summaryrefslogtreecommitdiffstats
path: root/mm/page-writeback.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/page-writeback.c')
-rw-r--r--mm/page-writeback.c48
1 files changed, 17 insertions, 31 deletions
diff --git a/mm/page-writeback.c b/mm/page-writeback.c
index 91d163f8d36b..435c02630593 100644
--- a/mm/page-writeback.c
+++ b/mm/page-writeback.c
@@ -324,18 +324,6 @@ static unsigned long highmem_dirtyable_memory(unsigned long total)
}
/*
- * Unreclaimable memory (kernel memory or anonymous memory
- * without swap) can bring down the dirtyable pages below
- * the zone's dirty balance reserve and the above calculation
- * will underflow. However we still want to add in nodes
- * which are below threshold (negative values) to get a more
- * accurate calculation but make sure that the total never
- * underflows.
- */
- if ((long)x < 0)
- x = 0;
-
- /*
* Make sure that the number of highmem pages is never larger
* than the number of the total dirtyable memory. This can only
* occur in very strange VM situations but we want to make sure
@@ -2430,13 +2418,13 @@ EXPORT_SYMBOL(folio_write_one);
/*
* For address_spaces which do not use buffers nor write back.
*/
-int __set_page_dirty_no_writeback(struct page *page)
+bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
{
- if (!PageDirty(page))
- return !TestSetPageDirty(page);
- return 0;
+ if (!folio_test_dirty(folio))
+ return !folio_test_set_dirty(folio);
+ return false;
}
-EXPORT_SYMBOL(__set_page_dirty_no_writeback);
+EXPORT_SYMBOL(noop_dirty_folio);
/*
* Helper function for set_page_dirty family.
@@ -2530,7 +2518,7 @@ void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
* This is also sometimes used by filesystems which use buffer_heads when
* a single buffer is being dirtied: we want to set the folio dirty in
* that case, but not all the buffers. This is a "bottom-up" dirtying,
- * whereas __set_page_dirty_buffers() is a "top-down" dirtying.
+ * whereas block_dirty_folio() is a "top-down" dirtying.
*
* The caller must ensure this doesn't race with truncation. Most will
* simply hold the folio lock, but e.g. zap_pte_range() calls with the
@@ -2616,7 +2604,7 @@ EXPORT_SYMBOL(folio_redirty_for_writepage);
* folio_mark_dirty - Mark a folio as being modified.
* @folio: The folio.
*
- * For folios with a mapping this should be done under the page lock
+ * For folios with a mapping this should be done with the folio lock held
* for the benefit of asynchronous memory errors who prefer a consistent
* dirty state. This rule can be broken in some special cases,
* but should be better not to.
@@ -2630,23 +2618,21 @@ bool folio_mark_dirty(struct folio *folio)
if (likely(mapping)) {
/*
* readahead/lru_deactivate_page could remain
- * PG_readahead/PG_reclaim due to race with end_page_writeback
- * About readahead, if the page is written, the flags would be
+ * PG_readahead/PG_reclaim due to race with folio_end_writeback
+ * About readahead, if the folio is written, the flags would be
* reset. So no problem.
- * About lru_deactivate_page, if the page is redirty, the flag
- * will be reset. So no problem. but if the page is used by readahead
- * it will confuse readahead and make it restart the size rampup
- * process. But it's a trivial problem.
+ * About lru_deactivate_page, if the folio is redirtied,
+ * the flag will be reset. So no problem. but if the
+ * folio is used by readahead it will confuse readahead
+ * and make it restart the size rampup process. But it's
+ * a trivial problem.
*/
if (folio_test_reclaim(folio))
folio_clear_reclaim(folio);
- return mapping->a_ops->set_page_dirty(&folio->page);
+ return mapping->a_ops->dirty_folio(mapping, folio);
}
- if (!folio_test_dirty(folio)) {
- if (!folio_test_set_dirty(folio))
- return true;
- }
- return false;
+
+ return noop_dirty_folio(mapping, folio);
}
EXPORT_SYMBOL(folio_mark_dirty);