable();
WRITE_ONCE(rcu_ctrlblk.gp_seq, rcu_ctrlblk.gp_seq + 2);
+ preempt_enable();
}
EXPORT_SYMBOL_GPL(synchronize_rcu);
diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c
index d9642dd06c25..28c7031711a3 100644
--- a/kernel/rcu/tree.c
+++ b/kernel/rcu/tree.c
@@ -75,6 +75,7 @@
#define MODULE_PARAM_PREFIX "rcutree."
/* Data structures. */
+static void rcu_sr_normal_gp_cleanup_work(struct work_struct *);
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
.gpwrap = true,
@@ -93,6 +94,8 @@ static struct rcu_state rcu_state = {
.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
+ .srs_cleanup_work = __WORK_INITIALIZER(rcu_state.srs_cleanup_work,
+ rcu_sr_normal_gp_cleanup_work),
};
/* Dump rcu_node combining tree at boot to verify correct setup. */
@@ -240,8 +243,36 @@ static long rcu_get_n_cbs_cpu(int cpu)
return 0;
}
+/**
+ * rcu_softirq_qs - Provide a set of RCU quiescent states in softirq processing
+ *
+ * Mark a quiescent state for RCU, Tasks RCU, and Tasks Trace RCU.
+ * This is a special-purpose function to be used in the softirq
+ * infrastructure and perhaps the occasional long-running softirq
+ * handler.
+ *
+ * Note that from RCU's viewpoint, a call to rcu_softirq_qs() is
+ * equivalent to momentarily completely enabling preemption. For
+ * example, given this code::
+ *
+ * local_bh_disable();
+ * do_something();
+ * rcu_softirq_qs(); // A
+ * do_something_else();
+ * local_bh_enable(); // B
+ *
+ * A call to synchronize_rcu() that began concurrently with the
+ * call to do_something() would be guaranteed to wait only until
+ * execution reached statement A. Without that rcu_softirq_qs(),
+ * that same synchronize_rcu() would instead be guaranteed to wait
+ * until execution reached statement B.
+ */
void rcu_softirq_qs(void)
{
+ RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
+ lock_is_held(&rcu_lock_map) ||
+ lock_is_held(&rcu_sched_lock_map),
+ "Illegal rcu_softirq_qs() in RCU read-side critical section");
rcu_qs();
rcu_preempt_deferred_qs(current);
rcu_tasks_qs(current, false);
@@ -508,17 +539,10 @@ static struct rcu_node *rcu_get_root(void)
/*
* Send along grace-period-related data for rcutorture diagnostics.
*/
-void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
- unsigned long *gp_seq)
+void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq)
{
- switch (test_type) {
- case RCU_FLAVOR:
- *flags = READ_ONCE(rcu_state.gp_flags);
- *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
- break;
- default:
- break;
- }
+ *flags = READ_ONCE(rcu_state.gp_flags);
+ *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
@@ -813,8 +837,8 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
- (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
- (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
+ (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state,
+ (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state);
return 1; /* Break things loose after complaining. */
}
@@ -1423,6 +1447,305 @@ static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
}
/*
+ * There is a single llist, which is used for handling
+ * synchronize_rcu() users' enqueued rcu_synchronize nodes.
+ * Within this llist, there are two tail pointers:
+ *
+ * wait tail: Tracks the set of nodes, which need to
+ * wait for the current GP to complete.
+ * done tail: Tracks the set of nodes, for which grace
+ * period has elapsed. These nodes processing
+ * will be done as part of the cleanup work
+ * execution by a kworker.
+ *
+ * At every grace period init, a new wait node is added
+ * to the llist. This wait node is used as wait tail
+ * for this new grace period. Given that there are a fixed
+ * number of wait nodes, if all wait nodes are in use
+ * (which can happen when kworker callback processing
+ * is delayed) and additional grace period is requested.
+ * This means, a system is slow in processing callbacks.
+ *
+ * TODO: If a slow processing is detected, a first node
+ * in the llist should be used as a wait-tail for this
+ * grace period, therefore users which should wait due
+ * to a slow process are handled by _this_ grace period
+ * and not next.
+ *
+ * Below is an illustration of how the done and wait
+ * tail pointers move from one set of rcu_synchronize nodes
+ * to the other, as grace periods start and finish and
+ * nodes are processed by kworker.
+ *
+ *
+ * a. Initial llist callbacks list:
+ *
+ * +----------+ +--------+ +-------+
+ * | | | | | |
+ * | head |---------> | cb2 |--------->| cb1 |
+ * | | | | | |
+ * +----------+ +--------+ +-------+
+ *
+ *
+ *
+ * b. New GP1 Start:
+ *
+ * WAIT TAIL
+ * |
+ * |
+ * v
+ * +----------+ +--------+ +--------+ +-------+
+ * | | | | | | | |
+ * | head ------> wait |------> cb2 |------> | cb1 |
+ * | | | head1 | | | | |
+ * +----------+ +--------+ +--------+ +-------+
+ *
+ *
+ *
+ * c. GP completion:
+ *
+ * WAIT_TAIL == DONE_TAIL
+ *
+ * DONE TAIL
+ * |
+ * |
+ * v
+ * +----------+ +--------+ +--------+ +-------+
+ * | | | | | | | |
+ * | head ------> wait |------> cb2 |------> | cb1 |
+ * | | | head1 | | | | |
+ * +----------+ +--------+ +--------+ +-------+
+ *
+ *
+ *
+ * d. New callbacks and GP2 start:
+ *
+ * WAIT TAIL DONE TAIL
+ * | |
+ * | |
+ * v v
+ * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
+ * | | | | | | | | | | | | | |
+ * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 |
+ * | | | head2| | | | | |head1| | | | |
+ * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
+ *
+ *
+ *
+ * e. GP2 completion:
+ *
+ * WAIT_TAIL == DONE_TAIL
+ * DONE TAIL
+ * |
+ * |
+ * v
+ * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
+ * | | | | | | | | | | | | | |
+ * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 |
+ * | | | head2| | | | | |head1| | | | |
+ * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
+ *
+ *
+ * While the llist state transitions from d to e, a kworker
+ * can start executing rcu_sr_normal_gp_cleanup_work() and
+ * can observe either the old done tail (@c) or the new
+ * done tail (@e). So, done tail updates and reads need
+ * to use the rel-acq semantics. If the concurrent kworker
+ * observes the old done tail, the newly queued work
+ * execution will process the updated done tail. If the
+ * concurrent kworker observes the new done tail, then
+ * the newly queued work will skip processing the done
+ * tail, as workqueue semantics guarantees that the new
+ * work is executed only after the previous one completes.
+ *
+ * f. kworker callbacks processing complete:
+ *
+ *
+ * DONE TAIL
+ * |
+ * |
+ * v
+ * +----------+ +--------+
+ * | | | |
+ * | head ------> wait |
+ * | | | head2 |
+ * +----------+ +--------+
+ *
+ */
+static bool rcu_sr_is_wait_head(struct llist_node *node)
+{
+ return &(rcu_state.srs_wait_nodes)[0].node <= node &&
+ node <= &(rcu_state.srs_wait_nodes)[SR_NORMAL_GP_WAIT_HEAD_MAX - 1].node;
+}
+
+static struct llist_node *rcu_sr_get_wait_head(void)
+{
+ struct sr_wait_node *sr_wn;
+ int i;
+
+ for (i = 0; i < SR_NORMAL_GP_WAIT_HEAD_MAX; i++) {
+ sr_wn = &(rcu_state.srs_wait_nodes)[i];
+
+ if (!atomic_cmpxchg_acquire(&sr_wn->inuse, 0, 1))
+ return &sr_wn->node;
+ }
+
+ return NULL;
+}
+
+static void rcu_sr_put_wait_head(struct llist_node *node)
+{
+ struct sr_wait_node *sr_wn = container_of(node, struct sr_wait_node, node);
+
+ atomic_set_release(&sr_wn->inuse, 0);
+}
+
+/* Disabled by default. */
+static int rcu_normal_wake_from_gp;
+module_param(rcu_normal_wake_from_gp, int, 0644);
+static struct workqueue_struct *sync_wq;
+
+static void rcu_sr_normal_complete(struct llist_node *node)
+{
+ struct rcu_synchronize *rs = container_of(
+ (struct rcu_head *) node, struct rcu_synchronize, head);
+ unsigned long oldstate = (unsigned long) rs->head.func;
+
+ WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) &&
+ !poll_state_synchronize_rcu(oldstate),
+ "A full grace period is not passed yet: %lu",
+ rcu_seq_diff(get_state_synchronize_rcu(), oldstate));
+
+ /* Finally. */
+ complete(&rs->completion);
+}
+
+static void rcu_sr_normal_gp_cleanup_work(struct work_struct *work)
+{
+ struct llist_node *done, *rcu, *next, *head;
+
+ /*
+ * This work execution can potentially execute
+ * while a new done tail is being updated by
+ * grace period kthread in rcu_sr_normal_gp_cleanup().
+ * So, read and updates of done tail need to
+ * follow acq-rel semantics.
+ *
+ * Given that wq semantics guarantees that a single work
+ * cannot execute concurrently by multiple kworkers,
+ * the done tail list manipulations are protected here.
+ */
+ done = smp_load_acquire(&rcu_state.srs_done_tail);
+ if (!done)
+ return;
+
+ WARN_ON_ONCE(!rcu_sr_is_wait_head(done));
+ head = done->next;
+ done->next = NULL;
+
+ /*
+ * The dummy node, which is pointed to by the
+ * done tail which is acq-read above is not removed
+ * here. This allows lockless additions of new
+ * rcu_synchronize nodes in rcu_sr_normal_add_req(),
+ * while the cleanup work executes. The dummy
+ * nodes is removed, in next round of cleanup
+ * work execution.
+ */
+ llist_for_each_safe(rcu, next, head) {
+ if (!rcu_sr_is_wait_head(rcu)) {
+ rcu_sr_normal_complete(rcu);
+ continue;
+ }
+
+ rcu_sr_put_wait_head(rcu);
+ }
+}
+
+/*
+ * Helper function for rcu_gp_cleanup().
+ */
+static void rcu_sr_normal_gp_cleanup(void)
+{
+ struct llist_node *wait_tail, *next, *rcu;
+ int done = 0;
+
+ wait_tail = rcu_state.srs_wait_tail;
+ if (wait_tail == NULL)
+ return;
+
+ rcu_state.srs_wait_tail = NULL;
+ ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
+ WARN_ON_ONCE(!rcu_sr_is_wait_head(wait_tail));
+
+ /*
+ * Process (a) and (d) cases. See an illustration.
+ */
+ llist_for_each_safe(rcu, next, wait_tail->next) {
+ if (rcu_sr_is_wait_head(rcu))
+ break;
+
+ rcu_sr_normal_complete(rcu);
+ // It can be last, update a next on this step.
+ wait_tail->next = next;
+
+ if (++done == SR_MAX_USERS_WAKE_FROM_GP)
+ break;
+ }
+
+ // concurrent sr_normal_gp_cleanup work might observe this update.
+ smp_store_release(&rcu_state.srs_done_tail, wait_tail);
+ ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_done_tail);
+
+ /*
+ * We schedule a work in order to perform a final processing
+ * of outstanding users(if still left) and releasing wait-heads
+ * added by rcu_sr_normal_gp_init() call.
+ */
+ queue_work(sync_wq, &rcu_state.srs_cleanup_work);
+}
+
+/*
+ * Helper function for rcu_gp_init().
+ */
+static bool rcu_sr_normal_gp_init(void)
+{
+ struct llist_node *first;
+ struct llist_node *wait_head;
+ bool start_new_poll = false;
+
+ first = READ_ONCE(rcu_state.srs_next.first);
+ if (!first || rcu_sr_is_wait_head(first))
+ return start_new_poll;
+
+ wait_head = rcu_sr_get_wait_head();
+ if (!wait_head) {
+ // Kick another GP to retry.
+ start_new_poll = true;
+ return start_new_poll;
+ }
+
+ /* Inject a wait-dummy-node. */
+ llist_add(wait_head, &rcu_state.srs_next);
+
+ /*
+ * A waiting list of rcu_synchronize nodes should be empty on
+ * this step, since a GP-kthread, rcu_gp_init() -> gp_cleanup(),
+ * rolls it over. If not, it is a BUG, warn a user.
+ */
+ WARN_ON_ONCE(rcu_state.srs_wait_tail != NULL);
+ rcu_state.srs_wait_tail = wait_head;
+ ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
+
+ return start_new_poll;
+}
+
+static void rcu_sr_normal_add_req(struct rcu_synchronize *rs)
+{
+ llist_add((struct llist_node *) &rs->head, &rcu_state.srs_next);
+}
+
+/*
* Initialize a new grace period. Return false if no grace period required.
*/
static noinline_for_stack bool rcu_gp_init(void)
@@ -1432,10 +1755,11 @@ static noinline_for_stack bool rcu_gp_init(void)
unsigned long mask;
struct rcu_data *rdp;
struct rcu_node *rnp = rcu_get_root();
+ bool start_new_poll;
WRITE_ONCE(rcu_state.gp_activity, jiffies);
raw_spin_lock_irq_rcu_node(rnp);
- if (!READ_ONCE(rcu_state.gp_flags)) {
+ if (!rcu_state.gp_flags) {
/* Spurious wakeup, tell caller to go back to sleep. */
raw_spin_unlock_irq_rcu_node(rnp);
return false;
@@ -1456,11 +1780,25 @@ static noinline_for_stack bool rcu_gp_init(void)
/* Record GP times before starting GP, hence rcu_seq_start(). */
rcu_seq_start(&rcu_state.gp_seq);
ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
+ start_new_poll = rcu_sr_normal_gp_init();
trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
raw_spin_unlock_irq_rcu_node(rnp);
/*
+ * The "start_new_poll" is set to true, only when this GP is not able
+ * to handle anything and there are outstanding users. It happens when
+ * the rcu_sr_normal_gp_init() function was not able to insert a dummy
+ * separator to the llist, because there were no left any dummy-nodes.
+ *
+ * Number of dummy-nodes is fixed, it could be that we are run out of
+ * them, if so we start a new pool request to repeat a try. It is rare
+ * and it means that a system is doing a slow processing of callbacks.
+ */
+ if (start_new_poll)
+ (void) start_poll_synchronize_rcu();
+
+ /*
* Apply per-leaf buffered online and offline operations to
* the rcu_node tree. Note that this new grace period need not
* wait for subsequent online CPUs, and that RCU hooks in the CPU
@@ -1620,8 +1958,7 @@ static void rcu_gp_fqs(bool first_time)
/* Clear flag to prevent immediate re-entry. */
if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
raw_spin_lock_irq_rcu_node(rnp);
- WRITE_ONCE(rcu_state.gp_flags,
- READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
+ WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & ~RCU_GP_FLAG_FQS);
raw_spin_unlock_irq_rcu_node(rnp);
}
}
@@ -1825,6 +2162,9 @@ static noinline void rcu_gp_cleanup(void)
}
raw_spin_unlock_irq_rcu_node(rnp);
+ // Make synchronize_rcu() users aware of the end of old grace period.
+ rcu_sr_normal_gp_cleanup();
+
// If strict, make all CPUs aware of the end of the old grace period.
if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
@@ -1882,8 +2222,7 @@ static void rcu_report_qs_rsp(unsigned long flags)
{
raw_lockdep_assert_held_rcu_node(rcu_get_root());
WARN_ON_ONCE(!rcu_gp_in_progress());
- WRITE_ONCE(rcu_state.gp_flags,
- READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
+ WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
rcu_gp_kthread_wake();
}
@@ -2398,8 +2737,7 @@ void rcu_force_quiescent_state(void)
raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
return; /* Someone beat us to it. */
}
- WRITE_ONCE(rcu_state.gp_flags,
- READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
+ WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
rcu_gp_kthread_wake();
}
@@ -3559,6 +3897,43 @@ static int rcu_blocking_is_gp(void)
return true;
}
+/*
+ * Helper function for the synchronize_rcu() API.
+ */
+static void synchronize_rcu_normal(void)
+{
+ struct rcu_synchronize rs;
+
+ trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("request"));
+
+ if (!READ_ONCE(rcu_normal_wake_from_gp)) {
+ wait_rcu_gp(call_rcu_hurry);
+ goto trace_complete_out;
+ }
+
+ init_rcu_head_on_stack(&rs.head);
+ init_completion(&rs.completion);
+
+ /*
+ * This code might be preempted, therefore take a GP
+ * snapshot before adding a request.
+ */
+ if (IS_ENABLED(CONFIG_PROVE_RCU))
+ rs.head.func = (void *) get_state_synchronize_rcu();
+
+ rcu_sr_normal_add_req(&rs);
+
+ /* Kick a GP and start waiting. */
+ (void) start_poll_synchronize_rcu();
+
+ /* Now we can wait. */
+ wait_for_completion(&rs.completion);
+ destroy_rcu_head_on_stack(&rs.head);
+
+trace_complete_out:
+ trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("complete"));
+}
+
/**
* synchronize_rcu - wait until a grace period has elapsed.
