summaryrefslogtreecommitdiffstats
path: root/mm/slub.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/slub.c')
-rw-r--r--mm/slub.c343
1 files changed, 107 insertions, 236 deletions
diff --git a/mm/slub.c b/mm/slub.c
index 8d71aaf888d7..b364844a1068 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -151,7 +151,8 @@
* Set of flags that will prevent slab merging
*/
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
- SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
+ SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
+ SLAB_FAILSLAB)
#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
SLAB_CACHE_DMA | SLAB_NOTRACK)
@@ -217,10 +218,10 @@ static inline void sysfs_slab_remove(struct kmem_cache *s)
#endif
-static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
+static inline void stat(struct kmem_cache *s, enum stat_item si)
{
#ifdef CONFIG_SLUB_STATS
- c->stat[si]++;
+ __this_cpu_inc(s->cpu_slab->stat[si]);
#endif
}
@@ -242,15 +243,6 @@ static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
#endif
}
-static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
-{
-#ifdef CONFIG_SMP
- return s->cpu_slab[cpu];
-#else
- return &s->cpu_slab;
-#endif
-}
-
/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
struct page *page, const void *object)
@@ -269,13 +261,6 @@ static inline int check_valid_pointer(struct kmem_cache *s,
return 1;
}
-/*
- * Slow version of get and set free pointer.
- *
- * This version requires touching the cache lines of kmem_cache which
- * we avoid to do in the fast alloc free paths. There we obtain the offset
- * from the page struct.
- */
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
return *(void **)(object + s->offset);
@@ -1020,6 +1005,9 @@ static int __init setup_slub_debug(char *str)
case 't':
slub_debug |= SLAB_TRACE;
break;
+ case 'a':
+ slub_debug |= SLAB_FAILSLAB;
+ break;
default:
printk(KERN_ERR "slub_debug option '%c' "
"unknown. skipped\n", *str);
@@ -1124,7 +1112,7 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
if (!page)
return NULL;
- stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
+ stat(s, ORDER_FALLBACK);
}
if (kmemcheck_enabled
@@ -1422,23 +1410,22 @@ static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
{
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
- struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
__ClearPageSlubFrozen(page);
if (page->inuse) {
if (page->freelist) {
add_partial(n, page, tail);
- stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
+ stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
} else {
- stat(c, DEACTIVATE_FULL);
+ stat(s, DEACTIVATE_FULL);
if (SLABDEBUG && PageSlubDebug(page) &&
(s->flags & SLAB_STORE_USER))
add_full(n, page);
}
slab_unlock(page);
} else {
- stat(c, DEACTIVATE_EMPTY);
+ stat(s, DEACTIVATE_EMPTY);
if (n->nr_partial < s->min_partial) {
/*
* Adding an empty slab to the partial slabs in order
@@ -1454,7 +1441,7 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
slab_unlock(page);
} else {
slab_unlock(page);
- stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
+ stat(s, FREE_SLAB);
discard_slab(s, page);
}
}
@@ -1469,7 +1456,7 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
int tail = 1;
if (page->freelist)
- stat(c, DEACTIVATE_REMOTE_FREES);
+ stat(s, DEACTIVATE_REMOTE_FREES);
/*
* Merge cpu freelist into slab freelist. Typically we get here
* because both freelists are empty. So this is unlikely
@@ -1482,10 +1469,10 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
/* Retrieve object from cpu_freelist */
object = c->freelist;
- c->freelist = c->freelist[c->offset];
+ c->freelist = get_freepointer(s, c->freelist);
/* And put onto the regular freelist */
- object[c->offset] = page->freelist;
+ set_freepointer(s, object, page->freelist);
page->freelist = object;
page->inuse--;
}
@@ -1495,7 +1482,7 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
{
