summaryrefslogtreecommitdiffstats
path: root/mm/slub.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/slub.c')
-rw-r--r--mm/slub.c159
1 files changed, 89 insertions, 70 deletions
diff --git a/mm/slub.c b/mm/slub.c
index 57e5156f02be..1d3f9835f4ea 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -1615,7 +1615,7 @@ out:
if (!page)
return NULL;
- mod_zone_page_state(page_zone(page),
+ mod_lruvec_page_state(page,
(s->flags & SLAB_RECLAIM_ACCOUNT) ?
NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1 << oo_order(oo));
@@ -1655,7 +1655,7 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
kmemcheck_free_shadow(page, compound_order(page));
- mod_zone_page_state(page_zone(page),
+ mod_lruvec_page_state(page,
(s->flags & SLAB_RECLAIM_ACCOUNT) ?
NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
-pages);
@@ -1829,7 +1829,7 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
stat(s, CPU_PARTIAL_NODE);
}
if (!kmem_cache_has_cpu_partial(s)
- || available > s->cpu_partial / 2)
+ || available > slub_cpu_partial(s) / 2)
break;
}
@@ -1993,7 +1993,7 @@ static void init_kmem_cache_cpus(struct kmem_cache *s)
* Remove the cpu slab
*/
static void deactivate_slab(struct kmem_cache *s, struct page *page,
- void *freelist)
+ void *freelist, struct kmem_cache_cpu *c)
{
enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
@@ -2132,6 +2132,9 @@ redo:
discard_slab(s, page);
stat(s, FREE_SLAB);
}
+
+ c->page = NULL;
+ c->freelist = NULL;
}
/*
@@ -2266,11 +2269,9 @@ static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
{
stat(s, CPUSLAB_FLUSH);
- deactivate_slab(s, c->page, c->freelist);
+ deactivate_slab(s, c->page, c->freelist, c);
c->tid = next_tid(c->tid);
- c->page = NULL;
- c->freelist = NULL;
}
/*
@@ -2302,7 +2303,7 @@ static bool has_cpu_slab(int cpu, void *info)
struct kmem_cache *s = info;
struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
- return c->page || c->partial;
+ return c->page || slub_percpu_partial(c);
}
static void flush_all(struct kmem_cache *s)
@@ -2521,9 +2522,7 @@ redo:
if (unlikely(!node_match(page, searchnode))) {
stat(s, ALLOC_NODE_MISMATCH);
- deactivate_slab(s, page, c->freelist);
- c->page = NULL;
- c->freelist = NULL;
+ deactivate_slab(s, page, c->freelist, c);
goto new_slab;
}
}
@@ -2534,9 +2533,7 @@ redo:
* information when the page leaves the per-cpu allocator
*/
if (unlikely(!pfmemalloc_match(page, gfpflags))) {
- deactivate_slab(s, page, c->freelist);
- c->page = NULL;
- c->freelist = NULL;
+ deactivate_slab(s, page, c->freelist, c);
goto new_slab;
}
@@ -2568,11 +2565,10 @@ load_freelist:
new_slab:
- if (c->partial) {
- page = c->page = c->partial;
- c->partial = page->next;
+ if (slub_percpu_partial(c)) {
+ page = c->page = slub_percpu_partial(c);
+ slub_set_percpu_partial(c, page);
stat(s, CPU_PARTIAL_ALLOC);
- c->freelist = NULL;
goto redo;
}
@@ -2592,9 +2588,7 @@ new_slab:
!alloc_debug_processing(s, page, freelist, addr))
goto new_slab; /* Slab failed checks. Next slab needed */
- deactivate_slab(s, page, get_freepointer(s, freelist));
- c->page = NULL;
- c->freelist = NULL;
+ deactivate_slab(s, page, get_freepointer(s, freelist), c);
return freelist;
}
@@ -3410,6 +3404,39 @@ static void set_min_partial(struct kmem_cache *s, unsigned long min)
s->min_partial = min;
}
+static void set_cpu_partial(struct kmem_cache *s)
+{
+#ifdef CONFIG_SLUB_CPU_PARTIAL
+ /*
+ * cpu_partial determined the maximum number of objects kept in the
+ * per cpu partial lists of a processor.
+ *
+ * Per cpu partial lists mainly contain slabs that just have one
+ * object freed. If they are used for allocation then they can be
+ * filled up again with minimal effort. The slab will never hit the
+ * per node partial lists and therefore no locking will be required.
+ *
+ * This setting also determines
+ *
+ * A) The number of objects from per cpu partial slabs dumped to the
+ * per node list when we reach the limit.
+ * B) The number of objects in cpu partial slabs to extract from the
+ * per node list when we run out of per cpu objects. We only fetch
+ * 50% to keep some capacity around for frees.
+ */
+ if (!kmem_cache_has_cpu_partial(s))
+ s->cpu_partial = 0;
+ else if (s->size >= PAGE_SIZE)
+ s->cpu_partial = 2;
+ else if (s->size >= 1024)
+ s->cpu_partial = 6;
+ else if (s->size >= 256)
+ s->cpu_partial = 13;
+ else
+ s->cpu_partial = 30;
+#endif
+}
+
/*
* calculate_sizes() determines the order and the distribution of data within
* a slab object.
