diff options
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r-- | mm/memcontrol.c | 161 |
1 files changed, 83 insertions, 78 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 6863a834ed42..4a7b3ebf8e48 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c @@ -776,24 +776,6 @@ void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) rcu_read_unlock(); } -/* - * mod_objcg_mlstate() may be called with irq enabled, so - * mod_memcg_lruvec_state() should be used. - */ -static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, - struct pglist_data *pgdat, - enum node_stat_item idx, int nr) -{ - struct mem_cgroup *memcg; - struct lruvec *lruvec; - - rcu_read_lock(); - memcg = obj_cgroup_memcg(objcg); - lruvec = mem_cgroup_lruvec(memcg, pgdat); - mod_memcg_lruvec_state(lruvec, idx, nr); - rcu_read_unlock(); -} - /** * __count_memcg_events - account VM events in a cgroup * @memcg: the memory cgroup @@ -2137,41 +2119,6 @@ static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, } #endif -/* - * Most kmem_cache_alloc() calls are from user context. The irq disable/enable - * sequence used in this case to access content from object stock is slow. - * To optimize for user context access, there are now two object stocks for - * task context and interrupt context access respectively. - * - * The task context object stock can be accessed by disabling preemption only - * which is cheap in non-preempt kernel. The interrupt context object stock - * can only be accessed after disabling interrupt. User context code can - * access interrupt object stock, but not vice versa. - */ -static inline struct obj_stock *get_obj_stock(unsigned long *pflags) -{ - struct memcg_stock_pcp *stock; - - if (likely(in_task())) { - *pflags = 0UL; - preempt_disable(); - stock = this_cpu_ptr(&memcg_stock); - return &stock->task_obj; - } - - local_irq_save(*pflags); - stock = this_cpu_ptr(&memcg_stock); - return &stock->irq_obj; -} - -static inline void put_obj_stock(unsigned long flags) -{ - if (likely(in_task())) - preempt_enable(); - else - local_irq_restore(flags); -} - /** * consume_stock: Try to consume stocked charge on this cpu. * @memcg: memcg to consume from. @@ -2816,31 +2763,84 @@ retry: */ #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT) -int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, - gfp_t gfp, bool new_page) +/* + * Most kmem_cache_alloc() calls are from user context. The irq disable/enable + * sequence used in this case to access content from object stock is slow. + * To optimize for user context access, there are now two object stocks for + * task context and interrupt context access respectively. + * + * The task context object stock can be accessed by disabling preemption only + * which is cheap in non-preempt kernel. The interrupt context object stock + * can only be accessed after disabling interrupt. User context code can + * access interrupt object stock, but not vice versa. + */ +static inline struct obj_stock *get_obj_stock(unsigned long *pflags) +{ + struct memcg_stock_pcp *stock; + + if (likely(in_task())) { + *pflags = 0UL; + preempt_disable(); + stock = this_cpu_ptr(&memcg_stock); + return &stock->task_obj; + } + + local_irq_save(*pflags); + stock = this_cpu_ptr(&memcg_stock); + return &stock->irq_obj; +} + +static inline void put_obj_stock(unsigned long flags) { - unsigned int objects = objs_per_slab_page(s, page); + if (likely(in_task())) + preempt_enable(); + else + local_irq_restore(flags); +} + +/* + * mod_objcg_mlstate() may be called with irq enabled, so + * mod_memcg_lruvec_state() should be used. + */ +static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, + struct pglist_data *pgdat, + enum node_stat_item idx, int nr) +{ + struct mem_cgroup *memcg; + struct lruvec *lruvec; + + rcu_read_lock(); + memcg = obj_cgroup_memcg(objcg); + lruvec = mem_cgroup_lruvec(memcg, pgdat); + mod_memcg_lruvec_state(lruvec, idx, nr); + rcu_read_unlock(); +} + +int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, + gfp_t gfp, bool new_slab) +{ + unsigned int objects = objs_per_slab(s, slab); unsigned long memcg_data; void *vec; gfp &= ~OBJCGS_CLEAR_MASK; vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, - page_to_nid(page)); + slab_nid(slab)); if (!vec) return -ENOMEM; memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; - if (new_page) { + if (new_slab) { /* - * If the slab page is brand new and nobody can yet access - * it's memcg_data, no synchronization is required and - * memcg_data can be simply assigned. + * If the slab is brand new and nobody can yet access its + * memcg_data, no synchronization is required and memcg_data can + * be simply assigned. */ - page->memcg_data = memcg_data; - } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) { + slab->memcg_data = memcg_data; + } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) { /* - * If the slab page is already in use, somebody can allocate - * and assign obj_cgroups in parallel. In this case the existing + * If the slab is already in use, somebody can allocate and + * assign obj_cgroups in parallel. In this case the existing * objcg vector should be reused. */ kfree(vec); @@ -2865,38 +2865,43 @@ int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, */ struct mem_cgroup *mem_cgroup_from_obj(void *p) { - struct page *page; + struct folio *folio; if (mem_cgroup_disabled()) return NULL; - page = virt_to_head_page(p); + folio = virt_to_folio(p); /* * Slab objects are accounted individually, not per-page. * Memcg membership data for each individual object is saved in - * the page->obj_cgroups. + * slab->memcg_data. */ - if (page_objcgs_check(page)) { - struct obj_cgroup *objcg; + if (folio_test_slab(folio)) { + struct obj_cgroup **objcgs; + struct slab *slab; unsigned int off; - off = obj_to_index(page->slab_cache, page, p); - objcg = page_objcgs(page)[off]; - if (objcg) - return obj_cgroup_memcg(objcg); + slab = folio_slab(folio); + objcgs = slab_objcgs(slab); + if (!objcgs) + return NULL; + + off = obj_to_index(slab->slab_cache, slab, p); + if (objcgs[off]) + return obj_cgroup_memcg(objcgs[off]); return NULL; } /* - * page_memcg_check() is used here, because page_has_obj_cgroups() - * check above could fail because the object cgroups vector wasn't set - * at that moment, but it can be set concurrently. + * page_memcg_check() is used here, because in theory we can encounter + * a folio where the slab flag has been cleared already, but + * slab->memcg_data has not been freed yet * page_memcg_check(page) will guarantee that a proper memory * cgroup pointer or NULL will be returned. */ - return page_memcg_check(page); + return page_memcg_check(folio_page(folio, 0)); } __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) |