summaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/Makefile1
-rw-r--r--kernel/exit.c13
-rw-r--r--kernel/fork.c1
-rw-r--r--kernel/perf_counter.c2169
-rw-r--r--kernel/sched.c76
-rw-r--r--kernel/sys.c7
-rw-r--r--kernel/sys_ni.c3
7 files changed, 2263 insertions, 7 deletions
diff --git a/kernel/Makefile b/kernel/Makefile
index 2aebc4cd7878..e4115926c536 100644
--- a/kernel/Makefile
+++ b/kernel/Makefile
@@ -93,6 +93,7 @@ obj-$(CONFIG_HAVE_GENERIC_DMA_COHERENT) += dma-coherent.o
obj-$(CONFIG_FUNCTION_TRACER) += trace/
obj-$(CONFIG_TRACING) += trace/
obj-$(CONFIG_SMP) += sched_cpupri.o
+obj-$(CONFIG_PERF_COUNTERS) += perf_counter.o
ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y)
# According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is
diff --git a/kernel/exit.c b/kernel/exit.c
index c7740fa3252c..cbdb39a498eb 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -159,6 +159,9 @@ static void delayed_put_task_struct(struct rcu_head *rhp)
{
struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
+#ifdef CONFIG_PERF_COUNTERS
+ WARN_ON_ONCE(!list_empty(&tsk->perf_counter_ctx.counter_list));
+#endif
trace_sched_process_free(tsk);
put_task_struct(tsk);
}
@@ -1093,10 +1096,6 @@ NORET_TYPE void do_exit(long code)
tsk->mempolicy = NULL;
#endif
#ifdef CONFIG_FUTEX
- /*
- * This must happen late, after the PID is not
- * hashed anymore:
- */
if (unlikely(!list_empty(&tsk->pi_state_list)))
exit_pi_state_list(tsk);
if (unlikely(current->pi_state_cache))
@@ -1361,6 +1360,12 @@ static int wait_task_zombie(struct task_struct *p, int options,
*/
read_unlock(&tasklist_lock);
+ /*
+ * Flush inherited counters to the parent - before the parent
+ * gets woken up by child-exit notifications.
+ */
+ perf_counter_exit_task(p);
+
retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
status = (p->signal->flags & SIGNAL_GROUP_EXIT)
? p->signal->group_exit_code : p->exit_code;
diff --git a/kernel/fork.c b/kernel/fork.c
index 1d68f1255dd8..b1f8609287eb 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -985,6 +985,7 @@ static struct task_struct *copy_process(unsigned long clone_flags,
goto fork_out;
rt_mutex_init_task(p);
+ perf_counter_init_task(p);
#ifdef CONFIG_PROVE_LOCKING
DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
diff --git a/kernel/perf_counter.c b/kernel/perf_counter.c
new file mode 100644
index 000000000000..1ac18daa424f
--- /dev/null
+++ b/kernel/perf_counter.c
@@ -0,0 +1,2169 @@
+/*
+ * Performance counter core code
+ *
+ * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
+ * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
+ *
+ * For licencing details see kernel-base/COPYING
+ */
+
+#include <linux/fs.h>
+#include <linux/cpu.h>
+#include <linux/smp.h>
+#include <linux/file.h>
+#include <linux/poll.h>
+#include <linux/sysfs.h>
+#include <linux/ptrace.h>
+#include <linux/percpu.h>
+#include <linux/uaccess.h>
+#include <linux/syscalls.h>
+#include <linux/anon_inodes.h>
+#include <linux/kernel_stat.h>
+#include <linux/perf_counter.h>
+
+/*
+ * Each CPU has a list of per CPU counters:
+ */
+DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
+
+int perf_max_counters __read_mostly = 1;
+static int perf_reserved_percpu __read_mostly;
+static int perf_overcommit __read_mostly = 1;
+
+/*
+ * Mutex for (sysadmin-configurable) counter reservations:
+ */
+static DEFINE_MUTEX(perf_resource_mutex);
+
+/*
+ * Architecture provided APIs - weak aliases:
+ */
+extern __weak const struct hw_perf_counter_ops *
+hw_perf_counter_init(struct perf_counter *counter)
+{
+ return NULL;
+}
+
+u64 __weak hw_perf_save_disable(void) { return 0; }
+void __weak hw_perf_restore(u64 ctrl) { barrier(); }
+void __weak hw_perf_counter_setup(int cpu) { barrier(); }
+int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
+ struct perf_cpu_context *cpuctx,
+ struct perf_counter_context *ctx, int cpu)
+{
+ return 0;
+}
+
+void __weak perf_counter_print_debug(void) { }
+
+static void
+list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
+{
+ struct perf_counter *group_leader = counter->group_leader;
+
+ /*
+ * Depending on whether it is a standalone or sibling counter,
+ * add it straight to the context's counter list, or to the group
+ * leader's sibling list:
+ */
+ if (counter->group_leader == counter)
+ list_add_tail(&counter->list_entry, &ctx->counter_list);
+ else
+ list_add_tail(&counter->list_entry, &group_leader->sibling_list);
+}
+
+static void
+list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
+{
+ struct perf_counter *sibling, *tmp;
+
+ list_del_init(&counter->list_entry);
+
+ /*
+ * If this was a group counter with sibling counters then
+ * upgrade the siblings to singleton counters by adding them
+ * to the context list directly:
+ */
+ list_for_each_entry_safe(sibling, tmp,
+ &counter->sibling_list, list_entry) {
+
+ list_del_init(&sibling->list_entry);
+ list_add_tail(&sibling->list_entry, &ctx->counter_list);
+ sibling->group_leader = sibling;
+ }
+}
+
+static void
+counter_sched_out(struct perf_counter *counter,
+ struct perf_cpu_context *cpuctx,
+ struct perf_counter_context *ctx)
+{
+ if (counter->state != PERF_COUNTER_STATE_ACTIVE)
+ return;
+
+ counter->state = PERF_COUNTER_STATE_INACTIVE;
+ counter->hw_ops->disable(counter);
+ counter->oncpu = -1;
+
+ if (!is_software_counter(counter))
+ cpuctx->active_oncpu--;
+ ctx->nr_active--;
+ if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
+ cpuctx->exclusive = 0;
+}
+
+static void
+group_sched_out(struct perf_counter *group_counter,
+ struct perf_cpu_context *cpuctx,
+ struct perf_counter_context *ctx)
+{
+ struct perf_counter *counter;
+
+ if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
+ return;
+
+ counter_sched_out(group_counter, cpuctx, ctx);
+
+ /*
+ * Schedule out siblings (if any):
+ */
+ list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
+ counter_sched_out(counter, cpuctx, ctx);
+
+ if (group_counter->hw_event.exclusive)
+ cpuctx->exclusive = 0;
+}
+
+/*
+ * Cross CPU call to remove a performance counter
+ *
+ * We disable the counter on the hardware level first. After that we
+ * remove it from the context list.
+ */
+static void __perf_counter_remove_from_context(void *info)
+{
+ struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
+ struct perf_counter *counter = info;
+ struct perf_counter_context *ctx = counter->ctx;
+ unsigned long flags;
+ u64 perf_flags;
+
+ /*
+ * If this is a task context, we need to check whether it is
+ * the current task context of this cpu. If not it has been
+ * scheduled out before the smp call arrived.
+ */
+ if (ctx->task && cpuctx->task_ctx != ctx)
+ return;
+
+ curr_rq_lock_irq_save(&flags);
+ spin_lock(&ctx->lock);
+
+ counter_sched_out(counter, cpuctx, ctx);
+
+ counter->task = NULL;
+ ctx->nr_counters--;
+
+ /*
+ * Protect the list operation against NMI by disabling the
+ * counters on a global level. NOP for non NMI based counters.
+ */
+ perf_flags = hw_perf_save_disable();
+ list_del_counter(counter, ctx);
+ hw_perf_restore(perf_flags);
+
+ if (!ctx->task) {
+ /*
+ * Allow more per task counters with respect to the
+ * reservation:
+ */
+ cpuctx->max_pertask =
+ min(perf_max_counters - ctx->nr_counters,
+ perf_max_counters - perf_reserved_percpu);
+ }
+
+ spin_unlock(&ctx->lock);
+ curr_rq_unlock_irq_restore(&flags);
+}
+
+
+/*
+ * Remove the counter from a task's (or a CPU's) list of counters.
+ *
+ * Must be called with counter->mutex and ctx->mutex held.
+ *
+ * CPU counters are removed with a smp call. For task counters we only
+ * call when the task is on a CPU.
+ */
+static void perf_counter_remove_from_context(struct perf_counter *counter)
+{
+ struct perf_counter_context *ctx = counter->ctx;
+ struct task_struct *task = ctx->task;
+
+ if (!task) {
+ /*
+ * Per cpu counters are removed via an smp call and
+ * the removal is always sucessful.