*
@@ -3610,7 +3985,7 @@ void synchronize_rcu(void)
if (rcu_gp_is_expedited())
synchronize_rcu_expedited();
else
- wait_rcu_gp(call_rcu_hurry);
+ synchronize_rcu_normal();
return;
}
@@ -4303,7 +4678,7 @@ EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
// whether spinlocks may be acquired safely.
static bool rcu_init_invoked(void)
{
- return !!rcu_state.n_online_cpus;
+ return !!READ_ONCE(rcu_state.n_online_cpus);
}
/*
@@ -4395,9 +4770,9 @@ rcu_boot_init_percpu_data(int cpu)
WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
rdp->barrier_seq_snap = rcu_state.barrier_sequence;
rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
- rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
+ rdp->rcu_ofl_gp_state = RCU_GP_CLEANED;
rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
- rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
+ rdp->rcu_onl_gp_state = RCU_GP_CLEANED;
rdp->last_sched_clock = jiffies;
rdp->cpu = cpu;
rcu_boot_init_nocb_percpu_data(rdp);
@@ -4513,6 +4888,7 @@ int rcutree_prepare_cpu(unsigned int cpu)
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
rcu_spawn_rnp_kthreads(rnp);
rcu_spawn_cpu_nocb_kthread(cpu);
+ ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
return 0;
@@ -4656,7 +5032,7 @@ void rcutree_report_cpu_starting(unsigned int cpu)
ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
- rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
+ rdp->rcu_onl_gp_state = READ_ONCE(rcu_state.gp_state);
/* An incoming CPU should never be blocking a grace period. */
if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
@@ -4707,7 +5083,7 @@ void rcutree_report_cpu_dead(void)
arch_spin_lock(&rcu_state.ofl_lock);
raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
- rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
+ rdp->rcu_ofl_gp_state = READ_ONCE(rcu_state.gp_state);
if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
/* Report quiescent state -before- changing ->qsmaskinitnext! */
rcu_disable_urgency_upon_qs(rdp);
@@ -4781,6 +5157,7 @@ void rcutree_migrate_callbacks(int cpu)
*/
int rcutree_dead_cpu(unsigned int cpu)
{
+ ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
// Stop-machine done, so allow nohz_full to disable tick.
tick_dep_clear(TICK_DEP_BIT_RCU);
@@ -5229,6 +5606,9 @@ void __init rcu_init(void)
rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
WARN_ON(!rcu_gp_wq);
+ sync_wq = alloc_workqueue("sync_wq", WQ_MEM_RECLAIM, 0);
+ WARN_ON(!sync_wq);
+
/* Fill in default value for rcutree.qovld boot parameter. */
/* -After- the rcu_node ->lock fields are initialized! */
if (qovld < 0)
diff --git a/kernel/rcu/tree.h b/kernel/rcu/tree.h
index df48160b3136..bae7925c497f 100644
--- a/kernel/rcu/tree.h
+++ b/kernel/rcu/tree.h
@@ -273,9 +273,9 @@ struct rcu_data {
bool rcu_iw_pending; /* Is ->rcu_iw pending? */
unsigned long rcu_iw_gp_seq; /* ->gp_seq associated with ->rcu_iw. */
unsigned long rcu_ofl_gp_seq; /* ->gp_seq at last offline. */
- short rcu_ofl_gp_flags; /* ->gp_flags at last offline. */
+ short rcu_ofl_gp_state; /* ->gp_state at last offline. */
unsigned long rcu_onl_gp_seq; /* ->gp_seq at last online. */
- short rcu_onl_gp_flags; /* ->gp_flags at last online. */
+ short rcu_onl_gp_state; /* ->gp_state at last online. */
unsigned long last_fqs_resched; /* Time of last rcu_resched(). */
unsigned long last_sched_clock; /* Jiffies of last rcu_sched_clock_irq(). */
struct rcu_snap_record snap_record; /* Snapshot of core stats at half of */
@@ -316,6 +316,19 @@ do { \
} while (0)
/*
+ * A max threshold for synchronize_rcu() users which are
+ * awaken directly by the rcu_gp_kthread(). Left part is
+ * deferred to the main worker.
+ */
+#define SR_MAX_USERS_WAKE_FROM_GP 5
+#define SR_NORMAL_GP_WAIT_HEAD_MAX 5
+
+struct sr_wait_node {
+ atomic_t inuse;
+ struct llist_node node;
+};
+
+/*
* RCU global state, including node hierarchy. This hierarchy is
* represented in "heap" form in a dense array. The root (first level)
* of the hierarchy is in ->node[0] (referenced by ->level[0]), the second
@@ -400,6 +413,13 @@ struct rcu_state {
/* Synchronize offline with */
/* GP pre-initialization. */
int nocb_is_setup; /* nocb is setup from boot */
+
+ /* synchronize_rcu() part. */
+ struct llist_head srs_next; /* request a GP users. */
+ struct llist_node *srs_wait_tail; /* wait for GP users. */
+ struct llist_node *srs_done_tail; /* ready for GP users. */
+ struct sr_wait_node srs_wait_nodes[SR_NORMAL_GP_WAIT_HEAD_MAX];
+ struct work_struct srs_cleanup_work;
};
/* Values for rcu_state structure's gp_flags field. */
diff --git a/kernel/rcu/tree_exp.h b/kernel/rcu/tree_exp.h
index 6b83537480b1..8a1d9c8bd9f7 100644
--- a/kernel/rcu/tree_exp.h
+++ b/kernel/rcu/tree_exp.h
@@ -930,7 +930,7 @@ void synchronize_rcu_expedited(void)
/* If expedited grace periods are prohibited, fall back to normal. */
if (rcu_gp_is_normal()) {
- wait_rcu_gp(call_rcu_hurry);
+ synchronize_rcu_normal();
return;
}
diff --git a/kernel/rcu/tree_plugin.h b/kernel/rcu/tree_plugin.h
index 36a8b5dbf5b5..340bbefe5f65 100644
--- a/kernel/rcu/tree_plugin.h
+++ b/kernel/rcu/tree_plugin.h
@@ -805,8 +805,8 @@ dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
rdp = per_cpu_ptr(&rcu_data, cpu);
pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
cpu, ".o"[rcu_rdp_cpu_online(rdp)],
- (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
- (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
+ (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state,
+ (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state);
}
}
diff --git a/kernel/rcu/tree_stall.h b/kernel/rcu/tree_stall.h
index 5d666428546b..460efecd077b 100644
--- a/kernel/rcu/tree_stall.h
+++ b/kernel/rcu/tree_stall.h
@@ -504,7 +504,8 @@ static void print_cpu_stall_info(int cpu)
rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu));
rcuc_starved = rcu_is_rcuc_kthread_starving(rdp, &j);
if (rcuc_starved)
- sprintf(buf, " rcuc=%ld jiffies(starved)", j);
+ // Print signed value, as negative values indicate a probable bug.
+ snprintf(buf, sizeof(buf), " rcuc=%ld jiffies(starved)", j);
pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%04x/%ld/%#lx softirq=%u/%u fqs=%ld%s%s\n",
cpu,
"O."[!!cpu_online(cpu)],
@@ -579,7 +580,7 @@ static void rcu_check_gp_kthread_expired_fqs_timer(void)
pr_err("%s kthread timer wakeup didn't happen for %ld jiffies! g%ld f%#x %s(%d) ->state=%#x\n",
rcu_state.name, (jiffies - jiffies_fqs),
(long)rcu_seq_current(&rcu_state.gp_seq),
- data_race(rcu_state.gp_flags),
+ data_race(READ_ONCE(rcu_state.gp_flags)), // Diagnostic read
gp_state_getname(RCU_GP_WAIT_FQS), RCU_GP_WAIT_FQS,
data_race(READ_ONCE(gpk->__state)));
pr_err("\tPossible timer handling issue on cpu=%d timer-softirq=%u\n",
@@ -628,7 +629,8 @@ static void print_other_cpu_stall(unsigned long gp_seq, unsigned long gps)
totqlen += rcu_get_n_cbs_cpu(cpu);
pr_err("\t(detected by %d, t=%ld jiffies, g=%ld, q=%lu ncpus=%d)\n",
smp_processor_id(), (long)(jiffies - gps),
- (long)rcu_seq_current(&rcu_state.gp_seq), totqlen, rcu_state.n_online_cpus);
+ (long)rcu_seq_current(&rcu_state.gp_seq), totqlen,
+ data_race(rcu_state.n_online_cpus)); // Diagnostic read
if (ndetected) {
rcu_dump_cpu_stacks();
@@ -689,7 +691,8 @@ static void print_cpu_stall(unsigned long gps)
totqlen += rcu_get_n_cbs_cpu(cpu);
pr_err("\t(t=%lu jiffies g=%ld q=%lu ncpus=%d)\n",
jiffies - gps,
- (long)rcu_seq_current(&rcu_state.gp_seq), totqlen, rcu_state.n_online_cpus);
+ (long)rcu_seq_current(&rcu_state.gp_seq), totqlen,
+ data_race(rcu_state.n_online_cpus)); // Diagnostic read
rcu_check_gp_kthread_expired_fqs_timer();
rcu_check_gp_kthread_starvation();
diff --git a/kernel/rcu/update.c b/kernel/rcu/update.c
index 46aaaa9fe339..f8436969e0c8 100644
--- a/kernel/rcu/update.c
+++ b/kernel/rcu/update.c
@@ -408,7 +408,7 @@ void wakeme_after_rcu(struct rcu_head *head)
}
EXPORT_SYMBOL_GPL(wakeme_after_rcu);
-void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
+void __wait_rcu_gp(bool checktiny, unsigned int state, int n, call_rcu_func_t *crcu_array,
struct rcu_synchronize *rs_array)
{
int i;
@@ -440,7 +440,7 @@ void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
if (crcu_array[j] == crcu_array[i])
break;
if (j == i) {
- wait_for_completion(&rs_array[i].completion);
+ wait_for_completion_state(&rs_array[i].completion, state);
destroy_rcu_head_on_stack(&rs_array[i].head);
}
}
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 7019a40457a6..1a914388144a 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -108,7 +108,7 @@ EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
-EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
+EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
@@ -5662,13 +5662,13 @@ static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
* This function gets called by the timer code, with HZ frequency.
* We call it with interrupts disabled.
*/
-void scheduler_tick(void)
+void sched_tick(void)
{
int cpu = smp_processor_id();
struct rq *rq = cpu_rq(cpu);
struct task_struct *curr = rq->curr;
struct rq_flags rf;
- unsigned long thermal_pressure;
+ unsigned long hw_pressure;
u64 resched_latency;
if (housekeeping_cpu(cpu, HK_TYPE_TICK))
@@ -5679,8 +5679,8 @@ void scheduler_tick(void)
rq_lock(rq, &rf);
update_rq_clock(rq);
- thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
- update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
+ hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
+ update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
curr->sched_class->task_tick(rq, curr, 0);
if (sched_feat(LATENCY_WARN))
resched_latency = cpu_resched_latency(rq);
@@ -5700,7 +5700,7 @@ void scheduler_tick(void)
#ifdef CONFIG_SMP
rq->idle_balance = idle_cpu(cpu);
- trigger_load_balance(rq);
+ sched_balance_trigger(rq);
#endif
}
@@ -6585,7 +6585,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
* paths. For example, see arch/x86/entry_64.S.
*
* To drive preemption between tasks, the scheduler sets the flag in timer
- * interrupt handler scheduler_tick().
+ * interrupt handler sched_tick().
*
* 3. Wakeups don't really cause entry into schedule(). They add a
* task to the run-queue and that's it.
diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
index af7952f12e6c..aa48b2ec879d 100644
--- a/kernel/sched/cputime.c
+++ b/kernel/sched/cputime.c
@@ -424,19 +424,6 @@ static inline void irqtime_account_process_tick(struct task_struct *p, int user_
*/
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
-# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
-void vtime_task_switch(struct task_struct *prev)
-{
- if (is_idle_task(prev))
- vtime_account_idle(prev);
- else
- vtime_account_kernel(prev);
-
- vtime_flush(prev);
- arch_vtime_task_switch(prev);
-}
-# endif
-
void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
{
unsigned int pc = irq_count() - offset;
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index c62805dbd608..146ecf9cc3af 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -78,15 +78,9 @@ static unsigned int normalized_sysctl_sched_base_slice = 750000ULL;
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
-int sched_thermal_decay_shift;
static int __init setup_sched_thermal_decay_shift(char *str)
{
- int _shift = 0;
-
- if (kstrtoint(str, 0, &_shift))
- pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
-
- sched_thermal_decay_shift = clamp(_shift, 0, 10);
+ pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
return 1;
}
__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
@@ -388,8 +382,8 @@ static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
/*
* With cfs_rq being unthrottled/throttled during an enqueue,
- * it can happen the tmp_alone_branch points the a leaf that
- * we finally want to del. In this case, tmp_alone_branch moves
+ * it can happen the tmp_alone_branch points to the leaf that
+ * we finally want to delete. In this case, tmp_alone_branch moves
* to the prev element but it will point to rq->leaf_cfs_rq_list
* at the end of the enqueue.
*/
@@ -406,7 +400,7 @@ static inline void assert_list_leaf_cfs_rq(struct rq *rq)
SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
}
-/* Iterate thr' all leaf cfs_rq's on a runqueue */
+/* Iterate through all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
leaf_cfs_rq_list)
@@ -595,13 +589,13 @@ static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
*
* [[ NOTE: this is only equal to the ideal scheduler under the condition
* that join/leave operations happen at lag_i = 0, otherwise the
- * virtual time has non-continguous motion equivalent to:
+ * virtual time has non-contiguous motion equivalent to:
*
* V +-= lag_i / W
*
* Also see the comment in place_entity() that deals with this. ]]
*
- * However, since v_i is u64, and the multiplcation could easily overflow
+ * However, since v_i is u64, and the multiplication could easily overflow
* transform it into a relative form that uses smaller quantities:
*
* Substitute: v_i == (v_i - v0) + v0
@@ -671,7 +665,7 @@ u64 avg_vruntime(struct cfs_rq *cfs_rq)
}
if (load) {
- /* sign flips effective floor / ceil */
+ /* sign flips effective floor / ceiling */
if (avg < 0)
avg -= (load - 1);
avg = div_s64(avg, load);
@@ -727,7 +721,7 @@ static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
*
* lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
*
- * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
+ * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
* to the loss in precision caused by the division.
*/
static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
@@ -1030,7 +1024,7 @@ void init_entity_runnable_average(struct sched_entity *se)
if (entity_is_task(se))
sa->load_avg = scale_load_down(se->load.weight);
- /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
+ /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
}
/*
@@ -1622,7 +1616,7 @@ static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
max_dist = READ_ONCE(sched_max_numa_distance);
/*
* This code is called for each node, introducing N^2 complexity,
- * which should be ok given the number of nodes rarely exceeds 8.
+ * which should be OK given the number of nodes rarely exceeds 8.
*/
for_each_online_node(node) {
unsigned long faults;
@@ -3296,7 +3290,7 @@ retry_pids:
/*
* Shared library pages mapped by multiple processes are not
* migrated as it is expected they are cache replicated. Avoid
- * hinting faults in read-only file-backed mappings or the vdso
+ * hinting faults in read-only file-backed mappings or the vDSO
* as migrating the pages will be of marginal benefit.
*/
if (!vma->vm_mm ||
@@ -3307,7 +3301,7 @@ retry_pids:
/*
* Skip inaccessible VMAs to avoid any confusion between
- * PROT_NONE and NUMA hinting ptes
+ * PROT_NONE and NUMA hinting PTEs
*/
if (!vma_is_accessible(vma)) {
trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
@@ -3339,7 +3333,7 @@ retry_pids:
}
/*
- * Scanning the VMA's of short lived tasks add more overhead. So
+ * Scanning the VMAs of short lived tasks add more overhead. So
* delay the scan for new VMAs.
*/
if (mm->numa_scan_seq && time_before(jiffies,
@@ -3383,7 +3377,7 @@ retry_pids:
/*
* Try to scan sysctl_numa_balancing_size worth of
* hpages that have at least one present PTE that
- * is not already pte-numa. If the VMA contains
+ * is not already PTE-numa. If the VMA contains
* areas that are unused or already full of prot_numa
* PTEs, scan up to virtpages, to skip through those
* areas faster.
@@ -3690,7 +3684,7 @@ static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
/*
* VRUNTIME
- * ========
+ * --------
*
* COROLLARY #1: The virtual runtime of the entity needs to be
* adjusted if re-weight at !0-lag point.
@@ -3773,7 +3767,7 @@ static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
/*
* DEADLINE
- * ========
+ * --------
*
* When the weight changes, the virtual time slope changes and
* we should adjust the relative virtual deadline accordingly.
