summaryrefslogtreecommitdiffstats
path: root/mm/memory.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memory.c')
-rw-r--r--mm/memory.c78
1 files changed, 30 insertions, 48 deletions
diff --git a/mm/memory.c b/mm/memory.c
index 6ff5d729ded0..bb11c474857e 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -2855,40 +2855,6 @@ out_release:
}
/*
- * This is like a special single-page "expand_{down|up}wards()",
- * except we must first make sure that 'address{-|+}PAGE_SIZE'
- * doesn't hit another vma.
- */
-static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
-{
- address &= PAGE_MASK;
- if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
- struct vm_area_struct *prev = vma->vm_prev;
-
- /*
- * Is there a mapping abutting this one below?
- *
- * That's only ok if it's the same stack mapping
- * that has gotten split..
- */
- if (prev && prev->vm_end == address)
- return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
-
- return expand_downwards(vma, address - PAGE_SIZE);
- }
- if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
- struct vm_area_struct *next = vma->vm_next;
-
- /* As VM_GROWSDOWN but s/below/above/ */
- if (next && next->vm_start == address + PAGE_SIZE)
- return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
-
- return expand_upwards(vma, address + PAGE_SIZE);
- }
- return 0;
-}
-
-/*
* We enter with non-exclusive mmap_sem (to exclude vma changes,
* but allow concurrent faults), and pte mapped but not yet locked.
* We return with mmap_sem still held, but pte unmapped and unlocked.
@@ -2904,10 +2870,6 @@ static int do_anonymous_page(struct vm_fault *vmf)
if (vma->vm_flags & VM_SHARED)
return VM_FAULT_SIGBUS;
- /* Check if we need to add a guard page to the stack */
- if (check_stack_guard_page(vma, vmf->address) < 0)
- return VM_FAULT_SIGSEGV;
-
/*
* Use pte_alloc() instead of pte_alloc_map(). We can't run
* pte_offset_map() on pmds where a huge pmd might be created
@@ -3029,6 +2991,17 @@ static int __do_fault(struct vm_fault *vmf)
return ret;
}
+/*
+ * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
+ * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
+ * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
+ * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
+ */
+static int pmd_devmap_trans_unstable(pmd_t *pmd)
+{
+ return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
+}
+
static int pte_alloc_one_map(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
@@ -3052,18 +3025,27 @@ static int pte_alloc_one_map(struct vm_fault *vmf)
map_pte:
/*
* If a huge pmd materialized under us just retry later. Use
- * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
- * didn't become pmd_trans_huge under us and then back to pmd_none, as
- * a result of MADV_DONTNEED running immediately after a huge pmd fault
- * in a different thread of this mm, in turn leading to a misleading
- * pmd_trans_huge() retval. All we have to ensure is that it is a
- * regular pmd that we can walk with pte_offset_map() and we can do that
- * through an atomic read in C, which is what pmd_trans_unstable()
- * provides.
+ * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
+ * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
+ * under us and then back to pmd_none, as a result of MADV_DONTNEED
+ * running immediately after a huge pmd fault in a different thread of
+ * this mm, in turn leading to a misleading pmd_trans_huge() retval.
+ * All we have to ensure is that it is a regular pmd that we can walk
+ * with pte_offset_map() and we can do that through an atomic read in
+ * C, which is what pmd_trans_unstable() provides.
*/
- if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
+ if (pmd_devmap_trans_unstable(vmf->pmd))
return VM_FAULT_NOPAGE;
+ /*
+ * At this point we know that our vmf->pmd points to a page of ptes
+ * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
+ * for the duration of the fault. If a racing MADV_DONTNEED runs and
+ * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
+ * be valid and we will re-check to make sure the vmf->pte isn't
+ * pte_none() under vmf->ptl protection when we return to
+ * alloc_set_pte().
+ */
vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
&vmf->ptl);
return 0;
@@ -3690,7 +3672,7 @@ static int handle_pte_fault(struct vm_fault *vmf)
vmf->pte = NULL;
} else {
/* See comment in pte_alloc_one_map() */
- if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
+ if (pmd_devmap_trans_unstable(vmf->pmd))
return 0;
/*
* A regular pmd is established and it can't morph into a huge