diff options
Diffstat (limited to 'lib/percpu-refcount.c')
-rw-r--r-- | lib/percpu-refcount.c | 158 |
1 files changed, 158 insertions, 0 deletions
diff --git a/lib/percpu-refcount.c b/lib/percpu-refcount.c new file mode 100644 index 000000000000..7deeb6297a48 --- /dev/null +++ b/lib/percpu-refcount.c @@ -0,0 +1,158 @@ +#define pr_fmt(fmt) "%s: " fmt "\n", __func__ + +#include <linux/kernel.h> +#include <linux/percpu-refcount.h> + +/* + * Initially, a percpu refcount is just a set of percpu counters. Initially, we + * don't try to detect the ref hitting 0 - which means that get/put can just + * increment or decrement the local counter. Note that the counter on a + * particular cpu can (and will) wrap - this is fine, when we go to shutdown the + * percpu counters will all sum to the correct value + * + * (More precisely: because moduler arithmatic is commutative the sum of all the + * pcpu_count vars will be equal to what it would have been if all the gets and + * puts were done to a single integer, even if some of the percpu integers + * overflow or underflow). + * + * The real trick to implementing percpu refcounts is shutdown. We can't detect + * the ref hitting 0 on every put - this would require global synchronization + * and defeat the whole purpose of using percpu refs. + * + * What we do is require the user to keep track of the initial refcount; we know + * the ref can't hit 0 before the user drops the initial ref, so as long as we + * convert to non percpu mode before the initial ref is dropped everything + * works. + * + * Converting to non percpu mode is done with some RCUish stuff in + * percpu_ref_kill. Additionally, we need a bias value so that the atomic_t + * can't hit 0 before we've added up all the percpu refs. + */ + +#define PCPU_COUNT_BIAS (1U << 31) + +/** + * percpu_ref_init - initialize a percpu refcount + * @ref: percpu_ref to initialize + * @release: function which will be called when refcount hits 0 + * + * Initializes the refcount in single atomic counter mode with a refcount of 1; + * analagous to atomic_set(ref, 1). + * + * Note that @release must not sleep - it may potentially be called from RCU + * callback context by percpu_ref_kill(). + */ +int percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release) +{ + atomic_set(&ref->count, 1 + PCPU_COUNT_BIAS); + + ref->pcpu_count = alloc_percpu(unsigned); + if (!ref->pcpu_count) + return -ENOMEM; + + ref->release = release; + return 0; +} + +/** + * percpu_ref_cancel_init - cancel percpu_ref_init() + * @ref: percpu_ref to cancel init for + * + * Once a percpu_ref is initialized, its destruction is initiated by + * percpu_ref_kill() and completes asynchronously, which can be painful to + * do when destroying a half-constructed object in init failure path. + * + * This function destroys @ref without invoking @ref->release and the + * memory area containing it can be freed immediately on return. To + * prevent accidental misuse, it's required that @ref has finished + * percpu_ref_init(), whether successful or not, but never used. + * + * The weird name and usage restriction are to prevent people from using + * this function by mistake for normal shutdown instead of + * percpu_ref_kill(). + */ +void percpu_ref_cancel_init(struct percpu_ref *ref) +{ + unsigned __percpu *pcpu_count = ref->pcpu_count; + int cpu; + + WARN_ON_ONCE(atomic_read(&ref->count) != 1 + PCPU_COUNT_BIAS); + + if (pcpu_count) { + for_each_possible_cpu(cpu) + WARN_ON_ONCE(*per_cpu_ptr(pcpu_count, cpu)); + free_percpu(ref->pcpu_count); + } +} + +static void percpu_ref_kill_rcu(struct rcu_head *rcu) +{ + struct percpu_ref *ref = container_of(rcu, struct percpu_ref, rcu); + unsigned __percpu *pcpu_count = ref->pcpu_count; + unsigned count = 0; + int cpu; + + /* Mask out PCPU_REF_DEAD */ + pcpu_count = (unsigned __percpu *) + (((unsigned long) pcpu_count) & ~PCPU_STATUS_MASK); + + for_each_possible_cpu(cpu) + count += *per_cpu_ptr(pcpu_count, cpu); + + free_percpu(pcpu_count); + + pr_debug("global %i pcpu %i", atomic_read(&ref->count), (int) count); + + /* + * It's crucial that we sum the percpu counters _before_ adding the sum + * to &ref->count; since gets could be happening on one cpu while puts + * happen on another, adding a single cpu's count could cause + * @ref->count to hit 0 before we've got a consistent value - but the + * sum of all the counts will be consistent and correct. + * + * Subtracting the bias value then has to happen _after_ adding count to + * &ref->count; we need the bias value to prevent &ref->count from + * reaching 0 before we add the percpu counts. But doing it at the same + * time is equivalent and saves us atomic operations: + */ + + atomic_add((int) count - PCPU_COUNT_BIAS, &ref->count); + + /* @ref is viewed as dead on all CPUs, send out kill confirmation */ + if (ref->confirm_kill) + ref->confirm_kill(ref); + + /* + * Now we're in single atomic_t mode with a consistent refcount, so it's + * safe to drop our initial ref: + */ + percpu_ref_put(ref); +} + +/** + * percpu_ref_kill_and_confirm - drop the initial ref and schedule confirmation + * @ref: percpu_ref to kill + * @confirm_kill: optional confirmation callback + * + * Equivalent to percpu_ref_kill() but also schedules kill confirmation if + * @confirm_kill is not NULL. @confirm_kill, which may not block, will be + * called after @ref is seen as dead from all CPUs - all further + * invocations of percpu_ref_tryget() will fail. See percpu_ref_tryget() + * for more details. + * + * Due to the way percpu_ref is implemented, @confirm_kill will be called + * after at least one full RCU grace period has passed but this is an + * implementation detail and callers must not depend on it. + */ +void percpu_ref_kill_and_confirm(struct percpu_ref *ref, + percpu_ref_func_t *confirm_kill) +{ + WARN_ONCE(REF_STATUS(ref->pcpu_count) == PCPU_REF_DEAD, + "percpu_ref_kill() called more than once!\n"); + + ref->pcpu_count = (unsigned __percpu *) + (((unsigned long) ref->pcpu_count)|PCPU_REF_DEAD); + ref->confirm_kill = confirm_kill; + + call_rcu_sched(&ref->rcu, percpu_ref_kill_rcu); +} |