@@ -4745,7 +4739,7 @@ static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *s
/*
* Track task load average for carrying it to new CPU after migrated, and
- * track group sched_entity load average for task_h_load calc in migration
+ * track group sched_entity load average for task_h_load calculation in migration
*/
if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
__update_load_avg_se(now, cfs_rq, se);
@@ -4828,7 +4822,7 @@ static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
return cfs_rq->avg.load_avg;
}
-static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
+static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
static inline unsigned long task_util(struct task_struct *p)
{
@@ -4971,13 +4965,22 @@ done:
trace_sched_util_est_se_tp(&p->se);
}
+static inline unsigned long get_actual_cpu_capacity(int cpu)
+{
+ unsigned long capacity = arch_scale_cpu_capacity(cpu);
+
+ capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
+
+ return capacity;
+}
+
static inline int util_fits_cpu(unsigned long util,
unsigned long uclamp_min,
unsigned long uclamp_max,
int cpu)
{
- unsigned long capacity_orig, capacity_orig_thermal;
unsigned long capacity = capacity_of(cpu);
+ unsigned long capacity_orig;
bool fits, uclamp_max_fits;
/*
@@ -4999,7 +5002,7 @@ static inline int util_fits_cpu(unsigned long util,
* Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
* should fit a little cpu even if there's some pressure.
*
- * Only exception is for thermal pressure since it has a direct impact
+ * Only exception is for HW or cpufreq pressure since it has a direct impact
* on available OPP of the system.
*
* We honour it for uclamp_min only as a drop in performance level
@@ -5009,7 +5012,6 @@ static inline int util_fits_cpu(unsigned long util,
* goal is to cap the task. So it's okay if it's getting less.
*/
capacity_orig = arch_scale_cpu_capacity(cpu);
- capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
/*
* We want to force a task to fit a cpu as implied by uclamp_max.
@@ -5026,14 +5028,14 @@ static inline int util_fits_cpu(unsigned long util,
* | | | | | | |
* | | | | | | |
* +----------------------------------------
- * cpu0 cpu1 cpu2
+ * CPU0 CPU1 CPU2
*
* In the above example if a task is capped to a specific performance
* point, y, then when:
*
- * * util = 80% of x then it does not fit on cpu0 and should migrate
- * to cpu1
- * * util = 80% of y then it is forced to fit on cpu1 to honour
+ * * util = 80% of x then it does not fit on CPU0 and should migrate
+ * to CPU1
+ * * util = 80% of y then it is forced to fit on CPU1 to honour
* uclamp_max request.
*
* which is what we're enforcing here. A task always fits if
@@ -5064,7 +5066,7 @@ static inline int util_fits_cpu(unsigned long util,
* | | | | | | |
* | | | | | | | (region c, boosted, util < uclamp_min)
* +----------------------------------------
- * cpu0 cpu1 cpu2
+ * CPU0 CPU1 CPU2
*
* a) If util > uclamp_max, then we're capped, we don't care about
* actual fitness value here. We only care if uclamp_max fits
@@ -5084,7 +5086,8 @@ static inline int util_fits_cpu(unsigned long util,
* handle the case uclamp_min > uclamp_max.
*/
uclamp_min = min(uclamp_min, uclamp_max);
- if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
+ if (fits && (util < uclamp_min) &&
+ (uclamp_min > get_actual_cpu_capacity(cpu)))
return -1;
return fits;
@@ -5104,15 +5107,19 @@ static inline int task_fits_cpu(struct task_struct *p, int cpu)
static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
{
+ int cpu = cpu_of(rq);
+
if (!sched_asym_cpucap_active())
return;
- if (!p || p->nr_cpus_allowed == 1) {
- rq->misfit_task_load = 0;
- return;
- }
+ /*
+ * Affinity allows us to go somewhere higher? Or are we on biggest
+ * available CPU already? Or do we fit into this CPU ?
+ */
+ if (!p || (p->nr_cpus_allowed == 1) ||
+ (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
+ task_fits_cpu(p, cpu)) {
- if (task_fits_cpu(p, cpu_of(rq))) {
rq->misfit_task_load = 0;
return;
}
@@ -5148,7 +5155,7 @@ attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
-static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
+static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
{
return 0;
}
@@ -5254,7 +5261,7 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
se->vruntime = vruntime - lag;
/*
- * When joining the competition; the exisiting tasks will be,
+ * When joining the competition; the existing tasks will be,
* on average, halfway through their slice, as such start tasks
* off with half a slice to ease into the competition.
*/
@@ -5403,7 +5410,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
* Now advance min_vruntime if @se was the entity holding it back,
* except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
* put back on, and if we advance min_vruntime, we'll be placed back
- * further than we started -- ie. we'll be penalized.
+ * further than we started -- i.e. we'll be penalized.
*/
if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
update_min_vruntime(cfs_rq);
@@ -5439,7 +5446,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
/*
* Track our maximum slice length, if the CPU's load is at
- * least twice that of our own weight (i.e. dont track it
+ * least twice that of our own weight (i.e. don't track it
* when there are only lesser-weight tasks around):
*/
if (schedstat_enabled() &&
@@ -6675,22 +6682,47 @@ static inline void hrtick_update(struct rq *rq)
#ifdef CONFIG_SMP
static inline bool cpu_overutilized(int cpu)
{
- unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
- unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
+ unsigned long rq_util_min, rq_util_max;
+
+ if (!sched_energy_enabled())
+ return false;
+
+ rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
+ rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
/* Return true only if the utilization doesn't fit CPU's capacity */
return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
}
-static inline void update_overutilized_status(struct rq *rq)
+/*
+ * overutilized value make sense only if EAS is enabled
+ */
+static inline bool is_rd_overutilized(struct root_domain *rd)
+{
+ return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
+}
+
+static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
{
- if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
- WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
- trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
- }
+ if (!sched_energy_enabled())
+ return;
+
+ WRITE_ONCE(rd->overutilized, flag);
+ trace_sched_overutilized_tp(rd, flag);
+}
+
+static inline void check_update_overutilized_status(struct rq *rq)
+{
+ /*
+ * overutilized field is used for load balancing decisions only
+ * if energy aware scheduler is being used
+ */
+
+ if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
+ set_rd_overutilized(rq->rd, 1);
}
#else
-static inline void update_overutilized_status(struct rq *rq) { }
+static inline void check_update_overutilized_status(struct rq *rq) { }
#endif
/* Runqueue only has SCHED_IDLE tasks enqueued */
@@ -6791,7 +6823,7 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
* and the following generally works well enough in practice.
*/
if (!task_new)
- update_overutilized_status(rq);
+ check_update_overutilized_status(rq);
enqueue_throttle:
assert_list_leaf_cfs_rq(rq);
@@ -6878,7 +6910,7 @@ dequeue_throttle:
#ifdef CONFIG_SMP
-/* Working cpumask for: load_balance, load_balance_newidle. */
+/* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
@@ -7110,13 +7142,13 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p,
}
static struct sched_group *
-find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
+sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
/*
- * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
+ * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
*/
static int
-find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
+sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
unsigned long load, min_load = ULONG_MAX;
unsigned int min_exit_latency = UINT_MAX;
@@ -7172,7 +7204,7 @@ find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this
return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
}
-static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
+static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
int cpu, int prev_cpu, int sd_flag)
{
int new_cpu = cpu;
@@ -7197,13 +7229,13 @@ static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p
continue;
}
- group = find_idlest_group(sd, p, cpu);
+ group = sched_balance_find_dst_group(sd, p, cpu);
if (!group) {
sd = sd->child;
continue;
}
- new_cpu = find_idlest_group_cpu(group, p, cpu);
+ new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
if (new_cpu == cpu) {
/* Now try balancing at a lower domain level of 'cpu': */
sd = sd->child;
@@ -7471,7 +7503,7 @@ select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
* Look for the CPU with best capacity.
*/
else if (fits < 0)
- cpu_cap = arch_scale_cpu_capacity(cpu) - thermal_load_avg(cpu_rq(cpu));
+ cpu_cap = get_actual_cpu_capacity(cpu);
/*
* First, select CPU which fits better (-1 being better than 0).
@@ -7515,7 +7547,7 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target)
/*
* On asymmetric system, update task utilization because we will check
- * that the task fits with cpu's capacity.
+ * that the task fits with CPU's capacity.
*/
if (sched_asym_cpucap_active()) {
sync_entity_load_avg(&p->se);
@@ -7948,7 +7980,7 @@ compute_energy(struct energy_env *eenv, struct perf_domain *pd,
* NOTE: Forkees are not accepted in the energy-aware wake-up path because
* they don't have any useful utilization data yet and it's not possible to
* forecast their impact on energy consumption. Consequently, they will be
- * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
+ * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
* to be energy-inefficient in some use-cases. The alternative would be to
* bias new tasks towards specific types of CPUs first, or to try to infer
* their util_avg from the parent task, but those heuristics could hurt
@@ -7964,15 +7996,15 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
struct root_domain *rd = this_rq()->rd;
int cpu, best_energy_cpu, target = -1;
int prev_fits = -1, best_fits = -1;
- unsigned long best_thermal_cap = 0;
- unsigned long prev_thermal_cap = 0;
+ unsigned long best_actual_cap = 0;
+ unsigned long prev_actual_cap = 0;
struct sched_domain *sd;
struct perf_domain *pd;
struct energy_env eenv;
rcu_read_lock();
pd = rcu_dereference(rd->pd);
- if (!pd || READ_ONCE(rd->overutilized))
+ if (!pd)
goto unlock;
/*
@@ -7995,7 +8027,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
for (; pd; pd = pd->next) {
unsigned long util_min = p_util_min, util_max = p_util_max;
- unsigned long cpu_cap, cpu_thermal_cap, util;
+ unsigned long cpu_cap, cpu_actual_cap, util;
long prev_spare_cap = -1, max_spare_cap = -1;
unsigned long rq_util_min, rq_util_max;
unsigned long cur_delta, base_energy;
@@ -8007,18 +8039,17 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
if (cpumask_empty(cpus))
continue;
- /* Account thermal pressure for the energy estimation */
+ /* Account external pressure for the energy estimation */
cpu = cpumask_first(cpus);
- cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
- cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
+ cpu_actual_cap = get_actual_cpu_capacity(cpu);
- eenv.cpu_cap = cpu_thermal_cap;
+ eenv.cpu_cap = cpu_actual_cap;
eenv.pd_cap = 0;
for_each_cpu(cpu, cpus) {
struct rq *rq = cpu_rq(cpu);
- eenv.pd_cap += cpu_thermal_cap;
+ eenv.pd_cap += cpu_actual_cap;
if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
continue;
@@ -8039,7 +8070,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
/*
* Open code uclamp_rq_util_with() except for
- * the clamp() part. Ie: apply max aggregation
+ * the clamp() part. I.e.: apply max aggregation
* only. util_fits_cpu() logic requires to
* operate on non clamped util but must use the
* max-aggregated uclamp_{min, max}.
@@ -8089,7 +8120,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
if (prev_delta < base_energy)
goto unlock;
prev_delta -= base_energy;
- prev_thermal_cap = cpu_thermal_cap;
+ prev_actual_cap = cpu_actual_cap;
best_delta = min(best_delta, prev_delta);
}
@@ -8104,7 +8135,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
* but best energy cpu has better capacity.
*/
if ((max_fits < 0) &&
- (cpu_thermal_cap <= best_thermal_cap))
+ (cpu_actual_cap <= best_actual_cap))
continue;
cur_delta = compute_energy(&eenv, pd, cpus, p,
@@ -8125,14 +8156,14 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
best_delta = cur_delta;
best_energy_cpu = max_spare_cap_cpu;
best_fits = max_fits;
- best_thermal_cap = cpu_thermal_cap;
+ best_actual_cap = cpu_actual_cap;
}
}
rcu_read_unlock();
if ((best_fits > prev_fits) ||
((best_fits > 0) && (best_delta < prev_delta)) ||
- ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
+ ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
target = best_energy_cpu;
return target;
@@ -8175,7 +8206,7 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
cpumask_test_cpu(cpu, p->cpus_ptr))
return cpu;
- if (sched_energy_enabled()) {
+ if (!is_rd_overutilized(this_rq()->rd)) {
new_cpu = find_energy_efficient_cpu(p, prev_cpu);
if (new_cpu >= 0)
return new_cpu;
@@ -8213,7 +8244,7 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
if (unlikely(sd)) {
/* Slow path */
- new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
+ new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
} else if (wake_flags & WF_TTWU) { /* XXX always ? */
/* Fast path */
new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
@@ -8259,14 +8290,46 @@ static void task_dead_fair(struct task_struct *p)
remove_entity_load_avg(&p->se);
}
+/*
+ * Set the max capacity the task is allowed to run at for misfit detection.
+ */
+static void set_task_max_allowed_capacity(struct task_struct *p)
+{
+ struct asym_cap_data *entry;
+
+ if (!sched_asym_cpucap_active())
+ return;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(entry, &asym_cap_list, link) {
+ cpumask_t *cpumask;
+
+ cpumask = cpu_capacity_span(entry);
+ if (!cpumask_intersects(p->cpus_ptr, cpumask))
+ continue;
+
+ p->max_allowed_capacity = entry->capacity;
+ break;
+ }
+ rcu_read_unlock();
+}
+
+static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
+{
+ set_cpus_allowed_common(p, ctx);
+ set_task_max_allowed_capacity(p);
+}
+
static int
balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
if (rq->nr_running)
return 1;
- return newidle_balance(rq, rf) != 0;
+ return sched_balance_newidle(rq, rf) != 0;
}
+#else
+static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
#endif /* CONFIG_SMP */
static void set_next_buddy(struct sched_entity *se)
@@ -8517,10 +8580,10 @@ idle:
if (!rf)
return NULL;
- new_tasks = newidle_balance(rq, rf);
+ new_tasks = sched_balance_newidle(rq, rf);
/*
- * Because newidle_balance() releases (and re-acquires) rq->lock, it is
+ * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
* possible for any higher priority task to appear. In that case we
* must re-start the pick_next_entity() loop.
*/
@@ -8598,7 +8661,7 @@ static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
return false;
- /* Tell the scheduler that we'd really like pse to run next. */
+ /* Tell the scheduler that we'd really like se to run next. */
set_next_buddy(se);
yield_task_fair(rq);
@@ -8936,7 +8999,7 @@ int can_migrate_task(struct task_struct *p, struct lb_env *env)
if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
return 0;
- /* Disregard pcpu kthreads; they are where they need to be. */
+ /* Disregard percpu kthreads; they are where they need to be. */
if (kthread_is_per_cpu(p))
return 0;
@@ -9082,7 +9145,7 @@ static int detach_tasks(struct lb_env *env)
* We don't want to steal all, otherwise we may be treated likewise,
* which could at worst lead to a livelock crash.
*/
- if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
+ if (env->idle && env->src_rq->nr_running <= 1)
break;
env->loop++;
@@ -9261,7 +9324,7 @@ static inline bool others_have_blocked(struct rq *rq)
if (cpu_util_dl(rq))
return true;
- if (thermal_load_avg(rq))
+ if (hw_load_avg(rq))
return true;
if (cpu_util_irq(rq))
@@ -9291,7 +9354,7 @@ static bool __update_blocked_others(struct rq *rq, bool *done)
{
const struct sched_class *curr_class;
u64 now = rq_clock_pelt(rq);
- unsigned long thermal_pressure;
+ unsigned long hw_pressure;
bool decayed;
/*
@@ -9300,11 +9363,11 @@ static bool __update_blocked_others(struct rq *rq, bool *done)
*/
curr_class = rq->curr->sched_class;
- thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
+ hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
- update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
+ update_hw_load_avg(now, rq, hw_pressure) |
update_irq_load_avg(rq, 0);
if (others_have_blocked(rq))
@@ -9423,7 +9486,7 @@ static unsigned long task_h_load(struct task_struct *p)
}
#endif
-static void update_blocked_averages(int cpu)
+static void sched_balance_update_blocked_averages(int cpu)
{
bool decayed = false, done = true;
struct rq *rq = cpu_rq(cpu);
@@ -9442,25 +9505,25 @@ static void update_blocked_averages(int cpu)
rq_unlock_irqrestore(rq, &rf);
}
-/********** Helpers for find_busiest_group ************************/
+/********** Helpers for sched_balance_find_src_group ************************/
/*
- * sg_lb_stats - stats of a sched_group required for load_balancing
+ * sg_lb_stats - stats of a sched_group required for load-balancing:
*/
struct sg_lb_stats {
- unsigned long avg_load; /*Avg load across the CPUs of the group */
- unsigned long group_load; /* Total load over the CPUs of the group */
- unsigned long group_capacity;
- unsigned long group_util; /* Total utilization over the CPUs of the group */
- unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
- unsigned int sum_nr_running; /* Nr of tasks running in the group */
- unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
- unsigned int idle_cpus;
+ unsigned long avg_load; /* Avg load over the CPUs of the group */
+ unsigned long group_load; /* Total load over the CPUs of the group */
+ unsigned long group_capacity; /* Capacity over the CPUs of the group */
+ unsigned long group_util; /* Total utilization over the CPUs of the group */
+ unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
+ unsigned int sum_nr_running; /* Nr of all tasks running in the group */
+ unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
+ unsigned int idle_cpus; /* Nr of idle CPUs in the group */
unsigned int group_weight;
enum group_type group_type;
- unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
- unsigned int group_smt_balance; /* Task on busy SMT be moved */
- unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
+ unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
+ unsigned int group_smt_balance; /* Task on busy SMT be moved */
+ unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
#ifdef CONFIG_NUMA_BALANCING
unsigned int nr_numa_running;
unsigned int nr_preferred_running;
@@ -9468,19 +9531,18 @@ struct sg_lb_stats {
};
/*
- * sd_lb_stats - Structure to store the statistics of a sched_domain
- * during load balancing.
