diff options
Diffstat (limited to '')
-rw-r--r-- | mm/workingset.c | 253 |
1 files changed, 253 insertions, 0 deletions
diff --git a/mm/workingset.c b/mm/workingset.c new file mode 100644 index 000000000000..8a6c7cff4923 --- /dev/null +++ b/mm/workingset.c @@ -0,0 +1,253 @@ +/* + * Workingset detection + * + * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner + */ + +#include <linux/memcontrol.h> +#include <linux/writeback.h> +#include <linux/pagemap.h> +#include <linux/atomic.h> +#include <linux/module.h> +#include <linux/swap.h> +#include <linux/fs.h> +#include <linux/mm.h> + +/* + * Double CLOCK lists + * + * Per zone, two clock lists are maintained for file pages: the + * inactive and the active list. Freshly faulted pages start out at + * the head of the inactive list and page reclaim scans pages from the + * tail. Pages that are accessed multiple times on the inactive list + * are promoted to the active list, to protect them from reclaim, + * whereas active pages are demoted to the inactive list when the + * active list grows too big. + * + * fault ------------------------+ + * | + * +--------------+ | +-------------+ + * reclaim <- | inactive | <-+-- demotion | active | <--+ + * +--------------+ +-------------+ | + * | | + * +-------------- promotion ------------------+ + * + * + * Access frequency and refault distance + * + * A workload is thrashing when its pages are frequently used but they + * are evicted from the inactive list every time before another access + * would have promoted them to the active list. + * + * In cases where the average access distance between thrashing pages + * is bigger than the size of memory there is nothing that can be + * done - the thrashing set could never fit into memory under any + * circumstance. + * + * However, the average access distance could be bigger than the + * inactive list, yet smaller than the size of memory. In this case, + * the set could fit into memory if it weren't for the currently + * active pages - which may be used more, hopefully less frequently: + * + * +-memory available to cache-+ + * | | + * +-inactive------+-active----+ + * a b | c d e f g h i | J K L M N | + * +---------------+-----------+ + * + * It is prohibitively expensive to accurately track access frequency + * of pages. But a reasonable approximation can be made to measure + * thrashing on the inactive list, after which refaulting pages can be + * activated optimistically to compete with the existing active pages. + * + * Approximating inactive page access frequency - Observations: + * + * 1. When a page is accessed for the first time, it is added to the + * head of the inactive list, slides every existing inactive page + * towards the tail by one slot, and pushes the current tail page + * out of memory. + * + * 2. When a page is accessed for the second time, it is promoted to + * the active list, shrinking the inactive list by one slot. This + * also slides all inactive pages that were faulted into the cache + * more recently than the activated page towards the tail of the + * inactive list. + * + * Thus: + * + * 1. The sum of evictions and activations between any two points in + * time indicate the minimum number of inactive pages accessed in + * between. + * + * 2. Moving one inactive page N page slots towards the tail of the + * list requires at least N inactive page accesses. + * + * Combining these: + * + * 1. When a page is finally evicted from memory, the number of + * inactive pages accessed while the page was in cache is at least + * the number of page slots on the inactive list. + * + * 2. In addition, measuring the sum of evictions and activations (E) + * at the time of a page's eviction, and comparing it to another + * reading (R) at the time the page faults back into memory tells + * the minimum number of accesses while the page was not cached. + * This is called the refault distance. + * + * Because the first access of the page was the fault and the second + * access the refault, we combine the in-cache distance with the + * out-of-cache distance to get the complete minimum access distance + * of this page: + * + * NR_inactive + (R - E) + * + * And knowing the minimum access distance of a page, we can easily + * tell if the page would be able to stay in cache assuming all page + * slots in the cache were available: + * + * NR_inactive + (R - E) <= NR_inactive + NR_active + * + * which can be further simplified to + * + * (R - E) <= NR_active + * + * Put into words, the refault distance (out-of-cache) can be seen as + * a deficit in inactive list space (in-cache). If the inactive list + * had (R - E) more page slots, the page would not have been evicted + * in between