+ */
+ smp_call_function_single(counter->cpu,
+ __perf_counter_remove_from_context,
+ counter, 1);
+ return;
+ }
+
+retry:
+ task_oncpu_function_call(task, __perf_counter_remove_from_context,
+ counter);
+
+ spin_lock_irq(&ctx->lock);
+ /*
+ * If the context is active we need to retry the smp call.
+ */
+ if (ctx->nr_active && !list_empty(&counter->list_entry)) {
+ spin_unlock_irq(&ctx->lock);
+ goto retry;
+ }
+
+ /*
+ * The lock prevents that this context is scheduled in so we
+ * can remove the counter safely, if the call above did not
+ * succeed.
+ */
+ if (!list_empty(&counter->list_entry)) {
+ ctx->nr_counters--;
+ list_del_counter(counter, ctx);
+ counter->task = NULL;
+ }
+ spin_unlock_irq(&ctx->lock);
+}
+
+/*
+ * Cross CPU call to disable a performance counter
+ */
+static void __perf_counter_disable(void *info)
+{
+ struct perf_counter *counter = info;
+ struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
+ struct perf_counter_context *ctx = counter->ctx;
+ unsigned long flags;
+
+ /*
+ * If this is a per-task counter, need to check whether this
+ * counter's task is the current task on this cpu.
+ */
+ if (ctx->task && cpuctx->task_ctx != ctx)
+ return;
+
+ curr_rq_lock_irq_save(&flags);
+ spin_lock(&ctx->lock);
+
+ /*
+ * If the counter is on, turn it off.
+ * If it is in error state, leave it in error state.
+ */
+ if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
+ if (counter == counter->group_leader)
+ group_sched_out(counter, cpuctx, ctx);
+ else
+ counter_sched_out(counter, cpuctx, ctx);
+ counter->state = PERF_COUNTER_STATE_OFF;
+ }
+
+ spin_unlock(&ctx->lock);
+ curr_rq_unlock_irq_restore(&flags);
+}
+
+/*
+ * Disable a counter.
+ */
+static void perf_counter_disable(struct perf_counter *counter)
+{
+ struct perf_counter_context *ctx = counter->ctx;
+ struct task_struct *task = ctx->task;
+
+ if (!task) {
+ /*
+ * Disable the counter on the cpu that it's on
+ */
+ smp_call_function_single(counter->cpu, __perf_counter_disable,
+ counter, 1);
+ return;
+ }
+
+ retry:
+ task_oncpu_function_call(task, __perf_counter_disable, counter);
+
+ spin_lock_irq(&ctx->lock);
+ /*
+ * If the counter is still active, we need to retry the cross-call.
+ */
+ if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
+ spin_unlock_irq(&ctx->lock);
+ goto retry;
+ }
+
+ /*
+ * Since we have the lock this context can't be scheduled
+ * in, so we can change the state safely.
+ */
+ if (counter->state == PERF_COUNTER_STATE_INACTIVE)
+ counter->state = PERF_COUNTER_STATE_OFF;
+
+ spin_unlock_irq(&ctx->lock);
+}
+
+/*
+ * Disable a counter and all its children.
+ */
+static void perf_counter_disable_family(struct perf_counter *counter)
+{
+ struct perf_counter *child;
+
+ perf_counter_disable(counter);
+
+ /*
+ * Lock the mutex to protect the list of children
+ */
+ mutex_lock(&counter->mutex);
+ list_for_each_entry(child, &counter->child_list, child_list)
+ perf_counter_disable(child);
+ mutex_unlock(&counter->mutex);
+}
+
+static int
+counter_sched_in(struct perf_counter *counter,
+ struct perf_cpu_context *cpuctx,
+ struct perf_counter_context *ctx,
+ int cpu)
+{
+ if (counter->state <= PERF_COUNTER_STATE_OFF)
+ return 0;
+
+ counter->state = PERF_COUNTER_STATE_ACTIVE;
+ counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
+ /*
+ * The new state must be visible before we turn it on in the hardware:
+ */
+ smp_wmb();
+
+ if (counter->hw_ops->enable(counter)) {
+ counter->state = PERF_COUNTER_STATE_INACTIVE;
+ counter->oncpu = -1;
+ return -EAGAIN;
+ }
+
+ if (!is_software_counter(counter))
+ cpuctx->active_oncpu++;
+ ctx->nr_active++;
+
+ if (counter->hw_event.exclusive)
+ cpuctx->exclusive = 1;
+
+ return 0;
+}
+
+/*
+ * Return 1 for a group consisting entirely of software counters,
+ * 0 if the group contains any hardware counters.
+ */
+static int is_software_only_group(struct perf_counter *leader)
+{
+ struct perf_counter *counter;
+
+ if (!is_software_counter(leader))
+ return 0;
+ list_for_each_entry(counter, &leader->sibling_list, list_entry)
+ if (!is_software_counter(counter))
+ return 0;
+ return 1;
+}
+
+/*
+ * Work out whether we can put this counter group on the CPU now.
+ */
+static int group_can_go_on(struct perf_counter *counter,
+ struct perf_cpu_context *cpuctx,
+ int can_add_hw)
+{
+ /*
+ * Groups consisting entirely of software counters can always go on.
+ */
+ if (is_software_only_group(counter))
+ return 1;
+ /*
+ * If an exclusive group is already on, no other hardware
+ * counters can go on.
+ */
+ if (cpuctx->exclusive)
+ return 0;
+ /*
+ * If this group is exclusive and there are already
+ * counters on the CPU, it can't go on.
+ */
+ if (counter->hw_event.exclusive && cpuctx->active_oncpu)
+ return 0;
+ /*
+ * Otherwise, try to add it if all previous groups were able
+ * to go on.
+ */
+ return can_add_hw;
+}
+
+/*
+ * Cross CPU call to install and enable a performance counter
+ */
+static void __perf_install_in_context(void *info)
+{
+ struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
+ struct perf_counter *counter = info;
+ struct perf_counter_context *ctx = counter->ctx;
+ struct perf_counter *leader = counter->group_leader;
+ int cpu = smp_processor_id();
+ unsigned long flags;
+ u64 perf_flags;
+ int err;
+
+ /*
+ * If this is a task context, we need to check whether it is
+ * the current task context of this cpu. If not it has been
+ * scheduled out before the smp call arrived.
+ */
+ if (ctx->task && cpuctx->task_ctx != ctx)
+ return;
+
+ curr_rq_lock_irq_save(&flags);
+ spin_lock(&ctx->lock);
+
+ /*
+ * Protect the list operation against NMI by disabling the
+ * counters on a global level. NOP for non NMI based counters.
+ */
+ perf_flags = hw_perf_save_disable();
+
+ list_add_counter(counter, ctx);
+ ctx->nr_counters++;
+
+ /*
+ * Don't put the counter on if it is disabled or if
+ * it is in a group and the group isn't on.
+ */
+ if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
+ (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
+ goto unlock;
+
+ /*
+ * An exclusive counter can't go on if there are already active
+ * hardware counters, and no hardware counter can go on if there
+ * is already an exclusive counter on.
+ */
+ if (!group_can_go_on(counter, cpuctx, 1))
+ err = -EEXIST;
+ else
+ err = counter_sched_in(counter, cpuctx, ctx, cpu);
+
+ if (err) {
+ /*
+ * This counter couldn't go on. If it is in a group
+ * then we have to pull the whole group off.
+ * If the counter group is pinned then put it in error state.
+ */
+ if (leader != counter)
+ group_sched_out(leader, cpuctx, ctx);
+ if (leader->hw_event.pinned)
+ leader->state = PERF_COUNTER_STATE_ERROR;
+ }
+
+ if (!err && !ctx->task && cpuctx->max_pertask)
+ cpuctx->max_pertask--;
+
+ unlock:
+ hw_perf_restore(perf_flags);
+
+ spin_unlock(&ctx->lock);
+ curr_rq_unlock_irq_restore(&flags);
+}
+
+/*
+ * Attach a performance counter to a context
+ *
+ * First we add the counter to the list with the hardware enable bit
+ * in counter->hw_config cleared.
+ *
+ * If the counter is attached to a task which is on a CPU we use a smp
+ * call to enable it in the task context. The task might have been
+ * scheduled away, but we check this in the smp call again.
+ *
+ * Must be called with ctx->mutex held.
+ */
+static void
+perf_install_in_context(struct perf_counter_context *ctx,
+ struct perf_counter *counter,
+ int cpu)
+{
+ struct task_struct *task = ctx->task;
+
+ counter->ctx = ctx;
+ if (!task) {
+ /*
+ * Per cpu counters are installed via an smp call and
+ * the install is always sucessful.