- stat(c, CPUSLAB_FLUSH);
+ stat(s, CPUSLAB_FLUSH);
slab_lock(c->page);
deactivate_slab(s, c);
}
@@ -1507,7 +1494,7 @@ static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
*/
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
{
- struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+ struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
if (likely(c && c->page))
flush_slab(s, c);
@@ -1635,7 +1622,7 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
if (unlikely(!node_match(c, node)))
goto another_slab;
- stat(c, ALLOC_REFILL);
+ stat(s, ALLOC_REFILL);
load_freelist:
object = c->page->freelist;
@@ -1644,13 +1631,13 @@ load_freelist:
if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
goto debug;
- c->freelist = object[c->offset];
+ c->freelist = get_freepointer(s, object);
c->page->inuse = c->page->objects;
c->page->freelist = NULL;
c->node = page_to_nid(c->page);
unlock_out:
slab_unlock(c->page);
- stat(c, ALLOC_SLOWPATH);
+ stat(s, ALLOC_SLOWPATH);
return object;
another_slab:
@@ -1660,7 +1647,7 @@ new_slab:
new = get_partial(s, gfpflags, node);
if (new) {
c->page = new;
- stat(c, ALLOC_FROM_PARTIAL);
+ stat(s, ALLOC_FROM_PARTIAL);
goto load_freelist;
}
@@ -1673,8 +1660,8 @@ new_slab:
local_irq_disable();
if (new) {
- c = get_cpu_slab(s, smp_processor_id());
- stat(c, ALLOC_SLAB);
+ c = __this_cpu_ptr(s->cpu_slab);
+ stat(s, ALLOC_SLAB);
if (c->page)
flush_slab(s, c);
slab_lock(new);
@@ -1690,7 +1677,7 @@ debug:
goto another_slab;
c->page->inuse++;
- c->page->freelist = object[c->offset];
+ c->page->freelist = get_freepointer(s, object);
c->node = -1;
goto unlock_out;
}
@@ -1711,35 +1698,33 @@ static __always_inline void *slab_alloc(struct kmem_cache *s,
void **object;
struct kmem_cache_cpu *c;
unsigned long flags;
- unsigned int objsize;
gfpflags &= gfp_allowed_mask;
lockdep_trace_alloc(gfpflags);
might_sleep_if(gfpflags & __GFP_WAIT);
- if (should_failslab(s->objsize, gfpflags))
+ if (should_failslab(s->objsize, gfpflags, s->flags))
return NULL;
local_irq_save(flags);
- c = get_cpu_slab(s, smp_processor_id());
- objsize = c->objsize;
- if (unlikely(!c->freelist || !node_match(c, node)))
+ c = __this_cpu_ptr(s->cpu_slab);
+ object = c->freelist;
+ if (unlikely(!object || !node_match(c, node)))
object = __slab_alloc(s, gfpflags, node, addr, c);
else {
- object = c->freelist;
- c->freelist = object[c->offset];
- stat(c, ALLOC_FASTPATH);
+ c->freelist = get_freepointer(s, object);
+ stat(s, ALLOC_FASTPATH);
}
local_irq_restore(flags);
if (unlikely(gfpflags & __GFP_ZERO) && object)
- memset(object, 0, objsize);
+ memset(object, 0, s->objsize);
- kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
- kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
+ kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
+ kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
return object;
}
@@ -1794,26 +1779,25 @@ EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
* handling required then we can return immediately.
*/
static void __slab_free(struct kmem_cache *s, struct page *page,
- void *x, unsigned long addr, unsigned int offset)
+ void *x, unsigned long addr)
{
void *prior;
void **object = (void *)x;
- struct kmem_cache_cpu *c;
- c = get_cpu_slab(s, raw_smp_processor_id());
- stat(c, FREE_SLOWPATH);
+ stat(s, FREE_SLOWPATH);
slab_lock(page);
if (unlikely(SLABDEBUG && PageSlubDebug(page)))
goto debug;
checks_ok:
- prior = object[offset] = page->freelist;
+ prior = page->freelist;
+ set_freepointer(s, object, prior);
page->freelist = object;
page->inuse--;
if (unlikely(PageSlubFrozen(page))) {
- stat(c, FREE_FROZEN);
+ stat(s, FREE_FROZEN);
goto out_unlock;
}
@@ -1826,7 +1810,7 @@ checks_ok:
*/
if (unlikely(!prior)) {
add_partial(get_node(s, page_to_nid(page)), page, 1);
- stat(c, FREE_ADD_PARTIAL);
+ stat(s, FREE_ADD_PARTIAL);
}
out_unlock:
@@ -1839,10 +1823,10 @@ slab_empty:
* Slab still on the partial list.