+ * sd_lb_stats - stats of a sched_domain required for load-balancing:
*/
struct sd_lb_stats {
- struct sched_group *busiest; /* Busiest group in this sd */
- struct sched_group *local; /* Local group in this sd */
- unsigned long total_load; /* Total load of all groups in sd */
- unsigned long total_capacity; /* Total capacity of all groups in sd */
- unsigned long avg_load; /* Average load across all groups in sd */
- unsigned int prefer_sibling; /* tasks should go to sibling first */
-
- struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
- struct sg_lb_stats local_stat; /* Statistics of the local group */
+ struct sched_group *busiest; /* Busiest group in this sd */
+ struct sched_group *local; /* Local group in this sd */
+ unsigned long total_load; /* Total load of all groups in sd */
+ unsigned long total_capacity; /* Total capacity of all groups in sd */
+ unsigned long avg_load; /* Average load across all groups in sd */
+ unsigned int prefer_sibling; /* Tasks should go to sibling first */
+
+ struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */
+ struct sg_lb_stats local_stat; /* Statistics of the local group */
};
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
@@ -9506,8 +9568,8 @@ static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
static unsigned long scale_rt_capacity(int cpu)
{
+ unsigned long max = get_actual_cpu_capacity(cpu);
struct rq *rq = cpu_rq(cpu);
- unsigned long max = arch_scale_cpu_capacity(cpu);
unsigned long used, free;
unsigned long irq;
@@ -9519,12 +9581,9 @@ static unsigned long scale_rt_capacity(int cpu)
/*
* avg_rt.util_avg and avg_dl.util_avg track binary signals
* (running and not running) with weights 0 and 1024 respectively.
- * avg_thermal.load_avg tracks thermal pressure and the weighted
- * average uses the actual delta max capacity(load).
*/
used = cpu_util_rt(rq);
used += cpu_util_dl(rq);
- used += thermal_load_avg(rq);
if (unlikely(used >= max))
return 1;
@@ -9617,16 +9676,10 @@ check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
}
-/*
- * Check whether a rq has a misfit task and if it looks like we can actually
- * help that task: we can migrate the task to a CPU of higher capacity, or
- * the task's current CPU is heavily pressured.
- */
-static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
+/* Check if the rq has a misfit task */
+static inline bool check_misfit_status(struct rq *rq)
{
- return rq->misfit_task_load &&
- (arch_scale_cpu_capacity(rq->cpu) < rq->rd->max_cpu_capacity ||
- check_cpu_capacity(rq, sd));
+ return rq->misfit_task_load;
}
/*
@@ -9650,7 +9703,7 @@ static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
*
* When this is so detected; this group becomes a candidate for busiest; see
* update_sd_pick_busiest(). And calculate_imbalance() and
- * find_busiest_group() avoid some of the usual balance conditions to allow it
+ * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
* to create an effective group imbalance.
*
* This is a somewhat tricky proposition since the next run might not find the
@@ -9815,7 +9868,7 @@ static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
struct sched_group *group)
{
- if (env->idle == CPU_NOT_IDLE)
+ if (!env->idle)
return false;
/*
@@ -9839,7 +9892,7 @@ static inline long sibling_imbalance(struct lb_env *env,
int ncores_busiest, ncores_local;
long imbalance;
- if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
+ if (!env->idle || !busiest->sum_nr_running)
return 0;
ncores_busiest = sds->busiest->cores;
@@ -9885,13 +9938,15 @@ sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
* @sds: Load-balancing data with statistics of the local group.
* @group: sched_group whose statistics are to be updated.
* @sgs: variable to hold the statistics for this group.
- * @sg_status: Holds flag indicating the status of the sched_group
+ * @sg_overloaded: sched_group is overloaded
+ * @sg_overutilized: sched_group is overutilized
*/
static inline void update_sg_lb_stats(struct lb_env *env,
struct sd_lb_stats *sds,
struct sched_group *group,
struct sg_lb_stats *sgs,
- int *sg_status)
+ bool *sg_overloaded,
+ bool *sg_overutilized)
{
int i, nr_running, local_group;
@@ -9912,10 +9967,10 @@ static inline void update_sg_lb_stats(struct lb_env *env,
sgs->sum_nr_running += nr_running;
if (nr_running > 1)
- *sg_status |= SG_OVERLOAD;
+ *sg_overloaded = 1;
if (cpu_overutilized(i))
- *sg_status |= SG_OVERUTILIZED;
+ *sg_overutilized = 1;
#ifdef CONFIG_NUMA_BALANCING
sgs->nr_numa_running += rq->nr_numa_running;
@@ -9937,10 +9992,9 @@ static inline void update_sg_lb_stats(struct lb_env *env,
/* Check for a misfit task on the cpu */
if (sgs->group_misfit_task_load < rq->misfit_task_load) {
sgs->group_misfit_task_load = rq->misfit_task_load;
- *sg_status |= SG_OVERLOAD;
+ *sg_overloaded = 1;
}
- } else if ((env->idle != CPU_NOT_IDLE) &&
- sched_reduced_capacity(rq, env->sd)) {
+ } else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
/* Check for a task running on a CPU with reduced capacity */
if (sgs->group_misfit_task_load < load)
sgs->group_misfit_task_load = load;
@@ -9952,7 +10006,7 @@ static inline void update_sg_lb_stats(struct lb_env *env,
sgs->group_weight = group->group_weight;
/* Check if dst CPU is idle and preferred to this group */
- if (!local_group && env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
+ if (!local_group && env->idle && sgs->sum_h_nr_running &&
sched_group_asym(env, sgs, group))
sgs->group_asym_packing = 1;
@@ -10090,7 +10144,7 @@ static bool update_sd_pick_busiest(struct lb_env *env,
has_spare:
/*
- * Select not overloaded group with lowest number of idle cpus
+ * Select not overloaded group with lowest number of idle CPUs
* and highest number of running tasks. We could also compare
* the spare capacity which is more stable but it can end up
* that the group has less spare capacity but finally more idle
@@ -10310,13 +10364,13 @@ static bool update_pick_idlest(struct sched_group *idlest,
}
/*
- * find_idlest_group() finds and returns the least busy CPU group within the
+ * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
* domain.
*
* Assumes p is allowed on at least one CPU in sd.
*/
static struct sched_group *
-find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
+sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
struct sg_lb_stats local_sgs, tmp_sgs;
@@ -10564,7 +10618,7 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
struct sg_lb_stats *local = &sds->local_stat;
struct sg_lb_stats tmp_sgs;
unsigned long sum_util = 0;
- int sg_status = 0;
+ bool sg_overloaded = 0, sg_overutilized = 0;
do {
struct sg_lb_stats *sgs = &tmp_sgs;
@@ -10580,7 +10634,7 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
update_group_capacity(env->sd, env->dst_cpu);
}
- update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
+ update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
sds->busiest = sg;
@@ -10608,19 +10662,13 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
env->fbq_type = fbq_classify_group(&sds->busiest_stat);
if (!env->sd->parent) {
- struct root_domain *rd = env->dst_rq->rd;
-
/* update overload indicator if we are at root domain */
- WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
+ set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
/* Update over-utilization (tipping point, U >= 0) indicator */
- WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
- trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
- } else if (sg_status & SG_OVERUTILIZED) {
- struct root_domain *rd = env->dst_rq->rd;
-
- WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
- trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
+ set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
+ } else if (sg_overutilized) {
+ set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
}
update_idle_cpu_scan(env, sum_util);
@@ -10710,7 +10758,7 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
* waiting task in this overloaded busiest group. Let's
* try to pull it.
*/
- if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
+ if (env->idle && env->imbalance == 0) {
env->migration_type = migrate_task;
env->imbalance = 1;
}
@@ -10729,7 +10777,7 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
/*
* If there is no overload, we just want to even the number of
- * idle cpus.
+ * idle CPUs.
*/
env->migration_type = migrate_task;
env->imbalance = max_t(long, 0,
@@ -10802,7 +10850,7 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
) / SCHED_CAPACITY_SCALE;
}
-/******* find_busiest_group() helpers end here *********************/
+/******* sched_balance_find_src_group() helpers end here *********************/
/*
* Decision matrix according to the local and busiest group type:
@@ -10825,7 +10873,7 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
*/
/**
- * find_busiest_group - Returns the busiest group within the sched_domain
+ * sched_balance_find_src_group - Returns the busiest group within the sched_domain
* if there is an imbalance.
* @env: The load balancing environment.
*
@@ -10834,7 +10882,7 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
*
* Return: - The busiest group if imbalance exists.
*/
-static struct sched_group *find_busiest_group(struct lb_env *env)
+static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
{
struct sg_lb_stats *local, *busiest;
struct sd_lb_stats sds;
@@ -10857,12 +10905,9 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
if (busiest->group_type == group_misfit_task)
goto force_balance;
- if (sched_energy_enabled()) {
- struct root_domain *rd = env->dst_rq->rd;
-
- if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
- goto out_balanced;
- }
+ if (!is_rd_overutilized(env->dst_rq->rd) &&
+ rcu_dereference(env->dst_rq->rd->pd))
+ goto out_balanced;
/* ASYM feature bypasses nice load balance check */
if (busiest->group_type == group_asym_packing)
@@ -10925,7 +10970,7 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
goto force_balance;
if (busiest->group_type != group_overloaded) {
- if (env->idle == CPU_NOT_IDLE) {
+ if (!env->idle) {
/*
* If the busiest group is not overloaded (and as a
* result the local one too) but this CPU is already
@@ -10973,9 +11018,9 @@ out_balanced:
}
/*
- * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
+ * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
*/
-static struct rq *find_busiest_queue(struct lb_env *env,
+static struct rq *sched_balance_find_src_rq(struct lb_env *env,
struct sched_group *group)
{
struct rq *busiest = NULL, *rq;
@@ -11133,7 +11178,7 @@ asym_active_balance(struct lb_env *env)
* the lower priority @env::dst_cpu help it. Do not follow
* CPU priority.
*/
- return env->idle != CPU_NOT_IDLE && sched_use_asym_prio(env->sd, env->dst_cpu) &&
+ return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
(sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
!sched_use_asym_prio(env->sd, env->src_cpu));
}
@@ -11171,7 +11216,7 @@ static int need_active_balance(struct lb_env *env)
* because of other sched_class or IRQs if more capacity stays
* available on dst_cpu.
*/
- if ((env->idle != CPU_NOT_IDLE) &&
+ if (env->idle &&
(env->src_rq->cfs.h_nr_running == 1)) {
if ((check_cpu_capacity(env->src_rq, sd)) &&
(capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
@@ -11256,7 +11301,7 @@ static int should_we_balance(struct lb_env *env)
* Check this_cpu to ensure it is balanced within domain. Attempt to move
* tasks if there is an imbalance.
*/
-static int load_balance(int this_cpu, struct rq *this_rq,
+static int sched_balance_rq(int this_cpu, struct rq *this_rq,
struct sched_domain *sd, enum cpu_idle_type idle,
int *continue_balancing)
{
@@ -11288,13 +11333,13 @@ redo:
goto out_balanced;
}
- group = find_busiest_group(&env);
+ group = sched_balance_find_src_group(&env);
if (!group) {
schedstat_inc(sd->lb_nobusyg[idle]);
goto out_balanced;
}
- busiest = find_busiest_queue(&env, group);
+ busiest = sched_balance_find_src_rq(&env, group);
if (!busiest) {
schedstat_inc(sd->lb_nobusyq[idle]);
goto out_balanced;
@@ -11312,7 +11357,7 @@ redo:
env.flags |= LBF_ALL_PINNED;
if (busiest->nr_running > 1) {
/*
- * Attempt to move tasks. If find_busiest_group has found
+ * Attempt to move tasks. If sched_balance_find_src_group has found
* an imbalance but busiest->nr_running <= 1, the group is
* still unbalanced. ld_moved simply stays zero, so it is
* correctly treated as an imbalance.
@@ -11427,8 +11472,12 @@ more_balance:
* We do not want newidle balance, which can be very
* frequent, pollute the failure counter causing
* excessive cache_hot migrations and active balances.
+ *
+ * Similarly for migration_misfit which is not related to
+ * load/util migration, don't pollute nr_balance_failed.
*/
- if (idle != CPU_NEWLY_IDLE)
+ if (idle != CPU_NEWLY_IDLE &&
+ env.migration_type != migrate_misfit)
sd->nr_balance_failed++;
if (need_active_balance(&env)) {
@@ -11507,12 +11556,17 @@ out_one_pinned:
ld_moved = 0;
/*
- * newidle_balance() disregards balance intervals, so we could
+ * sched_balance_newidle() disregards balance intervals, so we could
* repeatedly reach this code, which would lead to balance_interval
* skyrocketing in a short amount of time. Skip the balance_interval
* increase logic to avoid that.
+ *
+ * Similarly misfit migration which is not necessarily an indication of
+ * the system being busy and requires lb to backoff to let it settle
+ * down.
*/
- if (env.idle == CPU_NEWLY_IDLE)
+ if (env.idle == CPU_NEWLY_IDLE ||
+ env.migration_type == migrate_misfit)
goto out;
/* tune up the balancing interval */
@@ -11645,10 +11699,23 @@ out_unlock:
return 0;
}
-static DEFINE_SPINLOCK(balancing);
+/*
+ * This flag serializes load-balancing passes over large domains
+ * (above the NODE topology level) - only one load-balancing instance
+ * may run at a time, to reduce overhead on very large systems with
+ * lots of CPUs and large NUMA distances.
+ *
+ * - Note that load-balancing passes triggered while another one
+ * is executing are skipped and not re-tried.
+ *
+ * - Also note that this does not serialize rebalance_domains()
+ * execution, as non-SD_SERIALIZE domains will still be
+ * load-balanced in parallel.
+ */
+static atomic_t sched_balance_running = ATOMIC_INIT(0);
/*
- * Scale the max load_balance interval with the number of CPUs in the system.
+ * Scale the max sched_balance_rq interval with the number of CPUs in the system.
* This trades load-balance latency on larger machines for less cross talk.
*/
void update_max_interval(void)
@@ -11686,7 +11753,7 @@ static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
*
* Balancing parameters are set up in init_sched_domains.
*/
-static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
+static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
{
int continue_balancing = 1;
int cpu = rq->cpu;
@@ -11723,25 +11790,25 @@ static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
need_serialize = sd->flags & SD_SERIALIZE;
if (need_serialize) {
- if (!spin_trylock(&balancing))
+ if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
goto out;
}
if (time_after_eq(jiffies, sd->last_balance + interval)) {
- if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
+ if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
/*
* The LBF_DST_PINNED logic could have changed
* env->dst_cpu, so we can't know our idle
* state even if we migrated tasks. Update it.
*/
- idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
- busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
+ idle = idle_cpu(cpu);
+ busy = !idle && !sched_idle_cpu(cpu);
}
sd->last_balance = jiffies;
interval = get_sd_balance_interval(sd, busy);
}
if (need_serialize)
- spin_unlock(&balancing);
+ atomic_set_release(&sched_balance_running, 0);
out:
if (time_after(next_balance, sd->last_balance + interval)) {
next_balance = sd->last_balance + interval;
@@ -11901,7 +11968,7 @@ static void nohz_balancer_kick(struct rq *rq)
* currently idle; in which case, kick the ILB to move tasks
* around.
*
- * When balancing betwen cores, all the SMT siblings of the
+ * When balancing between cores, all the SMT siblings of the
* preferred CPU must be idle.
*/
for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
@@ -11918,7 +11985,7 @@ static void nohz_balancer_kick(struct rq *rq)
* When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
* to run the misfit task on.