+ */
+ smp_call_function_single(cpu, __perf_install_in_context,
+ counter, 1);
+ return;
+ }
+
+ counter->task = task;
+retry:
+ task_oncpu_function_call(task, __perf_install_in_context,
+ counter);
+
+ spin_lock_irq(&ctx->lock);
+ /*
+ * we need to retry the smp call.
+ */
+ if (ctx->is_active && list_empty(&counter->list_entry)) {
+ spin_unlock_irq(&ctx->lock);
+ goto retry;
+ }
+
+ /*
+ * The lock prevents that this context is scheduled in so we
+ * can add the counter safely, if it the call above did not
+ * succeed.
+ */
+ if (list_empty(&counter->list_entry)) {
+ list_add_counter(counter, ctx);
+ ctx->nr_counters++;
+ }
+ spin_unlock_irq(&ctx->lock);
+}
+
+/*
+ * Cross CPU call to enable a performance counter
+ */
+static void __perf_counter_enable(void *info)
+{
+ struct perf_counter *counter = info;
+ struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
+ struct perf_counter_context *ctx = counter->ctx;
+ struct perf_counter *leader = counter->group_leader;
+ unsigned long flags;
+ int err;
+
+ /*
+ * If this is a per-task counter, need to check whether this
+ * counter's task is the current task on this cpu.
+ */
+ if (ctx->task && cpuctx->task_ctx != ctx)
+ return;
+
+ curr_rq_lock_irq_save(&flags);
+ spin_lock(&ctx->lock);
+
+ if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
+ goto unlock;
+ counter->state = PERF_COUNTER_STATE_INACTIVE;
+
+ /*
+ * If the counter is in a group and isn't the group leader,
+ * then don't put it on unless the group is on.
+ */
+ if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
+ goto unlock;
+
+ if (!group_can_go_on(counter, cpuctx, 1))
+ err = -EEXIST;
+ else
+ err = counter_sched_in(counter, cpuctx, ctx,
+ smp_processor_id());
+
+ if (err) {
+ /*
+ * If this counter can't go on and it's part of a
+ * group, then the whole group has to come off.
+ */
+ if (leader != counter)
+ group_sched_out(leader, cpuctx, ctx);
+ if (leader->hw_event.pinned)
+ leader->state = PERF_COUNTER_STATE_ERROR;
+ }
+
+ unlock:
+ spin_unlock(&ctx->lock);
+ curr_rq_unlock_irq_restore(&flags);
+}
+
+/*
+ * Enable a counter.
+ */
+static void perf_counter_enable(struct perf_counter *counter)
+{
+ struct perf_counter_context *ctx = counter->ctx;
+ struct task_struct *task = ctx->task;
+
+ if (!task) {
+ /*
+ * Enable the counter on the cpu that it's on
+ */
+ smp_call_function_single(counter->cpu, __perf_counter_enable,
+ counter, 1);
+ return;
+ }
+
+ spin_lock_irq(&ctx->lock);
+ if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
+ goto out;
+
+ /*
+ * If the counter is in error state, clear that first.
+ * That way, if we see the counter in error state below, we
+ * know that it has gone back into error state, as distinct
+ * from the task having been scheduled away before the
+ * cross-call arrived.
+ */
+ if (counter->state == PERF_COUNTER_STATE_ERROR)
+ counter->state = PERF_COUNTER_STATE_OFF;
+
+ retry:
+ spin_unlock_irq(&ctx->lock);
+ task_oncpu_function_call(task, __perf_counter_enable, counter);
+
+ spin_lock_irq(&ctx->lock);
+
+ /*
+ * If the context is active and the counter is still off,
+ * we need to retry the cross-call.
+ */
+ if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
+ goto retry;
+
+ /*
+ * Since we have the lock this context can't be scheduled
+ * in, so we can change the state safely.
+ */
+ if (counter->state == PERF_COUNTER_STATE_OFF)
+ counter->state = PERF_COUNTER_STATE_INACTIVE;
+ out:
+ spin_unlock_irq(&ctx->lock);
+}
+
+/*
+ * Enable a counter and all its children.
+ */
+static void perf_counter_enable_family(struct perf_counter *counter)
+{
+ struct perf_counter *child;
+
+ perf_counter_enable(counter);
+
+ /*
+ * Lock the mutex to protect the list of children
+ */
+ mutex_lock(&counter->mutex);
+ list_for_each_entry(child, &counter->child_list, child_list)
+ perf_counter_enable(child);
+ mutex_unlock(&counter->mutex);
+}
+
+void __perf_counter_sched_out(struct perf_counter_context *ctx,
+ struct perf_cpu_context *cpuctx)
+{
+ struct perf_counter *counter;
+ u64 flags;
+
+ spin_lock(&ctx->lock);
+ ctx->is_active = 0;
+ if (likely(!ctx->nr_counters))
+ goto out;
+
+ flags = hw_perf_save_disable();
+ if (ctx->nr_active) {
+ list_for_each_entry(counter, &ctx->counter_list, list_entry)
+ group_sched_out(counter, cpuctx, ctx);
+ }
+ hw_perf_restore(flags);
+ out:
+ spin_unlock(&ctx->lock);
+}
+
+/*
+ * Called from scheduler to remove the counters of the current task,
+ * with interrupts disabled.
+ *
+ * We stop each counter and update the counter value in counter->count.
+ *
+ * This does not protect us against NMI, but disable()
+ * sets the disabled bit in the control field of counter _before_
+ * accessing the counter control register. If a NMI hits, then it will
+ * not restart the counter.
+ */
+void perf_counter_task_sched_out(struct task_struct *task, int cpu)
+{
+ struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
+ struct perf_counter_context *ctx = &task->perf_counter_ctx;
+
+ if (likely(!cpuctx->task_ctx))
+ return;
+
+ __perf_counter_sched_out(ctx, cpuctx);
+
+ cpuctx->task_ctx = NULL;
+}
+
+static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
+{
+ __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
+}
+
+static int
+group_sched_in(struct perf_counter *group_counter,
+ struct perf_cpu_context *cpuctx,
+ struct perf_counter_context *ctx,
+ int cpu)
+{
+ struct perf_counter *counter, *partial_group;
+ int ret;
+
+ if (group_counter->state == PERF_COUNTER_STATE_OFF)
+ return 0;
+
+ ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
+ if (ret)
+ return ret < 0 ? ret : 0;
+
+ if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
+ return -EAGAIN;
+
+ /*
+ * Schedule in siblings as one group (if any):
+ */
+ list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
+ if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
+ partial_group = counter;
+ goto group_error;
+ }
+ }
+
+ return 0;
+
+group_error:
+ /*
+ * Groups can be scheduled in as one unit only, so undo any
+ * partial group before returning:
+ */
+ list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
+ if (counter == partial_group)
+ break;
+ counter_sched_out(counter, cpuctx, ctx);
+ }
+ counter_sched_out(group_counter, cpuctx, ctx);
+
+ return -EAGAIN;
+}
+
+static void
+__perf_counter_sched_in(struct perf_counter_context *ctx,
+ struct perf_cpu_context *cpuctx, int cpu)
+{
+ struct perf_counter *counter;
+ u64 flags;
+ int can_add_hw = 1;
+
+ spin_lock(&ctx->lock);
+ ctx->is_active = 1;
+ if (likely(!ctx->nr_counters))
+ goto out;
+
+ flags = hw_perf_save_disable();
+
+ /*
+ * First go through the list and put on any pinned groups
+ * in order to give them the best chance of going on.
+ */
+ list_for_each_entry(counter, &ctx->counter_list, list_entry) {
+ if (counter->state <= PERF_COUNTER_STATE_OFF ||
+ !counter->hw_event.pinned)
+ continue;
+ if (counter->cpu != -1 && counter->cpu != cpu)
+ continue;
+
+ if (group_can_go_on(counter, cpuctx, 1))
+ group_sched_in(counter, cpuctx, ctx, cpu);
+
+ /*
+ * If this pinned group hasn't been scheduled,
+ * put it in error state.
+ */
+ if (counter->state == PERF_COUNTER_STATE_INACTIVE)
+ counter->state = PERF_COUNTER_STATE_ERROR;
+ }
+
+ list_for_each_entry(counter, &ctx->counter_list, list_entry) {
+ /*
+ * Ignore counters in OFF or ERROR state, and
+ * ignore pinned counters since we did them already.
+ */
+ if (counter->state <= PERF_COUNTER_STATE_OFF ||
+ counter->hw_event.pinned)
+ continue;
+
+ /*
+ * Listen to the 'cpu' scheduling filter constraint
+ * of counters:
+ */
+ if (counter->cpu != -1 && counter->cpu != cpu)
+ continue;
+
+ if (group_can_go_on(counter, cpuctx, can_add_hw)) {
+ if (group_sched_in(counter, cpuctx, ctx, cpu))
+ can_add_hw = 0;
+ }
+ }
+ hw_perf_restore(flags);
+ out:
+ spin_unlock(&ctx->lock);
+}
+
+/*
+ * Called from scheduler to add the counters of the current task
+ * with interrupts disabled.
