diff options
Diffstat (limited to 'mm/page_isolation.c')
-rw-r--r-- | mm/page_isolation.c | 21 |
1 files changed, 18 insertions, 3 deletions
diff --git a/mm/page_isolation.c b/mm/page_isolation.c index 165ed8117bd1..43e085608846 100644 --- a/mm/page_isolation.c +++ b/mm/page_isolation.c @@ -28,6 +28,14 @@ static int set_migratetype_isolate(struct page *page, int migratetype, spin_lock_irqsave(&zone->lock, flags); + /* + * We assume the caller intended to SET migrate type to isolate. + * If it is already set, then someone else must have raced and + * set it before us. Return -EBUSY + */ + if (is_migrate_isolate_page(page)) + goto out; + pfn = page_to_pfn(page); arg.start_pfn = pfn; arg.nr_pages = pageblock_nr_pages; @@ -166,7 +174,15 @@ __first_valid_page(unsigned long pfn, unsigned long nr_pages) * future will not be allocated again. * * start_pfn/end_pfn must be aligned to pageblock_order. - * Returns 0 on success and -EBUSY if any part of range cannot be isolated. + * Return 0 on success and -EBUSY if any part of range cannot be isolated. + * + * There is no high level synchronization mechanism that prevents two threads + * from trying to isolate overlapping ranges. If this happens, one thread + * will notice pageblocks in the overlapping range already set to isolate. + * This happens in set_migratetype_isolate, and set_migratetype_isolate + * returns an error. We then clean up by restoring the migration type on + * pageblocks we may have modified and return -EBUSY to caller. This + * prevents two threads from simultaneously working on overlapping ranges. */ int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn, unsigned migratetype, bool skip_hwpoisoned_pages) @@ -293,8 +309,7 @@ int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn, return pfn < end_pfn ? -EBUSY : 0; } -struct page *alloc_migrate_target(struct page *page, unsigned long private, - int **resultp) +struct page *alloc_migrate_target(struct page *page, unsigned long private) { return new_page_nodemask(page, numa_node_id(), &node_states[N_MEMORY]); } |