*/
- if (check_misfit_status(rq, sd)) {
+ if (check_misfit_status(rq)) {
flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
goto unlock;
}
@@ -12062,7 +12129,7 @@ void nohz_balance_enter_idle(int cpu)
out:
/*
* Each time a cpu enter idle, we assume that it has blocked load and
- * enable the periodic update of the load of idle cpus
+ * enable the periodic update of the load of idle CPUs
*/
WRITE_ONCE(nohz.has_blocked, 1);
}
@@ -12080,13 +12147,13 @@ static bool update_nohz_stats(struct rq *rq)
if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
return true;
- update_blocked_averages(cpu);
+ sched_balance_update_blocked_averages(cpu);
return rq->has_blocked_load;
}
/*
- * Internal function that runs load balance for all idle cpus. The load balance
+ * Internal function that runs load balance for all idle CPUs. The load balance
* can be a simple update of blocked load or a complete load balance with
* tasks movement depending of flags.
*/
@@ -12162,7 +12229,7 @@ static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
rq_unlock_irqrestore(rq, &rf);
if (flags & NOHZ_BALANCE_KICK)
- rebalance_domains(rq, CPU_IDLE);
+ sched_balance_domains(rq, CPU_IDLE);
}
if (time_after(next_balance, rq->next_balance)) {
@@ -12191,7 +12258,7 @@ abort:
/*
* In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
- * rebalancing for all the cpus for whom scheduler ticks are stopped.
+ * rebalancing for all the CPUs for whom scheduler ticks are stopped.
*/
static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
{
@@ -12222,7 +12289,7 @@ static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
* called from this function on (this) CPU that's not yet in the mask. That's
* OK because the goal of nohz_run_idle_balance() is to run ILB only for
* updating the blocked load of already idle CPUs without waking up one of
- * those idle CPUs and outside the preempt disable / irq off phase of the local
+ * those idle CPUs and outside the preempt disable / IRQ off phase of the local
* cpu about to enter idle, because it can take a long time.
*/
void nohz_run_idle_balance(int cpu)
@@ -12233,7 +12300,7 @@ void nohz_run_idle_balance(int cpu)
/*
* Update the blocked load only if no SCHED_SOFTIRQ is about to happen
- * (ie NOHZ_STATS_KICK set) and will do the same.
+ * (i.e. NOHZ_STATS_KICK set) and will do the same.
*/
if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
@@ -12278,7 +12345,7 @@ static inline void nohz_newidle_balance(struct rq *this_rq) { }
#endif /* CONFIG_NO_HZ_COMMON */
/*
- * newidle_balance is called by schedule() if this_cpu is about to become
+ * sched_balance_newidle is called by schedule() if this_cpu is about to become
* idle. Attempts to pull tasks from other CPUs.
*
* Returns:
@@ -12286,10 +12353,11 @@ static inline void nohz_newidle_balance(struct rq *this_rq) { }
* 0 - failed, no new tasks
* > 0 - success, new (fair) tasks present
*/
-static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
+static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
{
unsigned long next_balance = jiffies + HZ;
int this_cpu = this_rq->cpu;
+ int continue_balancing = 1;
u64 t0, t1, curr_cost = 0;
struct sched_domain *sd;
int pulled_task = 0;
@@ -12304,8 +12372,9 @@ static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
return 0;
/*
- * We must set idle_stamp _before_ calling idle_balance(), such that we
- * measure the duration of idle_balance() as idle time.
+ * We must set idle_stamp _before_ calling sched_balance_rq()
+ * for CPU_NEWLY_IDLE, such that we measure the this duration
+ * as idle time.
*/
this_rq->idle_stamp = rq_clock(this_rq);
@@ -12326,7 +12395,7 @@ static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
rcu_read_lock();
sd = rcu_dereference_check_sched_domain(this_rq->sd);
- if (!READ_ONCE(this_rq->rd->overload) ||
+ if (!get_rd_overloaded(this_rq->rd) ||
(sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
if (sd)
@@ -12340,11 +12409,10 @@ static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
raw_spin_rq_unlock(this_rq);
t0 = sched_clock_cpu(this_cpu);
- update_blocked_averages(this_cpu);
+ sched_balance_update_blocked_averages(this_cpu);
rcu_read_lock();
for_each_domain(this_cpu, sd) {
- int continue_balancing = 1;
u64 domain_cost;
update_next_balance(sd, &next_balance);
@@ -12354,7 +12422,7 @@ static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
if (sd->flags & SD_BALANCE_NEWIDLE) {
- pulled_task = load_balance(this_cpu, this_rq,
+ pulled_task = sched_balance_rq(this_cpu, this_rq,
sd, CPU_NEWLY_IDLE,
&continue_balancing);
@@ -12370,8 +12438,7 @@ static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
* Stop searching for tasks to pull if there are
* now runnable tasks on this rq.
*/
- if (pulled_task || this_rq->nr_running > 0 ||
- this_rq->ttwu_pending)
+ if (pulled_task || !continue_balancing)
break;
}
rcu_read_unlock();
@@ -12409,19 +12476,21 @@ out:
}
/*
- * run_rebalance_domains is triggered when needed from the scheduler tick.
- * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
+ * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
+ *
+ * - directly from the local scheduler_tick() for periodic load balancing
+ *
+ * - indirectly from a remote scheduler_tick() for NOHZ idle balancing
+ * through the SMP cross-call nohz_csd_func()
*/
-static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
+static __latent_entropy void sched_balance_softirq(struct softirq_action *h)
{
struct rq *this_rq = this_rq();
- enum cpu_idle_type idle = this_rq->idle_balance ?
- CPU_IDLE : CPU_NOT_IDLE;
-
+ enum cpu_idle_type idle = this_rq->idle_balance;
/*
- * If this CPU has a pending nohz_balance_kick, then do the
+ * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
* balancing on behalf of the other idle CPUs whose ticks are
- * stopped. Do nohz_idle_balance *before* rebalance_domains to
+ * stopped. Do nohz_idle_balance *before* sched_balance_domains to
* give the idle CPUs a chance to load balance. Else we may
* load balance only within the local sched_domain hierarchy
* and abort nohz_idle_balance altogether if we pull some load.
@@ -12430,14 +12499,14 @@ static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
return;
/* normal load balance */
- update_blocked_averages(this_rq->cpu);
- rebalance_domains(this_rq, idle);
+ sched_balance_update_blocked_averages(this_rq->cpu);
+ sched_balance_domains(this_rq, idle);
}
/*
* Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
*/
-void trigger_load_balance(struct rq *rq)
+void sched_balance_trigger(struct rq *rq)
{
/*
* Don't need to rebalance while attached to NULL domain or
@@ -12621,7 +12690,7 @@ static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
task_tick_numa(rq, curr);
update_misfit_status(curr, rq);
- update_overutilized_status(task_rq(curr));
+ check_update_overutilized_status(task_rq(curr));
task_tick_core(rq, curr);
}
@@ -12641,6 +12710,8 @@ static void task_fork_fair(struct task_struct *p)
rq_lock(rq, &rf);
update_rq_clock(rq);
+ set_task_max_allowed_capacity(p);
+
cfs_rq = task_cfs_rq(current);
curr = cfs_rq->curr;
if (curr)
@@ -12764,6 +12835,8 @@ static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
attach_task_cfs_rq(p);
+ set_task_max_allowed_capacity(p);
+
if (task_on_rq_queued(p)) {
/*
* We were most likely switched from sched_rt, so
@@ -13135,7 +13208,7 @@ DEFINE_SCHED_CLASS(fair) = {
.rq_offline = rq_offline_fair,
.task_dead = task_dead_fair,
- .set_cpus_allowed = set_cpus_allowed_common,
+ .set_cpus_allowed = set_cpus_allowed_fair,
#endif
.task_tick = task_tick_fair,
@@ -13215,7 +13288,7 @@ __init void init_sched_fair_class(void)
#endif
}
- open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
+ open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
#ifdef CONFIG_NO_HZ_COMMON
nohz.next_balance = jiffies;
diff --git a/kernel/sched/loadavg.c b/kernel/sched/loadavg.c
index 52c8f8226b0d..ca9da66cc894 100644
--- a/kernel/sched/loadavg.c
+++ b/kernel/sched/loadavg.c
@@ -379,7 +379,7 @@ void calc_global_load(void)
}
/*
- * Called from scheduler_tick() to periodically update this CPU's
+ * Called from sched_tick() to periodically update this CPU's
* active count.
*/
void calc_global_load_tick(struct rq *this_rq)
diff --git a/kernel/sched/pelt.c b/kernel/sched/pelt.c
index 63b6cf898220..ef00382de595 100644
--- a/kernel/sched/pelt.c
+++ b/kernel/sched/pelt.c
@@ -208,8 +208,8 @@ ___update_load_sum(u64 now, struct sched_avg *sa,
* se has been already dequeued but cfs_rq->curr still points to it.
* This means that weight will be 0 but not running for a sched_entity
* but also for a cfs_rq if the latter becomes idle. As an example,
- * this happens during idle_balance() which calls
- * update_blocked_averages().
+ * this happens during sched_balance_newidle() which calls
+ * sched_balance_update_blocked_averages().
*
* Also see the comment in accumulate_sum().
*/
@@ -384,30 +384,30 @@ int update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
return 0;
}
-#ifdef CONFIG_SCHED_THERMAL_PRESSURE
+#ifdef CONFIG_SCHED_HW_PRESSURE
/*
- * thermal:
+ * hardware:
*
* load_sum = \Sum se->avg.load_sum but se->avg.load_sum is not tracked
*
* util_avg and runnable_load_avg are not supported and meaningless.
*
* Unlike rt/dl utilization tracking that track time spent by a cpu
- * running a rt/dl task through util_avg, the average thermal pressure is
- * tracked through load_avg. This is because thermal pressure signal is
+ * running a rt/dl task through util_avg, the average HW pressure is
+ * tracked through load_avg. This is because HW pressure signal is
* time weighted "delta" capacity unlike util_avg which is binary.
* "delta capacity" = actual capacity -
- * capped capacity a cpu due to a thermal event.
+ * capped capacity a cpu due to a HW event.
*/
-int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
+int update_hw_load_avg(u64 now, struct rq *rq, u64 capacity)
{
- if (___update_load_sum(now, &rq->avg_thermal,
+ if (___update_load_sum(now, &rq->avg_hw,
capacity,
capacity,
capacity)) {
- ___update_load_avg(&rq->avg_thermal, 1);
- trace_pelt_thermal_tp(rq);
+ ___update_load_avg(&rq->avg_hw, 1);
+ trace_pelt_hw_tp(rq);
return 1;
}
diff --git a/kernel/sched/pelt.h b/kernel/sched/pelt.h
index 9e1083465fbc..2150062949d4 100644
--- a/kernel/sched/pelt.h
+++ b/kernel/sched/pelt.h
@@ -7,21 +7,21 @@ int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq);
int update_rt_rq_load_avg(u64 now, struct rq *rq, int running);
int update_dl_rq_load_avg(u64 now, struct rq *rq, int running);
-#ifdef CONFIG_SCHED_THERMAL_PRESSURE
-int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity);
+#ifdef CONFIG_SCHED_HW_PRESSURE
+int update_hw_load_avg(u64 now, struct rq *rq, u64 capacity);
-static inline u64 thermal_load_avg(struct rq *rq)
+static inline u64 hw_load_avg(struct rq *rq)
{
- return READ_ONCE(rq->avg_thermal.load_avg);
+ return READ_ONCE(rq->avg_hw.load_avg);
}
#else
static inline int
-update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
+update_hw_load_avg(u64 now, struct rq *rq, u64 capacity)
{
return 0;
}
-static inline u64 thermal_load_avg(struct rq *rq)
+static inline u64 hw_load_avg(struct rq *rq)
{
return 0;
}
@@ -202,12 +202,12 @@ update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
}
static inline int
-update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
+update_hw_load_avg(u64 now, struct rq *rq, u64 capacity)
{
return 0;
}
-static inline u64 thermal_load_avg(struct rq *rq)
+static inline u64 hw_load_avg(struct rq *rq)
{
return 0;
}
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index ae50f212775e..a831af102070 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -112,6 +112,20 @@ extern int sysctl_sched_rt_runtime;
extern int sched_rr_timeslice;
/*
+ * Asymmetric CPU capacity bits
+ */
+struct asym_cap_data {
+ struct list_head link;
+ struct rcu_head rcu;
+ unsigned long capacity;
+ unsigned long cpus[];
+};
+
+extern struct list_head asym_cap_list;
+
+#define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
+
+/*
* Helpers for converting nanosecond timing to jiffy resolution
*/
#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
@@ -701,7 +715,7 @@ struct rt_rq {
} highest_prio;
#endif
#ifdef CONFIG_SMP
- int overloaded;
+ bool overloaded;
struct plist_head pushable_tasks;
#endif /* CONFIG_SMP */
@@ -745,7 +759,7 @@ struct dl_rq {
u64 next;
} earliest_dl;
- int overloaded;
+ bool overloaded;
/*
* Tasks on this rq that can be pushed away. They are kept in
@@ -838,10 +852,6 @@ struct perf_domain {
struct rcu_head rcu;
};
-/* Scheduling group status flags */
-#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
-#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
-
/*
* We add the notion of a root-domain which will be used to define per-domain
* variables. Each exclusive cpuset essentially defines an island domain by
@@ -862,10 +872,10 @@ struct root_domain {
* - More than one runnable task
* - Running task is misfit
*/
- int overload;
+ bool overloaded;
/* Indicate one or more cpus over-utilized (tipping point) */
- int overutilized;
+ bool overutilized;
/*
* The bit corresponding to a CPU gets set here if such CPU has more
@@ -905,8 +915,6 @@ struct root_domain {
cpumask_var_t rto_mask;
struct cpupri cpupri;
- unsigned long max_cpu_capacity;
-
/*
* NULL-terminated list of performance domains intersecting with the
* CPUs of the rd. Protected by RCU.
@@ -920,6 +928,17 @@ extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
extern void sched_get_rd(struct root_domain *rd);
extern void sched_put_rd(struct root_domain *rd);
+static inline int get_rd_overloaded(struct root_domain *rd)
+{
+ return READ_ONCE(rd->overloaded);
+}
+
+static inline void set_rd_overloaded(struct root_domain *rd, int status)
+{
+ if (get_rd_overloaded(rd) != status)
+ WRITE_ONCE(rd->overloaded, status);
+}
+
#ifdef HAVE_RT_PUSH_IPI
extern void rto_push_irq_work_func(struct irq_work *work);
#endif
@@ -1091,8 +1110,8 @@ struct rq {
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
struct sched_avg avg_irq;
#endif
-#ifdef CONFIG_SCHED_THERMAL_PRESSURE
- struct sched_avg avg_thermal;
+#ifdef CONFIG_SCHED_HW_PRESSURE
+ struct sched_avg avg_hw;
#endif
u64 idle_stamp;
u64 avg_idle;
@@ -1533,24 +1552,6 @@ static inline u64 rq_clock_task(struct rq *rq)
return rq->clock_task;
}
-/**
- * By default the decay is the default pelt decay period.
- * The decay shift can change the decay period in
- * multiples of 32.
- * Decay shift Decay period(ms)
- * 0 32
- * 1 64
- * 2 128
- * 3 256
- * 4 512
- */
-extern int sched_thermal_decay_shift;
-
-static inline u64 rq_clock_thermal(struct rq *rq)
-{
- return rq_clock_task(rq) >> sched_thermal_decay_shift;
-}
-
static inline void rq_clock_skip_update(struct rq *rq)
{
lockdep_assert_rq_held(rq);
@@ -2399,7 +2400,7 @@ extern struct task_struct *pick_next_task_idle(struct rq *rq);
extern void update_group_capacity(struct sched_domain *sd, int cpu);
-extern void trigger_load_balance(struct rq *rq);
+extern void sched_balance_trigger(struct rq *rq);
extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
@@ -2519,10 +2520,8 @@ static inline void add_nr_running(struct rq *rq, unsigned count)
}
#ifdef CONFIG_SMP
- if (prev_nr < 2 && rq->nr_running >= 2) {
- if (!READ_ONCE(rq->rd->overload))
- WRITE_ONCE(rq->rd->overload, 1);
- }
+ if (prev_nr < 2 && rq->nr_running >= 2)
+ set_rd_overloaded(rq->rd, 1);
#endif
sched_update_tick_dependency(rq);
@@ -2906,7 +2905,7 @@ extern void cfs_bandwidth_usage_dec(void);
#define NOHZ_NEWILB_KICK_BIT 2
#define NOHZ_NEXT_KICK_BIT 3
-/* Run rebalance_domains() */
+/* Run sched_balance_domains() */
#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
/* Update blocked load */
#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
diff --git a/kernel/sched/stats.c b/kernel/sched/stats.c
index 857f837f52cb..78e48f5426ee 100644
--- a/kernel/sched/stats.c
+++ b/kernel/sched/stats.c
@@ -113,7 +113,7 @@ void __update_stats_enqueue_sleeper(struct rq *rq, struct task_struct *p,
* Bump this up when changing the output format or the meaning of an existing
* format, so that tools can adapt (or abort)
*/
-#define SCHEDSTAT_VERSION 15
+#define SCHEDSTAT_VERSION 16
static int show_schedstat(struct seq_file *seq, void *v)
{
@@ -150,8 +150,7 @@ static int show_schedstat(struct seq_file *seq, void *v)
seq_printf(seq, "domain%d %*pb", dcount++,
cpumask_pr_args(sched_domain_span(sd)));
- for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES;
- itype++) {
+ for (itype = 0; itype < CPU_MAX_IDLE_TYPES; itype++) {
seq_printf(seq, " %u %u %u %u %u %u %u %u",
sd->lb_count[itype],
sd->lb_balanced[itype],
diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
index 99ea5986038c..63aecd2a7a9f 100644
--- a/kernel/sched/topology.c
+++ b/kernel/sched/topology.c
@@ -1330,23 +1330,12 @@ next:
}
/*
- * Asymmetric CPU capacity bits
- */
-struct asym_cap_data {
- struct list_head link;
- unsigned long capacity;
- unsigned long cpus[];
-};
-
-/*
* Set of available CPUs grouped by their corresponding capacities
* Each list entry contains a CPU mask reflecting CPUs that share the same
* capacity.