+ *
+ * We restore the counter value and then enable it.
+ *
+ * This does not protect us against NMI, but enable()
+ * sets the enabled bit in the control field of counter _before_
+ * accessing the counter control register. If a NMI hits, then it will
+ * keep the counter running.
+ */
+void perf_counter_task_sched_in(struct task_struct *task, int cpu)
+{
+ struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
+ struct perf_counter_context *ctx = &task->perf_counter_ctx;
+
+ __perf_counter_sched_in(ctx, cpuctx, cpu);
+ cpuctx->task_ctx = ctx;
+}
+
+static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
+{
+ struct perf_counter_context *ctx = &cpuctx->ctx;
+
+ __perf_counter_sched_in(ctx, cpuctx, cpu);
+}
+
+int perf_counter_task_disable(void)
+{
+ struct task_struct *curr = current;
+ struct perf_counter_context *ctx = &curr->perf_counter_ctx;
+ struct perf_counter *counter;
+ unsigned long flags;
+ u64 perf_flags;
+ int cpu;
+
+ if (likely(!ctx->nr_counters))
+ return 0;
+
+ curr_rq_lock_irq_save(&flags);
+ cpu = smp_processor_id();
+
+ /* force the update of the task clock: */
+ __task_delta_exec(curr, 1);
+
+ perf_counter_task_sched_out(curr, cpu);
+
+ spin_lock(&ctx->lock);
+
+ /*
+ * Disable all the counters:
+ */
+ perf_flags = hw_perf_save_disable();
+
+ list_for_each_entry(counter, &ctx->counter_list, list_entry) {
+ if (counter->state != PERF_COUNTER_STATE_ERROR)
+ counter->state = PERF_COUNTER_STATE_OFF;
+ }
+
+ hw_perf_restore(perf_flags);
+
+ spin_unlock(&ctx->lock);
+
+ curr_rq_unlock_irq_restore(&flags);
+
+ return 0;
+}
+
+int perf_counter_task_enable(void)
+{
+ struct task_struct *curr = current;
+ struct perf_counter_context *ctx = &curr->perf_counter_ctx;
+ struct perf_counter *counter;
+ unsigned long flags;
+ u64 perf_flags;
+ int cpu;
+
+ if (likely(!ctx->nr_counters))
+ return 0;
+
+ curr_rq_lock_irq_save(&flags);
+ cpu = smp_processor_id();
+
+ /* force the update of the task clock: */
+ __task_delta_exec(curr, 1);
+
+ perf_counter_task_sched_out(curr, cpu);
+
+ spin_lock(&ctx->lock);
+
+ /*
+ * Disable all the counters:
+ */
+ perf_flags = hw_perf_save_disable();
+
+ list_for_each_entry(counter, &ctx->counter_list, list_entry) {
+ if (counter->state > PERF_COUNTER_STATE_OFF)
+ continue;
+ counter->state = PERF_COUNTER_STATE_INACTIVE;
+ counter->hw_event.disabled = 0;
+ }
+ hw_perf_restore(perf_flags);
+
+ spin_unlock(&ctx->lock);
+
+ perf_counter_task_sched_in(curr, cpu);
+
+ curr_rq_unlock_irq_restore(&flags);
+
+ return 0;
+}
+
+/*
+ * Round-robin a context's counters:
+ */
+static void rotate_ctx(struct perf_counter_context *ctx)
+{
+ struct perf_counter *counter;
+ u64 perf_flags;
+
+ if (!ctx->nr_counters)
+ return;
+
+ spin_lock(&ctx->lock);
+ /*
+ * Rotate the first entry last (works just fine for group counters too):
+ */
+ perf_flags = hw_perf_save_disable();
+ list_for_each_entry(counter, &ctx->counter_list, list_entry) {
+ list_del(&counter->list_entry);
+ list_add_tail(&counter->list_entry, &ctx->counter_list);
+ break;
+ }
+ hw_perf_restore(perf_flags);
+
+ spin_unlock(&ctx->lock);
+}
+
+void perf_counter_task_tick(struct task_struct *curr, int cpu)
+{
+ struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
+ struct perf_counter_context *ctx = &curr->perf_counter_ctx;
+ const int rotate_percpu = 0;
+
+ if (rotate_percpu)
+ perf_counter_cpu_sched_out(cpuctx);
+ perf_counter_task_sched_out(curr, cpu);
+
+ if (rotate_percpu)
+ rotate_ctx(&cpuctx->ctx);
+ rotate_ctx(ctx);
+
+ if (rotate_percpu)
+ perf_counter_cpu_sched_in(cpuctx, cpu);
+ perf_counter_task_sched_in(curr, cpu);
+}
+
+/*
+ * Cross CPU call to read the hardware counter
+ */
+static void __read(void *info)
+{
+ struct perf_counter *counter = info;
+ unsigned long flags;
+
+ curr_rq_lock_irq_save(&flags);
+ counter->hw_ops->read(counter);
+ curr_rq_unlock_irq_restore(&flags);
+}
+
+static u64 perf_counter_read(struct perf_counter *counter)
+{
+ /*
+ * If counter is enabled and currently active on a CPU, update the
+ * value in the counter structure:
+ */
+ if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
+ smp_call_function_single(counter->oncpu,
+ __read, counter, 1);
+ }
+
+ return atomic64_read(&counter->count);
+}
+
+/*
+ * Cross CPU call to switch performance data pointers
+ */
+static void __perf_switch_irq_data(void *info)
+{
+ struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
+ struct perf_counter *counter = info;
+ struct perf_counter_context *ctx = counter->ctx;
+ struct perf_data *oldirqdata = counter->irqdata;
+
+ /*
+ * If this is a task context, we need to check whether it is
+ * the current task context of this cpu. If not it has been
+ * scheduled out before the smp call arrived.
+ */
+ if (ctx->task) {
+ if (cpuctx->task_ctx != ctx)
+ return;
+ spin_lock(&ctx->lock);
+ }
+
+ /* Change the pointer NMI safe */
+ atomic_long_set((atomic_long_t *)&counter->irqdata,
+ (unsigned long) counter->usrdata);
+ counter->usrdata = oldirqdata;
+
+ if (ctx->task)
+ spin_unlock(&ctx->lock);
+}
+
+static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
+{
+ struct perf_counter_context *ctx = counter->ctx;
+ struct perf_data *oldirqdata = counter->irqdata;
+ struct task_struct *task = ctx->task;
+
+ if (!task) {
+ smp_call_function_single(counter->cpu,
+ __perf_switch_irq_data,
+ counter, 1);
+ return counter->usrdata;
+ }
+
+retry:
+ spin_lock_irq(&ctx->lock);
+ if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
+ counter->irqdata = counter->usrdata;
+ counter->usrdata = oldirqdata;
+ spin_unlock_irq(&ctx->lock);
+ return oldirqdata;
+ }
+ spin_unlock_irq(&ctx->lock);
+ task_oncpu_function_call(task, __perf_switch_irq_data, counter);
+ /* Might have failed, because task was scheduled out */
+ if (counter->irqdata == oldirqdata)
+ goto retry;
+
+ return counter->usrdata;
+}
+
+static void put_context(struct perf_counter_context *ctx)
+{
+ if (ctx->task)
+ put_task_struct(ctx->task);
+}
+
+static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
+{
+ struct perf_cpu_context *cpuctx;
+ struct perf_counter_context *ctx;
+ struct task_struct *task;
+
+ /*
+ * If cpu is not a wildcard then this is a percpu counter:
+ */
+ if (cpu != -1) {
+ /* Must be root to operate on a CPU counter: */
+ if (!capable(CAP_SYS_ADMIN))
+ return ERR_PTR(-EACCES);
+
+ if (cpu < 0 || cpu > num_possible_cpus())
+ return ERR_PTR(-EINVAL);
+
+ /*
+ * We could be clever and allow to attach a counter to an
+ * offline CPU and activate it when the CPU comes up, but
+ * that's for later.
+ */
+ if (!cpu_isset(cpu, cpu_online_map))
+ return ERR_PTR(-ENODEV);
+
+ cpuctx = &per_cpu(perf_cpu_context, cpu);
+ ctx = &cpuctx->ctx;
+
+ return ctx;
+ }
+
+ rcu_read_lock();
+ if (!pid)
+ task = current;
+ else
+ task = find_task_by_vpid(pid);
+ if (task)
+ get_task_struct(task);
+ rcu_read_unlock();
+
+ if (!task)
+ return ERR_PTR(-ESRCH);
+
+ ctx = &task->perf_counter_ctx;
+ ctx->task = task;
+
+ /* Reuse ptrace permission checks for now. */
+ if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
+ put_context(ctx);
+ return ERR_PTR(-EACCES);
+ }
+
+ return ctx;
+}
+
+/*
+ * Called when the last reference to the file is gone.