*/
remove_partial(s, page);
- stat(c, FREE_REMOVE_PARTIAL);
+ stat(s, FREE_REMOVE_PARTIAL);
}
slab_unlock(page);
- stat(c, FREE_SLAB);
+ stat(s, FREE_SLAB);
discard_slab(s, page);
return;
@@ -1872,17 +1856,17 @@ static __always_inline void slab_free(struct kmem_cache *s,
kmemleak_free_recursive(x, s->flags);
local_irq_save(flags);
- c = get_cpu_slab(s, smp_processor_id());
- kmemcheck_slab_free(s, object, c->objsize);
- debug_check_no_locks_freed(object, c->objsize);
+ c = __this_cpu_ptr(s->cpu_slab);
+ kmemcheck_slab_free(s, object, s->objsize);
+ debug_check_no_locks_freed(object, s->objsize);
if (!(s->flags & SLAB_DEBUG_OBJECTS))
- debug_check_no_obj_freed(object, c->objsize);
+ debug_check_no_obj_freed(object, s->objsize);
if (likely(page == c->page && c->node >= 0)) {
- object[c->offset] = c->freelist;
+ set_freepointer(s, object, c->freelist);
c->freelist = object;
- stat(c, FREE_FASTPATH);
+ stat(s, FREE_FASTPATH);
} else
- __slab_free(s, page, x, addr, c->offset);
+ __slab_free(s, page, x, addr);
local_irq_restore(flags);
}
@@ -2069,19 +2053,6 @@ static unsigned long calculate_alignment(unsigned long flags,
return ALIGN(align, sizeof(void *));
}
-static void init_kmem_cache_cpu(struct kmem_cache *s,
- struct kmem_cache_cpu *c)
-{
- c->page = NULL;
- c->freelist = NULL;
- c->node = 0;
- c->offset = s->offset / sizeof(void *);
- c->objsize = s->objsize;
-#ifdef CONFIG_SLUB_STATS
- memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
-#endif
-}
-
static void
init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
{
@@ -2095,130 +2066,24 @@ init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
#endif
}
-#ifdef CONFIG_SMP
-/*
- * Per cpu array for per cpu structures.
- *
- * The per cpu array places all kmem_cache_cpu structures from one processor
- * close together meaning that it becomes possible that multiple per cpu
- * structures are contained in one cacheline. This may be particularly
- * beneficial for the kmalloc caches.
- *
- * A desktop system typically has around 60-80 slabs. With 100 here we are
- * likely able to get per cpu structures for all caches from the array defined
- * here. We must be able to cover all kmalloc caches during bootstrap.
- *
- * If the per cpu array is exhausted then fall back to kmalloc
- * of individual cachelines. No sharing is possible then.
- */
-#define NR_KMEM_CACHE_CPU 100
-
-static DEFINE_PER_CPU(struct kmem_cache_cpu [NR_KMEM_CACHE_CPU],
- kmem_cache_cpu);
-
-static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
-static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
-
-static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
- int cpu, gfp_t flags)
-{
- struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
-
- if (c)
- per_cpu(kmem_cache_cpu_free, cpu) =
- (void *)c->freelist;
- else {
- /* Table overflow: So allocate ourselves */
- c = kmalloc_node(
- ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
- flags, cpu_to_node(cpu));
- if (!c)
- return NULL;
- }
-
- init_kmem_cache_cpu(s, c);
- return c;
-}
-
-static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
-{
- if (c < per_cpu(kmem_cache_cpu, cpu) ||
- c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
- kfree(c);
- return;
- }
- c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
- per_cpu(kmem_cache_cpu_free, cpu) = c;
-}
-
-static void free_kmem_cache_cpus(struct kmem_cache *s)
-{
- int cpu;
-
- for_each_online_cpu(cpu) {
- struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
-
- if (c) {
- s->cpu_slab[cpu] = NULL;
- free_kmem_cache_cpu(c, cpu);
- }
- }
-}
-
-static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
-{
- int cpu;
-
- for_each_online_cpu(cpu) {
- struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
-
- if (c)
- continue;
-
- c = alloc_kmem_cache_cpu(s, cpu, flags);
- if (!c) {
- free_kmem_cache_cpus(s);
- return 0;
- }
- s->cpu_slab[cpu] = c;
- }
- return 1;
-}
-
-/*
- * Initialize the per cpu array.