* The lifespan of data is unlimited.
*/
-static LIST_HEAD(asym_cap_list);
-
-#define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
+LIST_HEAD(asym_cap_list);
/*
* Verify whether there is any CPU capacity asymmetry in a given sched domain.
@@ -1386,21 +1375,39 @@ asym_cpu_capacity_classify(const struct cpumask *sd_span,
}
+static void free_asym_cap_entry(struct rcu_head *head)
+{
+ struct asym_cap_data *entry = container_of(head, struct asym_cap_data, rcu);
+ kfree(entry);
+}
+
static inline void asym_cpu_capacity_update_data(int cpu)
{
unsigned long capacity = arch_scale_cpu_capacity(cpu);
- struct asym_cap_data *entry = NULL;
+ struct asym_cap_data *insert_entry = NULL;
+ struct asym_cap_data *entry;
+ /*
+ * Search if capacity already exits. If not, track which the entry
+ * where we should insert to keep the list ordered descendingly.
+ */
list_for_each_entry(entry, &asym_cap_list, link) {
if (capacity == entry->capacity)
goto done;
+ else if (!insert_entry && capacity > entry->capacity)
+ insert_entry = list_prev_entry(entry, link);
}
entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
return;
entry->capacity = capacity;
- list_add(&entry->link, &asym_cap_list);
+
+ /* If NULL then the new capacity is the smallest, add last. */
+ if (!insert_entry)
+ list_add_tail_rcu(&entry->link, &asym_cap_list);
+ else
+ list_add_rcu(&entry->link, &insert_entry->link);
done:
__cpumask_set_cpu(cpu, cpu_capacity_span(entry));
}
@@ -1423,8 +1430,8 @@ static void asym_cpu_capacity_scan(void)
list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
if (cpumask_empty(cpu_capacity_span(entry))) {
- list_del(&entry->link);
- kfree(entry);
+ list_del_rcu(&entry->link);
+ call_rcu(&entry->rcu, free_asym_cap_entry);
}
}
@@ -1434,8 +1441,8 @@ static void asym_cpu_capacity_scan(void)
*/
if (list_is_singular(&asym_cap_list)) {
entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
- list_del(&entry->link);
- kfree(entry);
+ list_del_rcu(&entry->link);
+ call_rcu(&entry->rcu, free_asym_cap_entry);
}
}
@@ -2507,16 +2514,9 @@ build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *att
/* Attach the domains */
rcu_read_lock();
for_each_cpu(i, cpu_map) {
- unsigned long capacity;
-
rq = cpu_rq(i);
sd = *per_cpu_ptr(d.sd, i);
- capacity = arch_scale_cpu_capacity(i);
- /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
- if (capacity > READ_ONCE(d.rd->max_cpu_capacity))
- WRITE_ONCE(d.rd->max_cpu_capacity, capacity);
-
cpu_attach_domain(sd, d.rd, i);
if (lowest_flag_domain(i, SD_CLUSTER))
@@ -2530,10 +2530,8 @@ build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *att
if (has_cluster)
static_branch_inc_cpuslocked(&sched_cluster_active);
- if (rq && sched_debug_verbose) {
- pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
- cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
- }
+ if (rq && sched_debug_verbose)
+ pr_info("root domain span: %*pbl\n", cpumask_pr_args(cpu_map));
ret = 0;
error:
diff --git a/kernel/seccomp.c b/kernel/seccomp.c
index aca7b437882e..f70e031e06a8 100644
--- a/kernel/seccomp.c
+++ b/kernel/seccomp.c
@@ -2334,7 +2334,7 @@ static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names)
return true;
}
-static int read_actions_logged(struct ctl_table *ro_table, void *buffer,
+static int read_actions_logged(const struct ctl_table *ro_table, void *buffer,
size_t *lenp, loff_t *ppos)
{
char names[sizeof(seccomp_actions_avail)];
@@ -2352,7 +2352,7 @@ static int read_actions_logged(struct ctl_table *ro_table, void *buffer,
return proc_dostring(&table, 0, buffer, lenp, ppos);
}
-static int write_actions_logged(struct ctl_table *ro_table, void *buffer,
+static int write_actions_logged(const struct ctl_table *ro_table, void *buffer,
size_t *lenp, loff_t *ppos, u32 *actions_logged)
{
char names[sizeof(seccomp_actions_avail)];
diff --git a/kernel/stackleak.c b/kernel/stackleak.c
index 34c9d81eea94..59cdfaf5118e 100644
--- a/kernel/stackleak.c
+++ b/kernel/stackleak.c
@@ -27,10 +27,10 @@ static int stack_erasing_sysctl(struct ctl_table *table, int write,
int ret = 0;
int state = !static_branch_unlikely(&stack_erasing_bypass);
int prev_state = state;
+ struct ctl_table table_copy = *table;
- table->data = &state;
- table->maxlen = sizeof(int);
- ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
+ table_copy.data = &state;
+ ret = proc_dointvec_minmax(&table_copy, write, buffer, lenp, ppos);
state = !!state;
if (ret || !write || state == prev_state)
return ret;
diff --git a/kernel/time/Kconfig b/kernel/time/Kconfig
index fc3b1a06c981..8ebb6d5a106b 100644
--- a/kernel/time/Kconfig
+++ b/kernel/time/Kconfig
@@ -202,7 +202,7 @@ config HIGH_RES_TIMERS
the size of the kernel image.
config CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
- int "Clocksource watchdog maximum allowable skew (in μs)"
+ int "Clocksource watchdog maximum allowable skew (in microseconds)"
depends on CLOCKSOURCE_WATCHDOG
range 50 1000
default 125
diff --git a/kernel/time/clockevents.c b/kernel/time/clockevents.c
index a7ca458cdd9c..60a6484831b1 100644
--- a/kernel/time/clockevents.c
+++ b/kernel/time/clockevents.c
@@ -677,7 +677,7 @@ static ssize_t current_device_show(struct device *dev,
raw_spin_lock_irq(&clockevents_lock);
td = tick_get_tick_dev(dev);
if (td && td->evtdev)
- count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
+ count = sysfs_emit(buf, "%s\n", td->evtdev->name);
raw_spin_unlock_irq(&clockevents_lock);
return count;
}
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c
index e5b260aa0e02..d25ba49e313c 100644
--- a/kernel/time/clocksource.c
+++ b/kernel/time/clocksource.c
@@ -20,6 +20,16 @@
#include "tick-internal.h"
#include "timekeeping_internal.h"
+static noinline u64 cycles_to_nsec_safe(struct clocksource *cs, u64 start, u64 end)
+{
+ u64 delta = clocksource_delta(end, start, cs->mask);
+
+ if (likely(delta < cs->max_cycles))
+ return clocksource_cyc2ns(delta, cs->mult, cs->shift);
+
+ return mul_u64_u32_shr(delta, cs->mult, cs->shift);
+}
+
/**
* clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
* @mult: pointer to mult variable
@@ -222,8 +232,8 @@ enum wd_read_status {
static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
{
unsigned int nretries, max_retries;
- u64 wd_end, wd_end2, wd_delta;
int64_t wd_delay, wd_seq_delay;
+ u64 wd_end, wd_end2;
max_retries = clocksource_get_max_watchdog_retry();
for (nretries = 0; nretries <= max_retries; nretries++) {
@@ -234,9 +244,7 @@ static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow,
wd_end2 = watchdog->read(watchdog);
local_irq_enable();
- wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
- wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
- watchdog->shift);
+ wd_delay = cycles_to_nsec_safe(watchdog, *wdnow, wd_end);
if (wd_delay <= WATCHDOG_MAX_SKEW) {
if (nretries > 1 || nretries >= max_retries) {
pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
@@ -254,8 +262,7 @@ static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow,
* report system busy, reinit the watchdog and skip the current
* watchdog test.
*/
- wd_delta = clocksource_delta(wd_end2, wd_end, watchdog->mask);
- wd_seq_delay = clocksource_cyc2ns(wd_delta, watchdog->mult, watchdog->shift);
+ wd_seq_delay = cycles_to_nsec_safe(watchdog, wd_end, wd_end2);
if (wd_seq_delay > WATCHDOG_MAX_SKEW/2)
goto skip_test;
}
@@ -366,8 +373,7 @@ void clocksource_verify_percpu(struct clocksource *cs)
delta = (csnow_end - csnow_mid) & cs->mask;
if (delta < 0)
cpumask_set_cpu(cpu, &cpus_ahead);
- delta = clocksource_delta(csnow_end, csnow_begin, cs->mask);
- cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
+ cs_nsec = cycles_to_nsec_safe(cs, csnow_begin, csnow_end);
if (cs_nsec > cs_nsec_max)
cs_nsec_max = cs_nsec;
if (cs_nsec < cs_nsec_min)
@@ -398,8 +404,8 @@ static inline void clocksource_reset_watchdog(void)
static void clocksource_watchdog(struct timer_list *unused)
{
- u64 csnow, wdnow, cslast, wdlast, delta;
int64_t wd_nsec, cs_nsec, interval;
+ u64 csnow, wdnow, cslast, wdlast;
int next_cpu, reset_pending;
struct clocksource *cs;
enum wd_read_status read_ret;
@@ -456,12 +462,8 @@ static void clocksource_watchdog(struct timer_list *unused)
continue;
}
- delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
- wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
- watchdog->shift);
-
- delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
- cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
+ wd_nsec = cycles_to_nsec_safe(watchdog, cs->wd_last, wdnow);
+ cs_nsec = cycles_to_nsec_safe(cs, cs->cs_last, csnow);
wdlast = cs->wd_last; /* save these in case we print them */
cslast = cs->cs_last;
cs->cs_last = csnow;
@@ -832,7 +834,7 @@ void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
*/
u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
{
- u64 now, delta, nsec = 0;
+ u64 now, nsec = 0;
if (!suspend_clocksource)
return 0;
@@ -847,12 +849,8 @@ u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
else
now = suspend_clocksource->read(suspend_clocksource);
- if (now > suspend_start) {
- delta = clocksource_delta(now, suspend_start,
- suspend_clocksource->mask);
- nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
- suspend_clocksource->shift);
- }
+ if (now > suspend_start)
+ nsec = cycles_to_nsec_safe(suspend_clocksource, suspend_start, now);
/*
* Disable the suspend timer to save power if current clocksource is
@@ -1336,7 +1334,7 @@ static ssize_t current_clocksource_show(struct device *dev,
ssize_t count = 0;
mutex_lock(&clocksource_mutex);
- count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
+ count = sysfs_emit(buf, "%s\n", curr_clocksource->name);
mutex_unlock(&clocksource_mutex);
return count;
diff --git a/kernel/time/hrtimer.c b/kernel/time/hrtimer.c
index 70625dff62ce..492c14aac642 100644
--- a/kernel/time/hrtimer.c
+++ b/kernel/time/hrtimer.c
@@ -644,17 +644,12 @@ static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
/*
* Is the high resolution mode active ?
*/
-static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
+static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
cpu_base->hres_active : 0;
}
-static inline int hrtimer_hres_active(void)
-{
- return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
-}
-
static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
struct hrtimer *next_timer,
ktime_t expires_next)
@@ -678,7 +673,7 @@ static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
* set. So we'd effectively block all timers until the T2 event
* fires.
*/
- if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
+ if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
return;
tick_program_event(expires_next, 1);
@@ -789,12 +784,12 @@ static void retrigger_next_event(void *arg)
* function call will take care of the reprogramming in case the
* CPU was in a NOHZ idle sleep.
*/
- if (!__hrtimer_hres_active(base) && !tick_nohz_active)
+ if (!hrtimer_hres_active(base) && !tick_nohz_active)
return;
raw_spin_lock(&base->lock);
hrtimer_update_base(base);
- if (__hrtimer_hres_active(base))
+ if (hrtimer_hres_active(base))
hrtimer_force_reprogram(base, 0);
else
hrtimer_update_next_event(base);
@@ -951,7 +946,7 @@ void clock_was_set(unsigned int bases)
cpumask_var_t mask;
int cpu;
- if (!__hrtimer_hres_active(cpu_base) && !tick_nohz_active)
+ if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active)
goto out_timerfd;
if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
@@ -1491,7 +1486,7 @@ u64 hrtimer_get_next_event(void)
raw_spin_lock_irqsave(&cpu_base->lock, flags);
- if (!__hrtimer_hres_active(cpu_base))
+ if (!hrtimer_hres_active(cpu_base))
expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
@@ -1514,7 +1509,7 @@ u64 hrtimer_next_event_without(const struct hrtimer *exclude)
raw_spin_lock_irqsave(&cpu_base->lock, flags);
- if (__hrtimer_hres_active(cpu_base)) {
+ if (hrtimer_hres_active(cpu_base)) {
unsigned int active;
if (!cpu_base->softirq_activated) {
@@ -1875,25 +1870,7 @@ retry:
tick_program_event(expires_next, 1);
pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
}
-
-/* called with interrupts disabled */
-static inline void __hrtimer_peek_ahead_timers(void)
-{
- struct tick_device *td;
-
- if (!hrtimer_hres_active())
- return;
-
- td = this_cpu_ptr(&tick_cpu_device);
- if (td && td->evtdev)
- hrtimer_interrupt(td->evtdev);
-}
-
-#else /* CONFIG_HIGH_RES_TIMERS */
-
-static inline void __hrtimer_peek_ahead_timers(void) { }
-
-#endif /* !CONFIG_HIGH_RES_TIMERS */
+#endif /* !CONFIG_HIGH_RES_TIMERS */
/*
* Called from run_local_timers in hardirq context every jiffy
@@ -1904,7 +1881,7 @@ void hrtimer_run_queues(void)
unsigned long flags;
ktime_t now;
- if (__hrtimer_hres_active(cpu_base))
+ if (hrtimer_hres_active(cpu_base))
return;
/*
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c
index b58dffc58a8f..4e18db1819f8 100644
--- a/kernel/time/timekeeping.c
+++ b/kernel/time/timekeeping.c
@@ -237,7 +237,9 @@ static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
}
}
-static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
+static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles);
+
+static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr)
{
struct timekeeper *tk = &tk_core.timekeeper;
u64 now, last, mask, max, delta;
@@ -264,34 +266,23 @@ static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
* Try to catch underflows by checking if we are seeing small
* mask-relative negative values.
*/
- if (unlikely((~delta & mask) < (mask >> 3))) {
+ if (unlikely((~delta & mask) < (mask >> 3)))
tk->underflow_seen = 1;
- delta = 0;
- }
- /* Cap delta value to the max_cycles values to avoid mult overflows */
- if (unlikely(delta > max)) {
+ /* Check for multiplication overflows */
+ if (unlikely(delta > max))
tk->overflow_seen = 1;
- delta = tkr->clock->max_cycles;
- }
- return delta;
+ /* timekeeping_cycles_to_ns() handles both under and overflow */
+ return timekeeping_cycles_to_ns(tkr, now);
}
#else
static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
{
}
-static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
+static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr)
{
- u64 cycle_now, delta;
-
- /* read clocksource */
- cycle_now = tk_clock_read(tkr);
-
- /* calculate the delta since the last update_wall_time */
- delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
-
- return delta;
+ BUG();
}
#endif
@@ -370,32 +361,46 @@ static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
}
/* Timekeeper helper functions. */
+static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta)
+{
+ return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift);
+}
-static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
+static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
{
- u64 nsec;
+ /* Calculate the delta since the last update_wall_time() */
+ u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask;
- nsec = delta * tkr->mult + tkr->xtime_nsec;
- nsec >>= tkr->shift;
+ /*
+ * This detects both negative motion and the case where the delta
+ * overflows the multiplication with tkr->mult.
+ */
+ if (unlikely(delta > tkr->clock->max_cycles)) {
+ /*
+ * Handle clocksource inconsistency between CPUs to prevent
+ * time from going backwards by checking for the MSB of the
+ * mask being set in the delta.