+ */
+static int perf_release(struct inode *inode, struct file *file)
+{
+ struct perf_counter *counter = file->private_data;
+ struct perf_counter_context *ctx = counter->ctx;
+
+ file->private_data = NULL;
+
+ mutex_lock(&ctx->mutex);
+ mutex_lock(&counter->mutex);
+
+ perf_counter_remove_from_context(counter);
+ put_context(ctx);
+
+ mutex_unlock(&counter->mutex);
+ mutex_unlock(&ctx->mutex);
+
+ kfree(counter);
+
+ return 0;
+}
+
+/*
+ * Read the performance counter - simple non blocking version for now
+ */
+static ssize_t
+perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
+{
+ u64 cntval;
+
+ if (count != sizeof(cntval))
+ return -EINVAL;
+
+ /*
+ * Return end-of-file for a read on a counter that is in
+ * error state (i.e. because it was pinned but it couldn't be
+ * scheduled on to the CPU at some point).
+ */
+ if (counter->state == PERF_COUNTER_STATE_ERROR)
+ return 0;
+
+ mutex_lock(&counter->mutex);
+ cntval = perf_counter_read(counter);
+ mutex_unlock(&counter->mutex);
+
+ return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
+}
+
+static ssize_t
+perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
+{
+ if (!usrdata->len)
+ return 0;
+
+ count = min(count, (size_t)usrdata->len);
+ if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
+ return -EFAULT;
+
+ /* Adjust the counters */
+ usrdata->len -= count;
+ if (!usrdata->len)
+ usrdata->rd_idx = 0;
+ else
+ usrdata->rd_idx += count;
+
+ return count;
+}
+
+static ssize_t
+perf_read_irq_data(struct perf_counter *counter,
+ char __user *buf,
+ size_t count,
+ int nonblocking)
+{
+ struct perf_data *irqdata, *usrdata;
+ DECLARE_WAITQUEUE(wait, current);
+ ssize_t res, res2;
+
+ irqdata = counter->irqdata;
+ usrdata = counter->usrdata;
+
+ if (usrdata->len + irqdata->len >= count)
+ goto read_pending;
+
+ if (nonblocking)
+ return -EAGAIN;
+
+ spin_lock_irq(&counter->waitq.lock);
+ __add_wait_queue(&counter->waitq, &wait);
+ for (;;) {
+ set_current_state(TASK_INTERRUPTIBLE);
+ if (usrdata->len + irqdata->len >= count)
+ break;
+
+ if (signal_pending(current))
+ break;
+
+ if (counter->state == PERF_COUNTER_STATE_ERROR)
+ break;
+
+ spin_unlock_irq(&counter->waitq.lock);
+ schedule();
+ spin_lock_irq(&counter->waitq.lock);
+ }
+ __remove_wait_queue(&counter->waitq, &wait);
+ __set_current_state(TASK_RUNNING);
+ spin_unlock_irq(&counter->waitq.lock);
+
+ if (usrdata->len + irqdata->len < count &&
+ counter->state != PERF_COUNTER_STATE_ERROR)
+ return -ERESTARTSYS;
+read_pending:
+ mutex_lock(&counter->mutex);
+
+ /* Drain pending data first: */
+ res = perf_copy_usrdata(usrdata, buf, count);
+ if (res < 0 || res == count)
+ goto out;
+
+ /* Switch irq buffer: */
+ usrdata = perf_switch_irq_data(counter);
+ res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
+ if (res2 < 0) {
+ if (!res)
+ res = -EFAULT;
+ } else {
+ res += res2;
+ }
+out:
+ mutex_unlock(&counter->mutex);
+
+ return res;
+}
+
+static ssize_t
+perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
+{
+ struct perf_counter *counter = file->private_data;
+
+ switch (counter->hw_event.record_type) {
+ case PERF_RECORD_SIMPLE:
+ return perf_read_hw(counter, buf, count);
+
+ case PERF_RECORD_IRQ:
+ case PERF_RECORD_GROUP:
+ return perf_read_irq_data(counter, buf, count,
+ file->f_flags & O_NONBLOCK);
+ }
+ return -EINVAL;
+}
+
+static unsigned int perf_poll(struct file *file, poll_table *wait)
+{
+ struct perf_counter *counter = file->private_data;
+ unsigned int events = 0;
+ unsigned long flags;
+
+ poll_wait(file, &counter->waitq, wait);
+
+ spin_lock_irqsave(&counter->waitq.lock, flags);
+ if (counter->usrdata->len || counter->irqdata->len)
+ events |= POLLIN;
+ spin_unlock_irqrestore(&counter->waitq.lock, flags);
+
+ return events;
+}
+
+static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
+{
+ struct perf_counter *counter = file->private_data;
+ int err = 0;
+
+ switch (cmd) {
+ case PERF_COUNTER_IOC_ENABLE:
+ perf_counter_enable_family(counter);
+ break;
+ case PERF_COUNTER_IOC_DISABLE:
+ perf_counter_disable_family(counter);
+ break;
+ default:
+ err = -ENOTTY;
+ }
+ return err;
+}
+
+static const struct file_operations perf_fops = {
+ .release = perf_release,
+ .read = perf_read,
+ .poll = perf_poll,
+ .unlocked_ioctl = perf_ioctl,
+ .compat_ioctl = perf_ioctl,
+};
+
+static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
+{
+ int cpu = raw_smp_processor_id();
+
+ atomic64_set(&counter->hw.prev_count, cpu_clock(cpu));
+ return 0;
+}
+
+static void cpu_clock_perf_counter_update(struct perf_counter *counter)
+{
+ int cpu = raw_smp_processor_id();
+ s64 prev;
+ u64 now;
+
+ now = cpu_clock(cpu);
+ prev = atomic64_read(&counter->hw.prev_count);
+ atomic64_set(&counter->hw.prev_count, now);
+ atomic64_add(now - prev, &counter->count);
+}
+
+static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
+{
+ cpu_clock_perf_counter_update(counter);
+}
+
+static void cpu_clock_perf_counter_read(struct perf_counter *counter)
+{
+ cpu_clock_perf_counter_update(counter);
+}
+
+static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
+ .enable = cpu_clock_perf_counter_enable,
+ .disable = cpu_clock_perf_counter_disable,
+ .read = cpu_clock_perf_counter_read,
+};
+
+/*
+ * Called from within the scheduler:
+ */
+static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
+{
+ struct task_struct *curr = counter->task;
+ u64 delta;
+
+ delta = __task_delta_exec(curr, update);
+
+ return curr->se.sum_exec_runtime + delta;
+}
+
+static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
+{
+ u64 prev;
+ s64 delta;
+
+ prev = atomic64_read(&counter->hw.prev_count);
+
+ atomic64_set(&counter->hw.prev_count, now);
+
+ delta = now - prev;
+
+ atomic64_add(delta, &counter->count);
+}
+
+static void task_clock_perf_counter_read(struct perf_counter *counter)
+{
+ u64 now = task_clock_perf_counter_val(counter, 1);
+
+ task_clock_perf_counter_update(counter, now);
+}
+
+static int task_clock_perf_counter_enable(struct perf_counter *counter)
+{
+ u64 now = task_clock_perf_counter_val(counter, 0);
+
+ atomic64_set(&counter->hw.prev_count, now);
+
+ return 0;
+}
+
+static void task_clock_perf_counter_disable(struct perf_counter *counter)
+{
+ u64 now = task_clock_perf_counter_val(counter, 0);
+
+ task_clock_perf_counter_update(counter, now);
+}
+
+static const struct hw_perf_counter_ops perf_ops_task_clock = {
+ .enable = task_clock_perf_counter_enable,
+ .disable = task_clock_perf_counter_disable,
+ .read = task_clock_perf_counter_read,
+};
+
+static u64 get_page_faults(void)
+{
+ struct task_struct *curr = current;
+
+ return curr->maj_flt + curr->min_flt;
+}
+
+static void page_faults_perf_counter_update(struct perf_counter *counter)
+{
+ u64 prev, now;
+ s64 delta;
+
+ prev = atomic64_read(&counter->hw.prev_count);
+ now = get_page_faults();
+
+ atomic64_set(&counter->hw.prev_count, now);
+
+ delta = now - prev;
+
+ atomic64_add(delta, &counter->count);
+}
+
+static void page_faults_perf_counter_read(struct perf_counter *counter)
+{
+ page_faults_perf_counter_update(counter);
+}
+
+static int page_faults_perf_counter_enable(struct perf_counter *counter)
+{
+ /*
+ * page-faults is a per-task value already,
+ * so we dont have to clear it on switch-in.