- */
-static void init_alloc_cpu_cpu(int cpu)
-{
- int i;
+static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
- if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
- return;
-
- for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
- free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
-
- cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
-}
-
-static void __init init_alloc_cpu(void)
+static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
{
- int cpu;
-
- for_each_online_cpu(cpu)
- init_alloc_cpu_cpu(cpu);
- }
+ if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
+ /*
+ * Boot time creation of the kmalloc array. Use static per cpu data
+ * since the per cpu allocator is not available yet.
+ */
+ s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
+ else
+ s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
-#else
-static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
-static inline void init_alloc_cpu(void) {}
+ if (!s->cpu_slab)
+ return 0;
-static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
-{
- init_kmem_cache_cpu(s, &s->cpu_slab);
return 1;
}
-#endif
#ifdef CONFIG_NUMA
/*
@@ -2287,7 +2152,8 @@ static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
int node;
int local_node;
- if (slab_state >= UP)
+ if (slab_state >= UP && (s < kmalloc_caches ||
+ s > kmalloc_caches + KMALLOC_CACHES))
local_node = page_to_nid(virt_to_page(s));
else
local_node = 0;
@@ -2502,6 +2368,7 @@ static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
return 1;
+
free_kmem_cache_nodes(s);
error:
if (flags & SLAB_PANIC)
@@ -2609,9 +2476,8 @@ static inline int kmem_cache_close(struct kmem_cache *s)
int node;
flush_all(s);
-
+ free_percpu(s->cpu_slab);
/* Attempt to free all objects */
- free_kmem_cache_cpus(s);
for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n = get_node(s, node);
@@ -2651,7 +2517,7 @@ EXPORT_SYMBOL(kmem_cache_destroy);
* Kmalloc subsystem
*******************************************************************/
-struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
+struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
EXPORT_SYMBOL(kmalloc_caches);
static int __init setup_slub_min_order(char *str)
@@ -2741,6 +2607,7 @@ static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
char *text;
size_t realsize;
unsigned long slabflags;
+ int i;
s = kmalloc_caches_dma[index];
if (s)
@@ -2760,7 +2627,14 @@ static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
realsize = kmalloc_caches[index].objsize;
text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
(unsigned int)realsize);
- s = kmalloc(kmem_size, flags & ~SLUB_DMA);
+
+ s = NULL;
+ for (i = 0; i < KMALLOC_CACHES; i++)
+ if (!kmalloc_caches[i].size)
+ break;
+
+ BUG_ON(i >= KMALLOC_CACHES);
+ s = kmalloc_caches + i;
/*
* Must defer sysfs creation to a workqueue because we don't know
@@ -2772,9 +2646,9 @@ static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
if (slab_state >= SYSFS)
slabflags |= __SYSFS_ADD_DEFERRED;
- if (!s || !text || !kmem_cache_open(s, flags, text,
+ if (!text || !kmem_cache_open(s, flags, text,
realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
- kfree(s);
+ s->size = 0;
kfree(text);
goto unlock_out;
}
@@ -3086,7 +2960,7 @@ static void slab_mem_offline_callback(void *arg)
/*
* if n->nr_slabs > 0, slabs still exist on the node
* that is going down. We were unable to free them,
- * and offline_pages() function shoudn't call this
+ * and offline_pages() function shouldn't call this
* callback. So, we must fail.