+ */
+ if (delta & ~(mask >> 1))
+ return tkr->xtime_nsec >> tkr->shift;
+
+ return delta_to_ns_safe(tkr, delta);
+ }
- return nsec;
+ return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift;
}
-static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
+static __always_inline u64 __timekeeping_get_ns(const struct tk_read_base *tkr)
{
- u64 delta;
-
- delta = timekeeping_get_delta(tkr);
- return timekeeping_delta_to_ns(tkr, delta);
+ return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr));
}
-static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
+static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
{
- u64 delta;
+ if (IS_ENABLED(CONFIG_DEBUG_TIMEKEEPING))
+ return timekeeping_debug_get_ns(tkr);
- /* calculate the delta since the last update_wall_time */
- delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
- return timekeeping_delta_to_ns(tkr, delta);
+ return __timekeeping_get_ns(tkr);
}
/**
@@ -431,14 +436,6 @@ static void update_fast_timekeeper(const struct tk_read_base *tkr,
memcpy(base + 1, base, sizeof(*base));
}
-static __always_inline u64 fast_tk_get_delta_ns(struct tk_read_base *tkr)
-{
- u64 delta, cycles = tk_clock_read(tkr);
-
- delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
- return timekeeping_delta_to_ns(tkr, delta);
-}
-
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
{
struct tk_read_base *tkr;
@@ -449,7 +446,7 @@ static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
seq = raw_read_seqcount_latch(&tkf->seq);
tkr = tkf->base + (seq & 0x01);
now = ktime_to_ns(tkr->base);
- now += fast_tk_get_delta_ns(tkr);
+ now += __timekeeping_get_ns(tkr);
} while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
return now;
@@ -565,7 +562,7 @@ static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
tkr = tkf->base + (seq & 0x01);
basem = ktime_to_ns(tkr->base);
baser = ktime_to_ns(tkr->base_real);
- delta = fast_tk_get_delta_ns(tkr);
+ delta = __timekeeping_get_ns(tkr);
} while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
if (mono)
@@ -800,10 +797,15 @@ static void timekeeping_forward_now(struct timekeeper *tk)
tk->tkr_mono.cycle_last = cycle_now;
tk->tkr_raw.cycle_last = cycle_now;
- tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
- tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
+ while (delta > 0) {
+ u64 max = tk->tkr_mono.clock->max_cycles;
+ u64 incr = delta < max ? delta : max;
- tk_normalize_xtime(tk);
+ tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult;
+ tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult;
+ tk_normalize_xtime(tk);
+ delta -= incr;
+ }
}
/**
diff --git a/kernel/time/timer.c b/kernel/time/timer.c
index 3baf2fbe6848..e394d6d5b9b5 100644
--- a/kernel/time/timer.c
+++ b/kernel/time/timer.c
@@ -2488,7 +2488,7 @@ void update_process_times(int user_tick)
if (in_irq())
irq_work_tick();
#endif
- scheduler_tick();
+ sched_tick();
if (IS_ENABLED(CONFIG_POSIX_TIMERS))
run_posix_cpu_timers();
}
diff --git a/kernel/time/timer_migration.c b/kernel/time/timer_migration.c
index ccba875d2234..84413114db5c 100644
--- a/kernel/time/timer_migration.c
+++ b/kernel/time/timer_migration.c
@@ -1596,7 +1596,7 @@ static int tmigr_setup_groups(unsigned int cpu, unsigned int node)
} while (i < tmigr_hierarchy_levels);
- do {
+ while (i > 0) {
group = stack[--i];
if (err < 0) {
@@ -1645,7 +1645,7 @@ static int tmigr_setup_groups(unsigned int cpu, unsigned int node)
tmigr_connect_child_parent(child, group);
}
}
- } while (i > 0);
+ }
kfree(stack);
diff --git a/kernel/time/vsyscall.c b/kernel/time/vsyscall.c
index f0d5062d9cbc..9193d6133e5d 100644
--- a/kernel/time/vsyscall.c
+++ b/kernel/time/vsyscall.c
@@ -22,10 +22,16 @@ static inline void update_vdso_data(struct vdso_data *vdata,
u64 nsec, sec;
vdata[CS_HRES_COARSE].cycle_last = tk->tkr_mono.cycle_last;
+#ifdef CONFIG_GENERIC_VDSO_OVERFLOW_PROTECT
+ vdata[CS_HRES_COARSE].max_cycles = tk->tkr_mono.clock->max_cycles;
+#endif
vdata[CS_HRES_COARSE].mask = tk->tkr_mono.mask;
vdata[CS_HRES_COARSE].mult = tk->tkr_mono.mult;
vdata[CS_HRES_COARSE].shift = tk->tkr_mono.shift;
vdata[CS_RAW].cycle_last = tk->tkr_raw.cycle_last;
+#ifdef CONFIG_GENERIC_VDSO_OVERFLOW_PROTECT
+ vdata[CS_RAW].max_cycles = tk->tkr_raw.clock->max_cycles;
+#endif
vdata[CS_RAW].mask = tk->tkr_raw.mask;
vdata[CS_RAW].mult = tk->tkr_raw.mult;
vdata[CS_RAW].shift = tk->tkr_raw.shift;
diff --git a/kernel/trace/Kconfig b/kernel/trace/Kconfig
index 47345bf1d4a9..b3d7f62ac581 100644
--- a/kernel/trace/Kconfig
+++ b/kernel/trace/Kconfig
@@ -163,7 +163,7 @@ config TRACING
select BINARY_PRINTF
select EVENT_TRACING
select TRACE_CLOCK
- select TASKS_RCU if PREEMPTION
+ select NEED_TASKS_RCU
config GENERIC_TRACER
bool
@@ -204,7 +204,7 @@ config FUNCTION_TRACER
select GENERIC_TRACER
select CONTEXT_SWITCH_TRACER
select GLOB
- select TASKS_RCU if PREEMPTION
+ select NEED_TASKS_RCU
select TASKS_RUDE_RCU
help
Enable the kernel to trace every kernel function. This is done
diff --git a/kernel/trace/bpf_trace.c b/kernel/trace/bpf_trace.c
index 9dc605f08a23..f5154c051d2c 100644
--- a/kernel/trace/bpf_trace.c
+++ b/kernel/trace/bpf_trace.c
@@ -1053,9 +1053,15 @@ static unsigned long get_entry_ip(unsigned long fentry_ip)
{
u32 instr;
- /* Being extra safe in here in case entry ip is on the page-edge. */
- if (get_kernel_nofault(instr, (u32 *) fentry_ip - 1))
- return fentry_ip;
+ /* We want to be extra safe in case entry ip is on the page edge,
+ * but otherwise we need to avoid get_kernel_nofault()'s overhead.
+ */
+ if ((fentry_ip & ~PAGE_MASK) < ENDBR_INSN_SIZE) {
+ if (get_kernel_nofault(instr, (u32 *)(fentry_ip - ENDBR_INSN_SIZE)))
+ return fentry_ip;
+ } else {
+ instr = *(u32 *)(fentry_ip - ENDBR_INSN_SIZE);
+ }
if (is_endbr(instr))
fentry_ip -= ENDBR_INSN_SIZE;
return fentry_ip;
@@ -1182,9 +1188,6 @@ static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
{
-#ifndef CONFIG_X86
- return -ENOENT;
-#else
static const u32 br_entry_size = sizeof(struct perf_branch_entry);
u32 entry_cnt = size / br_entry_size;
@@ -1197,7 +1200,6 @@ BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
return -ENOENT;
return entry_cnt * br_entry_size;
-#endif
}
static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
@@ -1525,8 +1527,6 @@ bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
return &bpf_ktime_get_boot_ns_proto;
case BPF_FUNC_tail_call:
return &bpf_tail_call_proto;
- case BPF_FUNC_get_current_pid_tgid:
- return &bpf_get_current_pid_tgid_proto;
case BPF_FUNC_get_current_task:
return &bpf_get_current_task_proto;
case BPF_FUNC_get_current_task_btf:
@@ -1582,8 +1582,6 @@ bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
return &bpf_send_signal_thread_proto;
case BPF_FUNC_perf_event_read_value:
return &bpf_perf_event_read_value_proto;
- case BPF_FUNC_get_ns_current_pid_tgid:
- return &bpf_get_ns_current_pid_tgid_proto;
case BPF_FUNC_ringbuf_output:
return &bpf_ringbuf_output_proto;
case BPF_FUNC_ringbuf_reserve:
@@ -1633,6 +1631,17 @@ bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
}
}
+static bool is_kprobe_multi(const struct bpf_prog *prog)
+{
+ return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ||
+ prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
+}
+
+static inline bool is_kprobe_session(const struct bpf_prog *prog)
+{
+ return prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
+}
+
static const struct bpf_func_proto *
kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
@@ -1648,13 +1657,13 @@ kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
return &bpf_override_return_proto;
#endif
case BPF_FUNC_get_func_ip:
- if (prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI)
+ if (is_kprobe_multi(prog))
return &bpf_get_func_ip_proto_kprobe_multi;
if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI)
return &bpf_get_func_ip_proto_uprobe_multi;
return &bpf_get_func_ip_proto_kprobe;
case BPF_FUNC_get_attach_cookie:
- if (prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI)
+ if (is_kprobe_multi(prog))
return &bpf_get_attach_cookie_proto_kmulti;
if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI)
return &bpf_get_attach_cookie_proto_umulti;
@@ -2008,6 +2017,8 @@ raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
return &bpf_get_stackid_proto_raw_tp;
case BPF_FUNC_get_stack:
return &bpf_get_stack_proto_raw_tp;
+ case BPF_FUNC_get_attach_cookie:
+ return &bpf_get_attach_cookie_proto_tracing;
default:
return bpf_tracing_func_proto(func_id, prog);
}
@@ -2070,6 +2081,9 @@ tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
case BPF_FUNC_get_func_arg_cnt:
return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
case BPF_FUNC_get_attach_cookie:
+ if (prog->type == BPF_PROG_TYPE_TRACING &&
+ prog->expected_attach_type == BPF_TRACE_RAW_TP)
+ return &bpf_get_attach_cookie_proto_tracing;
return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
default:
fn = raw_tp_prog_func_proto(func_id, prog);
@@ -2370,16 +2384,26 @@ void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
}
static __always_inline
-void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
+void __bpf_trace_run(struct bpf_raw_tp_link *link, u64 *args)
{
+ struct bpf_prog *prog = link->link.prog;
+ struct bpf_run_ctx *old_run_ctx;
+ struct bpf_trace_run_ctx run_ctx;
+
cant_sleep();
if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
bpf_prog_inc_misses_counter(prog);
goto out;
}
+
+ run_ctx.bpf_cookie = link->cookie;
+ old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
+
rcu_read_lock();
(void) bpf_prog_run(prog, args);
rcu_read_unlock();
+
+ bpf_reset_run_ctx(old_run_ctx);
out:
this_cpu_dec(*(prog->active));
}
@@ -2408,12 +2432,12 @@ out:
#define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
#define BPF_TRACE_DEFN_x(x) \
- void bpf_trace_run##x(struct bpf_prog *prog, \
+ void bpf_trace_run##x(struct bpf_raw_tp_link *link, \
REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \
{ \
u64 args[x]; \
REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \
- __bpf_trace_run(prog, args); \
+ __bpf_trace_run(link, args); \
} \
EXPORT_SYMBOL_GPL(bpf_trace_run##x)
BPF_TRACE_DEFN_x(1);
@@ -2429,9 +2453,10 @@ BPF_TRACE_DEFN_x(10);
BPF_TRACE_DEFN_x(11);
BPF_TRACE_DEFN_x(12);
-static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
+int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
{
struct tracepoint *tp = btp->tp;
+ struct bpf_prog *prog = link->link.prog;
/*
* check that program doesn't access arguments beyond what's
@@ -2443,18 +2468,12 @@ static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *
if (prog->aux->max_tp_access > btp->writable_size)
return -EINVAL;
- return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
- prog);
+ return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, link);
}
-int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
+int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
{
- return __bpf_probe_register(btp, prog);
-}
-
-int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
-{
- return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
+ return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, link);
}
int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
@@ -2577,6 +2596,12 @@ static int __init bpf_event_init(void)
fs_initcall(bpf_event_init);
#endif /* CONFIG_MODULES */
+struct bpf_session_run_ctx {
+ struct bpf_run_ctx run_ctx;
+ bool is_return;
+ void *data;
+};
+
#ifdef CONFIG_FPROBE
struct bpf_kprobe_multi_link {
struct bpf_link link;
@@ -2590,7 +2615,7 @@ struct bpf_kprobe_multi_link {
};
struct bpf_kprobe_multi_run_ctx {
- struct bpf_run_ctx run_ctx;
+ struct bpf_session_run_ctx session_ctx;
struct bpf_kprobe_multi_link *link;
unsigned long entry_ip;
};
@@ -2769,7 +2794,8 @@ static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
if (WARN_ON_ONCE(!ctx))
return 0;
- run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
+ run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
+ session_ctx.run_ctx);
link = run_ctx->link;
if (!link->cookies)
return 0;
@@ -2786,15 +2812,21 @@ static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
{
struct bpf_kprobe_multi_run_ctx *run_ctx;
- run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx, run_ctx);
+ run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
+ session_ctx.run_ctx);
return run_ctx->entry_ip;
}
static int
kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
- unsigned long entry_ip, struct pt_regs *regs)
+ unsigned long entry_ip, struct pt_regs *regs,
+ bool is_return, void *data)
{
struct bpf_kprobe_multi_run_ctx run_ctx = {
+ .session_ctx = {
+ .is_return = is_return,
+ .data = data,
+ },
.link = link,
.entry_ip = entry_ip,
};
@@ -2809,7 +2841,7 @@ kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
migrate_disable();
rcu_read_lock();
- old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
+ old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
err = bpf_prog_run(link->link.prog, regs);
bpf_reset_run_ctx(old_run_ctx);
rcu_read_unlock();
@@ -2826,10 +2858,11 @@ kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
void *data)
{
struct bpf_kprobe_multi_link *link;
+ int err;
link = container_of(fp, struct bpf_kprobe_multi_link, fp);
- kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs);
- return 0;
+ err = kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs, false, data);
+ return is_kprobe_session(link->link.prog) ? err : 0;
}
static void
@@ -2840,7 +2873,7 @@ kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip,
struct bpf_kprobe_multi_link *link;
link = container_of(fp, struct bpf_kprobe_multi_link, fp);
- kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs);
+ kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs, true, data);
}
static int symbols_cmp_r(const void *a, const void *b, const void *priv)
@@ -2973,7 +3006,7 @@ int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *pr
if (sizeof(u64) != sizeof(void *))
return -EOPNOTSUPP;
- if (prog->expected_attach_type != BPF_TRACE_KPROBE_MULTI)
+ if (!is_kprobe_multi(prog))
return -EINVAL;
flags = attr->link_create.kprobe_multi.flags;
@@ -3054,10 +3087,12 @@ int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *pr
if (err)
goto error;
- if (flags & BPF_F_KPROBE_MULTI_RETURN)
- link->fp.exit_handler = kprobe_multi_link_exit_handler;
- else
+ if (!(flags & BPF_F_KPROBE_MULTI_RETURN))
link->fp.entry_handler = kprobe_multi_link_handler;
+ if ((flags & BPF_F_KPROBE_MULTI_RETURN) || is_kprobe_session(prog))
+ link->fp.exit_handler = kprobe_multi_link_exit_handler;
+ if (is_kprobe_session(prog))
+ link->fp.entry_data_size = sizeof(u64);
link->addrs = addrs;
link->cookies = cookies;
@@ -3483,3 +3518,54 @@ static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
return 0;
}
#endif /* CONFIG_UPROBES */
+
+#ifdef CONFIG_FPROBE
+__bpf_kfunc_start_defs();
+
+__bpf_kfunc bool bpf_session_is_return(void)
+{
+ struct bpf_session_run_ctx *session_ctx;
+
+ session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
+ return session_ctx->is_return;
+}
+
+__bpf_kfunc __u64 *bpf_session_cookie(void)
+{
+ struct bpf_session_run_ctx *session_ctx;
+
+ session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
+ return session_ctx->data;
+}
+
+__bpf_kfunc_end_defs();
+
+BTF_KFUNCS_START(kprobe_multi_kfunc_set_ids)
+BTF_ID_FLAGS(func, bpf_session_is_return)
+BTF_ID_FLAGS(func, bpf_session_cookie)
+BTF_KFUNCS_END(kprobe_multi_kfunc_set_ids)
+
+static int bpf_kprobe_multi_filter(const struct bpf_prog *prog, u32 kfunc_id)
+{
+ if (!btf_id_set8_contains(&kprobe_multi_kfunc_set_ids, kfunc_id))
+ return 0;
+
+ if (!is_kprobe_session(prog))
+ return -EACCES;
+
+ return 0;
+}
+
+static const struct btf_kfunc_id_set bpf_kprobe_multi_kfunc_set = {
+ .owner = THIS_MODULE,
+ .set = &kprobe_multi_kfunc_set_ids,
+ .filter = bpf_kprobe_multi_filter,
+};
+
+static int __init bpf_kprobe_multi_kfuncs_init(void)
+{
+ return register_btf_kfunc_id_set(BPF_PROG_TYPE_KPROBE, &bpf_kprobe_multi_kfunc_set);
+}
+
+late_initcall(bpf_kprobe_multi_kfuncs_init);
+#endif
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c
index da1710499698..6c96b30f3d63 100644
--- a/kernel/trace/ftrace.c
+++ b/kernel/trace/ftrace.c
@@ -3157,8 +3157,7 @@ out:
* synchronize_rcu_tasks() will wait for those tasks to
* execute and either schedule voluntarily or enter user space.