+ */
+
+ return 0;
+}
+
+static void page_faults_perf_counter_disable(struct perf_counter *counter)
+{
+ page_faults_perf_counter_update(counter);
+}
+
+static const struct hw_perf_counter_ops perf_ops_page_faults = {
+ .enable = page_faults_perf_counter_enable,
+ .disable = page_faults_perf_counter_disable,
+ .read = page_faults_perf_counter_read,
+};
+
+static u64 get_context_switches(void)
+{
+ struct task_struct *curr = current;
+
+ return curr->nvcsw + curr->nivcsw;
+}
+
+static void context_switches_perf_counter_update(struct perf_counter *counter)
+{
+ u64 prev, now;
+ s64 delta;
+
+ prev = atomic64_read(&counter->hw.prev_count);
+ now = get_context_switches();
+
+ atomic64_set(&counter->hw.prev_count, now);
+
+ delta = now - prev;
+
+ atomic64_add(delta, &counter->count);
+}
+
+static void context_switches_perf_counter_read(struct perf_counter *counter)
+{
+ context_switches_perf_counter_update(counter);
+}
+
+static int context_switches_perf_counter_enable(struct perf_counter *counter)
+{
+ /*
+ * ->nvcsw + curr->nivcsw is a per-task value already,
+ * so we dont have to clear it on switch-in.
+ */
+
+ return 0;
+}
+
+static void context_switches_perf_counter_disable(struct perf_counter *counter)
+{
+ context_switches_perf_counter_update(counter);
+}
+
+static const struct hw_perf_counter_ops perf_ops_context_switches = {
+ .enable = context_switches_perf_counter_enable,
+ .disable = context_switches_perf_counter_disable,
+ .read = context_switches_perf_counter_read,
+};
+
+static inline u64 get_cpu_migrations(void)
+{
+ return current->se.nr_migrations;
+}
+
+static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
+{
+ u64 prev, now;
+ s64 delta;
+
+ prev = atomic64_read(&counter->hw.prev_count);
+ now = get_cpu_migrations();
+
+ atomic64_set(&counter->hw.prev_count, now);
+
+ delta = now - prev;
+
+ atomic64_add(delta, &counter->count);
+}
+
+static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
+{
+ cpu_migrations_perf_counter_update(counter);
+}
+
+static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
+{
+ /*
+ * se.nr_migrations is a per-task value already,
+ * so we dont have to clear it on switch-in.
+ */
+
+ return 0;
+}
+
+static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
+{
+ cpu_migrations_perf_counter_update(counter);
+}
+
+static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
+ .enable = cpu_migrations_perf_counter_enable,
+ .disable = cpu_migrations_perf_counter_disable,
+ .read = cpu_migrations_perf_counter_read,
+};
+
+static const struct hw_perf_counter_ops *
+sw_perf_counter_init(struct perf_counter *counter)
+{
+ const struct hw_perf_counter_ops *hw_ops = NULL;
+
+ switch (counter->hw_event.type) {
+ case PERF_COUNT_CPU_CLOCK:
+ hw_ops = &perf_ops_cpu_clock;
+ break;
+ case PERF_COUNT_TASK_CLOCK:
+ hw_ops = &perf_ops_task_clock;
+ break;
+ case PERF_COUNT_PAGE_FAULTS:
+ hw_ops = &perf_ops_page_faults;
+ break;
+ case PERF_COUNT_CONTEXT_SWITCHES:
+ hw_ops = &perf_ops_context_switches;
+ break;
+ case PERF_COUNT_CPU_MIGRATIONS:
+ hw_ops = &perf_ops_cpu_migrations;
+ break;
+ default:
+ break;
+ }
+ return hw_ops;
+}
+
+/*
+ * Allocate and initialize a counter structure
+ */
+static struct perf_counter *
+perf_counter_alloc(struct perf_counter_hw_event *hw_event,
+ int cpu,
+ struct perf_counter *group_leader,
+ gfp_t gfpflags)
+{
+ const struct hw_perf_counter_ops *hw_ops;
+ struct perf_counter *counter;
+
+ counter = kzalloc(sizeof(*counter), gfpflags);
+ if (!counter)
+ return NULL;
+
+ /*
+ * Single counters are their own group leaders, with an
+ * empty sibling list:
+ */
+ if (!group_leader)
+ group_leader = counter;
+
+ mutex_init(&counter->mutex);
+ INIT_LIST_HEAD(&counter->list_entry);
+ INIT_LIST_HEAD(&counter->sibling_list);
+ init_waitqueue_head(&counter->waitq);
+
+ INIT_LIST_HEAD(&counter->child_list);
+
+ counter->irqdata = &counter->data[0];
+ counter->usrdata = &counter->data[1];
+ counter->cpu = cpu;
+ counter->hw_event = *hw_event;
+ counter->wakeup_pending = 0;
+ counter->group_leader = group_leader;
+ counter->hw_ops = NULL;
+
+ counter->state = PERF_COUNTER_STATE_INACTIVE;
+ if (hw_event->disabled)
+ counter->state = PERF_COUNTER_STATE_OFF;
+
+ hw_ops = NULL;
+ if (!hw_event->raw && hw_event->type < 0)
+ hw_ops = sw_perf_counter_init(counter);
+ if (!hw_ops)
+ hw_ops = hw_perf_counter_init(counter);
+
+ if (!hw_ops) {
+ kfree(counter);
+ return NULL;
+ }
+ counter->hw_ops = hw_ops;
+
+ return counter;
+}
+
+/**
+ * sys_perf_task_open - open a performance counter, associate it to a task/cpu
+ *
+ * @hw_event_uptr: event type attributes for monitoring/sampling
+ * @pid: target pid
+ * @cpu: target cpu
+ * @group_fd: group leader counter fd
+ */
+asmlinkage int
+sys_perf_counter_open(struct perf_counter_hw_event *hw_event_uptr __user,
+ pid_t pid, int cpu, int group_fd)
+{
+ struct perf_counter *counter, *group_leader;
+ struct perf_counter_hw_event hw_event;
+ struct perf_counter_context *ctx;
+ struct file *counter_file = NULL;
+ struct file *group_file = NULL;
+ int fput_needed = 0;
+ int fput_needed2 = 0;
+ int ret;
+
+ if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
+ return -EFAULT;
+
+ /*
+ * Get the target context (task or percpu):
+ */
+ ctx = find_get_context(pid, cpu);
+ if (IS_ERR(ctx))
+ return PTR_ERR(ctx);
+
+ /*
+ * Look up the group leader (we will attach this counter to it):
+ */
+ group_leader = NULL;
+ if (group_fd != -1) {
+ ret = -EINVAL;
+ group_file = fget_light(group_fd, &fput_needed);
+ if (!group_file)
+ goto err_put_context;
+ if (group_file->f_op != &perf_fops)
+ goto err_put_context;
+
+ group_leader = group_file->private_data;
+ /*
+ * Do not allow a recursive hierarchy (this new sibling
+ * becoming part of another group-sibling):
+ */
+ if (group_leader->group_leader != group_leader)
+ goto err_put_context;
+ /*
+ * Do not allow to attach to a group in a different
+ * task or CPU context:
+ */
+ if (group_leader->ctx != ctx)
+ goto err_put_context;
+ /*
+ * Only a group leader can be exclusive or pinned
+ */
+ if (hw_event.exclusive || hw_event.pinned)
+ goto err_put_context;
+ }
+
+ ret = -EINVAL;
+ counter = perf_counter_alloc(&hw_event, cpu, group_leader, GFP_KERNEL);
+ if (!counter)
+ goto err_put_context;
+
+ ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
+ if (ret < 0)
+ goto err_free_put_context;
+
+ counter_file = fget_light(ret, &fput_needed2);
+ if (!counter_file)
+ goto err_free_put_context;
+
+ counter->filp = counter_file;
+ mutex_lock(&ctx->mutex);
+ perf_install_in_context(ctx, counter, cpu);
+ mutex_unlock(&ctx->mutex);
+
+ fput_light(counter_file, fput_needed2);
+
+out_fput:
+ fput_light(group_file, fput_needed);
+
+ return ret;
+
+err_free_put_context:
+ kfree(counter);
+
+err_put_context:
+ put_context(ctx);
+
+ goto out_fput;
+}
+
+/*
+ * Initialize the perf_counter context in a task_struct:
+ */
+static void
+__perf_counter_init_context(struct perf_counter_context *ctx,
+ struct task_struct *task)
+{
+ memset(ctx, 0, sizeof(*ctx));
+ spin_lock_init(&ctx->lock);
+ mutex_init(&ctx->mutex);
+ INIT_LIST_HEAD(&ctx->counter_list);
+ ctx->task = task;
+}
+
+/*
+ * inherit a counter from parent task to child task:
+ */
+static struct perf_counter *
+inherit_counter(struct perf_counter *parent_counter,
+ struct task_struct *parent,
+ struct perf_counter_context *parent_ctx,
+ struct task_struct *child,
+ struct perf_counter *group_leader,
+ struct perf_counter_context *child_ctx)
+{
+ struct perf_counter *child_counter;
+
+ /*
+ * Instead of creating recursive hierarchies of counters,
+ * we link inherited counters back to the original parent,
+ * which has a filp for sure, which we use as the reference
+ * count:
+ */
+ if (parent_counter->parent)
+ parent_counter = parent_counter->parent;
+
+ child_counter = perf_counter_alloc(&parent_counter->hw_event,
+ parent_counter->cpu, group_leader,
+ GFP_KERNEL);
+ if (!child_counter)
+ return NULL;
+
+ /*
+ * Link it up in the child's context:
+ */
+ child_counter->ctx = child_ctx;
+ child_counter->task = child;
+ list_add_counter(child_counter, child_ctx);
+ child_ctx->nr_counters++;
+
+ child_counter->parent = parent_counter;
+ /*
+ * inherit into child's child as well:
+ */
+ child_counter->hw_event.inherit = 1;
+
+ /*
+ * Get a reference to the parent filp - we will fput it
+ * when the child counter exits. This is safe to do because
+ * we are in the parent and we know that the filp still
+ * exists and has a nonzero count:
+ */
+ atomic_long_inc(&parent_counter->filp->f_count);
+
+ /*
+ * Link this into the parent counter's child list
+ */
+ mutex_lock(&parent_counter->mutex);
+ list_add_tail(&child_counter->child_list, &parent_counter->child_list);
+
+ /*
+ * Make the child state follow the state of the parent counter,
+ * not its hw_event.disabled bit. We hold the parent's mutex,
+ * so we won't race with perf_counter_{en,dis}able_family.