*/
BUG_ON(slabs_node(s, offline_node));
@@ -3176,8 +3050,6 @@ void __init kmem_cache_init(void)
int i;
int caches = 0;
- init_alloc_cpu();
-
#ifdef CONFIG_NUMA
/*
* Must first have the slab cache available for the allocations of the
@@ -3261,8 +3133,10 @@ void __init kmem_cache_init(void)
#ifdef CONFIG_SMP
register_cpu_notifier(&slab_notifier);
- kmem_size = offsetof(struct kmem_cache, cpu_slab) +
- nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
+#endif
+#ifdef CONFIG_NUMA
+ kmem_size = offsetof(struct kmem_cache, node) +
+ nr_node_ids * sizeof(struct kmem_cache_node *);
#else
kmem_size = sizeof(struct kmem_cache);
#endif
@@ -3351,22 +3225,12 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size,
down_write(&slub_lock);
s = find_mergeable(size, align, flags, name, ctor);
if (s) {
- int cpu;
-
s->refcount++;
/*
* Adjust the object sizes so that we clear
* the complete object on kzalloc.
*/
s->objsize = max(s->objsize, (int)size);
-
- /*
- * And then we need to update the object size in the
- * per cpu structures
- */
- for_each_online_cpu(cpu)
- get_cpu_slab(s, cpu)->objsize = s->objsize;
-
s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
up_write(&slub_lock);
@@ -3420,29 +3284,15 @@ static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
unsigned long flags;
switch (action) {
- case CPU_UP_PREPARE:
- case CPU_UP_PREPARE_FROZEN:
- init_alloc_cpu_cpu(cpu);
- down_read(&slub_lock);
- list_for_each_entry(s, &slab_caches, list)
- s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
- GFP_KERNEL);
- up_read(&slub_lock);
- break;
-
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
case CPU_DEAD:
case CPU_DEAD_FROZEN:
down_read(&slub_lock);
list_for_each_entry(s, &slab_caches, list) {
- struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
-
local_irq_save(flags);
__flush_cpu_slab(s, cpu);
local_irq_restore(flags);
- free_kmem_cache_cpu(c, cpu);
- s->cpu_slab[cpu] = NULL;
}
up_read(&slub_lock);
break;
@@ -3928,7 +3778,7 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
int cpu;
for_each_possible_cpu(cpu) {
- struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+ struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
if (!c || c->node < 0)
continue;
@@ -4171,6 +4021,23 @@ static ssize_t trace_store(struct kmem_cache *s, const char *buf,
}
SLAB_ATTR(trace);
+#ifdef CONFIG_FAILSLAB
+static ssize_t failslab_show(struct kmem_cache *s, char *buf)
+{
+ return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
+}
+
+static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
+ size_t length)
+{
+ s->flags &= ~SLAB_FAILSLAB;
+ if (buf[0] == '1')
+ s->flags |= SLAB_FAILSLAB;
+ return length;
+}
+SLAB_ATTR(failslab);
+#endif
+
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
@@ -4353,7 +4220,7 @@ static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
return -ENOMEM;
for_each_online_cpu(cpu) {
- unsigned x = get_cpu_slab(s, cpu)->stat[si];
+ unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
data[cpu] = x;
sum += x;
@@ -4376,7 +4243,7 @@ static void clear_stat(struct kmem_cache *s, enum stat_item si)
int cpu;
for_each_online_cpu(cpu)
- get_cpu_slab(s, cpu)->stat[si] = 0;
+ per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
}
#define STAT_ATTR(si, text) \
@@ -4467,6 +4334,10 @@ static struct attribute *slab_attrs[] = {
&deactivate_remote_frees_attr.attr,
&order_fallback_attr.attr,
#endif
+#ifdef CONFIG_FAILSLAB
+ &failslab_attr.attr,
+#endif
+
NULL
};
@@ -4519,7 +4390,7 @@ static void kmem_cache_release(struct kobject *kobj)
kfree(s);
}
-static struct sysfs_ops slab_sysfs_ops = {
+static const struct sysfs_ops slab_sysfs_ops = {
.show = slab_attr_show,
.store = slab_attr_store,
};
@@ -4538,7 +4409,7 @@ static int uevent_filter(struct kset *kset, struct kobject *kobj)
return 0;
}
-static struct kset_uevent_ops slab_uevent_ops = {
+static const struct kset_uevent_ops slab_uevent_ops = {
.filter = uevent_filter,
};