*/
- if (IS_ENABLED(CONFIG_PREEMPTION))
- synchronize_rcu_tasks();
+ synchronize_rcu_tasks();
ftrace_trampoline_free(ops);
}
diff --git a/kernel/trace/trace_kprobe.c b/kernel/trace/trace_kprobe.c
index 14099cc17fc9..2cb2a3951b4f 100644
--- a/kernel/trace/trace_kprobe.c
+++ b/kernel/trace/trace_kprobe.c
@@ -111,6 +111,7 @@ static nokprobe_inline bool trace_kprobe_within_module(struct trace_kprobe *tk,
return strncmp(module_name(mod), name, len) == 0 && name[len] == ':';
}
+#ifdef CONFIG_MODULES
static nokprobe_inline bool trace_kprobe_module_exist(struct trace_kprobe *tk)
{
char *p;
@@ -129,6 +130,12 @@ static nokprobe_inline bool trace_kprobe_module_exist(struct trace_kprobe *tk)
return ret;
}
+#else
+static inline bool trace_kprobe_module_exist(struct trace_kprobe *tk)
+{
+ return false;
+}
+#endif
static bool trace_kprobe_is_busy(struct dyn_event *ev)
{
@@ -670,6 +677,7 @@ end:
return ret;
}
+#ifdef CONFIG_MODULES
/* Module notifier call back, checking event on the module */
static int trace_kprobe_module_callback(struct notifier_block *nb,
unsigned long val, void *data)
@@ -704,6 +712,16 @@ static struct notifier_block trace_kprobe_module_nb = {
.notifier_call = trace_kprobe_module_callback,
.priority = 1 /* Invoked after kprobe module callback */
};
+static int trace_kprobe_register_module_notifier(void)
+{
+ return register_module_notifier(&trace_kprobe_module_nb);
+}
+#else
+static int trace_kprobe_register_module_notifier(void)
+{
+ return 0;
+}
+#endif /* CONFIG_MODULES */
static int count_symbols(void *data, unsigned long unused)
{
@@ -1933,7 +1951,7 @@ static __init int init_kprobe_trace_early(void)
if (ret)
return ret;
- if (register_module_notifier(&trace_kprobe_module_nb))
+ if (trace_kprobe_register_module_notifier())
return -EINVAL;
return 0;
diff --git a/kernel/trace/trace_probe.c b/kernel/trace/trace_probe.c
index 42bc0f362226..c3f2937b434a 100644
--- a/kernel/trace/trace_probe.c
+++ b/kernel/trace/trace_probe.c
@@ -1180,8 +1180,6 @@ parse_probe_arg(char *arg, const struct fetch_type *type,
return ret;
}
-#define BYTES_TO_BITS(nb) ((BITS_PER_LONG * (nb)) / sizeof(long))
-
/* Bitfield type needs to be parsed into a fetch function */
static int __parse_bitfield_probe_arg(const char *bf,
const struct fetch_type *t,
diff --git a/kernel/ucount.c b/kernel/ucount.c
index 4aa6166cb856..d9e283600f5c 100644
--- a/kernel/ucount.c
+++ b/kernel/ucount.c
@@ -119,7 +119,7 @@ bool setup_userns_sysctls(struct user_namespace *ns)
void retire_userns_sysctls(struct user_namespace *ns)
{
#ifdef CONFIG_SYSCTL
- struct ctl_table *tbl;
+ const struct ctl_table *tbl;
tbl = ns->sysctls->ctl_table_arg;
unregister_sysctl_table(ns->sysctls);
diff --git a/kernel/user.c b/kernel/user.c
index 03cedc366dc9..aa1162deafe4 100644
--- a/kernel/user.c
+++ b/kernel/user.c
@@ -88,7 +88,7 @@ EXPORT_SYMBOL_GPL(init_user_ns);
* when changing user ID's (ie setuid() and friends).
*/
-#define UIDHASH_BITS (CONFIG_BASE_SMALL ? 3 : 7)
+#define UIDHASH_BITS (IS_ENABLED(CONFIG_BASE_SMALL) ? 3 : 7)
#define UIDHASH_SZ (1 << UIDHASH_BITS)
#define UIDHASH_MASK (UIDHASH_SZ - 1)
#define __uidhashfn(uid) (((uid >> UIDHASH_BITS) + uid) & UIDHASH_MASK)
diff --git a/kernel/watchdog.c b/kernel/watchdog.c
index d7b2125503af..d12ff74889ed 100644
--- a/kernel/watchdog.c
+++ b/kernel/watchdog.c
@@ -12,20 +12,25 @@
#define pr_fmt(fmt) "watchdog: " fmt
-#include <linux/mm.h>
#include <linux/cpu.h>
-#include <linux/nmi.h>
#include <linux/init.h>
+#include <linux/irq.h>
+#include <linux/irqdesc.h>
+#include <linux/kernel_stat.h>
+#include <linux/kvm_para.h>
+#include <linux/math64.h>
+#include <linux/mm.h>
#include <linux/module.h>
+#include <linux/nmi.h>
+#include <linux/stop_machine.h>
#include <linux/sysctl.h>
#include <linux/tick.h>
+
#include <linux/sched/clock.h>
#include <linux/sched/debug.h>
#include <linux/sched/isolation.h>
-#include <linux/stop_machine.h>
#include <asm/irq_regs.h>
-#include <linux/kvm_para.h>
static DEFINE_MUTEX(watchdog_mutex);
@@ -35,6 +40,8 @@ static DEFINE_MUTEX(watchdog_mutex);
# define WATCHDOG_HARDLOCKUP_DEFAULT 0
#endif
+#define NUM_SAMPLE_PERIODS 5
+
unsigned long __read_mostly watchdog_enabled;
int __read_mostly watchdog_user_enabled = 1;
static int __read_mostly watchdog_hardlockup_user_enabled = WATCHDOG_HARDLOCKUP_DEFAULT;
@@ -333,6 +340,188 @@ __setup("watchdog_thresh=", watchdog_thresh_setup);
static void __lockup_detector_cleanup(void);
+#ifdef CONFIG_SOFTLOCKUP_DETECTOR_INTR_STORM
+enum stats_per_group {
+ STATS_SYSTEM,
+ STATS_SOFTIRQ,
+ STATS_HARDIRQ,
+ STATS_IDLE,
+ NUM_STATS_PER_GROUP,
+};
+
+static const enum cpu_usage_stat tracked_stats[NUM_STATS_PER_GROUP] = {
+ CPUTIME_SYSTEM,
+ CPUTIME_SOFTIRQ,
+ CPUTIME_IRQ,
+ CPUTIME_IDLE,
+};
+
+static DEFINE_PER_CPU(u16, cpustat_old[NUM_STATS_PER_GROUP]);
+static DEFINE_PER_CPU(u8, cpustat_util[NUM_SAMPLE_PERIODS][NUM_STATS_PER_GROUP]);
+static DEFINE_PER_CPU(u8, cpustat_tail);
+
+/*
+ * We don't need nanosecond resolution. A granularity of 16ms is
+ * sufficient for our precision, allowing us to use u16 to store
+ * cpustats, which will roll over roughly every ~1000 seconds.
+ * 2^24 ~= 16 * 10^6
+ */
+static u16 get_16bit_precision(u64 data_ns)
+{
+ return data_ns >> 24LL; /* 2^24ns ~= 16.8ms */
+}
+
+static void update_cpustat(void)
+{
+ int i;
+ u8 util;
+ u16 old_stat, new_stat;
+ struct kernel_cpustat kcpustat;
+ u64 *cpustat = kcpustat.cpustat;
+ u8 tail = __this_cpu_read(cpustat_tail);
+ u16 sample_period_16 = get_16bit_precision(sample_period);
+
+ kcpustat_cpu_fetch(&kcpustat, smp_processor_id());
+
+ for (i = 0; i < NUM_STATS_PER_GROUP; i++) {
+ old_stat = __this_cpu_read(cpustat_old[i]);
+ new_stat = get_16bit_precision(cpustat[tracked_stats[i]]);
+ util = DIV_ROUND_UP(100 * (new_stat - old_stat), sample_period_16);
+ __this_cpu_write(cpustat_util[tail][i], util);
+ __this_cpu_write(cpustat_old[i], new_stat);
+ }
+
+ __this_cpu_write(cpustat_tail, (tail + 1) % NUM_SAMPLE_PERIODS);
+}
+
+static void print_cpustat(void)
+{
+ int i, group;
+ u8 tail = __this_cpu_read(cpustat_tail);
+ u64 sample_period_second = sample_period;
+
+ do_div(sample_period_second, NSEC_PER_SEC);
+
+ /*
+ * Outputting the "watchdog" prefix on every line is redundant and not
+ * concise, and the original alarm information is sufficient for
+ * positioning in logs, hence here printk() is used instead of pr_crit().
+ */
+ printk(KERN_CRIT "CPU#%d Utilization every %llus during lockup:\n",
+ smp_processor_id(), sample_period_second);
+
+ for (i = 0; i < NUM_SAMPLE_PERIODS; i++) {
+ group = (tail + i) % NUM_SAMPLE_PERIODS;
+ printk(KERN_CRIT "\t#%d: %3u%% system,\t%3u%% softirq,\t"
+ "%3u%% hardirq,\t%3u%% idle\n", i + 1,
+ __this_cpu_read(cpustat_util[group][STATS_SYSTEM]),
+ __this_cpu_read(cpustat_util[group][STATS_SOFTIRQ]),
+ __this_cpu_read(cpustat_util[group][STATS_HARDIRQ]),
+ __this_cpu_read(cpustat_util[group][STATS_IDLE]));
+ }
+}
+
+#define HARDIRQ_PERCENT_THRESH 50
+#define NUM_HARDIRQ_REPORT 5
+struct irq_counts {
+ int irq;
+ u32 counts;
+};
+
+static DEFINE_PER_CPU(bool, snapshot_taken);
+
+/* Tabulate the most frequent interrupts. */
+static void tabulate_irq_count(struct irq_counts *irq_counts, int irq, u32 counts, int rank)
+{
+ int i;
+ struct irq_counts new_count = {irq, counts};
+
+ for (i = 0; i < rank; i++) {
+ if (counts > irq_counts[i].counts)
+ swap(new_count, irq_counts[i]);
+ }
+}
+
+/*
+ * If the hardirq time exceeds HARDIRQ_PERCENT_THRESH% of the sample_period,
+ * then the cause of softlockup might be interrupt storm. In this case, it
+ * would be useful to start interrupt counting.
+ */
+static bool need_counting_irqs(void)
+{
+ u8 util;
+ int tail = __this_cpu_read(cpustat_tail);
+
+ tail = (tail + NUM_HARDIRQ_REPORT - 1) % NUM_HARDIRQ_REPORT;
+ util = __this_cpu_read(cpustat_util[tail][STATS_HARDIRQ]);
+ return util > HARDIRQ_PERCENT_THRESH;
+}
+
+static void start_counting_irqs(void)
+{
+ if (!__this_cpu_read(snapshot_taken)) {
+ kstat_snapshot_irqs();
+ __this_cpu_write(snapshot_taken, true);
+ }
+}
+
+static void stop_counting_irqs(void)
+{
+ __this_cpu_write(snapshot_taken, false);
+}
+
+static void print_irq_counts(void)
+{
+ unsigned int i, count;
+ struct irq_counts irq_counts_sorted[NUM_HARDIRQ_REPORT] = {
+ {-1, 0}, {-1, 0}, {-1, 0}, {-1, 0}, {-1, 0}
+ };
+
+ if (__this_cpu_read(snapshot_taken)) {
+ for_each_active_irq(i) {
+ count = kstat_get_irq_since_snapshot(i);
+ tabulate_irq_count(irq_counts_sorted, i, count, NUM_HARDIRQ_REPORT);
+ }
+
+ /*
+ * Outputting the "watchdog" prefix on every line is redundant and not
+ * concise, and the original alarm information is sufficient for
+ * positioning in logs, hence here printk() is used instead of pr_crit().
+ */
+ printk(KERN_CRIT "CPU#%d Detect HardIRQ Time exceeds %d%%. Most frequent HardIRQs:\n",
+ smp_processor_id(), HARDIRQ_PERCENT_THRESH);
+
+ for (i = 0; i < NUM_HARDIRQ_REPORT; i++) {
+ if (irq_counts_sorted[i].irq == -1)
+ break;
+
+ printk(KERN_CRIT "\t#%u: %-10u\tirq#%d\n",
+ i + 1, irq_counts_sorted[i].counts,
+ irq_counts_sorted[i].irq);
+ }
+
+ /*
+ * If the hardirq time is less than HARDIRQ_PERCENT_THRESH% in the last
+ * sample_period, then we suspect the interrupt storm might be subsiding.
+ */
+ if (!need_counting_irqs())
+ stop_counting_irqs();
+ }
+}
+
+static void report_cpu_status(void)
+{
+ print_cpustat();
+ print_irq_counts();
+}
+#else
+static inline void update_cpustat(void) { }
+static inline void report_cpu_status(void) { }
+static inline bool need_counting_irqs(void) { return false; }
+static inline void start_counting_irqs(void) { }
+static inline void stop_counting_irqs(void) { }
+#endif
+
/*
* Hard-lockup warnings should be triggered after just a few seconds. Soft-
* lockups can have false positives under extreme conditions. So we generally
@@ -364,7 +553,7 @@ static void set_sample_period(void)
* and hard thresholds) to increment before the
* hardlockup detector generates a warning
*/
- sample_period = get_softlockup_thresh() * ((u64)NSEC_PER_SEC / 5);
+ sample_period = get_softlockup_thresh() * ((u64)NSEC_PER_SEC / NUM_SAMPLE_PERIODS);
watchdog_update_hrtimer_threshold(sample_period);
}
@@ -434,6 +623,18 @@ static int is_softlockup(unsigned long touch_ts,
unsigned long now)
{
if ((watchdog_enabled & WATCHDOG_SOFTOCKUP_ENABLED) && watchdog_thresh) {
+ /*
+ * If period_ts has not been updated during a sample_period, then
+ * in the subsequent few sample_periods, period_ts might also not
+ * be updated, which could indicate a potential softlockup. In
+ * this case, if we suspect the cause of the potential softlockup
+ * might be interrupt storm, then we need to count the interrupts
+ * to find which interrupt is storming.
+ */
+ if (time_after_eq(now, period_ts + get_softlockup_thresh() / NUM_SAMPLE_PERIODS) &&
+ need_counting_irqs())
+ start_counting_irqs();
+
/* Warn about unreasonable delays. */
if (time_after(now, period_ts + get_softlockup_thresh()))
return now - touch_ts;
@@ -456,6 +657,7 @@ static DEFINE_PER_CPU(struct cpu_stop_work, softlockup_stop_work);
static int softlockup_fn(void *data)
{
update_touch_ts();
+ stop_counting_irqs();
complete(this_cpu_ptr(&softlockup_completion));
return 0;
@@ -504,6 +706,8 @@ static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
*/
period_ts = READ_ONCE(*this_cpu_ptr(&watchdog_report_ts));
+ update_cpustat();
+
/* Reset the interval when touched by known problematic code. */
if (period_ts == SOFTLOCKUP_DELAY_REPORT) {
if (unlikely(__this_cpu_read(softlockup_touch_sync))) {
@@ -539,6 +743,7 @@ static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
pr_emerg("BUG: soft lockup - CPU#%d stuck for %us! [%s:%d]\n",
smp_processor_id(), duration,
current->comm, task_pid_nr(current));
+ report_cpu_status();
print_modules();
print_irqtrace_events(current);
if (regs)
diff --git a/kernel/workqueue.c b/kernel/workqueue.c
index d2dbe099286b..80882ae43261 100644
--- a/kernel/workqueue.c
+++ b/kernel/workqueue.c
@@ -1468,7 +1468,7 @@ void wq_worker_sleeping(struct task_struct *task)
* wq_worker_tick - a scheduler tick occurred while a kworker is running
* @task: task currently running
*
- * Called from scheduler_tick(). We're in the IRQ context and the current
+ * Called from sched_tick(). We're in the IRQ context and the current
* worker's fields which follow the 'K' locking rule can be accessed safely.
*/
void wq_worker_tick(struct task_struct *task)