+ */
+ if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
+ child_counter->state = PERF_COUNTER_STATE_INACTIVE;
+ else
+ child_counter->state = PERF_COUNTER_STATE_OFF;
+
+ mutex_unlock(&parent_counter->mutex);
+
+ return child_counter;
+}
+
+static int inherit_group(struct perf_counter *parent_counter,
+ struct task_struct *parent,
+ struct perf_counter_context *parent_ctx,
+ struct task_struct *child,
+ struct perf_counter_context *child_ctx)
+{
+ struct perf_counter *leader;
+ struct perf_counter *sub;
+
+ leader = inherit_counter(parent_counter, parent, parent_ctx,
+ child, NULL, child_ctx);
+ if (!leader)
+ return -ENOMEM;
+ list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
+ if (!inherit_counter(sub, parent, parent_ctx,
+ child, leader, child_ctx))
+ return -ENOMEM;
+ }
+ return 0;
+}
+
+static void sync_child_counter(struct perf_counter *child_counter,
+ struct perf_counter *parent_counter)
+{
+ u64 parent_val, child_val;
+
+ parent_val = atomic64_read(&parent_counter->count);
+ child_val = atomic64_read(&child_counter->count);
+
+ /*
+ * Add back the child's count to the parent's count:
+ */
+ atomic64_add(child_val, &parent_counter->count);
+
+ /*
+ * Remove this counter from the parent's list
+ */
+ mutex_lock(&parent_counter->mutex);
+ list_del_init(&child_counter->child_list);
+ mutex_unlock(&parent_counter->mutex);
+
+ /*
+ * Release the parent counter, if this was the last
+ * reference to it.
+ */
+ fput(parent_counter->filp);
+}
+
+static void
+__perf_counter_exit_task(struct task_struct *child,
+ struct perf_counter *child_counter,
+ struct perf_counter_context *child_ctx)
+{
+ struct perf_counter *parent_counter;
+ struct perf_counter *sub, *tmp;
+
+ /*
+ * If we do not self-reap then we have to wait for the
+ * child task to unschedule (it will happen for sure),
+ * so that its counter is at its final count. (This
+ * condition triggers rarely - child tasks usually get
+ * off their CPU before the parent has a chance to
+ * get this far into the reaping action)
+ */
+ if (child != current) {
+ wait_task_inactive(child, 0);
+ list_del_init(&child_counter->list_entry);
+ } else {
+ struct perf_cpu_context *cpuctx;
+ unsigned long flags;
+ u64 perf_flags;
+
+ /*
+ * Disable and unlink this counter.
+ *
+ * Be careful about zapping the list - IRQ/NMI context
+ * could still be processing it:
+ */
+ curr_rq_lock_irq_save(&flags);
+ perf_flags = hw_perf_save_disable();
+
+ cpuctx = &__get_cpu_var(perf_cpu_context);
+
+ group_sched_out(child_counter, cpuctx, child_ctx);
+
+ list_del_init(&child_counter->list_entry);
+
+ child_ctx->nr_counters--;
+
+ hw_perf_restore(perf_flags);
+ curr_rq_unlock_irq_restore(&flags);
+ }
+
+ parent_counter = child_counter->parent;
+ /*
+ * It can happen that parent exits first, and has counters
+ * that are still around due to the child reference. These
+ * counters need to be zapped - but otherwise linger.
+ */
+ if (parent_counter) {
+ sync_child_counter(child_counter, parent_counter);
+ list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
+ list_entry) {
+ if (sub->parent)
+ sync_child_counter(sub, sub->parent);
+ kfree(sub);
+ }
+ }
+
+ kfree(child_counter);
+}
+
+/*
+ * When a child task exits, feed back counter values to parent counters.
+ *
+ * Note: we may be running in child context, but the PID is not hashed
+ * anymore so new counters will not be added.
+ */
+void perf_counter_exit_task(struct task_struct *child)
+{
+ struct perf_counter *child_counter, *tmp;
+ struct perf_counter_context *child_ctx;
+
+ child_ctx = &child->perf_counter_ctx;
+
+ if (likely(!child_ctx->nr_counters))
+ return;
+
+ list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
+ list_entry)
+ __perf_counter_exit_task(child, child_counter, child_ctx);
+}
+
+/*
+ * Initialize the perf_counter context in task_struct
+ */
+void perf_counter_init_task(struct task_struct *child)
+{
+ struct perf_counter_context *child_ctx, *parent_ctx;
+ struct perf_counter *counter;
+ struct task_struct *parent = current;
+
+ child_ctx = &child->perf_counter_ctx;
+ parent_ctx = &parent->perf_counter_ctx;
+
+ __perf_counter_init_context(child_ctx, child);
+
+ /*
+ * This is executed from the parent task context, so inherit
+ * counters that have been marked for cloning:
+ */
+
+ if (likely(!parent_ctx->nr_counters))
+ return;
+
+ /*
+ * Lock the parent list. No need to lock the child - not PID
+ * hashed yet and not running, so nobody can access it.