@@ -3568,33 +3595,7 @@ static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
*/
set_min_partial(s, ilog2(s->size) / 2);
- /*
- * cpu_partial determined the maximum number of objects kept in the
- * per cpu partial lists of a processor.
- *
- * Per cpu partial lists mainly contain slabs that just have one
- * object freed. If they are used for allocation then they can be
- * filled up again with minimal effort. The slab will never hit the
- * per node partial lists and therefore no locking will be required.
- *
- * This setting also determines
- *
- * A) The number of objects from per cpu partial slabs dumped to the
- * per node list when we reach the limit.
- * B) The number of objects in cpu partial slabs to extract from the
- * per node list when we run out of per cpu objects. We only fetch
- * 50% to keep some capacity around for frees.
- */
- if (!kmem_cache_has_cpu_partial(s))
- s->cpu_partial = 0;
- else if (s->size >= PAGE_SIZE)
- s->cpu_partial = 2;
- else if (s->size >= 1024)
- s->cpu_partial = 6;
- else if (s->size >= 256)
- s->cpu_partial = 13;
- else
- s->cpu_partial = 30;
+ set_cpu_partial(s);
#ifdef CONFIG_NUMA
s->remote_node_defrag_ratio = 1000;
@@ -3981,7 +3982,7 @@ void __kmemcg_cache_deactivate(struct kmem_cache *s)
* Disable empty slabs caching. Used to avoid pinning offline
* memory cgroups by kmem pages that can be freed.
*/
- s->cpu_partial = 0;
+ slub_set_cpu_partial(s, 0);
s->min_partial = 0;
/*
@@ -4760,7 +4761,7 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
total += x;
nodes[node] += x;
- page = READ_ONCE(c->partial);
+ page = slub_percpu_partial_read_once(c);
if (page) {
node = page_to_nid(page);
if (flags & SO_TOTAL)
@@ -4921,7 +4922,7 @@ SLAB_ATTR(min_partial);
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%u\n", s->cpu_partial);
+ return sprintf(buf, "%u\n", slub_cpu_partial(s));
}
static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
@@ -4936,7 +4937,7 @@ static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
if (objects && !kmem_cache_has_cpu_partial(s))
return -EINVAL;
- s->cpu_partial = objects;
+ slub_set_cpu_partial(s, objects);
flush_all(s);
return length;
}
@@ -4988,7 +4989,9 @@ static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
int len;
for_each_online_cpu(cpu) {
- struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
+ struct page *page;
+
+ page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
if (page) {
pages += page->pages;
@@ -5000,7 +5003,9 @@ static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
#ifdef CONFIG_SMP
for_each_online_cpu(cpu) {
- struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
+ struct page *page;
+
+ page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
if (page && len < PAGE_SIZE - 20)
len += sprintf(buf + len, " C%d=%d(%d)", cpu,
@@ -5512,6 +5517,7 @@ static void memcg_propagate_slab_attrs(struct kmem_cache *s)
char mbuf[64];
char *buf;
struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
+ ssize_t len;
if (!attr || !attr->store || !attr->show)
continue;
@@ -5536,8 +5542,9 @@ static void memcg_propagate_slab_attrs(struct kmem_cache *s)
buf = buffer;
}
- attr->show(root_cache, buf);
- attr->store(s, buf, strlen(buf));
+ len = attr->show(root_cache, buf);
+ if (len > 0)
+ attr->store(s, buf, len);
}
if (buffer)
@@ -5623,6 +5630,28 @@ static char *create_unique_id(struct kmem_cache *s)
return name;
}
+static void sysfs_slab_remove_workfn(struct work_struct *work)
+{
+ struct kmem_cache *s =
+ container_of(work, struct kmem_cache, kobj_remove_work);
+
+ if (!s->kobj.state_in_sysfs)
+ /*
+ * For a memcg cache, this may be called during
+ * deactivation and again on shutdown. Remove only once.
+ * A cache is never shut down before deactivation is
+ * complete, so no need to worry about synchronization.
+ */
+ return;
+
+#ifdef CONFIG_MEMCG
+ kset_unregister(s->memcg_kset);
+#endif
+ kobject_uevent(&s->kobj, KOBJ_REMOVE);
+ kobject_del(&s->kobj);
+ kobject_put(&s->kobj);
+}
+
static int sysfs_slab_add(struct kmem_cache *s)
{
int err;
@@ -5630,6 +5659,8 @@ static int sysfs_slab_add(struct kmem_cache *s)
struct kset *kset = cache_kset(s);
int unmergeable = slab_unmergeable(s);
+ INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
+
if (!kset) {
kobject_init(&s->kobj, &slab_ktype);
return 0;
@@ -5693,20 +5724,8 @@ static void sysfs_slab_remove(struct kmem_cache *s)
*/
return;
- if (!s->kobj.state_in_sysfs)
- /*
- * For a memcg cache, this may be called during
- * deactivation and again on shutdown. Remove only once.
- * A cache is never shut down before deactivation is
- * complete, so no need to worry about synchronization.
- */
- return;
-
-#ifdef CONFIG_MEMCG
- kset_unregister(s->memcg_kset);
-#endif
- kobject_uevent(&s->kobj, KOBJ_REMOVE);
- kobject_del(&s->kobj);
+ kobject_get(&s->kobj);
+ schedule_work(&s->kobj_remove_work);
}
void sysfs_slab_release(struct kmem_cache *s)