summaryrefslogtreecommitdiffstats
path: root/mm/hugetlb.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/hugetlb.c')
-rw-r--r--mm/hugetlb.c81
1 files changed, 24 insertions, 57 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index 745088810965..df2e7dd5ff17 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -3238,7 +3238,6 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
struct page *ptepage;
unsigned long addr;
int cow;
- struct address_space *mapping = vma->vm_file->f_mapping;
struct hstate *h = hstate_vma(vma);
unsigned long sz = huge_page_size(h);
struct mmu_notifier_range range;
@@ -3250,23 +3249,13 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
mmu_notifier_range_init(&range, src, vma->vm_start,
vma->vm_end);
mmu_notifier_invalidate_range_start(&range);
- } else {
- /*
- * For shared mappings i_mmap_rwsem must be held to call
- * huge_pte_alloc, otherwise the returned ptep could go
- * away if part of a shared pmd and another thread calls
- * huge_pmd_unshare.
- */
- i_mmap_lock_read(mapping);
}
for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
spinlock_t *src_ptl, *dst_ptl;
-
src_pte = huge_pte_offset(src, addr, sz);
if (!src_pte)
continue;
-
dst_pte = huge_pte_alloc(dst, addr, sz);
if (!dst_pte) {
ret = -ENOMEM;
@@ -3337,8 +3326,6 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
if (cow)
mmu_notifier_invalidate_range_end(&range);
- else
- i_mmap_unlock_read(mapping);
return ret;
}
@@ -3755,16 +3742,16 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
}
/*
- * We can not race with truncation due to holding i_mmap_rwsem.
- * Check once here for faults beyond end of file.
+ * Use page lock to guard against racing truncation
+ * before we get page_table_lock.
*/
- size = i_size_read(mapping->host) >> huge_page_shift(h);
- if (idx >= size)
- goto out;
-
retry:
page = find_lock_page(mapping, idx);
if (!page) {
+ size = i_size_read(mapping->host) >> huge_page_shift(h);
+ if (idx >= size)
+ goto out;
+
/*
* Check for page in userfault range
*/
@@ -3784,18 +3771,14 @@ retry:
};
/*
- * hugetlb_fault_mutex and i_mmap_rwsem must be
- * dropped before handling userfault. Reacquire
- * after handling fault to make calling code simpler.
+ * hugetlb_fault_mutex must be dropped before
+ * handling userfault. Reacquire after handling
+ * fault to make calling code simpler.
*/
hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
idx, haddr);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
- i_mmap_unlock_read(mapping);
-
ret = handle_userfault(&vmf, VM_UFFD_MISSING);
-
- i_mmap_lock_read(mapping);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
goto out;
}
@@ -3854,6 +3837,9 @@ retry:
}
ptl = huge_pte_lock(h, mm, ptep);
+ size = i_size_read(mapping->host) >> huge_page_shift(h);
+ if (idx >= size)
+ goto backout;
ret = 0;
if (!huge_pte_none(huge_ptep_get(ptep)))
@@ -3940,11 +3926,6 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
if (ptep) {
- /*
- * Since we hold no locks, ptep could be stale. That is
- * OK as we are only making decisions based on content and
- * not actually modifying content here.
- */
entry = huge_ptep_get(ptep);
if (unlikely(is_hugetlb_entry_migration(entry))) {
migration_entry_wait_huge(vma, mm, ptep);
@@ -3952,33 +3933,20 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
return VM_FAULT_HWPOISON_LARGE |
VM_FAULT_SET_HINDEX(hstate_index(h));
+ } else {
+ ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
+ if (!ptep)
+ return VM_FAULT_OOM;
}
- /*
- * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
- * until finished with ptep. This serves two purposes:
- * 1) It prevents huge_pmd_unshare from being called elsewhere
- * and making the ptep no longer valid.
- * 2) It synchronizes us with file truncation.
- *
- * ptep could have already be assigned via huge_pte_offset. That
- * is OK, as huge_pte_alloc will return the same value unless
- * something changed.
- */
mapping = vma->vm_file->f_mapping;
- i_mmap_lock_read(mapping);
- ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
- if (!ptep) {
- i_mmap_unlock_read(mapping);
- return VM_FAULT_OOM;
- }
+ idx = vma_hugecache_offset(h, vma, haddr);
/*
* Serialize hugepage allocation and instantiation, so that we don't
* get spurious allocation failures if two CPUs race to instantiate
* the same page in the page cache.
*/
- idx = vma_hugecache_offset(h, vma, haddr);
hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
@@ -4066,7 +4034,6 @@ out_ptl:
}
out_mutex:
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
- i_mmap_unlock_read(mapping);
/*
* Generally it's safe to hold refcount during waiting page lock. But
* here we just wait to defer the next page fault to avoid busy loop and
@@ -4671,12 +4638,10 @@ void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
* Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
* and returns the corresponding pte. While this is not necessary for the
* !shared pmd case because we can allocate the pmd later as well, it makes the
- * code much cleaner.
- *
- * This routine must be called with i_mmap_rwsem held in at least read mode.
- * For hugetlbfs, this prevents removal of any page table entries associated
- * with the address space. This is important as we are setting up sharing
- * based on existing page table entries (mappings).
+ * code much cleaner. pmd allocation is essential for the shared case because
+ * pud has to be populated inside the same i_mmap_rwsem section - otherwise
+ * racing tasks could either miss the sharing (see huge_pte_offset) or select a
+ * bad pmd for sharing.
*/
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
@@ -4693,6 +4658,7 @@ pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
if (!vma_shareable(vma, addr))
return (pte_t *)pmd_alloc(mm, pud, addr);
+ i_mmap_lock_write(mapping);
vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
if (svma == vma)
continue;
@@ -4722,6 +4688,7 @@ pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
spin_unlock(ptl);
out:
pte = (pte_t *)pmd_alloc(mm, pud, addr);
+ i_mmap_unlock_write(mapping);
return pte;
}
@@ -4732,7 +4699,7 @@ out:
* indicated by page_count > 1, unmap is achieved by clearing pud and
* decrementing the ref count. If count == 1, the pte page is not shared.
*
- * Called with page table lock held and i_mmap_rwsem held in write mode.
+ * called with page table lock held.
*
* returns: 1 successfully unmapped a shared pte page
* 0 the underlying pte page is not shared, or it is the last user