+ */
+ mutex_lock(&parent_ctx->mutex);
+
+ /*
+ * We dont have to disable NMIs - we are only looking at
+ * the list, not manipulating it:
+ */
+ list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
+ if (!counter->hw_event.inherit)
+ continue;
+
+ if (inherit_group(counter, parent,
+ parent_ctx, child, child_ctx))
+ break;
+ }
+
+ mutex_unlock(&parent_ctx->mutex);
+}
+
+static void __cpuinit perf_counter_init_cpu(int cpu)
+{
+ struct perf_cpu_context *cpuctx;
+
+ cpuctx = &per_cpu(perf_cpu_context, cpu);
+ __perf_counter_init_context(&cpuctx->ctx, NULL);
+
+ mutex_lock(&perf_resource_mutex);
+ cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
+ mutex_unlock(&perf_resource_mutex);
+
+ hw_perf_counter_setup(cpu);
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+static void __perf_counter_exit_cpu(void *info)
+{
+ struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
+ struct perf_counter_context *ctx = &cpuctx->ctx;
+ struct perf_counter *counter, *tmp;
+
+ list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
+ __perf_counter_remove_from_context(counter);
+}
+static void perf_counter_exit_cpu(int cpu)
+{
+ struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
+ struct perf_counter_context *ctx = &cpuctx->ctx;
+
+ mutex_lock(&ctx->mutex);
+ smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
+ mutex_unlock(&ctx->mutex);
+}
+#else
+static inline void perf_counter_exit_cpu(int cpu) { }
+#endif
+
+static int __cpuinit
+perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
+{
+ unsigned int cpu = (long)hcpu;
+
+ switch (action) {
+
+ case CPU_UP_PREPARE:
+ case CPU_UP_PREPARE_FROZEN:
+ perf_counter_init_cpu(cpu);
+ break;
+
+ case CPU_DOWN_PREPARE:
+ case CPU_DOWN_PREPARE_FROZEN:
+ perf_counter_exit_cpu(cpu);
+ break;
+
+ default:
+ break;
+ }
+
+ return NOTIFY_OK;
+}
+
+static struct notifier_block __cpuinitdata perf_cpu_nb = {
+ .notifier_call = perf_cpu_notify,
+};
+
+static int __init perf_counter_init(void)
+{
+ perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
+ (void *)(long)smp_processor_id());
+ register_cpu_notifier(&perf_cpu_nb);
+
+ return 0;
+}
+early_initcall(perf_counter_init);
+
+static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
+{
+ return sprintf(buf, "%d\n", perf_reserved_percpu);
+}
+
+static ssize_t
+perf_set_reserve_percpu(struct sysdev_class *class,
+ const char *buf,
+ size_t count)
+{
+ struct perf_cpu_context *cpuctx;
+ unsigned long val;
+ int err, cpu, mpt;
+
+ err = strict_strtoul(buf, 10, &val);
+ if (err)
+ return err;
+ if (val > perf_max_counters)
+ return -EINVAL;
+
+ mutex_lock(&perf_resource_mutex);
+ perf_reserved_percpu = val;
+ for_each_online_cpu(cpu) {
+ cpuctx = &per_cpu(perf_cpu_context, cpu);
+ spin_lock_irq(&cpuctx->ctx.lock);
+ mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
+ perf_max_counters - perf_reserved_percpu);
+ cpuctx->max_pertask = mpt;
+ spin_unlock_irq(&cpuctx->ctx.lock);
+ }
+ mutex_unlock(&perf_resource_mutex);
+
+ return count;
+}
+
+static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
+{
+ return sprintf(buf, "%d\n", perf_overcommit);
+}
+
+static ssize_t
+perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
+{
+ unsigned long val;
+ int err;
+
+ err = strict_strtoul(buf, 10, &val);
+ if (err)
+ return err;
+ if (val > 1)
+ return -EINVAL;
+
+ mutex_lock(&perf_resource_mutex);
+ perf_overcommit = val;
+ mutex_unlock(&perf_resource_mutex);
+
+ return count;
+}
+
+static SYSDEV_CLASS_ATTR(
+ reserve_percpu,
+ 0644,
+ perf_show_reserve_percpu,
+ perf_set_reserve_percpu
+ );
+
+static SYSDEV_CLASS_ATTR(
+ overcommit,
+ 0644,
+ perf_show_overcommit,
+ perf_set_overcommit
+ );
+
+static struct attribute *perfclass_attrs[] = {
+ &attr_reserve_percpu.attr,
+ &attr_overcommit.attr,
+ NULL
+};
+
+static struct attribute_group perfclass_attr_group = {
+ .attrs = perfclass_attrs,
+ .name = "perf_counters",
+};
+
+static int __init perf_counter_sysfs_init(void)
+{
+ return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
+ &perfclass_attr_group);
+}
+device_initcall(perf_counter_sysfs_init);
diff --git a/kernel/sched.c b/kernel/sched.c
index 8be2c13b50d0..ce9fecab5f02 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -668,7 +668,7 @@ static inline int cpu_of(struct rq *rq)
#define task_rq(p) cpu_rq(task_cpu(p))
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
-static inline void update_rq_clock(struct rq *rq)
+inline void update_rq_clock(struct rq *rq)
{
rq->clock = sched_clock_cpu(cpu_of(rq));
}
@@ -979,6 +979,26 @@ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
}
}
+void curr_rq_lock_irq_save(unsigned long *flags)
+ __acquires(rq->lock)
+{
+ struct rq *rq;
+
+ local_irq_save(*flags);
+ rq = cpu_rq(smp_processor_id());
+ spin_lock(&rq->lock);
+}
+
+void curr_rq_unlock_irq_restore(unsigned long *flags)
+ __releases(rq->lock)
+{
+ struct rq *rq;
+
+ rq = cpu_rq(smp_processor_id());
+ spin_unlock(&rq->lock);
+ local_irq_restore(*flags);
+}
+
void task_rq_unlock_wait(struct task_struct *p)
{
struct rq *rq = task_rq(p);
@@ -1885,12 +1905,14 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
p->se.sleep_start -= clock_offset;
if (p->se.block_start)
p->se.block_start -= clock_offset;
+#endif
if (old_cpu != new_cpu) {
- schedstat_inc(p, se.nr_migrations);
+ p->se.nr_migrations++;
+#ifdef CONFIG_SCHEDSTATS
if (task_hot(p, old_rq->clock, NULL))
schedstat_inc(p, se.nr_forced2_migrations);
- }
#endif
+ }
p->se.vruntime -= old_cfsrq->min_vruntime -
new_cfsrq->min_vruntime;
@@ -2242,6 +2264,27 @@ static int sched_balance_self(int cpu, int flag)
#endif /* CONFIG_SMP */
+/**
+ * task_oncpu_function_call - call a function on the cpu on which a task runs
+ * @p: the task to evaluate
+ * @func: the function to be called
+ * @info: the function call argument
+ *
+ * Calls the function @func when the task is currently running. This might
+ * be on the current CPU, which just calls the function directly
+ */
+void task_oncpu_function_call(struct task_struct *p,
+ void (*func) (void *info), void *info)
+{
+ int cpu;
+
+ preempt_disable();
+ cpu = task_cpu(p);
+ if (task_curr(p))
+ smp_call_function_single(cpu, func, info, 1);
+ preempt_enable();
+}
+
/***
* try_to_wake_up - wake up a thread
* @p: the to-be-woken-up thread
@@ -2384,6 +2427,7 @@ static void __sched_fork(struct task_struct *p)
p->se.exec_start = 0;
p->se.sum_exec_runtime = 0;
p->se.prev_sum_exec_runtime = 0;
+ p->se.nr_migrations = 0;
p->se.last_wakeup = 0;
p->se.avg_overlap = 0;
@@ -2604,6 +2648,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev)
*/
prev_state = prev->state;
finish_arch_switch(prev);
+ perf_counter_task_sched_in(current, cpu_of(rq));
finish_lock_switch(rq, prev);
#ifdef CONFIG_SMP
if (current->sched_class->post_schedule)
@@ -4132,6 +4177,29 @@ EXPORT_PER_CPU_SYMBOL(kstat);
* Return any ns on the sched_clock that have not yet been banked in
* @p in case that task is currently running.
*/
+unsigned long long __task_delta_exec(struct task_struct *p, int update)
+{
+ s64 delta_exec;
+ struct rq *rq;
+
+ rq = task_rq(p);
+ WARN_ON_ONCE(!runqueue_is_locked());
+ WARN_ON_ONCE(!task_current(rq, p));
+
+ if (update)
+ update_rq_clock(rq);
+
+ delta_exec = rq->clock - p->se.exec_start;
+
+ WARN_ON_ONCE(delta_exec < 0);
+
+ return delta_exec;
+}
+
+/*
+ * Return any ns on the sched_clock that have not yet been banked in
+ * @p in case that task is currently running.
+ */
unsigned long long task_delta_exec(struct task_struct *p)
{
unsigned long flags;
@@ -4391,6 +4459,7 @@ void scheduler_tick(void)
update_rq_clock(rq);
update_cpu_load(rq);
curr->sched_class->task_tick(rq, curr, 0);
+ perf_counter_task_tick(curr, cpu);
spin_unlock(&rq->lock);
#ifdef CONFIG_SMP
@@ -4586,6 +4655,7 @@ need_resched_nonpreemptible:
if (likely(prev != next)) {
sched_info_switch(prev, next);
+ perf_counter_task_sched_out(prev, cpu);
rq->nr_switches++;
rq->curr = next;
diff --git a/kernel/sys.c b/kernel/sys.c
index 763c3c17ded3..c2a951ae4223 100644
--- a/kernel/sys.c
+++ b/kernel/sys.c
@@ -14,6 +14,7 @@
#include <linux/prctl.h>
#include <linux/highuid.h>
#include <linux/fs.h>
+#include <linux/perf_counter.h>
#include <linux/resource.h>
#include <linux/kernel.h>
#include <linux/kexec.h>
@@ -1797,6 +1798,12 @@ asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
case PR_SET_TSC:
error = SET_TSC_CTL(arg2);
break;
+ case PR_TASK_PERF_COUNTERS_DISABLE:
+ error = perf_counter_task_disable();
+ break;
+ case PR_TASK_PERF_COUNTERS_ENABLE:
+ error = perf_counter_task_enable();
+ break;
case PR_GET_TIMERSLACK:
error = current->timer_slack_ns;
break;
diff --git a/kernel/sys_ni.c b/kernel/sys_ni.c
index e14a23281707..4be8bbc7577c 100644
--- a/kernel/sys_ni.c
+++ b/kernel/sys_ni.c
@@ -174,3 +174,6 @@ cond_syscall(compat_sys_timerfd_settime);
cond_syscall(compat_sys_timerfd_gettime);
cond_syscall(sys_eventfd);
cond_syscall(sys_eventfd2);
+
+/* performance counters: */
+cond_syscall(sys_perf_counter_open);