accesses, but activated instead. And on a full system, + * the only thing eating into inactive list space is active pages. + * + * + * Activating refaulting pages + * + * All that is known about the active list is that the pages have been + * accessed more than once in the past. This means that at any given + * time there is actually a good chance that pages on the active list + * are no longer in active use. + * + * So when a refault distance of (R - E) is observed and there are at + * least (R - E) active pages, the refaulting page is activated + * optimistically in the hope that (R - E) active pages are actually + * used less frequently than the refaulting page - or even not used at + * all anymore. + * + * If this is wrong and demotion kicks in, the pages which are truly + * used more frequently will be reactivated while the less frequently + * used once will be evicted from memory. + * + * But if this is right, the stale pages will be pushed out of memory + * and the used pages get to stay in cache. + * + * + * Implementation + * + * For each zone's file LRU lists, a counter for inactive evictions + * and activations is maintained (zone->inactive_age). + * + * On eviction, a snapshot of this counter (along with some bits to + * identify the zone) is stored in the now empty page cache radix tree + * slot of the evicted page. This is called a shadow entry. + * + * On cache misses for which there are shadow entries, an eligible + * refault distance will immediately activate the refaulting page. + */ + +static void *pack_shadow(unsigned long eviction, struct zone *zone) +{ + eviction = (eviction << NODES_SHIFT) | zone_to_nid(zone); + eviction = (eviction << ZONES_SHIFT) | zone_idx(zone); + eviction = (eviction << RADIX_TREE_EXCEPTIONAL_SHIFT); + + return (void *)(eviction | RADIX_TREE_EXCEPTIONAL_ENTRY); +} + +static void unpack_shadow(void *shadow, + struct zone **zone, + unsigned long *distance) +{ + unsigned long entry = (unsigned long)shadow; + unsigned long eviction; + unsigned long refault; + unsigned long mask; + int zid, nid; + + entry >>= RADIX_TREE_EXCEPTIONAL_SHIFT; + zid = entry & ((1UL << ZONES_SHIFT) - 1); + entry >>= ZONES_SHIFT; + nid = entry & ((1UL << NODES_SHIFT) - 1); + entry >>= NODES_SHIFT; + eviction = entry; + + *zone = NODE_DATA(nid)->node_zones + zid; + + refault = atomic_long_read(&(*zone)->inactive_age); + mask = ~0UL >> (NODES_SHIFT + ZONES_SHIFT + + RADIX_TREE_EXCEPTIONAL_SHIFT); + /* + * The unsigned subtraction here gives an accurate distance + * across inactive_age overflows in most cases. + * + * There is a special case: usually, shadow entries have a + * short lifetime and are either refaulted or reclaimed along + * with the inode before they get too old. But it is not + * impossible for the inactive_age to lap a shadow entry in + * the field, which can then can result in a false small + * refault distance, leading to a false activation should this + * old entry actually refault again. However, earlier kernels + * used to deactivate unconditionally with *every* reclaim + * invocation for the longest time, so the occasional + * inappropriate activation leading to pressure on the active + * list is not a problem. + */ + *distance = (refault - eviction) & mask; +} + +/** + * workingset_eviction - note the eviction of a page from memory + * @mapping: address space the page was backing + * @page: the page being evicted + * + * Returns a shadow entry to be stored in @mapping->page_tree in place + * of the evicted @page so that a later refault can be detected. + */ +void *workingset_eviction(struct address_space *mapping, struct page *page) +{ + struct zone *zone = page_zone(page); + unsigned long eviction; + + eviction = atomic_long_inc_return(&zone->inactive_age); + return pack_shadow(eviction, zone); +} + +/** + * workingset_refault - evaluate the refault of a previously evicted page + * @shadow: shadow entry of the evicted page + * + * Calculates and evaluates the refault distance of the previously + * evicted page in the context of the zone it was allocated in. + * + * Returns %true if the page should be activated, %false otherwise. + */ +bool workingset_refault(void *shadow) +{ + unsigned long refault_distance; + struct zone *zone; + + unpack_shadow(shadow, &zone, &refault_distance); + inc_zone_state(zone, WORKINGSET_REFAULT); + + if (refault_distance <= zone_page_state(zone, NR_ACTIVE_FILE)) { + inc_zone_state(zone, WORKINGSET_ACTIVATE); + return true; + } + return false; +} + +/** + * workingset_activation - note a page activation + * @page: page that is being activated + */ +void workingset_activation(struct page *page) +{ + atomic_long_inc(&page_zone(page)->inactive_age); +} |